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Abstract

The stochastic watershed is an unsupervised segmentation tool recently proposed
by Angulo and Jeulin. By repeated application of the seeded watershed with ran-
domly placed markers, a probability density function for object boundaries is cre-
ated. In a second step, the algorithm then generates a meaningful segmentation of
the image using this probability density function. The method performs best when
the image contains regions of similar size, since it tends to break up larger regions
and merge smaller ones. We propose two simple modifications that greatly im-
prove the properties of the stochastic watershed: (1) add noise to the input image
at every iteration, and (2) distribute the markers using a randomly placed grid.
The noise strength is a new parameter to be set, but the output of the algorithm
is not very sensitive to this value. In return, the output becomes less sensitive to
the two parameters of the standard algorithm. The improved algorithm does not
break up larger regions, effectively making the algorithm useful for a larger class
of segmentation problems.
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1. Introduction

The watershed is a well-known tool for image segmentation (Beucher and
Lantuejoul, 1979; Vincent and Soille, 1991). It tessellates the image such that
each region has precisely one local minimum, and the region boundaries run
along the crest lines. It is typically applied to the gradient magnitude image,
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yielding regions of approximately constant intensity. However, due to noise, any
non-synthetic image has too many local minima. This can be solved with either
a method to remove local minima as a preprocessing step, or a region merging
method as a postprocessing step. Alternatively, if a marker can be created for
each region to be delineated, the image can be transformed such that it only has
local minima at these markers (Meyer and Beucher, 1990); this is usually referred
to as seeded watershed. This does, however, not solve the segmentation problem;
it just transforms it from a region merging problem to a object detection problem.

Angulo and Jeulin (2007) recently proposed the stochastic watershed. This
algorithm works in two steps. First, through repeated application of the seeded
watershed with random markers, the stochastic watershed constructs a probability
density function (PDF) for the boundaries in the image. Second, a final segmenta-
tion is obtained from this PDF by suppressing unimportant local minima and ap-
plying the classical watershed algorithm. Minima are suppressed using a volume
criterion (Angulo and Jeulin, 2007) or preferably a depth criterion (Angulo and
Velasco-Forero, 2010). This latter criterion can be imposed using the h-minima
transform (Salembier and Serra, 1995). The PDF computed by the stochastic wa-
tershed in n iterations converges as n → ∞ to the probability of markers falling
on both sides of each boundary. This probability is given by the relative sizes of
the catchment basins on either side of the boundary (Meyer and Stawiaski, 2010).
However, the PDF typically becomes stable after about n = 50 iterations (Angulo
and Jeulin, 2007).

The seeded watershed can be seen as a path minimization problem (see Cousty
et al. (2010) for a recent description unifying the frameworks) where each point
of the image is assigned to the marker with the shortest distance. The distance
measure in this case is given by the largest gray value along the optimal path be-
tween the point and the marker. This is an incredibly stable measure, very insen-
sitive to the location of the markers. For example, the image in Figure 1(a), when
segmented using markers in the top left and bottom right corners, produces the
segmentation line shown in Figure 1(b). These two markers can be moved any-
where within their respective regions without changing the segmentation result.
Figure 1(c-e) show the result of the segmentation with markers in other random
places; the resulting lines are identical.

This stability is what allows the stochastic watershed to find ridges in the in-
put image. However, this stability also consistently places segmentation lines in
places where there are no actual ridges, as in the example in Figure 1. Conse-
quently, larger regions tend to be split by this method. Furthermore, as it is less
likely that a small region receives a marker in any one iteration, the PDF at borders
between smaller regions is lower than that between larger regions. Both effects
can be seen in Figure 2, which demonstrates that the stochastic watershed prefers
segmenting an image into equally sized regions.
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(a) (b) (c) (d) (e)

Figure 1: The seeded watershed is very insensitive to marker placement. (a) Input image. (b-e)
Segmentation result (white line) as a result of the two markers shown as white pixels.

In this paper we propose two simple modifications to the stochastic watershed
that will strongly improve its properties: we randomize the way in which the
watershed grows the regions by adding noise to the input image at every iteration,
and we distribute the markers using a randomly placed grid.

2. Methods

2.1. Adding noise
The very strong stability of the watershed segmentation discussed in the in-

troduction, as seen by its insensitivity to the placement of markers, is due to the
order in which pixels are added to the regions. The markers are the seeds, the
initial regions. These grow by adding the neighbors with lowest grey value first.
Two regions will therefore always meet at pixels with a high grey value. Ridges in
the input image, which indicate the object boundaries, are therefore consistently
found. However, noise will also naturally form ridges at which these regions
meet. A uniform area in the image, which has no ridge, will consistently produce
the exact same watershed line if there are markers on both sides of this line. This
is because pixels in this area are processed in the same order during every itera-
tion, yielding the same region boundary. This order can be broken by adding a
small amount of noise to the image. The noise must be strong enough to hide the
noise in the image, but not so strong that it hides the true ridges we are looking
for.

We suggest the addition of uniform noise to the input image before each it-
eration of the seeded watershed. Normally distributed noise has the exact same
effect, but takes more time to compute and is not bounded, potentially producing
extremely large or small values.
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(a) (b)

Figure 2: The stochastic watershed finds regions of similar size. (a) Input image. (b) PDF com-
puted by 50 iterations of the stochastic watershed with 7 markers. White indicates a probability
value of 0, black a probability value of 50 (which is the maximum obtainable with 50 iterations).
Note how lines across the largest region have a very large value (up to 35), whereas the boundaries
of the small regions at the top of the image have a much lower value (as low as 17).
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2.2. Randomly placed grid
Given a set of markers produced by a Poisson process (equivalent to taking

a set of coordinates from a uniform distribution), it is expected that some points
will be close together whereas other points will be far away from any other point.
This is a sub-optimal situation, as points that are close together are more likely
to be within the same region, causing the seeded watershed to split that region
in two. It has been suggested to direct the markers using a spectral classifica-
tion (Noyel et al., 2008) or a rough foreground/background segmentation (Faessel
and Jeulin, 2010). These methods require additional computing and somewhat
tailor the stochastic watershed to a specific problem. Instead, we propose to use
points on a regular grid, randomly placed over the image. While trying out differ-
ent marker distributions (results not shown), we found that a more even distribu-
tion improved the segmentation results, whereas clustering the markers made the
segmentation worse. A uniform grid is the easiest way to obtain an even distribu-
tion of makers.

In stereology, points thrown randomly over an image are used to quantify the
surface area of an object in that image (Mouton, 2002). Instead of independent
random sampling (i.e. using Poisson distributed points), uniform random sam-
pling is used exclusively. In uniform random sampling, a grid is placed randomly
over the image, and grid points are used as sample points. It has been shown that
uniform random sampling produces the same unbiased estimate for area that in-
dependent random sampling does, but more efficiently in that fewer samples are
needed to obtain the same precision (Mouton, 2002). This lead us to investigate
uniform grids for the purpose of producing markers for the stochastic watershed.

We looked at the square and hexagonal grids, both well known in the image
analysis community, as a means to generate markers. We introduced a random
offset and rotation to the grids, so that each iteration of the stochastic watershed
produced a different result. Grids were generated with a density equivalent to the
density of the Poisson process we were replacing, and a marker was placed at
each grid point. Every instance of the grid was translated randomly over one grid
period, and rotated randomly according to the rotational symmetry of the grid (i.e.
the square grid rotated up to 90◦, the hexagonal grid rotated up to 60◦). This way
of randomizing the grid position in the image caused each pixel in the image to
be equally likely to receive a marker. The random offset and rotation caused each
instance of the grid to produce a slightly different number of markers within the
image. As the stochastic watershed is not too sensitive to the number of markers,
as can be seen by the experiment in Section 3.3, this does not affect the result in
any way.

In geostatistics, a method called spatially stratified sampling (Cressie, 1993) is
often used. One implementation of stratified sampling is dividing the image into
squares, and randomly selecting one pixel from each square. If we put a marker
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on pixels selected this way, we obtain yet another way of randomizing markers
for the stochastic watershed. In our experiments we did not find an advantage for
this method over the random grids described above (data not shown).

2.3. Quantitative evaluation of PDFs
The PDF produced in the first step of the stochastic watershed is the input

to a final watershed, which suppresses some of the local minima based on the
volume or depth of their catchment basins (Angulo and Jeulin, 2007; Angulo and
Velasco-Forero, 2010). This step thus involves yet another parameter. To quantify
the behavior of the stochastic watershed while ignoring this additional parameter,
we decided to obtain a measure on the PDF directly. Given the known, ideal
segmentation, we determined the smallest PDF value on the segmentation lines (t),
and the largest PDF value where there are no lines ( f ). In principle, a threshold at
a value in between these two would yield a correctly segmented image. The ratio
of these two values, t/ f , is a measure of how easy it is to find that threshold value,
and, by extension, the parameter to the minima suppression. A ratio of one or less
indicates that it is not possible to obtain a correct segmentation given the PDF.

3. Experiments and results

3.1. Adding noise
To demonstrate the effect of adding noise at each iteration of the stochastic

watershed, we did so for the image of Figure 2(a). Figure 3(b) shows the result.
For comparison, Figure 3(a) shows the result without the noise (this is the same
result as shown in Figure 2(b), but with the contrast modified). Here, we plotted
the PDFs such that values of 10 or more are shown in black; white indicates a
value of 0. It can be seen that the standard stochastic watershed produced some
false lines with a very large value of the PDF, especially in large regions. By
adding noise, which randomized the order in which pixels were added to the var-
ious regions, each iteration of the seeded watershed produced such false lines in
different locations within these large regions. Therefore, they did not add up to
significant values.

We quantified the improvement obtained through this modification in the fol-
lowing manner. We generated a test image of 480 by 480 pixels (see Figure 4),
containing lines that divided the image into 16 large and 12 small regions. The
large regions had an area five times that of the small regions. The lines had a
grey value of 255. The background contained normally distributed noise with a
mean of 64 and a standard deviation of 32. We applied the stochastic watershed
using n = 50 iterations and s = 28 markers (equal to the number of regions). The
markers were randomly distributed using a Poisson process of density yielding
s markers on average, thus the actual number of markers changed from instance
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(a) (b)

Figure 3: Adding noise at each iteration effectively avoids repeatedly finding the same watershed
line where there is no actual ridge in the input image. (a) Contrast-stretched version of the image
in Figure 2(b). Pixels with an intensity of 10 or more are shown as black. Many pixels have a
value of 0, meaning that they are never seen as part of a possible segmentation boundary (t = 17,
f = 35). (b) PDF computed in the same way, but adding noise at each iteration. False contours
appear at a different location at each iteration, and only at true ridges does the PDF receive a large
value (t = 15, f = 7).
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Figure 4: Test image used for Figures 5(a) and 5(b).

to instance. From the resulting PDF we obtained the ratio t/ f , as described in
Section 2.3. We repeated the procedure 40 times for each of 5 different strengths
of noise added, including 0 to correspond with the standard stochastic watershed.
Noise was added to the input image before each application of the seeded wa-
tershed. The results are shown as box plots in Figure 5(a). As can be seen, any
sufficiently large amount of noise produces satisfactory results, with the best re-
sults for noise stronger than that in the input image, but not strong enough to hide
the signal.

3.2. Randomly placed grid
We used the exact same procedure to quantify the improvement due to the

new method of marker selection. Figure 5(b) shows statistics for 40 repetitions
with each of the methods: the standard Poisson process distribution, a square
grid, and a hexagonal grid. In each of these cases, we added uniformly distributed
noise with a range of 256 at every iteration of the algorithm (this was the optimal
strength found in the previous experiment). Either grid type improved the result
of the random distribution.

We performed the same experiment but without adding noise. In this case the
difference between the various methods of distributing markers was insignificant
(data not shown). This demonstrates that, to allow the stochastic watershed to
correctly segment an image with a strong variation in region sizes, it is required
to add noise to the image at every iteration.

3.3. Number of markers
The standard stochastic watershed performs optimally when using as many

markers as there are regions in the image (Angulo and Jeulin, 2007; Selig and
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Figure 5: (a) Performance of the stochastic watershed with different noise strengths. Even small
amounts of noise show a large improvement over the zero noise case (equivalent to the standard
stochastic watershed). Too much noise destroys the algorithm’s ability to detect ridges. (b) Perfor-
mance of the stochastic watershed with different marker distributions. Using regular grids, placed
randomly over the image, significantly improved the result when compared to the standard random
distribution. In both graphs, the box indicates the second and third quartiles, the horizontal line
the median, and the vertical lines the minimum and maximum datum.
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Luengo Hendriks, 2012). As the number of markers is increased, the probability
of two markers hitting the same region grows, and thus the value of the PDF along
false lines increases as well. But because the improvements proposed in this paper
strongly reduce the influence of these false lines, it is reasonable to assume that
the improved method degrades less quickly with increasing number of markers.

Likewise, for fewer markers than number of regions, the value of the PDF on
region boundaries decreases, as it is less likely that a marker is placed on both
sides of a boundary at every iteration. However, the value of the PDF at false lines
also decreases. It is reasonable to assume that the ratio t/ f we have been using
to characterize the PDF converges to a similar value, but at a reduced pace. That
is, more iterations are needed for convergence when using fewer markers. This
behavior should apply to both the standard and the improved algorithms.

We tested these assumptions by looking at the t/ f ratio after every iteration,
for 40 repetitions and during 100 iterations. We did this for both the standard
method and the improved method (hexagonal grid and uniform noise with a range
of 256), varying only the number of markers s. The test image was constructed as
that in Figure 4, but the lines created 36 square regions of equal size, so that the
standard method could produce good results. The number of markers used was
varied between one fourth and four times the ideal value of s = 36. The results
are plotted in Figure 6.

When increasing s above its ideal value, the standard method converged to a
lower ratio, and became useless with s = 144. The improved method, however,
converged to high ratios over the full range of selected values of s. For both
methods, the value to which the ratio converged changed when reducing s below
its ideal value, but not very strongly.

By noting at what point the lines crossed t/ f = 1, one can see that, for the
improved algorithm, fewest iterations were needed to reach t/ f > 1 when s = 36
(the ideal value). This number of iterations approximately doubled every time s
was halved. This indicates that the convergence rate is linearly dependent on the
number of markers, for fewer than the ideal number. For larger values of s this
dependency no longer holds.

One clear feature of these graphs is that, for larger number of seeds, the results
of the various independent runs of the algorithm (grey lines) are closer together.
This is due to there being less possible variation as the number of seeds increases.
Another interesting feature is the regular zig-zag behavior of the improved algo-
rithm with s = 36 (and also, but less strongly, for other values of s). This can be
attributed to the interaction of the grid used to place the markers and the grid in
the image.
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Figure 6: Comparison of standard vs improved stochastic watershed, convergence behavior with
respect to the number of markers s (ideally, s = 36). The standard stochastic watershed converged
to a high t/ f ratio as long as the number of markers was smaller than the number of regions in
the image, albeit at a smaller rate for fewer markers. For a larger number of markers, the ratio
dropped quickly, making the operation useless. In contrast, the improved stochastic watershed
still converged to high ratios even for marker densities four times larger than optimal. The gray
lines show 40 repetitions, the black line follows the median value at each iteration.
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3.4. Example application: fluorescent microscope images of nuclei
To show the improvement over the standard stochastic watershed provided by

the ideas presented in this paper, we apply the method to a database of images
with hand-drawn ground-truth segmentation (Coelho et al., 2009). Of the two
different collections in this database, we picked the first one, containing 48 images
of U2OS cells (one of which was unreadable, leaving us with 47 images), as in
Figure 7. We divided the set into a training set of 20 images and a test set of 27
images. We computed the gradient magnitude (Gaussian gradients with σ = 1 px)
of each image, normalized them to a maximum value of 1, and sub-sampled them
by a factor 2 in each dimension to reduce computation time. The resulting images
were used as input to the standard and the improved stochastic watershed.

We first applied the two algorithms to the training set, with a large range of
values for the two parameters s (number of markers) and h (depth threshold). We
fixed the number of iterations to 50. The improved method used uniform noise in
the range [0,0.1] and a random hexagonal grid to place the markers. Each result-
ing segmentation was compared with the hand-drawn ground truth using the same
methodology as Arbeláez et al. (2011). In short, a routine found the best assign-
ment between pixels on the computed boundaries and those in the ground truth.
Assignments further than 4 pixels are considered a mismatch. The fraction of
matched pixels in the segmentation is considered the true positive fraction or pre-
cision; the fraction of matched pixels in the ground truth is considered the recall.
The reported number is the F-measure, the geometric average of precision and
recall. For the standard stochastic watershed, the maximum average F-measure
(F = 0.65) was obtained for s = 25 and h = 4; for the improved method this was
F = 0.86, s = 200 and h = 6.

Subsequently we applied the two algorithms, with the optimal parameters as
determined on the training set, to the remaining 27 images. We obtained average
F-measures of F = 0.63 (min: 0.53, max: 0.78) and F = 0.86 (min: 0.63, max:
0.93) for the standard and improved stochastic watershed, respectively.

In Figure 7 we show the image from the test set for which the two F-measures
were closest to the averages for the set. As expected given the previous examples,
the PDF from the standard method contains high-valued lines crossing the back-
ground, where no boundaries exist in the image. Consequently, the segmentation
result has the background split into many regions. In contrast, the PDF for the
improved method has low values everywhere in the background region, showing
that lines dividing the background appear at a different place every iteration. The
resulting segmentation, though not perfect by any means, has a single region cor-
responding to the background of the image. Note that this image is, as most of the
images in the set, not particularly difficult to segment for a dedicated algorithm.
And in fact, even a simple morphological smoothing before computing the gra-
dient magnitude could have greatly improved the segmentation result. What we
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Figure 7: One image from the test set (top left) and its ground-truth segmentation (top right). The
middle row is the result of the standard stochastic watershed on the gradient magnitude (F = 0.65),
and the bottom row is the result of the improved method (F = 0.86); for both rows, left is the PDF
and right is the final segmentation. The parameters for the algorithms are those that optimized the
average F-measure on the training set.
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intend to show with this experiment, though, is the large improvement obtained
with the simple suggestion in this paper.

4. Discussion and Conclusions

The stochastic watershed is a powerful tool for unsupervised segmentation. In
essence, it has only two parameters that need to be adjusted to the problem at hand:
the number of markers s, and the depth threshold h for the final watershed on the
PDF (the parameter to the h-minima transform). The number of markers should
be close to the number of regions that are expected in the image. Obviously, it
is often not known a priori how many regions there are in the image, making it
difficult to choose the optimal value for parameter s. The parameter h does not
change as much from application to application. A limitation of the stochastic
watershed is that it is applicable only when all the regions in the image are of
similar size.

The two simple modifications proposed in this paper improve the stochastic
watershed in three ways: (1) the algorithm does a better job of segmenting im-
ages with large differences in region size, broadening the class of segmentation
problems that the method is suitable for; (2) the output is less sensitive to the
number of markers, making it easier to set the parameter s; and (3) the output
has an increased ratio t/ f , meaning that a correct segmentation is obtained for a
wider range of values of h, which makes it easier to set that second parameter. To
obtain these benefits, one new parameter is introduced: the range of the uniformly
distributed noise that is added to the image at each iteration. This noise should
ideally be a little stronger than the noise in the input image. It should be possible
to guess the best value for this parameter automatically by estimating the noise in
the image, for example using the method by Immerkær (1996). Nonetheless, the
output is quite insensitive to changes in this parameter, as any small amount of
noise produces acceptable results.

The first modification, adding noise at every iteration, is by far the most impor-
tant of the two. It is this change that provides the three improvements enumerated
above. Placing the markers using a random grid further increases the ratio t/ f ,
but by itself does not make large changes to the PDF of the standard stochastic
watershed.

The computation time for the stochastic watershed is increased when adding
noise to the input image at every iteration. In essence, the program must com-
pute a random number for each pixel in the image, n times (with n the number
of iterations of the stochastic watershed). Given that the seeded watershed is an
O(N log q) operation,2 the complexity is not changed (here N is the number of

2If the input to the seeded watershed is an interger-valued image, it is possible to use a O(1)
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pixels in the image and q ≈ log N is the number of pixels in the propagating
boundary). Placing the markers using a random grid is computationally more effi-
cient, in theory, than placing them using a Poisson process simulation. However,
because our implementation for the translated and rotated grid was not optimized,
this difference was hardly visible in our tests. For the test image of Figure 4 (480
pixels square), and 50 iterations, the computation time increased from 7.8 s to 8.8
s.

In the original stochastic watershed paper, Angulo and Jeulin (2007) suggested
the option of regionalizing the random markers by placing them where the gradi-
ent magnitude is large. That is, they suggested placing markers only close to
expected region boundaries. We have not considered this option in this paper, but
it could of course be combined with the improvements suggested here. This leads
to yet another possibility, that of changing the noise intensity within the image
based on the local image content. Given that the noise is used to avoid the forma-
tion of high PDF values in flat areas of the input, one could consider using noise
that is stronger in these areas, and less strong close to expected region boundaries,
so as to avoid disrupting real edges. The noise strength could thus, for example,
be inversely proportional to the gradient magnitude.
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