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Resumo:
Plursubharmonaj funkcioj kaj potenciala teorio en pluraj kompleksaj variabloj
Ni prezentos superrigardon de la evoluigo de la teorio pri plursubharmonaj
funkcioj kaj la potenciala teorio ligita al ili ekde ilia difino en 1942 ĝis 1997.

Abstract: We survey the development of the theory of plurisubharmonic func-
tions and the potential theory associated with them from their emergence in
1942 to 1997.
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1. Introduction

This is a survey of the development of the theory of plurisubharmonic functions
since its inception in 1942 up to 1997. We aim at presenting the ideas as they
appear during this period. It is our ambition to make the text accessible to all
university mathematicians. This has of course some consequences for the choice
of topics as well as for the style of presentation.

We shall also take a look at the theory of extremal plurisubharmonic func-
tions, or, what is roughly the same thing, the plurisubharmonic solutions to the
complex Monge–Ampère equation. These functions appear in problems analogous
to those of classical potential theory, and the field has sometimes been called
pluripotential theory. It is a branch of mathematics where crucial properties of
plurisubharmonic functions are studied. However, it is by no means the only one,
and we do not pretend to cover all areas where plurisubharmonic functions can be
put to use.

In the field of pluripotential theory there are several works of survey character
available: the survey article by Bedford [1993] and the books by Klimek [1991] and
Cegrell [1988], for instance. Also Ko lodziej [1998], although it is a research paper,
gives a survey of results for the complex Monge–Ampère operator. We refer the
interested reader to the surveys mentioned for more details on some of the subjects
treated here—as well as for other topics.

Research is going on concerning many of the themes considered here. This
means that it is sometimes not so easy to put things into a proper historical
perspective. This is especially true concerning sections 12–16.

Acknowledment. I am grateful to Eric Bedford, Zbigniew B locki, Urban Cegrell,
Lars Hörmander, Maciej Klimek, S lawomir Ko lodziej, Finnur Lárusson, Józef Si-
ciak, Ragnar Sigurðsson, Hiroshi Yamaguchi, and Ahmed Zeriahi for offering con-
structive criticism on early drafts of this paper, to Toshio Nishino for important
information on the work of Oka, and to Eric Bedford, Urban Cegrell, Gustave
Choquet, Jean-Pierre Demailly, Maciej Klimek, Józef Siciak, and Ahmed Zeriahi
for providing bibliographical information.

2. Setting the stage

For the convenience of the reader we shall give here the main definitions before we
go on with the history of the subject.

The plurisubharmonic functions are in many ways analogous to convex func-
tions. Indeed they relate to subharmonic functions of one complex variable as
convex functions of several variables do to convex functions of one real variable.
In particular, plurisubharmonic functions need for their definition infinitely many
inequalites (cf. (2.6) below), just like convex functions of two or more variables,
and they are associated to an overdetermined system of differential equations.
On the other hand, a plurisubharmonic function is not necessarily continuous or
even locally bounded, which makes questions of local regularity much trickier than
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corresponding questions for a convex function, which is continuous in any open set
where it is finite.

From the point of view of differential equations we can describe the theory
of several complex variables as being centered around three important equations.
First of these is the Cauchy–Riemann equation

(2.1) d′′u = f,

where d′′ is the component of bidegree (type) (0, 1) of the exterior differentiation
operator d = d′ + d′′. For functions f , the operators d′ = ∂ and d′′ = ∂ (the
holomorphic and antiholomorphic parts of d) are defined by

d′f = ∂f =
∑ ∂f

∂zj
dzj , d′′f = ∂f =

∑ ∂f

∂zj
dzj ;

for forms of higher degree they are defined inductively by the formulas

d′(u ∧ dzi) = d′u ∧ dzi, d′(u ∧ dzj) = d′u ∧ dzj

and then extended by linearity; similarly for d′′. Here we use the customary
notation for complex derivatives:

(2.2)
∂

∂zj
=

1
2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂zj
=

1
2

(
∂

∂xj
+ i

∂

∂yj

)
, zj = xj + iyj .

Already Poincaré [1899:112] calculated with derivatives with respect to the vari-
ables uk = xk − iyk; Wirtinger [1927:357] used the notation ∂/∂zγ .

Thus in the most basic case of functions u and (0, 1)-forms f =
∑
fjdzj , the

equation d′′u = f takes the form of a system with n equations

∂u

∂zj
= fj , j = 1, ..., n.

The exterior differentiation operator d satisfies dd = 0 (every exact form or current
is closed), and similarly we have d′′d′′ = 0. Therefore a necessary condition for
solvability of the equation d′′u = f is that f be d′′-closed, d′′f = 0, which in terms
of the coefficients fj takes the form

∂fj
∂zk

=
∂fk
∂zj

, j, k = 1, ..., n.

We shall touch upon the theory of this equation in section 6, but otherwise we
consider it as lying outside the scope of this survey.

The second equation is

(2.3) 2id′d′′u = f,
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where u is a function and f a differential form or a current of bidegree (1, 1). The
currents are, roughly speaking, differential forms with distribution coefficients. In
this context, one often uses the operator dc = i(d′′ − d′), which allows us to write
2id′d′′ = ddc. The operator 2id′d′′ = ddc has real coefficients and maps forms or
currents of bidegree (p, q) to currents of bidegree (p + 1, q + 1). In one complex
variable (2.3) can be written

2id′d′′u = ddcu = 2i
∂2u

∂z∂z
dz ∧ dz = (∆u)dx ∧ dy = f,

where ∆ is the Laplace operator, so (2.3) generalizes Poisson’s equation. Poincaré
[1899:113] studied an overdetermined system of equations

∂2u

∂zj∂zk
= Pjk, j, k = 1, ..., n,

(although he did not use the notation ∂/∂zk) with polynomials Pjk, which is
equivalent to (2.3) with f = 2i

∑
Pjkdzj ∧dzk, a differential form with polynomial

coefficients. He proved that n2(n− 1) obviously necessary conditions on the Pjk,
corresponding to the condition that f be closed, are also sufficient for solvability.

The third equation is the complex Monge–Ampère equation

(2.4) (ddcu)n = g.

This is a combination of (2.3) and the algebraic equation fn = g, where the nth

power of f is calculated in the exterior algebra. If u is a function of class C2, the
equation has an elementary meaning: fn is a form with a continuous coefficient,
which is essentially the determinant of all derivatives ∂2u/∂zj∂zk. It is therefore
a polynomial in these derivatives. In a more general situation, the coefficients of
f are measures, and measures cannot always be multiplied. But it is desirable to
study equation (2.4) when the right-hand side is in a wider class than the (n, n)
forms with continuous coefficients. During the last decades, significant efforts have
been devoted to making more general definitions work.

A function f defined in some open subset Ω of the space Cn of n complex
variables is said to be plurisubharmonic, f ∈ PSH(Ω), if its values are real or −∞;
if it is upper semicontinuous, i.e., such that the sublevel sets {z ∈ Ω; f(z) < c}
are open for all real c; and, finally, if it satisfies the mean-value inequality

(2.5) f(a) 6
1

2π

∫ 2π

0

f(a+ eiθb)dθ

for all a, b ∈ Cn such that the disk {a+tb; |t| 6 1} is contained in Ω. For an upper
semicontinuous function the latter property is equivalent to requiring that the pull-
back ϕ∗(f) = f ◦ ϕ be subharmonic wherever it is defined for all affine mappings
ϕ: C → Cn. It is a remarkable fact that this property implies that the pull-back
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ϕ∗(f) is subharmonic also for all holomorphic mappings ϕ: C → Cn. Thus a
definition which a priori depends on the vector-space structure of Cn in fact does
not, and the plurisubharmonic functions form a class which is biholomorphically
invariant and can be defined on any complex analytic manifold.

A basic example of a plurisubharmonic function is c log |h|, where c is a
positive constant and h is holomorphic. Thus the plurisubharmonic functions
generalize the (absolute values of) holomorphic functions. But they are not as
rigid as the latter: they are easier to manipulate and glue together—this is why
Lelong includes them among “les objets souples de l’analyse complexe” [1985].

For twice continuously differentiable functions the mean-value inequality (2.5)
can be replaced by a differential inequality. A function f ∈ C2(Ω) is plurisubhar-
monic if and only if its Levi form Lf (z; b) is positive semidefinite, i.e.,

(2.6) Lf (z; b) =
n∑

j,k=1

∂2f

∂zj∂zk
(z)bjbk > 0, z ∈ Ω, b ∈ Cn.

This means that d′d′′f is a differential form of bidegree (1, 1) whose coefficients
are continuous functions and which has a certain positivity property, expressed
here as positive semidefiniteness of the Hermitian form Lf (z; b).

But we can say more about the differential condition (2.6). A link to general
plurisubharmonic functions is provided by convolutions with test functions: we
form the convolution product f ∗ ψε,

(2.7) (f ∗ ψε)(z) =
∫

Cn

f(w)ψε(z − w)dλ(w) =
∫

Cn

f(z − εw)ψ(w)dλ(w),

where dλ denotes Lebesgue measure and ψ > 0 is a test function of integral one and
which is invariant under multiplication by scalars of modulus one: ψ(eiθz) = ψ(z)
for real θ, and where ψε(z) = ε−2nψ(z/ε). The functions f ∗ψε are defined in any
given relatively compact subdomain of Ω when ε is small, they are plurisubhar-
monic, of class C∞, and they tend to f as ε tends to zero.

An upper semicontinuous function is plurisubharmonic if and only if it sat-
isfies (2.6) in the sense of distributions. Moreover any distribution which satisfies
(2.6) is the distribution defined by some plurisubharmonic function. Also any such
distribution u ∈ D′(Ω) can be locally approximated by smooth plurisubharmonic
functions by forming convolutions

(u ∗ ψε)(z) = u(w 7→ ψε(z − w)),

where ψ is as in (2.7).
Yet another point of view is of interest. All plurisubharmonic functions are

subharmonic as functions of the 2n real variables Re z1, Im z1, ...,Re zn, Im zn. Now
consider the class of subharmonic functions that remain subharmonic under all
real linear changes of the coordinates. This class consists of the convex functions.
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Similarly, the class of functions that are subharmonic under all complex linear
changes of the coordinates consists precisely of the plurisubharmonic functions,
see Klimek [1991: Theorem 2.9.12]. This point of view has been elaborated by
Hörmander [1994: Ch. V] to fit various situations where other subgroups of the
group of all linear mappings are relevant.

We shall say that a plurisubharmonic function f ∈ PSH(Ω) is maximal if for
any relatively compact subset ω of Ω and any upper semicontinuous function g
defined on ω, plurisubharmonic in ω, and such that g 6 f on the boundary of ω, it
is true that g 6 f in all of ω; Sadullaev [1981]. In one variable, the maximal pluri-
subharmonic functions are precisely the harmonic functions and thus characterized
as solutions to the Laplace equation ∆f = 0; in more than one variable, the class
is much richer, and contains for instance (for degree reasons) all plurisubharmonic
functions which are functions of n− 1 variables. It is known that these functions,
if they are locally bounded, are solutions to the homogeneous complex Monge–
Ampère equation; see section 12.

3. The emergence of plurisubharmonic functions
To discuss plurisubharmonic functions we must obviously start with subharmonic
functions. These functions, or rather the superharmonic1 functions, were intro-
duced by Friedrich Hartogs in a remarkable paper published in 1906, although he
did not give a name to them. He studied holomorphic functions of two complex
variables (x, y) ∈ C2 and expanded them in a series containing powers of one of
the variables:

S(x, y) =
∞∑
ν=0

fν(x)yν .

He denoted by R′x the radius of convergence of this power series in y, and he
proved that minus the logarithm of R′x is subharmonic as a function of x in today’s
terminology; more precisely, he proved [1906:50] that if R′x is of class C2, then it
satisfies the differential inequality

∆(logR′x) =
∂2 logR′x
∂u2

+
∂2 logR′x
∂v2

6 0,

i.e., the now well-known differential inequality for superharmonic functions. (Here
u = Rex, v = Imx.) In general he proved that the function logR′x majorizes any
harmonic function which it majorizes on the boundary of a domain, i.e., that it is a
supersolution to the Dirichlet problem. And he went on to prove a converse: given
any function Ux of class C2 which satisfies the differential inequality, then there
exists a holomorphic function such that its radius of convergence R′x is equal to
expUx [1906:63]. This amounts to a solution of the Levi problem (to be mentioned
later in this section) for domains of the kind which are now known as Hartogs
domains and whose boundary is of class C2.

1A function is superharmonic if and only if its negative is subharmonic.
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It was F. Riesz who gave a name to this class of functions in a talk in Stock-
holm on September 15, 1924; see Riesz [1925, 1926:329]. There he discussed sub-
harmonic functions and their relation to potential theory. He called a continuous
function of two real variables subharmonique2 if it satisfies an inequality

u(x0, y0) 6
1

2π

∫ 2π

0

u(x0 + r cosϕ, y0 + r sinϕ)dϕ

for all sufficiently small values of the radius r. This is the mean value inequality
(2.5) but he required it only for small r. He showed that this property is equivalent
to the fact that the function is a subsolution to the Dirichlet problem, and then,
a few pages later, extended his definition to the case of an upper semicontinuous
function, using now the property of being a subsolution [1926:333]; in other words,
he followed Hartogs [1906].

A little more than a decade after Riesz, a rather complete, now classical,
monograph by Radó appeared—published in English in Berlin in the year 1937.

It is somewhat amusing now to note how subharmonic functions were ap-
proximated by smooth functions in those days. One first formed the areal mean

Ar(x, y;u) =
1
r2π

∫∫
ξ2+η2<r2

u(x+ ξ, y + η)dξdη,

which is a continuous function. To get a function of class C2 one had to repeat
this procedure; the third areal mean A

(3)
r (x, y;u) is of class C2, and the sequence

u
(3)
k (x, y) = A

(3)
1/k(x, y;u) tends to u in any given relatively compact subdomain;

see Riesz [1930:342ff] and Radó [1937:11]. Expressed in terms of convolutions, one
thus formed u ∗ χε ∗ χε ∗ χε, where χ denotes the characteristic function of the
unit ball. Nowadays one forms a convolution u ∗ ψε with one conveniently chosen
smooth function ψ; cf. (2.7).

The plurisubharmonic functions were introduced by Oka [1942] and Lelong
[1942a], working independently in Japan and France, respectively. In fact Oka
did his research work already in 19353 at Hiroshima University, where he was
assistant professor during the years 1932–1938, while Lelong worked in Paris.4

The two mathematicians never met.4 Oka’s paper was received by the Tôhoku
Mathematical Journal on October 25, 1941, and published in May, 1942. Lelong’s
definition appeared in a note in the Comptes Rendus presented on November 3,
1942.

2This French term was not well chosen and soon afterwards the functions were
called sousharmoniques (Szpilrajn [1933] and Frostman [1935:10]). Oka [1942:40]
kept Riesz’s term, however.
3Toshio Nishino, personal communication, October 3, 1997.
4Pierre Lelong, personal communication, September 24, 1997.
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Oka called his new functions pseudoconvex, just like the domains in which
they live most naturally.5 Lelong, on the other hand, used the subharmonic func-
tions as his point of departure; the functions are subharmonic on any complex line,
and therefore subharmonic “in many ways.” In his note [1942a], the term pluri-
sousharmonique appeared for the first time. Earlier Poincaré [1899:112] had used
the term biharmonique for functions of n variables that we now call pluriharmonic,
i.e., functions f such that both f and −f are plurisubharmonic. Thorin [1948:18]
followed Poincaré concerning this usage and extended it in a natural way: he
called the plurisubharmonic functions bisubharmonic. It is Lelong’s choice that
has survived.

Oka writes [1942:40]:
“Nous appellerons fonction pseudoconvexe par rapport à x, y dans D, toute
fonction réelle ϕ(x, y) bien définie et satisfaisant aux conditions suivantes:
1◦. La fonction eϕ(x,y) est finie et semi-continue supérieurement par rapport
à x, y dans D. 2◦. Sur tout plan caractéristique6 L passant par un point
de D, ϕ(x, y) est une fonction subharmonique de x ou de y sur la portion
de L dans D.

We note that his definition, albeit in two variables, agrees with the one in use ever
since. The easy generalization to n variables appeared in [1953]. He called the
function real, but it is clear from his wording that the function may assume the
value −∞; this is why he imposes the condition of semicontinuity not on ϕ but
on eϕ, which is zero at the points where ϕ is minus infinity. The constant −∞ is
admitted, as is apparent from this definition and also explicitly stated [1942:39].
He noted that his class enjoys the same properties as the class of subharmonic
functions with respect to sums, maxima, and passage to the limit.

The reason for introducing this “nouvelle classe de fonctions réelles” is quite
clear in Oka’s case: the author proved in the quoted article that a pseudoconvex
open set in the space of two complex variables is a domain of holomorphy.7 This
had been an open problem since the beginning of the century, called the inverse
Hartogs problem or the Levi problem.8 As a preliminary to that great theorem,
almost en passant, he proved that in a domain which is pseudoconvex in the sense
of Hartogs, minus the logarithm of the distance from a point to the boundary is
pseudoconvex, i.e., plurisubharmonic in today’s terminology.

5Oka called a domain pseudoconvex if it satisfies the continuity theorem of Hartogs.
Nowadays one often uses plurisubharmonicity to define pseudoconvexity: a domain
is called pseudoconvex if there exists a plurisubharmonic function which tends to
+∞ at the boundary.
6In Oka’s terminology, plan caractéristique means a complex line.
7A domain of holomorphy can be defined as a domain of existence of a holomorphic
function, i.e., a domain such that there exists a holomorphic function which cannot
be extended to any larger domain over Cn.
8Oka [1953], Bremermann [1954], and Norguet [1954] later solved the Levi problem
in any finite number of variables.
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Toshio Nishino9 has explained Oka’s line of reasoning when he defined the
new class as follows. Oka was familiar with Levi’s condition from 1910; see (4.1)
and (4.2) below. It is nonlinear in ρ. Oka wanted to find a linear condition on
ρ which implies Levi’s condition. Now (2.6) with f replaced by ρ, i.e., plurisub-
harmonicity of ρ, is such a condition: we get (4.2) from (2.6) making the special
choice b = (−∂ρ/∂z2, ∂ρ/∂z1). And Oka wanted to impose linearity for a very
precise reason. A pseudoconvex domain can have a very complicated boundary; it
can be fractal in nature and boundary points need not be accessible along paths.
Therefore it seems impossible to construct directly a holomorphic function whose
domain of existence is the given domain. It is a natural idea to approximate the
domain by pseudoconvex domains having a smooth boundary. To construct such
domains, it seems reasonable to consider the distance function dΩ, dΩ(z) denoting
the distance from z to ∂Ω. Since dΩ is not smooth in general, it is natural to
form mean values of it over neighborhoods of a given point; cf. (2.7). But such
mean values remain in a certain class only if the class is a convex cone; hence the
importance of finding a linear condition instead of the nonlinear Levi condition
(4.2).

Lelong defined a plurisubharmonic function as one that takes finite values or
minus infinity and is bounded from above in any relatively compact subdomain.
The function is not allowed to be minus infinity identically. Moreover it shall
be subharmonic or −∞ on every complex plane of dimension one. Lelong did
not impose upper semicontinuity but deduced it as a consequence from his defi-
nition; the proof appeared in [1945]. In the most common definition today upper
semicontinuity is imposed, just as Oka did. However, interestingly enough, in the
recent study of Poletsky’s holomorphic currents (see section 16), it appears that
Lelong’s original definition will be useful. As a motivation for his introduction
of this “classe remarquable” Lelong mentioned only “l’extension de la méthode
sousharmonique” [1942a:398]. He developed in his notes [1942a, b] mean-value
properties and properties with respect to passage to the limit. In a “mémoire”
[1945], he presented more fully the properties of this class of functions. And fifty
years later [1995] he described from his point of view the development of the theory
of plurisubharmonic functions and closed positive currents during the first twenty
years, from 1942 to 1962.

The intuition behind the new class of functions proved to be fruitful. Oka
and Lelong had defined a class of great importance and the development during
the following fifty years was to be spectacular.

4. Domains of holomorphy and pseudoconvex domains

A holomorphic function defined in a domain in Cn can be holomorphically ex-
tended to a unique maximal domain. This is a result which goes back to Weier-
strass in one complex variable and it is equally valid, with a similar proof, in several

9Personal communication, October 9, 1997.
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variables. However, we cannot let the term domain here denote a connected open
subset of Cn: we must understand the word as meaning domain over Cn. For
n = 1 this is the classical notion of a Riemann surface, and for several variables it
is not that different. Any convergent power series defines a holomorphic function
in a neighborhood of a point, in other words a germ of a holomorphic function, and
the maximal domain of existence is simply the connectivity component contain-
ing that germ in the space of all germs. This means that the material needed to
build up the maximal domain is provided by the function itself, i.e., by its Taylor
expansions and all possible continuations of these.

It was noted in the beginning of the twentieth century that the maximal
domain of a holomorphic, even meromorphic, function must possess a certain
convexity property. Levi [1910:80] proved that an open set in C2 which is the
domain of existence of a meromorphic function must satisfy a differential condition
at every boundary point. If the boundary ∂Ω has the equation ρ(x1, x2, y1, y2) = 0,
where x = x1 + ix2, y = y1 + iy2 are two complex variables, and Ω is on the side
where ρ is negative, then it is necessary that the inequality(
∂2ρ

∂x2
1

+
∂2ρ

∂x2
2

)((
∂ρ

∂y1

)2

+
(
∂ρ

∂y2

)2
)

+
(
∂2ρ

∂y2
1

+
∂2ρ

∂y2
2

)((
∂ρ

∂x1

)2

+
(
∂ρ

∂x2

)2
)

− 2
(

∂2ρ

∂x1∂y1
+

∂2ρ

∂x2∂y2

)(
∂ρ

∂x1

∂ρ

∂y1
+

∂ρ

∂x2

∂ρ

∂y2

)
(4.1)

− 2
(

∂2ρ

∂x1∂y2
− ∂2ρ

∂x2∂y1

)(
∂ρ

∂x1

∂ρ

∂y2
− ∂ρ

∂x2

∂ρ

∂y1

)
> 0

hold at all points of the boundary of Ω. If we let z1 and z2 be the complex variables
and use the notation (2.2) (which Levi did not do) we get a more compact formula:

(4.2)
∂2ρ

∂z1∂z1

∣∣∣∣ ∂ρ∂z2

∣∣∣∣2 − 2 Re
∂2ρ

∂z1∂z2

∂ρ

∂z1

∂ρ

∂z2
+

∂2ρ

∂z2∂z2

∣∣∣∣ ∂ρ∂z1

∣∣∣∣2 > 0

on ∂Ω.
Nowadays it is customary to reformulate (4.1) and (4.2), called the Levi

condition, as follows. If ρ is a defining function for a domain Ω, then (4.2) says
that

(4.3)
2∑

j,k=1

∂2ρ

∂zj∂zk
(a)bjbk > 0 when a ∈ ∂Ω and

2∑
j=1

∂ρ

∂zj
(a)bj = 0.

The last condition in (4.3) means that b ∈ C2 is tangent to the boundary of Ω.
The geometrical significance of (4.3) is that the boundary bends away from the
best fitting second-degree analytic curve in the good direction, i.e., inward. In
contrast to (4.2), (4.3) is easy to generalize to several variables. As we remarked
in the last section, the step from (4.2) to (4.3) was instrumental in Oka’s work.
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A year later [1911:70] Levi proved a kind of converse: if the corresponding
strong condition is satisfied, i.e., with strict inequality in (4.3) for all b 6= 0, then
there is a neighborhood ω of a such that ω ∩ Ω is the domain of existence of a
holomorphic function. The full converse in C2 was proved by Oka [1942] as we
have already mentioned in section 3.

The situation for plurisubharmonic functions is very different from that for
holomorphic functions. For every domain ω in Cn there exists a domain Ω con-
taining ω such that all plurisubharmonic functions in ω can be extended to Ω and
such that Ω is maximal with this property; Cegrell [1983b]. However, this maxi-
mal domain is not unique. Several sufficient conditions have been established for
a domain to be the domain of existence of some plurisubharmonic function, for
example by Bedford and Burns [1978] and Cegrell [1983b], but there seems to be
no known geometric characterization of such domains.

As mentioned in section 2, all functions of the type c log |h| with c a posi-
tive constant and h a holomorphic function are plurisubharmonic. Bremermann
[1956a:82] proved that every plurisubharmonic function in a pseudoconvex domain
is the upper semicontinuous envelope of the upper limit of a sequence of such spe-
cial functions.10 Earlier, Lelong had noted already in [1941:116] that the result is
true for one complex variable, and he had also proved [1952:198] that it is equiva-
lent, in any number of variables, to approximation in the L1

loc topology by maxima
of finitely many functions of the form c log |h|.

Bremermann used in an essential way the solution of the Levi problem. I
cannot resist the temptation to sketch his elegant proof: it combines the notions
of plurisubharmonic function, pseudoconvex domain, and domain of holomorphy
with the classical formula for the radius of convergence of a power series, and goes
back to the pioneering study of Hartogs [1906] touched upon in section 3. If a
plurisubharmonic function f is given in a domain Ω in Cn, then we can construct
a domain over Ω (now called a Hartogs domain) in the space of n + 1 complex
variables:

(4.4) Ω(f) = {(z, t) ∈ Ω×C; |t| < e−f(z)},

and any holomorphic function h in Ω(f) admits a partial Taylor expansion

h(z, t) =
∞∑
j=0

hj(z)tj ,

which converges for |t| < R(z), z being fixed, where R(z) is given by the formula
for the radius of convergence of a power series in one variable:

− logR(z) = lim sup
j→∞

1
j

log |hj(z)|, z ∈ Ω.

10Bochner and Martin [1948:145] had in fact stated that a plurisubharmonic func-
tion of class C2 is of this type in any domain, but Bremermann showed by an
example that this is not so.
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Since h is assumed holomorphic for |t| < e−f(z), the series must converge for at
least these values of t, which means that − logR(z) 6 f(z). On the other hand,
the series defines a holomorphic extension of h to the open set Ω((− logR)∗), where
the star denotes the upper semicontinuous envelope, cf. (7.2). So if h can be chosen
such that it does not admit a holomorphic extension beyond the boundary of Ω,
then (− logR)∗ = f . Thus the given function f has a representation of the kind
we wanted. We can choose h such that it does not admit a holomorphic extension
precisely when Ω(f) is a domain of holomorphy, and, in view of the solution of the
Levi problem, this is the case when Ω(f) is pseudoconvex. This, in turn, is true if
Ω is pseudoconvex and f plurisubharmonic. In fact, given a pseudoconvex domain
Ω, f is plurisubharmonic there if and only if Ω(f) is pseudoconvex: the theory of
plurisubharmonic functions is therefore equivalent to the theory of pseudoconvex
Hartogs domains Ω(f).

5. Integration on analytic varieties
In 1957, Lelong published a paper [1957a] on integration on an analytic subvariety
of Cn. This was the starting point of an important development in complex
geometry and it led up to the theory of Lelong numbers of closed positive currents.

The idea is in fact simple to express although it relies on the deep theory of
analytic varieties. An analytic variety (also called an analytic set) is defined locally
as the common zero set of a family of holomorphic functions defined near a given
point. However, at most points the variety is in fact a manifold, and on a manifold
it is possible to integrate using local coordinates to move the problem to a space
Cp of appropriate dimension, where Lebesgue measure is defined. (Alternatively,
one could use 2p-dimensional Hausdorff measure in Cn.) Lelong’s idea was to
extend integration from the regular points to all points of the variety.

Let A be an analytic subvariety of an open set Ω in Cn, and let Areg denote
the set of all its regular points, i.e., the set of all points in a neighborhood of
which A is a manifold of the top dimension p. The complement with respect to
A is called the singular set and we shall denote it by Asing. So far we can only
say that Areg is open in A, possibly empty, and that Asing is a closed subset of
A. But the theory of analytic varieties tells us that Areg is in fact a complex
manifold of pure dimension p (i.e., all its component are of the same dimension p)
and that Asing is an analytic variety of top dimension less than p. This enables us
to use induction, and it is an important fact in the construction of the extension
of integration over Areg.

Lelong started from integration over Areg: if Areg is of dimension p, we can
define a current t by

t(ϕ) =
∫
Areg

ϕ, ϕ ∈ D(ΩrAsing).

Here D(ω) denotes the space of differential forms whose coefficients are test func-
tions in ω. As already mentioned, t is defined by Lebesgue measure of dimension
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2p in Cp, to which we can transport the form ϕ. Only those forms which are of
bidegree (p, p) can give a nonzero integral. Now it is sometimes possible to extend
a current t defined in an open set ω to a current T in a larger set Ω by defining
the extension as

T (ϕ) = lim
α
t(αϕ), ϕ ∈ D(Ω),

where α is a smooth function which is zero in a neighborhood of Ω r ω so that
t can be applied to αϕ ∈ D(ω), and where the limit is taken over functions α
which satisfy 0 6 α 6 1 and tend to one on all compact sets in ω. This is in
fact the easiest way to extend currents. If this is possible we call T the simple
extension of t. Lelong proved that the current of integration t over Areg admits
indeed a simple extension from ω = Ω r Asing to all of Ω; the extension T is a
positive closed current and it has measure coefficients. A simple extension of a
closed current is not always closed, but in the present case this is true. If the
function α is equal to one except in an ε-neighborhood of Asing, the mass of the
boundary of the current αt must lie in that neighborhood. Now the p-dimensional
volume of an ε-neighborhood of Asing can be controlled. It follows that the mass
of d(αt) is locally not worse that a constant times ε.

To conclude, Lelong’s investigation showed that we can write simply

T (ϕ) =
∫
Areg

ϕ, ϕ ∈ D(Ω),

with the important additional information that T , the extension of t, is closed in
Ω.11

An elegant proof which “differs slightly from that of Lelong” was published
by de Rham [1969], who had sketched his proof at a conference already in 1957.
Federer [1965] gave another proof in the algebraic case.

This result has been generalized in several directions, for instance by El Mir
[1984], who proved that the extension T to Ω of a closed positive current t in
ω ⊂ Ω is closed if Ωrω = f−1(−∞) is the polar set of some function f ∈ PSH(Ω)
(see section 7) and t has finite mass near every point in Ωr ω.

6. Weighted estimates for the Cauchy–Riemann operator
Since the logarithm of the modulus of a holomorphic function is plurisubhar-
monic, it is natural to estimate the growth of holomorphic functions by inequali-
ties |h(z)| 6 eϕ with a plurisubharmonic ϕ, thus with an inequality in L∞ norm
‖he−ϕ‖∞ 6 1. However, duality behaves much better in L2 than in L∞, so in

11Earlier Stoll [1952:145] had defined integration over the zero set A (of real dimen-
sion 2n− 2) of an analytic function by this formula and actually shown [1952:153]
that a differential form defined in Cn can be integrated over the regular points.
But it seems that Stokes’ theorem, corresponding to the property of the current
of integration being closed, was not available in his calculus.
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order to work with adjoint mappings it is convenient to use instead L2 norms:
‖he−ϕ/2‖2 6 1. The constructed objects are often holomorphic functions, and
for them an estimate of the mean value yields pointwise estimates. Therefore L2

methods are often useful even though we want pointwise estimates in the end. In
1965, Hörmander published a paper where he solved the Cauchy–Riemann equa-
tion using Hilbert-space methods, i.e., the theory of closed linear operators in
Hilbert spaces. The Hilbert spaces are L2 spaces with plurisubharmonic weight
functions. That such weight functions came to be used was natural in view of
what we just remarked. Andreotti and Vesentini [1965] had a similar approach,
also using L2 methods, to prove vanishing theorems for compactly supported co-
homology on manifolds. The basic a priori estimates had been proved earlier by
Morrey [1958] and Kohn [1963].

The use of L2 methods, especially those in Hörmander’s paper [1965] and
his monograph [1966], revolutionized the methods of constructing holomorphic
functions.

The results have the following form. Let f be a differential form of bidegree
(p, q), q > 1, in a pseudoconvex domain Ω in Cn and satisfying an L2 estimate
‖fe−ϕ/2‖2 6 1, where ϕ ∈ PSH(Ω). If we impose the necessary condition d′′f = 0,
then there exists a solution u of bidegree (p, q − 1) to d′′u = f satisfying an
estimate ‖ue−ψ/2‖2 6 1 for a certain ψ. Ideally one would like to have ψ = ϕ, and
Hörmander’s results came very close to this. In [1965:105] he had ϕ = ψ+κ+log q,
where ψ is an arbitrary strongly plurisubharmonic function and where κ is a
continuous function such that eκ is a lower bound for the plurisubharmonicity of
ψ, i.e., such that the Levi form Lψ(z; b) of ψ (cf. (2.6)) has eκ(z)|b|2 as a minorant.
A later variant in the case (p, q) = (0, 1) is this: in his monograph Notions of
Convexity, [1994:258] Hörmander chose ϕ = g + (a − 2) log(1 + |z|2) + log a and
ψ = g + a log(1 + |z|2), where g is an arbitrary plurisubharmonic function and
a a positive number. This choice of ϕ and ψ goes back to an improvement due
to Bombieri [1970] of a result of Hörmander [1966]. It was further sharpened by
Skoda [1977:318] in the case Ω = Cn.

The last-mentioned choice of weight-functions ϕ and ψ gives rise to the follow-
ing result, now known as the Hörmander–Bombieri theorem: If Ω is pseudoconvex
and f ∈ PSH(Ω) is such that e−f is integrable in some neighborhood of a point
a ∈ Ω, then to every positive ε there exists a holomorphic function h in Ω such
that h(a) = 1 and ‖he−f/2(1+|z|)−n−ε‖2 is finite; Bombieri [1970:275], Hörmander
[1994:258]. The interest here is that h must be zero at every point such that e−f is
not integrable near that point. Letting now a vary, we see that the set of points of
nonintegrability of e−f is an analytic variety. The Hörmander–Bombieri theorem
thus provides a strong link between the local behavior of plurisubharmonic func-
tions and globally defined analytic varieties. This link was further investigated by
Kiselman [1992, 1994b].

Another important development was that Ohsawa and Takegoshi [1987] could
prove sharp extension theorems in L2 norms for holomorphic functions using the
L2-methods of Hörmander, Andreotti and Vesentini. This remarkable result says
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that if h is a holomorphic function defined in Ω ∩ Cn−1 and ψ ∈ PSH(Ω), then
every holomorphic function h ∈ O(Ω ∩Cn−1) such that

‖he−ψ‖L2(Ω∩Cn−1) < +∞

can be extended to a holomorphic function H ∈ O(Ω) satisfying an estimate

‖He−ψ‖L2(Ω) 6 C‖he−ψ‖L2(Ω∩Cn−1),

where C is a constant depending only on the diameter of Ω. Here the same weight
function ψ is used in both sides and no regularity is imposed on it. A simplified
proof was given by Berndtsson [1996].

7. Small sets: pluripolar sets and negligible sets
Let us denote by P (f) = f−1(−∞) the set of points where a function takes the
value minus infinity. If E is a subset of a domain Ω in Rn, we shall say that
it is polar if there is a subharmonic function in Ω which is not identically minus
infinity and such that E ⊂ P (f). According to Lelong [1945:307] this usage goes
back to Brelot. The polar sets are of Lebesgue measure zero, but they are even
smaller, and there is a well-developed theory of Newtonian capacity; in this theory
the polar sets are exactly the zero sets for the capacity as was proved by Cartan
[1942, 1945].

Lelong [1945:307] called a set polaire if it is contained in P (f) for some pluri-
subharmonic function f (a global definition), but later [1957b:264] he changed
the definition to a local one: he called a set Cn-polaire in a domain Ω in Cn if
to every point a ∈ Ω there is a connected open neighborhood V and a function
f ∈ PSH(V ) such that X ∩ V ⊂ P (f), and, of course, f is not identically minus
infinity. Nowadays the term pluripolar is the most common. If the function can be
chosen to be plurisubharmonic in all of Ω, we shall call the set globally pluripolar.

The pluripolar sets form a family of small sets; they are of Lebesgue measure
zero and also of Newtonian capacity zero, but their exact character remained
mysterious. It was for instance not known whether a set which is pluripolar is
also globally pluripolar. This was called the “first problem/question of Lelong”
by Sadullaev [1981: §9] and Bedford [1993:58]. The corresponding problem for
subharmonic functions got its solution because of Newtonian capacity: a small
piece of a polar set can be defined by a subharmonic function defined not only
in a neighborhood of a point but in the whole space; the whole set is therefore a
countable union of globally polar sets. Since the capacity is countably subadditive
we are done. But it was not known whether there exists a corresponding capacity
for pluripolar sets.

Another family of small sets appears in the passage to the limit. If we have
a sequence (fj) of plurisubharmonic functions in a domain Ω and the sequence is
locally bounded from above, then

(7.1) f(z) = lim sup
j→∞

fj(z), z ∈ Ω,
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is not necessarily plurisubharmonic—it is not necessarily upper semicontinuous.
We form the upper semicontinuous envelope of f :

(7.2) f∗(z) = lim sup
w→z

f(w), z ∈ Ω.

One can prove without difficulty that f∗ is plurisubharmonic. We have cor-
rected f to get f∗ and the question arises whether we can characterize the sets
{z ∈ Ω; f(z) < f∗(z)}. These sets, which are of Lebesgue measure zero and of
Newtonian capacity zero, were studied by Lelong [1961]. He later called them
négligeables [1966:276]. It is easy to see that every globally pluripolar set is neg-
ligible: just take fj(z) = f(z)/j; Lelong [1966:280]. On the other hand it is easy
to see that a negligible set which appears in a situation where f∗ is plurihar-
monic is pluripolar; Lelong [1966:281]. Are all negligible sets pluripolar? This
was stated as an open problem by Lelong [1966:276], and was called the “second
problem/question of Lelong” by Sadullaev [1981: §12] and Bedford [1993:59]. Car-
tan [1942, 1945:102, 105] had solved the corresponding problem for subharmonic
functions.

These problems were around for a long time, and we shall now sketch how
they were solved. The first problem, whether (locally) pluripolar implies globally
pluripolar, was solved in 1976 by Josefson [1978]. His approach was completely
elementary (and very brave). The argument goes as follows. A piece of the given
pluripolar set is contained in the polar set of a plurisubharmonic function defined
in some small ball. Now this function is the upper semicontinuous envelope of
an upper limit of a sequence of logarithms of holomorphic functions in the ball
according to a famous result of Bremermann mentioned in section 4. These holo-
morphic functions, in turn, can be approximated by polynomials, which of course
are globally defined—but the partial sums of their Taylor expansions cannot serve
as approximants. By tinkering with these polynomials, Josefson obtained a glob-
ally defined plurisubharmonic function whose polar set contains the given set, or
at least a certain fraction of it. By “tinkering” I mean that the coefficients of the
polynomials are changed in a sophisticated way, which involves solving very large
systems of equations, the equations for the coefficients of the polynomials. Josef-
son’s paper contains a complicated result on large systems of linear equations,
intertwined with deliberations on small sets. Siciak [1983:301] and Hörmander
[1994:287] isolated the result on systems of equations and made Josefson’s proof
more transparent. However, the most satisfying explanation for the choice of
polynomials was provided by Alexander and Taylor [1984] who showed that “the
Tchebycheff polynomials themselves already do the job”: if E is a relatively com-
pact subset of the unit ball B in Cn, we look for polynomials P of degree at most
j that minimize supE |P | while supB |P | > 1. Taking E as the set in 1

2B where a
given plurisubharmonic function takes large negative values, we get polynomials
which are small there, and they become the building blocks for a plurisubharmonic
function F in Cn which has large negative values in E.
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The second problem, whether negligible sets are pluripolar, was solved by
Bedford and Taylor [1982]. They constructed a capacity which is countably sub-
additive. The sets of zero capacity are precisely the pluripolar sets, which implies
that their construction also gives a new proof of Josefson’s theorem. Their capacity
is defined as follows:

(7.3) Cn(K,Ω) = sup
u

[∫
K

(ddcu)n;u ∈ PSH(Ω), 0 < u < 1
]
.

Here (ddc)n is the complex Monge–Ampère operator, which the authors defined for
all locally bounded plurisubharmonic functions. We shall describe that important
development in section 12. They proved that all negligible sets have capacity zero
and therefore are pluripolar. So finally the identity of several important classes
of sets associated already from the beginning with the family of plurisubharmonic
functions was established.

8. The analogy with convexity
All convex functions are plurisubharmonic, so the latter class is a generalization of
the former, just like pseudoconvex sets generalize convex open sets. But there are
also strong analogies between the two classes.12 Bremermann [1956b] was the first
to publish a systematic study of the analogy between the two classes of functions,
as well as between convex domains and pseudoconvex domains. He established
many results for the latter classes in analogy with already known results for convex
functions or domains.

Lelong [1952:205] proved that a plurisubharmonic function which is indepen-
dent of the imaginary parts of the variables is necessarily convex. Thus if f is
plurisubharmonic and satisfies f(z) = f(x+ iy) = g(x) for x in a convex domain
in Rn and for all y ∈ Rn, then f is convex.13 In the same paper he showed that
this implies the closely related result that a pseudoconvex domain which is a tube,
i.e., such that z′ ∈ Ω if z ∈ Ω and Re z = Re z′, is convex. Stein [1937] had proved
this for domains of holomorphy. Lelong [1952:211] obtained results also in the
more difficult case of tubes of finite length, i.e., when Ω is the set of all z = x+ iy
with x ∈ ω ⊂ Rn and |y| < R.

There is, however, a simple classical result for convex sets and functions
which has no direct analogue for plurisubharmonic functions. This is that the
image under any linear mapping of a convex set is a convex set. To express the

12If we were to follow the idea that has led to the term plurisubharmonic, convex
functions of several variables would be called pluriconvex. Radó [1937:III] pointed
out that convex functions of one variable may be called sublinear, so we might
push the analogy one step further and call convex functions of several variables
plurisublinear or plurisubaffine.
13For the earlier history of this topic, including Riesz’s convexity theorem and
Thorin’s extension of it, we refer to G̊arding [1997:32].
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corresponding result for functions we need the notion of marginal function of a
convex function f of two groups of variables x ∈ Rn, y ∈ Rm. The marginal
function g of f is by definition

(8.1) g(x) = inf
y∈Rm

f(x, y), x ∈ Rn.

It is easy to prove that g is convex in Rn if f is convex in Rn × Rm; indeed
this follows easily from the fact that a projection of a convex set is convex. Now
simple examples show that a projection of a pseudoconvex set is not necessarily
pseudoconvex. Thus if Ω ⊂ Cn × Cm is a given and ω ⊂ Cn is defined as the
set of all points x such that (x, y) ∈ Ω for some y ∈ Cm, we cannot say that ω is
pseudoconvex if Ω is. Equivalently, if we define in analogy with (8.1),

(8.2) g(x) = inf
y∈Cm

f(x, y), x ∈ Cn,

it does not follow that g is plurisubharmonic if f is. Kiselman [1978] found a
simple condition under which we can conclude that g defined as in (8.2) is pluri-
subharmonic. The condition is that f shall be independent of the imaginary part
Im y of y ∈ Cm, thus f(x, y) = f(x, y′) if Re y = Re y′. More generally we define

(8.3) g(x) = inf
y∈π−1(x)

f(x, y), x ∈ π(Ω),

where π is the projection defined by π(x, y) = x, where Ω is a pseudoconvex open
subset of Cm+n, which, like f , is independent of Im y, and where, this time for
simplicity only, each fiber π−1(x) is supposed to be connected.14 The result was
called the minimum principle, and applications of it were published for instance by
Lelong [1983a:484] and Kiselman [1979, 1992, and 1994a]. A special case appeared
in Kiselman [1967:14]. A more general but rather complicated minimum principle,
although known in 1978, was published in 1994; Kiselman [1994b].

In complex analysis, radial functions, i.e., functions independent of the argu-
ment of a complex variable, appear quite often in the study of growth problems,
like

F (x, z) = sup
t∈R

u
(
x, zeit

)
, (x, z) ∈ Cn ×C.

They are covered by the minimum principle by a simple change of variable z = ey:

f(x, y) = sup
t∈R

u
(
x, ey+it

)
, (x, y) ∈ Cn ×C.

14More care is needed if the fibers π−1(x) are not connected, for then g cannot in
general be defined in a subset of Cn but only on a non-schlicht domain over Cn.
However, with a suitable modification of (8.3), the conclusion is still valid.
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Chafi and Loeb generalized the minimum principle to a Lie-group setting. Let
G be a connected complex Lie group and GR a connected closed real form of G, i.e.,
a closed and connected Lie subgroup of G such that Lie(G) = Lie(GR)+iLie(GR),
where Lie denotes the Lie algebra of a Lie group. (In the case discussed above,
G = Cm and GR = Rm.) Let Ω be an open subset of Cn ×G which is invariant
under the action of GR from the right, and let Φ ∈ PSH(Ω) also be invariant
under the action of GR from the right, i.e., Φ(x, gh) = Φ(x, g), (x, g) ∈ Ω, h ∈
GR. Then, under certain hypotheses, ϕ(x) = infg∈G Φ(x, g) is plurisubharmonic
in the projection of Ω. Chafi [1983] showed that the hypotheses are satisfied if
G = GL(p,C) × Cq and GR is the real form GR = U(p) × Rq. Loeb [1985]
extended the result to more general groups.

The minimum principle for Lie groups was used in the proof of a long-standing
conjecture in quantum field theory, the so-called extended future tube conjecture.
To state this result, let us first define the future tube

T = {(z0, z1, z2, z3) ∈ C4; Im z0 > 0, (Im z0)2 > (Im z1)2 + (Im z2)2 + (Im z3)2}.

It is invariant under the action of a group G, viz. the connectivity component
containing the identity of the complex Lorentz group L(C) = O(1, 3,C). The
extended future tube is

G · Tn = {gz; z ∈ Tn, g ∈ G},

where G acts diagonally on the elements of Tn. The extended future tube con-
jecture, which was open for thirty years, asserts that G · Tn is pseudoconvex for
n > 3. Zhou presented a proof of it in January, 1997, revised in [1998]. Heinzner
[1998] later in 1997 gave another proof, based on results of Zhou.

Berndtsson [forthc.] found a generalization of the minimum principle in a
different direction. He replaced (8.2) by

(8.4) e−g(x) =
∫

Rm

e−f(x,y)d(Re y), x ∈ Cn,

and proved that if f ∈ PSH(Cn×Cm) is independent of Im y, then g is plurisub-
harmonic. This generalizes Prekopa’s theorem for convex functions as well as the
minimum principle described above; one gets (8.2) as a limiting case from (8.4)
by substituting pf and pg for f and g and letting the positive number p tend to
infinity.

Hörmander published an announcement [1955] of certain theorems on the
Laplace transformation in spaces of distributions, which has now, forty years later
[forthc.], been expanded into a comprehensive theory for the Legendre transforma-
tion operating on partially plurisubharmonic functions and its relation to the dis-
tributional Laplace transformation. Entire functions, such as the Fourier–Laplace
transforms of distributions, can naturally be estimated using functions which are
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concave in the real directions and partially plurisubharmonic. For such functions
it is natural to take the maximum over Rn and then the minimum over iRn. This
gives a kind of saddle-point transformation, a generalization of the classical Le-
gendre transformation, and it is involutive under certain conditions. The Laplace
transformation maps distributions in a class defined by one such function ϕ iso-
morphically onto the class of distributions defined by the Legendre transform of
ϕ. This theory generalizes results by Gel′fand and Shilov [1953] and McKennon
[1976].

9. Lelong numbers
To describe the behavior of a plurisubharmonic function near a given point, the
most important parameter is a quantity which has become known as the Lelong
number. In this section we shall sketch its appearance and later generalization.
Then, in section 11, we shall touch upon a finer local object, the tangent cone to
a function or current, which may or may not exist.

The result described in this section combine ideas from potential theory and
the theory of holomorphic functions. They go back to Poincaré [1899]. He studied
a holomorphic function F and the logarithm of its absolute value log |F |. He
concluded [1899:159] that log |F | is equal to a harmonic function plus a potential
of a “variété attirante” C (the zero set of F ) whose “matière attirante” has density
equal to one. (This has a sense only for functions with simple zeros.) In present-
day terms, we would express Poincaré’s result by saying that the Lelong number
of the variety C is one at all regular points.

Let a closed positive current t of bidimension (p, p) (bidegree (n− p, n− p))
be given, for instance the current of integration on an analytic variety of complex
dimension p. Let µ be the measure t ∧ βp/p!, where β is the differential form

(9.1) β =
i

2
d′d′′|z|2 =

1
4
ddc|z|2 =

i

2
∑
dzj ∧ dzj .

The mean density in the ball a + rB is the mass of µ in that ball divided by the
volume of the ball of the same radius in Cp, the corresponding dimension, thus

(9.2) νt(a, r) =
µ(a+ rB)

λ2p(rB ∩Cp)
;

the mean density is thus actually a mass divided by a volume. Lelong [1957a:260]
proved that this quotient is an increasing function of r. Thus the limit

(9.3) νt(a) = lim
r→0

νt(a, r) = lim
r→0

µ(a+ rB)
λ2p(rB ∩Cp)

exists. For varieties of codimension one, he proved the corresponding statement
already in [1950]. Later Thie [1967:271] called this limit the Lelong number when t
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is the current of integration on an analytic variety and proved that it is an integer
in that case, and equal to the multiplicity of the variety at the point a.

It was conjectured for some time that the set of points where the Lelong
number exceeds or equals a certain level, thus the superlevel set

Ec(t) = {z ∈ Ω; νt(z) > c},

is an analytic variety. This means that the Lelong number is upper semicontinuous
for the analytic Zariski topology. Probably the first appearance in print of the
conjecture was in Harvey and King [1972:52]. Thie’s result [1967] showed that the
conjecture is true in the case of the current of integration on an analytic variety.
A partial but important result was proved by Skoda [1972:406]: to any c > 0 there
exists an analytic variety X of dimension at most p such that

(9.4) Ec(t) ⊂ X ⊂ Ec′(t), where c′ = c(1− p/n).

Skoda first constructed a so-called canonical potential that has the same Lelong
numbers everywhere as the current t and then used the Hörmander–Bombieri
theorem (mentioned in section 6) that the set X of nonintegrability of e−f is an
analytic variety. The set of nonintegrability is contained in one superlevel set of
νf and contains another.

The conjecture was proved by Siu in [1974] (announced in [1973]). His proof
depended heavily on Hörmander’s L2 estimates for the Cauchy–Riemann operator,
and, for currents of higher degree (n−p > 1), on Federer’s theory of slicing [1969].
We shall sketch later a proof of the result in the case p = n− 1.

We have defined the Lelong number as the density at a point of a certain
measure. If a plurisubharmonic function is given, it is natural to consider its
Laplacian, or rather a multiple of it:

µ =
1

2π
∆f =

2
π

n∑
1

∂2f

∂zj∂zj
.

This is the Riesz mass of f . Its density can be defined in terms of the behavior of
f near the point in question. The higher the density, the faster f tends to minus
infinity at the point. The mass of µ in a ball can be expressed in terms of the
derivatives of a function u(x, t), the mean value of f over the sphere x + etS of
radius r = et > 0. (It is convenient to use t rather than r as a variable here,
because u is convex in t.) Using Green’s formula we can write

µ(x+ rB) =
1

2π

∫
x+rB

∆f =
1

2π

∫
x+rS

∂f

∂r
dS =

1
2π

∂u

∂t

dt

dr

∫
rS

dS =
1

2πr
∂u

∂t

∫
rS

dS.

This calculation was done by Lelong already in [1950] in the case when f = log |h|
for a holomorphic h (although he did it on f and not on u). The relation between
u and the Lelong number is simple: since the quotient

area(rS2n−1)
volume(rB2n−2)

= 2πr
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regardless of the dimension, the mean density (9.2) is equal to the slope ∂u/∂t at
the point t = log r, and the Lelong number (9.3) is its limit as t→ −∞.

Now if we extend u to complex values of t by putting u(x, t) = u(x,Re t),
we obtain a function which is plurisubharmonic as a function not only of x but of
(x, t) where it is well defined, i.e., for points (x, t) satisfying (x, t) ∈ Ω × C and
Re t < log dΩ(x), dΩ(x) being the Euclidean distance from x to the complement
of Ω. By the minimum principle of Kiselman [1978] (see section 8), the function

fτ (x) = inf
t

(
u(x, t)− τ Re t; Re t < −q(x)

)
, x ∈ Ω,

is plurisubharmonic in Ω for any τ > 0. We assume here that q is a given plurisub-
harmonic function satisfying q > − log dΩ and with νq = 0 everywhere (for instance
with finite values). One can calculate the Lelong number of fτ , and it turns out
that it is given by a simple formula: νfτ (x) = max(νf (x) − τ, 0) = (νf (x) − τ)+.
We now apply Skoda’s result (9.4) to the function g = fτ/(c− τ) with 0 < τ < c:
there is an analytic variety Xτ such that

Ec(f) = E1(g) ⊂ Xτ ⊂ E1/n(g) = Ecτ (f),

where cτ = τ + (c− τ)/n 6 c. If we let τ tend to c, we get cτ → c and we see that

Ec(f) =
⋂

0<τ<c

Xτ .

The right-hand side is an intersection of analytic varieties and therefore itself an
analytic variety. This short proof of Siu’s theorem in the case p = n− 1 was given
by Kiselman [1979].

The Lelong number at the origin of the function log |z| is 1, and we can say
that the Lelong number compares the behavior of a plurisubharmonic with that
function, or, what amounts to the same thing, with maxj(log |zj |). However, we
might as well compare it with a function like maxj(cj log |zj |) for any choice of
positive numbers cj . This was the idea behind the so-called refined Lelong numbers
presented by Kiselman in 1986 and published in [1987, 1992, 1994a]. One forms
the mean value of a plurisubharmonic function over a polycircle:

v(x, y) =
∫
!

|zj |=|eyj |

f(x+ z),

where the bar through the integral sign indicates mean value. The usual Lelong
number is obtained when we choose all yj equal. The limit

νf (x, y) = lim
t→−∞

v(x, ty)
t

, x ∈ Ω,
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exists for all y with yj > 0 and is a concave function of y. Therefore the methods
of convexity theory can be applied to the function νf (x, · ). For instance it is a
consequence of the concavity of this function that all refined Lelong numbers at
a fixed point are comparable in the sense that νf (x, y) 6 Cy,zνf (x, z) for some
constant depending on y, z ∈ Rn, yj , zj > 0, but independent of f . Siu’s theorem
is valid, with the same proof as sketched above, as was proved in 1986 by Kiselman
[1992, 1994a].

Demailly introduced an even larger class of Lelong numbers in his paper
[1987a]. Let ϕ be a continuous plurisubharmonic function such that the sublevel
set {x ∈ Ω; ϕ(x) < R} is relatively compact in Ω for some R > 0. Demailly
defined

ν(T, ϕ, r) = (2π)−p
∫
ϕ<r

T ∧ (ddc max(ϕ, s))p,

where T is a current of bidimension (p, p), and s < r. If T is closed, Stokes’ formula
shows that this number is in fact independent of s. The function r 7→ ν(T, ϕ, r) is
increasing and its limit

ν(T, ϕ) = lim
r→−∞

ν(T, ϕ, r)

is called the generalized Lelong number of T with respect to the weight func-
tion ϕ. When ϕ(z) = log |z − a| we get the usual Lelong number νT (a); when
ϕ(z) = maxj(y−1

j log |zj − aj |) and T = ddcf we get the refined Lelong number
νf (a, y) just discussed. Demailly’s definition is very supple and lends itself to a
very short and natural proof of the coordinate invariance of Lelong numbers, a
result obtained earlier by Siu [1974] but with a longer proof.

Siu’s theorem is valid for the generalized Lelong numbers. In his proof,
Demailly first constructed the canonical potential of the current following Lelong
[1964] and Skoda [1972]. From that point on, the proof is as sketched above in the
proof of Siu’s theorem for the usual Lelong numbers.

10. The growth at infinity of entire functions
In complex analysis in one variable, the entire functions of finite order are remark-
able because of a nice structure theorem that holds for them. If an entire function
h has zeros aj 6= 0 that tend to infinity rapidly enough, it can be written

h(z) = zmeg(z)
∞∏
j=1

(
1− z

aj

)
, z ∈ C,

where g is another entire function. The product converges if the zeros are suf-
ficiently sparse, but in general it does not of course. To improve convergence,
Weierstrass introduced the so called primary factors or elementary factors

(10.1) Eq(z) = (1− z) exp(z + z2/2 + z3/3 + · · ·+ zq/q), z ∈ C,
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which have a zero at z = 1. For |z| < 1 they can be expanded in a Taylor series

(10.2) logEq(z) = − 1
q + 1

zq+1 − 1
q + 2

zq+2 − · · · , |z| < 1,

and they satisfy the estimate

|1− Eq(z)| 6 |z|q+1, |z| < 1,

cf. Rudin [1966:293]. Weierstrass showed that any entire function h can be written

h(z) = zmeg(z)
∞∏
j=1

Eqj (z/aj), z ∈ C,

if the numbers qj are chosen large enough; it is sufficient that

∞∑
j=1

(
R

|aj |

)qj+1

converges for every R > 0. The sequence (qj) is of course not uniquely determined,
but if the function is of finite order (cf. (10.5) below), we can choose qj = q to
be independent of j; we take the smallest possible q (the genus) to get uniqueness
and find that the function admits a representation

h(z) = zmeg(z)
∞∏
j=1

Eq(z/aj), z ∈ C.

In 1964, Lelong published a remarkable result for plurisubharmonic func-
tions which is an analogue of this classical theorem (announced already in [1953]).
Earlier Kneser [1938:25] and Stoll [1953:230] had published similar results for log |h|
with h entire or meromorphic of finite order in Cn, but their integral formula
represents log |h| only in a ball free from zeros and poles of h.

A plurisubharmonic function f defines a current θ of bidegree (1, 1),

(10.3) 2id′d′′f = θ.

If f = log |h| for an entire function, θ represents its zeros. The current θ has
measure coefficients. Lelong associates with any current θ of bidegree (n−p, n−p)
two other currents, the projective trace ν and the trace σ, defined as

ν = π−pθ ∧ αp, σ =
1
p!
θ ∧ βp,

where
α =

i

2
d′d′′ log |z|2, β =

i

2
d′d′′|z|2.
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It should be remarked that when θ comes from a plurisubharmonic function as in
(10.3), thus with p = n− 1, then

σ =
1

(n− 1!)
θ ∧ βn−1 =

1
n!

∆f · βn,

so σ is essentially the Laplacian of f .
The fundamental solution of the Laplacian can be expanded in a Taylor series

in z around a fixed point a:

|a− z|2−2n = |a|2−2n + P1(a, z) + P2(a, z) + · · · ,

where the Pj are homogeneous polynomials in z, z. Lelong [1964:375] defined
kernels

en(a, z, q) = −|a− z|2−2n + |a|2−2n + P1(a, z) + · · ·+ Pq(a, z)

in analogy with (10.1). Then he defined a canonical potential of genus q of θ as

Iq(z) = kn

∫
en(a, z, q)dσ(a), z ∈ Cn,

where q is the smallest integer such that∫ ∞
1

t−qdν(t) < +∞.

If E is the fundamental solution for the Laplacian, ∆E = δ, it is well-known
that we have ∆(E ∗ µ) = µ for any distribution µ such that the convolution E ∗ µ
has a good sense. But if µ = ∆u is the Riesz mass of a plurisubharmonic func-
tion in Cn, n > 2, then the convolution can be defined only in the uninteresting
case µ = 0, so some modification of E is always necessary to get convergence—in
contrast to the one-variable theory, where we can have q = 0.

It is not so remarkable that the canonical potential Iq satisfies the Poisson
equation ∆Iq = σ. In fact, this is to be expected from the construction in analogy
with the one-variable considerations above. The interesting, almost mysterious,
fact is that Iq is in fact plurisubharmonic; it has so to speak no reason to be. This
is what Lelong proved in [1964], and it shows that methods from classical potential
theory, using concepts like the Newtonian potential, can work sometimes also in the
plurisubharmonic category. Thus 2id′d′′Iq is a closed positive current; moreover it
is equal to θ and V = Iq is in fact the solution to the equation 2id′d′′V = θ with
the smallest possible growth at infinity.

For entire functions, Ronkin [1968, 1971:396ff] investigated a variant of Le-
long’s result: he integrated not over the whole (2n− 2)-dimensional zero set of an
entire function h but over an (n− 1)-dimensional subset of it:

{z ∈ Cn; h(z) = 0 and |z1|/τ1 = |z2|/τ2 = · · · = |zn|/τn},
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where the τj are fixed positive numbers.

***
We shall now describe another development concerning functions of finite order
that started in 1965 and continued into the 1990s. To investigate the behavior of
a function at infinity we make a dilation

(10.4) Srf(z) = f(rz), z ∈ Cn, r > 0,

and see what happens when r → +∞. Of course this will lead in general to infinite
limits, so we need to dampen the growth of Srf . But to do so we must impose
some restriction on the growth of f ; a classical such restriction is to assume that
f is equal to log |h| for an entire function h of finite order ρ and finite type σ, or
at least satisfies the corresponding growth estimate, i.e.,

(10.5) f(z) 6 τ + σ|z|ρ, z ∈ Cn,

for some constant τ . Then it is natural to define

(10.6) Trf(z) =
f(rz)
rρ

, z ∈ Cn, r > 0.

The limit set of f at infinity with respect to the order ρ (or of h, if f is of the
form f = log |h|) is the set of all limits in the topology of L1

loc(Cn) that can be
obtained from the family (Trf)r>0 as r → +∞. The limit set was introduced by
Azarin [1976] for subharmonic functions, and was investigated in the case of pluri-
subharmonic functions by Sigurdsson [1986]. The modified dilation Tr is viewed
as a linear operator Tr:L1

loc(Cn) → L1
loc(Cn) or Tr: D′(Cn) → D′(Cn). The set

PSH(Cn) (now excluding the constant −∞) is a closed cone in each of these
spaces, and they induce the same topology there. So PSH(Cn) is a complete
metric space. We can think of {Trf ; 0 < r < +∞} as a curve in that space, and
we are interested in what happens when r tends to +∞ (or when r tends to 0,
see the next section). If f is not identically −∞ we consider its forward orbit,
i.e., {Trf ; r > 1}. It is relatively compact in L1

loc(Cn) if and only if (10.5) holds,
as was shown by Sigurdsson [1991:293]. It is clear that if ϕ belongs to the limit
set, then so does Trϕ for any r; we express this fact by saying that the limit set
is T -invariant. It is also easy to see that the limit set must be connected and
compact in PSH(Cn) for the topology induced by L1

loc(Cn).
Concerning this limit set an important development has occurred during the

decades we survey.
The indicator of f is by definition the function

pf (z) = lim sup
t→+∞

f(tz)
tρ

, z ∈ Cn.

It is in general not plurisubharmonic, but its upper regularization p∗f is; cf. (7.2).
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The indicator of f gives an upper bound of the functions in the limit set:
it is clear that every function ϕ in the limit set of f must satisfy ϕ 6 p∗f . More
precisely, p∗f is the supremum of all the ϕ in the limit set. The indicator was defined
already by Pólya [1929] for functions of one complex variable. It is also clear
from the definition that the indicator as well as its regularization are positively
homogeneous of order ρ, i.e., p(tz) = tρp(z) for all z ∈ Cn and all positive numbers
t. Is any such function the regularized indicator of some entire function? In other
words, if f is a given plurisubharmonic function which is positively homogeneous,
does there exist an entire function h of exponential type such that p∗log |h| = f?
Lelong [1965, 1966] solved the problem for ρ = 1 in the special case of complex
homogeneity, i.e., when f(tz) = |t|f(z) for all z ∈ Cn and all complex numbers t.
His solution relied on the solution of the Levi problem for a balanced pseudoconvex
domain, viz. {z; f(z) < 1}.

The general problem was solved for ρ = 1 by Kiselman [1967] and for ρ > 0 by
Martineau [1966, 1967]. The first author transformed the problem by means of the
Borel transformation into the Levi problem for open subsets of projective space,15

whereas the second used Hörmander’s L2 methods for the Cauchy–Riemann op-
erator.

Sigurdsson [1986:262] proved a refined indicator theorem in that he showed
that it is possible to impose a precise growth condition on the entire function h; this
enabled him to characterize the indicators of Fourier transforms of distributions
with compact support [1986:290]. Hörmander and Sigurdsson [1998] continued the
study of the asymptotic behavior of Fourier transforms of compactly supported
distributions, a truly elusive class of entire functions.

If a plurisubharmonic function behaves sufficiently well at infinity, its limit
set is a singleton. One then says that the function is of completely regular growth.
The notion was introduced for one complex variable by B. Levin and A. Pfluger in
the 1930s. It was studied in several variables by Ronkin, Azarin, P. Z. Agranovič,
and others from 1958, and especially during the 1970s, not only in the whole space
but also in cones. Ronkin’s monograph [1992] is a standard reference; Lelong and
Gruman included a chapter on the subject in their monograph [1986]. The no-
tion proved to be highly relevant for the characterization of surjective convolution
operators in Cn; see the survey by Krivosheev and Napalkov [1992].

15For functions which admit a linear minorant, the proof can be simplified: it
is enough to work in Cn. In a letter to Martineau dated July 11, 1966, Kisel-
man asked whether a positively homogeneous plurisubharmonic function always
admits a linear minorant. Martineau replied on a card dated August 31, 1966: “Je
m’étais posé votre question autrefois et j’avais cru répondre négativement mais je
suis actuellement incapable de retrouver mes raisons.” Martineau’s intuition was
right but the answer to the question was provided much later: Znamenskĭı [1993]
constructed a nonzero analytic functional with three convex supports without a
common point. The indicator of the Fourier transform of such a functional cannot
admit a linear minorant.
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The more precise question of which sets of plurisubharmonic functions are
limit sets of entire functions was solved by Sigurdsson [1986:252] and Hörmander
and Sigurdsson [1989]. In the first paper Sigurdsson proved that the limit set
of a plurisubharmonic function is also the limit set of some entire function. In
the second paper, the authors proved that a given subset M of PSH(Cn) which
is compact, connected and T -invariant is the limit set of some plurisubharmonic
function of order ρ and finite type if and only if there does not exist any proper
open subset V of M satisfying TrV ⊂ V for some r > 1. Let us make two remarks
to illuminate this result. First, a sufficient condition is that each pair of points
in M can be joined by a polygonal path (in particular, convexity is sufficient).
Second, if each function in M is homogeneous of order ρ, i.e., f(tz) = tρf(z)
for all positive t, then Sigurdsson [1986:243] proved that it is enough that M be
compact, connected and T -invariant.

11. The existence of a tangent cone
To investigate the behavior of a function at a point—which we may take as being
the origin—we consider the dilation (10.4) and see what happens when r → 0.
This will lead in general to a limit minus infinity in the interesting cases, i.e.,
when f(0) = −∞, so we need to modify the function for each r somewhat like in
(10.6). We may define

Urf(z) = f(rz)− sup
rB

f, |z| < 1
r
dΩ(0),

where B is the unit ball and dΩ(z) denotes the Euclidean distance from z to
the complement of Ω. This means that we are looking at f with a microscope
magnifying 1/r times, but have adjusted the level by an additive constant so that
supB Urf = 0. Every sequence (Urjf)j contains a subsequence converging in
L1(B) and even in L1

loc(Cn). We say that g belongs to the limit set of f at the
origin if there is a sequence (rj)j with rj → 0 as j → +∞ and such that Urjf
tends to g in L1

loc(Cn).
Now all this can be done more generally for currents. If t is a current we define

its push-forward (hr)∗t under the mapping hr(z) = z/r. The current limr→0(hr)∗t,
if it exists, was called the tangent cone to t at the origin by Harvey [1977:332].
A special case is when t = ddcf and f is a plurisubharmonic function. Then
(hr)∗t = ddc(Urf). Therefore the tangent cone of the positive closed current ddcf
exists at the origin if and only if the limit set of f at the origin is a singleton.

In case t is the current of integration on an analytic variety, the tangent cone
was known to exist, and Harvey formulated the conjecture that the tangent cone to
a strongly positive closed current always exists [1977:332, Conjecture 1.32]. This
conjecture was disproved in 1988 by Kiselman [1991]. The proof was very much
along the lines of Sigurdsson [1986:243], where he had constructed a plurisubhar-
monic function with a prescribed limit set at infinity consisting of functions which
are homogeneous of a certain order. In fact a plurisubharmonic function can do
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less mischief at the origin than at infinity—but still be sufficiently badly behaved
to have a limit set which is not a singleton. Given any subset M of PSH(Cn)
which is closed and connected for the topology induced by L1

loc(Cn) and which
consists of functions g which satisfy supB g = 0 and

g(tz) = C log |t|+ g(z), t ∈ C, z ∈ Cn,

there exists a plurisubharmonic function such that its limit set at the origin is M .
The logarithmic homogeneity replaces the homogeneity f(tz) = tρf(z) in Sigurds-
son’s case. As soon as M contains more than one element we get a counterexample
to Harvey’s conjecture.

Later Blel, Demailly and Mouzali [1990] studied the more general case of
closed positive currents of arbitrary degree. They found conditions which ensure
the existence of a tangent cone. One such condition is that the quotient

νt(a, r)− νt(a)
r

, 0 < r < r0,

where νt(a, r) and νt(a) are defined by (9.2) and (9.3), be integrable at the origin.
Conversely it was shown that if this is not so, then it is possible to construct a
current without a tangent cone by the methods already known. Thus the condition
is sharp: as soon as νt(a, r) does not tend to its limit νt(a) sufficiently fast, the
construction works, meaning roughly that there is enough mass to move around
to build up a non-singleton limit set. Blel [1993] generalized Kiselman’s theorem
on prescribed limit sets to the case of currents of arbitrary degree; the conditions
are the same, viz. that the set shall be closed and connected and consist of conical
currents (i.e., satisfying an obviously necessary homogeneity condition).

12. The complex Monge–Ampère operator
A fundamental problem for harmonic functions, the classical Dirichlet problem,
consists in finding a harmonic function with prescribed values at every point on the
boundary of a given domain. In several complex variables, the class of harmonic
functions is not invariant under holomorphic mappings or even under complex
linear mappings, so the classical Dirichlet problem is not relevant; one tries instead
to find a solution in some other class of functions. The pluriharmonic functions,
on the other hand, form an invariant class under biholomorphic mappings, but if
one tries to solve the Dirichlet problem for them (even in a nice domain like a
ball), one soon finds that there is in general no solution. Bergman [1948] was the
first to try to remedy this situation by introducing classes that are larger than
the pluriharmonic class. He called them extended classes and he defined several
such classes in which the Dirichlet problem has a unique solution. However, he did
not define the classes for all domains, and, moreover, they depend on the domain
considered. In the bicylinder, for instance, the extended class coincides with the
doubly harmonic functions, and in a domain which is biholomorphically equivalent
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to a bicylinder, one has to apply the same biholomorphism to the class of doubly
harmonic functions [1948:525]. The problem of defining an invariant class which
allows unique solvability in the Dirichlet problem remained. Bremermann attacked
it using plurisubharmonic functions.

In his seminal paper [1959], Bremermann used the Perron method on pluri-
subharmonic functions to define a solution to the Dirichlet problem. Invariance
under biholomorphic mappings is then automatic. He proved [1959:250] that the
Dirichlet problem in a bounded, strongly pseudoconvex domain Ω with boundary
of class C2 is solved for arbitrary continuous boundary data ϕ ∈ C(∂Ω) by the
supremum of all plurisubharmonic functions defined in the closure of Ω and ma-
jorized by ϕ(z) at every point z ∈ ∂Ω. Later J. B. Walsh [1968] proved that the
solution is continuous in Ω. Of course we can turn the problem upside down and
define instead a plurisuperharmonic solution. The Perron–Bremermann method
thus yields two solutions u, v with u,−v ∈ PSH(Ω) and u 6 h 6 v, where h is the
harmonic solution to the problem.

A solution obtained by this method is plurisubharmonic and also automat-
ically maximal in the sense defined at the end of section 2. Bremermann ob-
served (although somewhat implicitly) [1959: 250, 273] that if a maximal pluri-
subharmonic function is of class C2, then it satisfies the differential equation
det(∂2u/∂zj∂zk) = 0. Conversely, Kerzman [1977:164] proved that this equa-
tion is also sufficient for a plurisubharmonic function of class C2 to be maximal.
Thus the solutions of the homogeneous complex Monge–Ampère equation (equa-
tion (2.4) with g = 0) are precisely the maximal plurisubharmonic functions, at
least in the C2 case. Equation (2.4) was identified as an equation having bi-
holomorphically invariant solutions to the Dirichlet problem, and the methods of
nonlinear partial differential operators could be put to work.

The foundation for the definition of the complex Monge–Ampère operator
(ddc)n operating on more general functions was laid by Chern, Levine and Niren-
berg when they proved [1969:125] an estimate for the Monge–Ampère which turned
out to be very useful. We quote for simplicity their estimate in the improved form
given by Klimek [1991: Proposition 3.4.2]: for any open set Ω ⊂ Cn and any com-
pact set K ⊂ Ω there exists a compact set L ⊂ ΩrK and a constant C such that
for all u1, ..., un ∈ PSH(Ω) ∩ C2(Ω) we have

(12.1)
∫
K

ddcu1 ∧ · · · ∧ ddcun 6 C sup
L
|u1| · · · sup

L
|un|.

Thanks to this and similar inequalities, the Monge–Ampère operator could be
shown to admit extensions to wider classes of functions.

Bedford and Taylor did pioneering work on the complex Monge–Ampère op-
erator which they published in a series of papers. In the first [1976], they defined
the operator (ddc)n on continuous plurisubharmonic functions using (12.1). More
importantly, they defined for the first time (ddcu)n for u ∈ PSH(Ω) ∩ L∞loc(Ω)
using induction [1976:11]. Let χ be a differential form of type (n− k, n− k) with
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smooth coefficients and compact support in Ω. Then∫
(ddcu)k ∧ χ =

∫
u(ddcu)k−1 ∧ ddcχ.

More explicitly, this formula is proved first for smooth functions u and then used
as a definition in the general case: if we have already defined (ddcu)k−1 and
proved that it is a positive current, then the right-hand side makes sense and
defines (ddcu)k in the left-hand side as a positive current. They also established a
“minimum principle” for their definition, viz. that

inf
∂Ω

(u− v) = inf
Ω

(u− v)

for functions u, v ∈ C(Ω) which are plurisubharmonic in Ω and satisfy (ddcu)n 6
(ddcv)n [1976:3]. This shows immediately that the Dirichlet problem cannot have
more than one solution in the class considered. The result was later extended and
called “comparison theorems” [1982:14] and these comparison theorems or com-
parison principles have been used in all work on the Dirichlet problem ever since.
To top off their paper they proved [1976:43] that the nonhomogenous Dirichlet
problem

(12.2) u ∈ PSH(Ω), (ddcu)n = µ in Ω, u = ϕ on ∂Ω,

is solvable in a bounded strongly pseudoconvex domain Ω with u ∈ C(Ω), with
arbitrary continuous boundary values ϕ ∈ C(∂Ω), and with µ = fβn for arbitrary
nonnegative f ∈ C(Ω). Here βn = βn/n! is the volume form in Cn, β being
defined by (9.1).

Bedford and Taylor gave in [1982] solutions to long standing open problems
in complex analysis. These depended on convergence properties of the Monge–
Ampère, e.g., the following [1982:27]: let (uij)j∈N, i = 1, ..., k, be k sequences of
functions in PSH(Ω)∩L∞loc(Ω) that are uniformly bounded on compact subsets of
Ω. Suppose there exist u1, ..., uk ∈ PSH(Ω) ∩ L∞loc(Ω) such that limj→∞ uij = ui

exists almost everywhere in Ω, i = 1, ..., k, and that all but one of the sequences
are either increasing or decreasing. Then

lim
j→∞

ddcu1
j ∧ · · · ∧ ddcukj = ddcu1 ∧ · · · ∧ ddcuk

in the topology of currents. In particular, the Monge–Ampère operator (ddc)n is
stable under monotone limits of locally bounded functions provided the limit itself
is locally bounded. The fine, or pluri-fine, topology is the weakest topology in an
open set Ω for which all plurisubharmonic functions are continuous. In [1987], the
authors were able to give sharp statements of some of the convergence theorems
proved in [1982] in terms of the fine topology. As an example, in the situation just
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mentioned, (ddcuj)n tends to (ddcu)n weak∗ in the fine topology, which means
that ∫

ψ(ddcuj)n →
∫
ψ(ddcu)n, j →∞,

for every bounded, finely continuous function ψ with compact support.
However, the Monge–Ampère operator is not stable under some commonly

used topologies as was discovered by Cegrell [1983a], who proved that the Monge–
Ampère operator is discontinuous for the topologies of Lp, 1 6 p < +∞: there
exists a bounded sequence (uj) of plurisubharmonic functions of two variables
such that uj → u in Lp for all p, 1 6 p < +∞, but such that (ddcuj)2 does not
tend to (ddcu)2 as defined by Bedford and Taylor. Later Lelong [1983b] extended
this result and proved that continuous plurisubharmonic functions with vanishing
Monge–Ampère are actually dense in the space of all locally bounded plurisubhar-
monic functions for the topology of L1

loc(Ω), Ω ⊂ Cn, n > 2.
A sharp sufficient condition for the convergence of the Monge–Ampère was

established by Xing [1996]. He introduced a capacity analogous to that defined in
(7.3),

Cn−1(K,Ω) = sup
u

[∫
K

(ddcu)n−1 ∧ ddc|z|2;u ∈ PSH(Ω), 0 < u < 1
]
,

for K a compact subset of Ω, and

Cn−1(E,Ω) = sup
K

(
Cn−1(K,Ω);K compact and contained in E

)
, E ⊂ Ω.

Let us say that uj tends to u in C-capacity on E if for every positive δ,

C({z ∈ E; |uj(z)− u(z)| > δ})→ 0, as j →∞.

Xing’s result is that if uj → u in Cn−1-capacity on each compact subset of Ω, then
(ddcuj)n tends to (ddcu)n in the sense of currents. Convergence in Cn−1-capacity
is very close to being necessary. One example out of several is the following: under
the additional assumption that all uj are equal outside some compact subset of Ω
and that either uj 6 u for every j or uj > u for every j, he proved that uj → u in
Cn−1-capacity if and only if (ddcuj)n → (ddcu)n in the sense of currents.

Caffarelli, Kohn, Nirenberg, and Spruck [1985] proved fundamental results
on the regularity of solutions to the complex Monge–Ampère equation. More pre-
cisely, they proved solvability in the Dirichlet problem (12.2) in C∞(Ω) when the
data are C∞ and Ω strongly pseudoconvex (actually for a more general situation
than (12.2)). Solutions of (12.2) are, however, not regular up to the boundary:
Bedford and Fornaess [1979] gave an example of a bounded strongly pseudoconvex
domain Ω with smooth boundary such that the solution u to (12.2) with µ = fβn,
f ∈ C∞0 (Ω), ϕ = 0, is in C1,1(Ω) ∩ C∞(Ω) but not in C2(Ω). The flatter the
boundary of a pseudoconvex domain is, the less regular is the behavior of the
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solution: Coman [1997] proved that if the solution u to (12.2) is always Hölder
continuous in Ω when µ = 0 and ϕ is Hölder continuous, then Ω must be of finite
type; the converse holds in C2. And for real analyticity even interior regularity is
tricky: Cegrell and Sadullaev [1992] showed that there is a strongly pseudoconvex
domain Ω with real analytic boundary and a real analytic function ϕ on ∂Ω such
that the solution u to (12.2) with µ = 0 is not real analytic in Ω.

The fact that the Monge–Ampère can be applied to any bounded plurisubhar-
monic function in the theory of Bedford and Taylor makes it natural to single out a
class of measures µ such that (12.2) has a bounded solution u. Cegrell and Persson
[1992] proved that if µ = fβn with f ∈ L2(Ω), then there is a continuous solution.
Ko lodziej [1996] extended this to f ∈ Lp(Ω), p > 1. A general fact, proved by
Ko lodziej [1995], is that if (12.2) has a bounded solution for a certain measure
µ, then it can also be solved for every µ′ which is majorized by µ (while keeping
the boundary value ϕ). He also established some sufficient and some necessary
conditions for solvability. It is for instance necessary that µ be dominated by
capacity in the sense that, for some constant M ,

µ(K) 6MCn(K,Ω)

for any compact subset K of Ω, where Cn(K,Ω) is the relative capacity defined
by (7.3). The necessity follows from the very definition of the relative capacity.
However, this condition is not sufficient. Ko lodziej therefore replaced the condition
by a stronger one, µ(K) 6 F (Cn(K,Ω)) for a suitable function F . He obtained a
positive result with F (x) = x(log(1 + 1/x))−n−ε for any positive ε, a result which
is close to best possible [1998]. Recently Xing [ms] obtained a characterization of
the class of measures µ such that µ = (ddcu)n for some bounded plurisubharmonic
function u.

It was known that the Monge–Ampère cannot be applied without problem
to unbounded plurisubharmonic functions: the first example to illustrate this was
due to Shiffman and Taylor and published in Siu [1975:451–453]. Kiselman [1984]
presented simple examples of functions which are smooth outside a complex hy-
perplane but whose Monge–Ampère has infinite mass near that hyperplane. Actu-
ally this is not any more remarkable than the observation that a convex function
may have an infinite real Monge–Ampère mass in an unbounded subset of Rn.
In fact, the complex Monge–Ampère of u(z) = f(log |z1|, ..., log |zn|) in the set
{z ∈ Cn; 0 < |zj | < 1} is essentially equal to the real Monge–Ampère16 of f in
the unbounded set {x ∈ Rn; xj < 0}, taking f to be a smooth convex function.
These examples indicated that the extension of the results on the nonhomogeneous
Monge–Ampère equation (ddcu)n = µ to the case where µ is a general measure
remained (and remains) problematic.

The solvability of (12.2) has been successfully studied in more general do-
mains. Two classes of pseudoconvex domains are of interest. A domain is hyper-
convex if there exists a negative plurisubharmonic function which tends to zero

16The real Monge–Ampère of f is by definition the function det(∂2f/∂xj∂xk).
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at its boundary. Sibony [1987] introduced and investigated the notion of a B-
regular compact set. We may call a bounded pseudoconvex open set B-regular if
its boundary is B-regular. If the boundary is of class C1 a necessary and sufficient
condition is that the restriction mapping C(Ω) ∩ PSH(Ω) → C(∂Ω) be surjec-
tive; [1987:306]. If (12.2) can be solved for arbitrary continuous boundary values
ϕ, then obviously Ω has to be B-regular; conversely, B locki [1996:736] extended
the result of Bedford and Taylor [1976] for strongly pseudoconvex domains to B-
regular domains, using in his proof improvements due to Demailly [ms]. In the
more general case of a hyperconvex domain one has to give something up, and
B locki gave a very satisfying answer: if we assume that ϕ is the restriction of a
function in C(Ω) ∩ PSH(Ω), then (12.2) can be solved for all f ∈ C(Ω), f > 0
[1996:744]; if not, we can find a supersolution, replacing the first equation in (12.2)
by the inequality (ddcu)n > µ = fβn while keeping the boundary values u = ϕ
[1996:745]. In particular B locki’s result implies that there is a plurisubharmonic
function in any hyperconvex domain such that the product of all n eigenvalues of
its Levi form is everywhere at least one—in B-regular domains the eigenvalues can
all be taken to be at least one; Sibony [1987:306].

In ongoing research one tries to define the Monge–Ampère in as large classes
of functions as possible while still keeping some key properties. Bedford and Taylor
introduced the class of plurisubharmonic functions u such that locally there exists
a plurisubharmonic function v such that −(−vϕ(−v))1/n < u for some decreasing
function ϕ: [1,+∞[→ R such that∫ ∞

1

ϕ(x)
x

dx < +∞;

Bedford [1993:67]. They proved that for functions uj , u in this class, (ddcuj)n

behaves well when the uj decrease to u. Cegrell [1998] found another class of
functions on which the Monge–Ampère can be applied successfully: he showed
that (ddcu)n can be defined for a plurisubharmonic function u in a bounded hy-
perconvex open set Ω if u = limj→∞ uj for a decreasing sequence (uj) of bounded
negative plurisubharmonic functions in Ω which tend to zero at the boundary of
Ω and are such that supj

∫
Ω

(−uj)p(ddcuj)n < +∞ and supj
∫

Ω
(ddcuj)n < +∞.

Here 1 6 p < +∞. He then defined (ddcu)n as the weak limit of (ddcuj)n, which
exists and is independent of the choice of sequence. The comparison principle men-
tioned above is valid, and the Dirichlet problem (12.2) can be solved for measures
µ belonging to a precisely described class.

13. The global extremal function
Siciak introduced in [1961, 1962] an extremal function of several complex variables
analogous to the Green function for the unbounded component of the complement
of a compact set in the complex plane and with pole at infinity. He emphasized
that the Green function plays a primary role in the theory of interpolation and
approximation of holomorphic functions of one variable by polynomials. Indeed
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his function was to play a similar role in several variables and his article became
the starting point of a rich development.

The extremal function z 7→ Φ(z,E, b) depends on a given subset E of Cn and
a given function b defined on E. Siciak’s original definition used Lagrange interpo-
lation of the values exp b(pν) to define a polynomial taking those values at certain
points pν in E, then choosing the points in an extremal way (in analogy with the
Fekete points in one variable) and finally passing to the limit. A consequence was
the Bernstein–Walsh inequality for polynomials P of degree at most j,

(13.1) |P (z)| 6 ‖P‖E Φ(z,E, 0)j , z ∈ Cn,

where the norm is the supremum norm on E.
Siciak proved that the sublevel sets of the extremal function, i.e., the sets

ER = {z; Φ(z,E, 0) < R}, R > 1,

determine the possible holomorphic extensions of a given function f on a compact
set E. More precisely, assuming Φ( · , E, 0) to be continuous, f was shown to admit
a holomorphic extension to the open set ER if and only if

lim sup
j→∞

‖f − πj‖1/jE 6 1/R,

where πj is a polynomial of degree at most j which best approximates f on E
[1962:346]. This was a striking generalization of the corresponding one-dimensional
result, due to Bernstein (in the case of an interval), and Walsh and Russell; cf.
J. L. Walsh [1935:79].

Later (13.1) was taken as the definition, i.e., one usually defined

(13.2) Φ(z,E, 0) = sup
j>1

sup
P

(
|P (z)|1/j ; ‖P‖E 6 1

)
, z ∈ Cn,

where P varies in the space of polynomials of degree at most j.
Zahariuta [1975:382] introduced an extremal function defined in terms of

plurisubharmonic functions

(13.3) VE(z) = sup
u

(
u(z);u ∈ L, u 6 0 on E

)
, z ∈ C,

where L denotes the class of plurisubharmonic functions with logarithmic growth,
i.e.,

(13.4) L = {u ∈ PSH(Cn); sup
z

(
u(z)− log(1 + |z|)

)
< +∞}.

Liouville’s theorem for plurisubharmonic functions says that a nonconstant pluri-
subharmonic function cannot grow slower than a positive constant times log |z|.
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Therefore L is called the class of plurisubharmonic functions of minimal growth.
It is a subclass of PSH(Cn) of great interest. The upper semicontinuous envelope
V ∗E , where the star is defined by (7.2), is either plurisubharmonic (when E is not
pluripolar) or identically +∞ (when E is pluripolar).

If we use (13.2) to define Φ(z,E, 0), it is obvious that log Φ( · , E, 0) 6 VE for
any set E. Zahariuta proved that V ∗K = log Φ( · ,K, 0) = VK if K is a compact set
such that V ∗K is zero on K [1976a:146]. Siciak [1981, 1982:23] proved that VK =
log Φ( · ,K, 0) for general compact sets K. A fourth proof, using Hörmander’s
L2 methods, was given by Demailly [ms]. Thus a definition that had its origin
in interpolation problems in one complex variable came to be directly expressed
using plurisubharmonic functions.

A striking characterization of algebraic varieties in terms of the global ex-
tremal function was established by Sadullaev [1982]. Let a connected analytic
variety A in an open subset of Cn be given as well as a compact subset K of A,
and assume that K is not pluripolar in A. Then VK is locally bounded in A if and
only if A is a piece of an algebraic variety.

It is not easy to calculate VE . Sadullaev [1985] determined VK when K is
a ball in Rn ⊂ Cn and noted that it is not a smooth function. More generally,
Lundin [1985] determined VK when K is a convex, symmetric, compact subset of
Rn ⊂ Cn. From the special form of VK in Lundin’s case, one can see easily that
the sublevel sets {z ∈ Cn; V ∗K(z) < c}, c ∈ R, are convex. It is a general result of
Lempert that these sublevel sets are convex if K is any convex compact subset of
Cn; we shall come back to that question in section 15. Lempert’s result relies on
a beautiful description of VK (published in Momm [1996:160]) when K is strongly
convex and has real analytic boundary, viz.

(13.5) VK(z) = inf
r,f

(
log r; r > 1, f(r) = z

)
, z ∈ Cn

rK,

where f varies in the class of all holomorphic mappings of the complement of the
closed unit disk into Cn such that f(t)/|t| is bounded and f has a continuous
extension to the unit circle, mapping it into K.

Bedford and Taylor [1986] gave precise estimates for the measure (ddcVK)n

when K is compact and contained in Rn and gave an exact expression for it when
K is convex and symmetric.

Zeriahi [1996] investigated the global extremal function on nonsingular al-
gebraic varieties and extended results in Cn to that case. To treat the more
general case of analytic spaces he introduced an axiomatic approach [ms] in that
he replaced the class L by a class of functions satisfying certain axioms.

The global extremal function has had a great significance in many results on
approximation and the problems of isomorphisms between spaces of holomorphic
functions, and even in real analysis; see, e.g., Paw lucki and Pleśniak [1986] and
the surveys by Klimek [1991] and Zahariuta [1994].

The notion of capacity appeared in classical potential theory as a measure of
the size of sets in Rn, and was a model for the capacity of a metal conductor to
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hold electric charges: how many coulombs can you put into the conductor while
not letting the tension exceed one volt? An early attempt to generalize this notion
to several variables was the Γ-capacity of Ronkin [1971]. It is built up from the
logarithmic capacity in C using induction over the dimension, and is not invariant
under biholomorphic mappings. Zahariuta [1975] and Siciak [1981] studied the
functionals

(13.6) γ(E) = lim sup
|z|→+∞

(
VE(z)− log |z|

)
and c(E) = exp(−γ(E)), E ⊂ Cn.

In fact, for n = 1, c(E) is the classical logarithmic capacity of E, so it was
natural to expect that the behavior of the extremal function at infinity would
reflect important properties of the set. The functional c was called a capacity
by analogy (e.g., by Zahariuta [1975:383]), without claiming that it is actually a
capacity in Choquet’s sense.

Choquet introduced an axiomatic approach to capacities in his immensely
influential paper [1955]. He defined a capacity as a functional ϕ: E → [−∞,+∞]
which is defined on an arbitrary family E of subsets of a topological space X and
which is increasing and continuous on the right [1955:174]. He then defined the
interior capacity related to ϕ as

ϕ∗(A) = sup
E

(
ϕ(E);E ∈ E, E ⊂ A

)
, A ⊂ X,

with the modification that ϕ∗(A) = infE(ϕ(E);E ∈ E) when there is no element
of E contained in A, and the exterior capacity as

ϕ∗(A) = inf
ω

(
ϕ∗(ω);ω open, ω ⊃ A

)
, A ⊂ X.

He called a set capacitable if the interior and exterior capacities agree on it. The
continuity on the right means precisely that ϕ(E) = ϕ∗(E) for all E ∈ E, and
clearly ϕ∗(E) = ϕ(E) when E ∈ E, so all elements of E are capacitable. For
which other sets A does the equation ϕ∗(A) = ϕ∗(A) hold? Before him it was not
known whether all Borel set are capacitable for the classical Newtonian capacity;
Cartan [1945:94]. Choquet solved the problem affirmatively. His famous theorem
of capacitability [1955:223] says that every K-analytic set is capacitable for every
capacity in a very large class. The class of K-analytic sets contains all Borel sets
in Rn and in particular the sets {x ∈ Rn; u(x) < u∗(x)}, where u = lim supuj ,
(uj) being a sequence, locally bounded from above, of subharmonic functions.

Soon afterwards Choquet streamlined his definition. Specialized to the case of
the family of all compact subsets of a Hausdorff space X, his new definition read
as follows [1959:84]: an abstract capacity (later to become known as a Choquet
capacity) is an increasing functional f defined on all subsets of X with values in
[−∞,+∞] and satisfying

(13.7) f
(⋂

Kj

)
= lim f(Kj) and f

(⋃
Aj
)

= lim f(Aj)
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for every decreasing sequence (Kj)j∈N of compact sets and every increasing se-
quence (Aj)j∈N of arbitrary subset of X. In his new theory, he called a set A
f-capacitable if f(A) = sup f(K), the supremum being taken over all compact
sets K contained in A. All K-Suslin sets (in many cases the same as K-analytic
sets) are capacitable for all abstract capacities. Links between the two systems of
axioms are provided by two facts: (i) the exterior capacity associated to a capacity
in his theory in [1955] is always an abstract capacity (Brelot [1959:59]); and (ii) an
abstract capacity in the sense of [1959] is a capacity in the sense of [1955] when E is
the family of compact sets, provided the underlying space is locally compact. For
a full account of the history of potential theory, see Brelot [1954, 1972]. Choquet
has presented his personal reflections on the birth of capacity theory in [1986].

Ko lodziej [1988] proved the remarkable result that the functional c defined
in (13.6) actually satisfies Choquet’s axioms (13.7)—the difficult point being the
first condition on decreasing sequences of compact sets. Therefore all theorems on
abstract capacities can be applied to this functional: Borel sets can be approxi-
mated from the inside by compact sets and from the outside by open sets. He later
discovered new fundamental properties of extremal functions [1989] and showed
his result in [1988] to be an easy consequence of them.

El Mir [1980] proved that given f ∈ PSH(Ω) and a relatively compact open
subset ω of Ω, there exists a globally defined function F ∈ L such that F 6 h◦f in
ω, where h is a convex increasing function on the real axis with h(x) = − log(−x),
x < −1. In particular ω ∩ P (f) ⊂ P (F ), yielding an improvement of Josefson’s
theorem. The Lelong number of F is zero at every point. This is reasonable,
since, in view of Siu’s theorem, the set of all points z ∈ ω where νf (z) > c > 0
is an analytic subvariety of ω which need not be extendable to a subvariety of
Cn. We can express this by saying that the singularities of f cannot in general be
extended, but the singularities of h ◦ f are weakened by h and can be extended to
Cn. Alexander and Taylor [1984] simplified El Mir’s proof and relaxed his choice
of the function h; it is enough, they showed, that h, still required to be convex
and increasing, satisfy ∫ −1

−∞
|x|−1−1/n|h(x)|dx < +∞.

For example, we can let h(x) = −(−x)α, x < −1, for some α satisfying 0 < α <
1/n. The weakest possible conditions on h do not seem to be known.

However, the functional γ in (13.6) just gives the crudest information about
the behavior at infinity of VE . It is possible to study the behavior in a much finer
way, e.g., by compactifying Cn to a projective space, and studying the behavior
of VE near the hyperplane at infinity. This is what Bedford and Taylor [1988]
did. Functions in the class L are not well-behaved at infinity in general, but a
subclass is, and Bedford and Taylor studied an important class of plurisubharmonic
functions whose singularities (called logarithmic singularities) could be handled
successfully [1989]. In analogy with the Robin constant in classical potential theory
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(cf. (15.2) below), Taylor [1983:320] introduced the function

(13.8) ρu(z) = lim sup
C3t→∞

(
u(tz)− log+ |tz|

)
, z ∈ Cn

r {0}, u ∈ L,

and Bedford and Taylor [1988:133] called ρu the Robin function of u. Obviously
ρu is complex homogeneous of degree zero on Cn

r {0}, so we may regard it as
a function on projective space of dimension n − 1. The function ρ∗u + log |z| is
plurisubharmonic on Cn, and the functions u such that ρ∗u is not identically −∞
form a class Lρ ⊂ L for which the Robin function has a good sense. Bedford and
Taylor developed a calculus for Lρ, and they could show for instance that any
polar set is contained in the polar set of some function in Lρ [1988:165].

Hartogs proved a theorem on separately analytic functions [1906:12]. Terada
[1967] weakened its hypotheses, using Chebyshev polynomials in the proof. In
subsequent studies, the extremal function VE has played an important role in
the proofs of generalizations of Hartogs’ theorem; see, e.g., Siciak [1969], Nguyen
Thanh Van and Zeriahi [1983], and Shiffman [1989].

14. The relative extremal function
An extremal function which has become known as the relative extremal function
was introduced by Siciak [1969:154]. Given an open set Ω in Cn and a compact
subset E of Ω he defined a function h = u∗E,Ω, where the star denotes the upper
semicontinuous envelope defined by (7.2), and where

(14.1) uE,Ω(z) = sup
u

(
u(z);u ∈ PSH(Ω), u 6 0 on E, u 6 1 in Ω

)
, z ∈ Ω.

The definition makes sense of course for any subset E of Ω. Siciak noted that
h = u∗E,Ω is extremal in the sense that any plurisubharmonic function v which is
6 m on E and 6M in Ω must satisfy v 6 m+(M−m)h in Ω; the function h serves
“as a version of the Two Constants Theorem” for plurisubharmonic functions.

A motivation for Siciak’s studies was Hartogs’ theorem on separate analytic-
ity. He considered sets in the form of a cross, X = (Ω1 ×K2) ∪ (K1 × Ω2), where
Kj is a compact set in a domain of holomorphy (or a Stein manifold) Ωj , j = 1, 2,
and established the existence of holomorphic extensions of separately analytic17

functions defined on such sets. The conclusion was that every separately analytic
function on X can be extended to a holomorphic function in

Ω = {(z, w) ∈ Ω1 × Ω2; u∗K1,Ω1
(z) + u∗K2,Ω2

(w) < 1}.

Actually Siciak proved some special cases of that result in [1969], whereas Zahar-
iuta [1976b: 64] proved the result just quoted, assuming a certain regularity of

17By this we mean that f( · , w) is analytic in Ω1 for every w ∈ K2 and f(z, · ) is
analytic in Ω2 for every z ∈ K1.
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Kj . This is just one of several generalizations of Hartogs’ theorem on separately
analytic functions. Siciak returned to the subject in [1981].

Zahariuta [1974: §3] used the sublevel sets of the function u∗E,Ω to define open
and compact sets

Ωα = {z ∈ Ω; u∗K,Ω(z) < α}, Kα = {z ∈ Ω; u∗K,Ω(z) 6 α}.

He proved that they are associated to interpolation of Hilbert spaces. Suppose
Hilbert spaces H1 and H0 are given satisfying

O(Ω) ⊂ H1 ⊂ O(Ω) ⊂ O(K) ⊂ H0 ⊂ AC(K),

where O(Ω) is the space of holomorphic functions in Ω, O(K) the inductive limit
of O(ω) for all open neighborhoods ω of a compact set K, and finally AC(K) is
the Banach space obtained by taking the closure of O(K) in C(K). Then, under
certain regularity assumptions,

O(Kα) ⊂ Hα ⊂ O(Ωα), 0 < α < 1,

where Hα is the interpolation between H0 and H1 defined using a basis (ej) which
is common for H1 and the closure of H1 in H0, and determined by the requirement
that ‖ej‖Hα = eαaj if ‖ej‖H0 = 1 and ‖ej‖H1 = eaj , j ∈ N. Thus interpolation in
Hilbert spaces approximates very well the interpolation between K and Ω provided
by u∗K,Ω. Concerning the notion of bases which are common for two spaces, let
us remark that Zahariuta had established the existence of bases common to O(Ω)
and O(K) in one and several variables already in [1967]. The theme was further
developed by Nguyen Thanh Van, who seems to have been the first to point out
[1972:230] that common bases can be used to obtain holomorphic extensions of
separately analytic functions.

Just as in the case of the global extremal function, the relative extremal func-
tion can serve to define a capacity. Bedford [1980a, 1980b] expressed the functional
Cn defined in (7.3) in terms of the relative extremal function as

Cn(K,Ω) =
∫

Ω

(ddcu∗K,Ω)n

for a compact subset K of Ω, a strongly pseudoconvex domain in a Stein manifold.
In their fundamental paper [1982], which we have quoted already in sections 7 and
12, Bedford and Taylor continued this study and extended the arguments. They
proved [1982:32] that the measure (ddcu∗K,Ω)n is supported by K. Actually Cn
plays the role of an inner capacity, so they defined

(14.2) Cn(E,Ω) = sup
K

(
Cn(K,Ω);K is a compact set contained in E

)
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for any subset E of Ω, and an outer capacity

C∗n(E,Ω) = infU
(
Cn(U,Ω);U is an open set containing E

)
.

They proved [1982:23] that C∗n satisfies Choquet’s axioms (13.7); it follows that, for
compact sets, C∗n(K,Ω) = Cn(K,Ω) as defined by (7.3). Thus the functional many
authors had called a “capacity” was proved to actually be a Choquet capacity. We
mentioned in section 7 some of the important consequences. Alexander and Taylor
[1984] proved sharp inequalities between the relative capacity Cn of (7.3), (14.2)
and the capacity c defined in (13.6). In particular, for a relatively compact subset
E of Ω, Cn(E,Ω) = 0 if and only if c(E) = 0.

As Zahariuta’s result showed, it is natural to think of the sublevel sets Ωα,
Kα as a kind of interpolation between K and Ω. In particular, if both Ω and K
are convex, one would expect the sublevel sets to be convex, too. This is, however,
a highly nontrivial result and was proved by Lárusson, Lassere and Sigurdsson
[forthc.] using Poletsky’s theory of holomorphic currents (see section 16).

15. Green functions
The classical Green function in a domain in C is zero on the boundary of the
domain and has a logarithmic pole at one point. Lempert [1981, 1983] introduced
an analogous function in several variables: his function is plurisubharmonic in
Ω, tends to zero at the boundary of Ω and has a logarithmic pole at a given
point a ∈ Ω. Moreover it solves the homogeneous Monge–Ampère equation in
Ω r {a}, in other words, it is a maximal plurisubharmonic function in the open
set Ωr {a} [1981:430, 1983:516]. Actually Lempert’s construction was done for a
strongly convex set. Klimek [1985] replaced Lempert’s construction by a Perron–
Bremermann approach: he took the supremum of all negative plurisubharmonic
functions u in Ω with a logarithmic singularity at a given point a, thus

(15.1) gΩ(z, a) = {u ∈ PSH(Ω); u < 0 and u(z) 6 log |z − a|+O(1), z → a}.

Demailly [1987b] proved that Klimek’s definition yields a solution z 7→ gΩ(z, a)
to the Dirichlet problem (12.2) with µ = (2π)nδaβn and ϕ = 0. He called the
solution “fonction de Green pluricomplexe.” This was exactly Lempert’s point
of departure in the convex case, but Demailly got the result in any hyperconvex
domain (see section 12 for the definition). Of course an extension of the definition
of the Monge–Ampère operator is a necessary prerequisite when one wants to study
right-hand sides of the indicated kind in (12.2), but when a function is bounded
outside a relatively compact set this is possible in a nice sense; Sibony [1985:191],
Demailly [1985: §4, 1993].

Demailly’s solution defines a reproducing kernel for the pluriharmonic func-
tions in a hyperconvex domain. He also proved that the Green function gΩ(z, a)
is continuous when z varies in Ω and the pole a varies in Ω [1987b:534]. However,
the function is not of class C2 up to the boundary as was shown by Bedford and
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Demailly [1988] (cf. the result of Bedford and Fornaess mentioned in section 12),
nor is it in general symmetric, in constrast to the classical Green function. It fol-
lows from the non-symmetry that a 7→ gΩ(z, a) is not plurisubharmonic in general.

Lempert [1985] introduced a fascinating transformation of solutions of the ho-
mogeneous Monge–Ampère equation and showed that the interior Dirichlet prob-
lem (15.1) of defining gΩ is equivalent to the exterior Dirichlet problem (13.3) of
defining the global extremal function VK if K is strongly convex with real analytic
boundary, in fact if K is only lineally convex in a strong sense (satisfies a curvature
condition). More precisely,

VK(ζ) = −gΩ(γ−1(ζ), 0), ζ ∈ Cn
rK◦,

where
Ω = {z ∈ Cn;

∑
zjζj 6= 1 for all ζ ∈ K}

is the dual complement of K, and where γ is the mapping (actually a diffeomor-
phism) of Ωr {0} onto Cn

rK◦ defined by

γ(z) =
(

∂gΩ(z, 0)/∂zj∑
k zk∂gΩ(z)/∂zk

)n
j=1

;

Lempert [1985:882], Momm [1996:161]. Note that γ depends on gΩ, so the relation
between VK and gΩ is not given by a simple change of coordinates. Lempert’s
results in [1981] implies, as was shown by Momm [1994:54], that the sublevel sets
of gΩ( · , a) are convex when Ω is convex. As we have seen, that theorem could be
translated into the corresponding result for VK ; cf. (13.5).

Momm [1994] investigated the behavior of gΩ( · , 0) near the boundary of Ω
(Ω is assumed to contain the origin) and proved that its growth there is related to
the extremal function

vH(ζ) = sup
(
u(ζ);u ∈ L, u 6 H

)
,

H being the supporting function of Ω:

H(ζ) = sup
z∈Ω

Re
∑
zjζj , ζ ∈ Cn,

more precisely to the starshaped set where vH and H are equal.
The results on gΩ have been refined and generalized in several ways. The

behavior of gΩ(z, a) near a can be studied using a quantity CΩ(ξ) for ξ belonging to
the unit sphere of Cn, the ξ-directional harmonic capacity, introduced by Nivoche
[1994] and defined by

− logCΩ(ξ) = lim sup
C3λ→0

(
gω(a+ λξ, a)− log |λ|

)
, ξ ∈ Cn, |ξ| = 1.
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The function − logCΩ is analogous to the Robin function (13.8) of Bedford and
Taylor.

Nivoche [1995] proved that the Green function can be defined using holomor-
phic functions with a zero of high order at the point a. This is a result analogous
to the equation VK = log ΦK discussed in section 13. She also proved that the ξ-
directional harmonic capacity can be obtained from the behavior of the derivatives
of these holomorphic functions.

The classical Green function GΩ( · , a) is harmonic in Ωr {a}, tends to zero
at the boundary of Ω, and has a singularity −|z−a|2−2n at the pole a. The Robin
constant for (Ω, a) is by definition

(15.2) Λ(a) = lim
z→a

(
GΩ(z, a) + |z − a|2−2n

)
, a ∈ Ω,

and is a measure of the singularity at a. It tends to +∞ as a tends to the boundary
of Ω. Yamaguchi [1989] discovered a surprising relationship between the classical
potential theory of R2n and the pluripotential theory of Cn, viz. that the logarithm
of the Robin constant is a strongly plurisubharmonic function in Ω. Levenberg and
Yamaguchi [1991] gave a new proof of this result, derived an explicit expression
for the Levi form of log Λ, and studied the metric defined by it—in several cases
it was shown to be complete.

Carlehed compared the pluricomplex Green function gΩ with the classical
Green function GΩ. For a strongly pseudoconvex domain Ω in Cn, n > 2, with
boundary of class C2 he proved the inequality

diam(Ω)2n−4GΩ(z, a) 6 |z − a|2n−4GΩ(z, a) 6 cgΩ(z, a) < 0, z ∈ Ω, a ∈ Ω,

where c is a positive constant depending on Ω only [1998]. For the bidisk the esti-
mate breaks down. When Ω is the unit ball he proved that GΩ < (n− 1)23−2ngΩ,
where the constant is best possible [1997].

A generalization has been attracting attention during the last years: Green
functions with more than one pole. They were introduced by Lelong—even in
Banach spaces [1987, 1989]. He fixed a number of points a1, ..., ak in Ω and a
number of positive numbers ν1, ..., νk, called weights. Then the pluricomplex Green
function z 7→ gΩ(z,A) with poles in A = {(aj , νj)} is the supremum of all negative
plurisubharmonic functions in Ω such that u(z) − νj log |z − aj | is bounded from
above near aj , j = 1, ..., k. Lelong proved [1989:337] that

k∑
j=1

νjgΩ(z, aj) 6 gΩ(z,A) 6 min
j=1,...,k

νjgΩ(z, aj), z ∈ Ω.

When n = 1, we have equality to the left here because of the linearity of the
Laplace operator, but when n > 2 this is no longer true: the Monge–Ampère is
nonlinear! Equality on the left holds in a closed subset of Ω. Lelong observed that
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this subset may be nonempty but conjectured that its interior is empty [1989:338].
However, Carlehed [1998] proved that this is not so in the bidisk for a particular
choice of two or more poles.

Dineen and Gaughran [1993] introduced a Green function with infinitely
many poles aj , j ∈ N, in a domain Ω in a Banach space. The poles have to con-
verge to a point in Ω, and the weights have to form a convergent series

∑
νj < +∞.

A more general Green function was studied by Zeriahi [1997], who defined

gΩ(z;ψ) = sup
u

(
u(z);u ∈ PSH(Ω), u 6 0, νu(a) > νψ(a) for all a ∈ Ω

)
, z ∈ Ω,

where νu(a) denotes the Lelong number of a function u at a point a ∈ Ω defined by
(9.3) and ψ is a given plurisubharmonic function in Ω satisfying certain conditions
of which the most important is that its polar set P (ψ) be compact. He proved
that z 7→ gΩ(z;ψ) is the unique solution of (12.2) with µ = (2π)n

∑
a∈Ω νψ(a)nδa

and boundary values ϕ = 0; his method works also for arbitrary ϕ after a simple
change in the definition of gΩ(z;ψ). Lárusson and Sigurdsson [1998] defined an
even more general Green function,

gΩ,α(z) = sup
u

(
u(z);u ∈ PSH(Ω), u 6 0, νu(a) > α(a) for all a ∈ Ω

)
, z ∈ Ω,

α being any nonnegative function in Ω. They showed that this general Green
function behaves well under finitely branched covering maps.

Coman [ms] and, independently, Edigarian and Zwonek [forthc.] have com-
puted explicitly the Green function for the unit ball with two poles and equal
weights at the poles. They proved that it is of class C1,1 outside the poles, real
analytic in certain regions of the ball, and nicely foliated in each of these regions
by a one-parameter family of complex curves to which the restrictions of gΩ( · , A)
are harmonic. Edigarian and Zwonek deduced the formula from a study of the
behavior of the Green function under holomorphic mappings, viz. the result by
Lárusson and Sigurdsson [1998]. The problem with two poles for the unit ball is
equivalent to finding the Green function with one pole for the convex set

E = {w ∈ C2; |w1|2 + |w2| < 1};

the mapping z 7→ (z1, z
2
2) maps the unit ball in z-space onto the oval E in w-space.

Most points have two preimages, which explains the appearance of two poles. For
more general domains, it seems that little is known about this nonlinear problem,
for instance concerning the existence of foliations.

16. Plurisubharmonic functions as lower envelopes
The Perron–Bremermann method consists in taking the supremum of a family of
plurisubharmonic functions subject to some kind of control from above. The upper
semicontinuous envelope of such a supremum is then plurisubharmonic. Thus we
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construct a function by approaching it from below. It is, however, also possible
to approach a function from above, and we shall now take a look at some of the
efforts of that kind that have been made during the last decades.

For comparison, let us consider first the construction of the convex envelope
of a function. Let f be any function with real values defined on Rn. Then the
largest convex minorant of f is given by

Gf (x) = inf
(∑k

1 λjf(xj);
∑k

1 λjxj = x, λj > 0,
∑k

1 λj = 1
)
, x ∈ Rn,

where the infimum is taken over all representations of x as a barycenter of finitely
many points x1, ..., xk. This is how we arrive at the envelope from above. There
is also a construction from below:

Hf (x) = sup
(
A(x);A affine, A 6 f

)
, x ∈ Rn,

where the supremum is taken over all affine minorants A(x) = ξ ·x+C of f . This
is the lower semicontinuous and convex envelope of f . If f itself is semicontinuous
from below, then Gf = Hf . So we see that there is a convex envelope which
can be approached both from below and from above. Similarly, we can define the
plurisubharmonic envelope of a function: it is simply the upper regularization of
the supremum of all plurisubharmonic minorants of f . Is there a way to construct
this envelope from above?

Already Bremermann [1959:269] showed that the solution to (12.2) with µ = 0
can be obtained by solving the Dirichlet problem in the intersection of Ω with
complex lines. He first solved the one-dimensional Dirichlet problem for all lines,
using the original boundary values ϕ, and took the lower envelope ψ of them. Then
he took a disk D in one of the lines L and solved the Dirichlet problem in D∩Ω as
well as in all disks (D+c)∩Ω parallel to D, where c varies in the space orthogonal
to L, now using the values of ψ as boundary values. One has to repeatedly solve
the problem in a dense family of disks D, each time replacing ψ by the infimum of
ψ and the new solution. Since it is possible to use a countable family of disks, this
process defines a sequence of functions which is obviously decreasing; Bremermann
proved that its limit is equal to the function he had already obtained as the upper
envelope of plurisubharmonic functions majorized by ϕ on the boundary.

Gamelin [1976] worked in the setting of uniform algebras, an important ex-
ample of which is the algebra of those continuous functions on a compact set which
are holomorphic in its interior. If A is a uniform algebra on a compact space X,
he defined

Y = {(x, ζ) ∈ X ×C; |ζ| 6 exp(−f(x))},

where f :X → ]−∞,+∞] is any lower semicontinuous function. He let B be the
uniform algebra on Y generated by polynomials in ζ with coefficients in A. The
maximal ideal space MB of B then has the form

MB = {(ϕ, ζ) ∈MA ×C; |ζ| 6 exp(−f̃(ϕ))}
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for some function f̃ . The problem of finding f̃ is a generalization of the problem of
describing the envelope of holomorphy of the set Ω(f) in (4.4). One of Gamelin’s
descriptions of f̃ involves Jensen measures. Let us give the definition: a Jensen
measure on X for a point ϕ ∈ MA is a probability measure σ on X such that
log |g(ϕ)| 6

∫
log |g|dσ for all g ∈ A. He proved that

f̃(ϕ) = inf
σ

[∫
X

fdσ;σ is a Jensen measure on X for ϕ
]
, ϕ ∈MA.

So f̃ is approached from above; other descriptions of it involved approaches from
below.

Gaveau [1977] discussed differential operators

(16.1) ∆a =
n∑

j,k=1

ajk(z)
∂2

∂zj∂zk
, z ∈ Ω,

where the ajk are smooth functions that form a positive definite Hermitian matrix
at every point. He observed a fact from matrix algebra, viz.

(16.2) inf
a

(∆au)n = nn det
(

∂2u

∂zj∂zk

)
, u ∈ C2(Ω) ∩ PSH(Ω),

where the infimum is taken with respect to all constant matrices (ajk) which are
Hermitian and positive definite with determinant 1. (The matrix for which the
infimum is attained depends on the point considered, and the infimum is the same
for variable ajk.) This implies that (12.2) with µ = fβn is equivalent, formally, to
a dynamic programming problem in the sense of Bellman:

u ∈ PSH(Ω), inf
a

∆au = nf1/n in Ω, u = ϕ on ∂Ω,

where the infimum is over all matrices (ajk(z)) satisfying the conditions mentioned.
(If we know that u ∈ C2(Ω), the equivalence is not only formal: it follows from
what we just remarked.) Inspired by this, Gaveau proved that the solution to
(12.2) can be obtained as an infimum over a larger class, u = inf wσ, where the
wσ(z) are defined by Brownian motion starting from z and subject to certain
Kähler controls (but not necessarily solving any of the equations ∆au = nf1/n).

Lempert [1983:517] constructed plurisubharmonic functions by taking the
infimum over a family of mappings of the unit disk into a domain, a method which
is a precursor of Poletsky’s theory of analytic disks and holomorphic currents.

Bedford [1985] worked with a family of differential operators in a domain Ω
similar to (16.1) but in divergence form,

(16.3) Pau =
n∑

j,k=1

∂

∂zj

(
ajk(z)

∂u(z)
∂zk

)
, z ∈ Ω,
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where the ajk now are measurable functions and form an Hermitian matrix which
satisfies εI 6 (ajk(z)) 6 I/ε almost everywhere in Ω for some positive ε and has
determinant det(ajk(z)) = 1 almost everywhere. Moreover, each ajk is assumed
to be antiholomorphic in zj and holomorphic in zk when the other variables are
fixed; in particular ajj must be constant. (This implies that Pau = ∆au if u is of
class C2.) He then considered the Dirichlet problem

(16.4) Pau = f in Ω, u = ϕ on ∂Ω,

with f = 0 and a given function ϕ ∈ C1(∂Ω), assuming that Ω is bounded and
strongly pseudoconvex with boundary of class C2. It is known that (16.4) has a
unique solution ua ∈ L2

1(Ω), that is, u has first-order derivatives in L2(Ω). The
equation Pau = f is interpreted to mean that

−
n∑

j,k=1

∫
Ω

∂ψ

∂zj
ajk

∂u

∂zk
=
∫

Ω

ψf, ψ ∈ D(Ω),

which has a good sense if f ∈ L2(Ω) and ∂u/∂zk exists as a distribution and is
in L2(Ω). Bedford then took the infimum of all solutions ua when a varies under
the conditions mentioned and proved that it is equal to the Perron–Bremermann
solution to the problem.

It is also possible to use differential operators Pa = ∆a with constant coeffi-
cients, as was shown by Levenberg and Okada [1993], who also used (16.2). It is
now, however, not possible to get the Perron–Bremermann solution by solving the
problem (16.4) and taking the infimum over all solutions ua. The punishment for
keeping the ajk constant is that the process has to be repeated after a balayage
procedure. In this way, the authors get a sequence (um), m ∈ N, of solutions,
where each um is obtained from um−1 by a balayage procedure in a ball, and then
taking the infimum over all balls and all matrices a, much like in Bremermann’s
construction mentioned above. The sequence is decreasing, and its limit was shown
to be equal to the Perron–Bremermann function u satisfying (ddcu)n = f in Ω,
u 6 ϕ on ∂Ω, this time with an arbitrary bounded f ∈ C(Ω), f > 0, Ω being pseu-
doconvex. If, in addition, Ω is B-regular with smooth boundary, they obtained
u = ϕ on the boundary, thus a solution to (12.2).

In Bremermann’s approach mentioned above he used disks contained in com-
plex lines. Poletsky [1991] replaced these disks by more general ones and obtained
a very satisfying result. To describe it, let O(D,Ω) denote the set of all mappings
that are defined and holomorphic in a neighborhood of the closed unit disk D ⊂ C
and with values in a domain Ω ⊂ Cn; this is the family of analytic disks in Ω. Let
g be any upper semicontinuous function in Ω. Then its lower envelope

Eg(z) = inf
f

[
1

2π

∫ 2π

0

g(f(eit))dt; f ∈ O(D,Ω), f(0) = z

]
, z ∈ Ω,
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is plurisubharmonic and equal to the supremum of all plurisubharmonic minorants
of g: the approaches from above and below give the same result.

An axiomatic theory encompassing these constructions was proposed and
studied by Poletsky [1993] in a highly original paper. He considered functionals,
called holomorphic currents, defined on analytic disks. The holomorphic currents
have envelopes that, under certain conditions, are plurisubharmonic functions.
More precisely, a holomorphic current is a mapping from the set of analytic disks
into a space of measures on D; every such measure µ defines a subharmonic func-
tion uµ in D by means of the Riesz representation formula, viz. the sum of the
potential of µ|D and the Poisson integral of µ|∂D. The envelope of Φ is the function

EΦ(z) = inf
f

(
uµ(0); f ∈ O(D,Ω), f(0) = z

)
, z ∈ Ω.

The holomorphic currents are subject to certain axioms, and moreover, are sup-
posed to possess a property called approximate upper semicontinuity. Then, says
Poletsky’s main theorem [1993:102], the envelope EΦ is plurisubharmonic in Ω.
Among the many interesting corollaries of his theorem, let us mention the following
beautiful characterization of the polynomial hull of a pluriregular compact subset
of Cn [1993:87, Corollary 7.1]; cf. Lárusson and Sigurdsson [1998: Theorem 7.4]. A
point z belongs to the polynomial hull of K if and only if there exists a number R
such that for every positive ε and every neighborhood ω of K there is an analytic
disk f ∈ O(D,Cn) with f(0) = z, |f | 6 R, and f(eit) ∈ ω for all t ∈ [0, 2π] outside
a set of Lebesgue measure less than ε.

A disk functional is any mapping H: O(D,Ω)→ [−∞,+∞[, and its envelope
is the function EH: Ω→ [−∞,+∞[ defined by

EH(z) = inf
f

(
H(f); f ∈ O(D,Ω), f(0) = z

)
, z ∈ Ω.

A holomorphic current gives rise to a disk functional: we go from the analytic disk
f to the measure µ = Φ(f) and then to the value uµ(0) defined above. Actually
only three disk functionals have been studied extensively; Lárusson and Sigurds-
son [1998] associated them with the names of Poisson (using boundary values),
Riesz (using masses defined by pullbacks of plurisubharmonic functions), and Le-
long (using multiplicities of mappings). The authors analyzed them carefully and
proved that their envelopes are plurisubharmonic. Moreover, they showed that
the conclusions are valid if the open subset Ω of Cn is replaced by a manifold
in a very large class of manifolds. In a similar vein, Edigarian [1997] studied the
pluricomplex Green function and gave several equivalent definitions of it, proving
that also that function can be constructed as an infimum as well as a supremum.

Although now almost forty years old, the idea to construct plurisubharmonic
functions using lower envelopes of various families is still being exploited. The
methods are varied and in a state of rapid development.
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1954 Über die Äquivalenz der pseudokonvexe Gebiete und der Holomorphie-

gebiete im Raum von n komplexen Veränderlichen. Math. Ann. 128,
63–91.

1956a On the conjecture of the equivalence of the plurisubharmonic functions
and the Hartogs functions. Math. Ann. 131, 76–86.

1956b Complex convexity. Trans. Amer. Math. Soc. 82, 17–51.
1959 On a generalized Dirichlet problem for plurisubharmonic functions and

pseudoconvex domains. Characterization of Šilov boundaries. Trans.
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1983a Discontinuité de l’opérateur de Monge–Ampère complexe. C. R. Acad.

Sci. Paris Sér. I Math. 296, 869–871.
1983b On the domains of existence for plurisubharmonic functions. Complex

Analysis (Ed. Julian  Lawrynowicz and Józef Siciak), pp. 33–37. Banach
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1977 Méthode de contrôle optimal en analyse complexe. I. Résolution d’équa-

tions de Monge–Ampère. J. Funct. Anal. 25, 391–411.
Gel

′
fand, I. M., and Shilov, G. E.

1953 Fourier transforms of rapidly decreasing functions and the question on the
uniqueness of Cauchy’s problem. [Russian.] Uspehi Mat. Nauk 8, 3–54.

Hartogs, Fritz (= Friedrich, 1874–1943)
1906 Zur Theorie der analytischen Funktionen mehrerer unabhängiger Ver-

änderlichen, insbesondere über die Darstellung derselben durch Reihen,
welche nach Potenzen einer Veränderlichen fortschreiten. Math. Ann. 62,
1–88.

Harvey, F. Reese (b. 1941)
1977 Holomorphic chains and their boundaries. Several Complex Variables.

Proc. Symp. Pure Math., vol. 30, part 1, 309–382. Providence, RI: Amer.
Math. Soc.

Harvey, F. R., and King, J. R.
1972 On the structure of positive currents. Invent. Math. 15, 47–52.

Heinzner, Peter
1998 The minimum principle from a Hamiltonian point of view. Doc. Math. J.

DMV 3, 1–14.
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1986 Markov’s inequality and C∞ functions on sets with polynomial cusps.

Math. Ann. 275, 467–480.
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