Volumes, areas, and masses

Christer O. Kiselman

1. The Euclidean unit ball and unit sphere

Let $V_{n}=\operatorname{vol}\left(B^{n}\right)$ denote the volume of the Euclidean unit ball B^{n} in \mathbf{R}^{n}, and let $A_{n-1}=\operatorname{area}\left(S^{n-1}\right)$ be the area of its boundary, the unit sphere S^{n-1} in \mathbf{R}^{n}. It is then easy to prove the two relations

$$
V_{n}=\frac{A_{n-1}}{n} \quad \text { and } \quad A_{n}=2 \pi V_{n-1}
$$

The first just says that the volume of B^{n} is the integral of the areas of all spheres $r S^{n-1}$ when r varies from 0 to 1 . The second expresses the fact that over each point x in B^{n-1} there is a circle in S^{n}, the inverse image of x under the projection $p: S^{n} \rightarrow B^{n-1}$ defined by $p\left(x_{1}, \ldots, x_{n+1}\right)=\left(x_{1}, \ldots, x_{n-1}\right)$, and that the n-dimensional measure of the set $p^{-1}(M)$ over a set M in B^{n-1} is just 2π times the $(n-1)$ dimensional measure of M. These two formulas give rise to 2 -step induction formulas:

$$
V_{n}=\frac{2 \pi}{n} V_{n-2} \quad \text { and } \quad A_{n}=\frac{2 \pi}{n-1} A_{n-2}
$$

from which all volumes and areas can be calculated. We need only start with $V_{0}=1$, $V_{1}=2$ and $A_{0}=2, A_{1}=2 \pi$ to get generally in \mathbf{R}^{n} :
In $\mathbf{R}^{0}=\{0\}$
$V_{0}=1$
$A_{-1}=0$
In \mathbf{R}^{1}
$V_{1}=2$
$A_{0}=2$
In $\mathbf{R}^{2}=\mathbf{C}$
$V_{2}=\pi$
$A_{1}=2 \pi$
In \mathbf{R}^{3}
$V_{3}=\frac{4 \pi}{3}$
$A_{2}=4 \pi$
In $\mathbf{R}^{4}=\mathbf{C}^{2}$
$V_{4}=\frac{\pi^{2}}{2}$
$A_{3}=2 \pi^{2}$
In $\mathbf{R}^{5} \quad V_{5}=\frac{8 \pi^{2}}{15}$
$A_{4}=\frac{8 \pi^{2}}{3}$
In $\mathbf{R}^{6}=\mathbf{C}^{3}$
$V_{6}=\frac{\pi^{3}}{6}$
$A_{5}=\pi^{3}$
In $\mathbf{R}^{7} \quad V_{7}=\frac{16 \pi^{3}}{105}$
$A_{6}=\frac{16 \pi^{3}}{15}$
$\operatorname{In} \mathbf{R}^{8}=\mathbf{C}^{4}$
$V_{8}=\frac{\pi^{4}}{24}$
$A_{7}=\frac{\pi^{4}}{3}$

The general formulas are

$$
V_{n}=\frac{\pi^{n / 2}}{(n / 2)!}, \quad A_{n-1}=\frac{2 \pi^{n / 2}}{(n / 2-1)!}
$$

To prove this it is enough to check that the formula for V_{n} satisfies the 2-step induction formula above and gives the right value for $n=0$ and $n=1$. And for the latter is is good to remember that $\frac{1}{2}!=\Gamma\left(\frac{3}{2}\right)=\frac{1}{2} \sqrt{\pi}$. In general, $\Gamma(z)=(z-1)!=\int_{0}^{\infty} e^{-t} t^{z-1} d t$ for $\operatorname{Re} z>0$.

The formulas look a bit simpler in $\mathbf{R}^{2 k}=\mathbf{C}^{k}$:

$$
V_{2 k}=\frac{\pi^{k}}{k!}, \quad A_{2 k-1}=\frac{2 \pi^{k}}{(k-1)!}
$$

Therefore the sum of the volumes of all unit balls in $\mathbf{C}^{k}, k \in \mathbf{N}$, is e^{π}. (But is it allowed to add volumes of different dimensions?) In \mathbf{R}^{n} for odd $n=2 k+1$ they are

$$
V_{2 k+1}=\frac{2^{k+1} \pi^{k}}{(2 k+1)!!}, \quad A_{2 k}=\frac{2^{k+1} \pi^{k}}{(2 k-1)!!}
$$

Here $(2 k+1)!!=1 \cdot 3 \cdot 5 \cdots(2 k+1)$.
Let r_{n} be the radius of a ball with the same volume as the cube $[-1,1]^{n}$, that is, with volume 2^{n}. Of course this radius is smaller than the radius of the circumscribed sphere, which is \sqrt{n}, so it is reasonable to set $r_{n}=\theta_{n} \sqrt{n}$. In fact r_{n} should be somewhere between this radius and the radius of the inscribed ball in the cube, which is 1. Now $r_{n}=2 V_{n}^{-1 / n}$, so $\theta_{n}=2 V_{n}^{-1 / n} n^{-1 / 2} \rightarrow \sqrt{2 / \pi e}$, which is approximately 0.48394. We have for example $\theta_{6} \approx 0.620971 ; \theta_{12} \approx 0.5636 ; \theta_{138} \approx 0.4947104$.

Another way to calculate A_{n} is to study the integrals

$$
I_{n}=\int_{\mathbf{R}^{n}} e^{-\|x\|_{2}^{2}} d x=A_{n-1} \int_{0}^{\infty} e^{-r^{2}} r^{n-1} d r=\frac{1}{2} A_{n-1} \Gamma(n / 2),
$$

where $\|x\|_{2}$ is the Euclidean norm, $\|x\|_{2}=\sqrt{\sum x_{j}^{2}}$. Using iterated integrals we see that $I_{n}=I_{1}^{n}$. On the other hand it is easy to calculate I_{2} using polar coordinates. One finds $I_{2}=\pi$, thus $I_{n}=\pi^{n / 2}$. This gives the value for A_{n-1} already found.

2. Other norms

The l^{1} norm $\|x\|_{1}=\sum\left|x_{j}\right|$ and the l^{∞} norm $\|x\|_{\infty}=\max \left|x_{j}\right|$ are sometimes used. For these norms, the volumes of the unit balls in \mathbf{R}^{n} are

$$
V_{n}^{1}=\frac{2^{n}}{n!}, \quad V_{n}^{\infty}=2^{n}
$$

However, we can also use complex l^{p} norms: $\|z\|_{1}=\sum\left|z_{j}\right|$ and $\|z\|_{\infty}=\max \left|z_{j}\right|$. Then the volumes of the unit balls in \mathbf{C}^{k} are $(2 \pi)^{k} /(2 k)!$ and π^{k} respectively.

A little table is useful for comparison:

$$
\begin{array}{cccc}
& p=1 & p=2 & p=\infty \\
\mathbf{R}^{n} & \frac{2^{n}}{n!} & \frac{\pi^{n / 2}}{(n / 2)!} & 2^{n} \\
\mathbf{R}^{2 k} & \frac{4^{k}}{(2 k)!} & \frac{\pi^{k}}{k!} & 4^{k} \\
\mathbf{C}^{k} & \frac{(2 \pi)^{k}}{(2 k)!} & \frac{\pi^{k}}{k!} & \pi^{k}
\end{array}
$$

3. The mass defined by a subharmonic function

Let E be a radial fundamental solution of $\Delta E=\delta$ in \mathbf{R}^{n}; this implies that we have

$$
\frac{\partial E}{\partial r}=\frac{1}{A_{n-1}} r^{1-n}, \quad n=1,2,3, \ldots
$$

in all dimensions. Therefore, after having made an unimportant choice of a constant,

$$
E(x)=\frac{\|x\|_{2}^{2-n}}{(2-n) A_{n-1}}, \quad n \neq 2, \quad \text { and } \quad E(x)=\frac{1}{2 \pi} \log \|x\|_{2}, \quad n=2
$$

It will be convenient in the sequel to use a notation for the average of a function f over a set A :

$$
f_{A} f(x) d x=\int_{A} f(x) d x / \int_{A} d x
$$

provided $0<\int_{A} d x<+\infty$.
Proposition. Let $u \in C^{2}(\Omega)$, where Ω is an open set containing $R \bar{B}$, the closed ball of radius R and center at the origin. Let $\mu=\Delta u$ be its Laplacian. Then

$$
\begin{equation*}
\int_{R B}(E(R)-E(x)) \mu=f_{R S}(u-u(0)) . \tag{3.1}
\end{equation*}
$$

From this it follows that if $\mu \geqslant 0, \theta>1$,

$$
f_{r B} \mu \leqslant \frac{n(n-2)}{1-\theta^{-n+2}} r^{-2} f_{\theta r S}(u-u(0)), \quad n \neq 2
$$

In particular if $n=1$:

$$
f_{r B} \mu \leqslant \frac{1}{\theta-1} r^{-2} f_{\theta r S}(u-u(0))=\frac{1}{(\theta-1) r^{2}}\left(\frac{1}{2} u(\theta r)-u(0)+\frac{1}{2} u(-\theta r)\right)
$$

and if $n=2$:

$$
f_{r B} \mu \leqslant \frac{2}{r^{2} \log \theta} f_{\theta r S}(u-u(0))
$$

Choosing $u(x)=(E(x)-E(r))^{+}$we see that these inequalities cannot be improved. Proof. We start from Green's ${ }^{1}$ formula:

$$
\int_{\Omega}(u \Delta v-v \Delta u)=\int_{\partial \Omega}\left(u \frac{\partial v}{\partial N}-v \frac{\partial u}{\partial N}\right) .
$$

$\overline{{ }^{1} \text { George Green (1793-1841). }}$

Let $\mu=\Delta u, v(x)=E(x)-E(R) \leqslant 0$ in $\Omega=R B$. Then $v=0$ on $\partial \Omega=R S$, and $\Delta v=\delta$. We get

$$
\begin{equation*}
\int_{R B}(u \delta-v \mu)=\int_{R S} u \frac{\partial E}{\partial r}=f_{R S} u \tag{3.2}
\end{equation*}
$$

for $\partial E / \partial r$ is a radial function whose mean value over $R S$ is 1 . We can write (3.2) as

$$
\int_{R B}(-v) \mu=f_{R S}(u-u(0)),
$$

i.e., we have proved (3.1). Now $E(\theta r)-E(r)=\left(\theta^{-n+2}-1\right) E(r) \geqslant 0$ if $n \neq 2$ and $\theta>1$, and $E(\theta r)-E(r)=\frac{1}{2 \pi} \log \theta>0$ when $n=2$, so we get

$$
f_{r B} \mu=\frac{1}{r^{n} V_{n}} \int_{r B} \mu \leqslant \frac{1}{r^{n} V_{n}(E(\theta r)-E(r))} f_{R S}(u-u(0)) ;
$$

the last inequality follows since $-v \geqslant E(R)-E(r)>0$ in $|x| \leqslant r<\theta r=R$. Continuing we see that

$$
f_{r B} \mu=\frac{1}{r^{n} V_{n}\left(\theta^{-n+2}-1\right) E(r)} f(u-u(0))=\frac{n(n-2)}{1-\theta^{-n+2}} r^{-2} f(u-u(0))
$$

for $n \neq 2$, and

$$
f_{r B} \mu \leqslant \frac{1}{r^{2} V_{2} \frac{1}{2 \pi} \log \theta} f(u-u(0))=\frac{2}{r^{2} \log \theta} f(u-u(0))
$$

when $n=2$.

