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Resumo: Linie konveksaj Hartogs-aj regionoj
Ni studas linie konveksaj aroj de speciala tipo, nome Hartogs-aj regionoj, kaj
pruvas ke tia regiono kun glata rando povas esti karakterizita per lokaj kondiĉoj.

Abstract: We study lineally convex domains of a special type, viz. Hartogs
domains, and prove that such sets can be characterized by local conditions if they
are smoothly bounded.

1. Introduction

Lineal convexity is a kind of complex convexity intermediate between usual convexity
and pseudoconvexity. More precisely, if A is a convex set which is either open or
closed, then A is lineally convex (this is true also in the real category), and if Ω
is a lineally convex open set in Cn, the space of n complex variables, then Ω is
pseudoconvex. Now pseudoconvexity is a local property in the sense that if any
boundary point of an open set Ω has an open neighborhood ω such that Ω ∩ ω is
pseudoconvex, then Ω is pseudoconvex; the analogous result holds for convexity. But
it is well known that the property of lineal convexity is not a local property in this
sense—for easy examples see section 3. The purpose of this paper is to investigate
to what extent this is true for sets which are of a special form: the Hartogs domains.

Let us now give the main definition: a set A in Cn is said to be lineally convex

if for every point b /∈ A there is a complex hyperplane passing through b but not
intersecting A. In other words, the complement Cn

r A of A is a union of complex
hyperplanes.

A lineally convex set whose boundary is sufficiently smooth satisfies a differential
condition. Let ρ be a defining function for Ω, and let H and L denote, respectively,
the Hessian and the Levi form at a boundary point a of Ω. Then the differential

This work was partially supported by the Swedish Natural Science Research Council.



2 C. O. Kiselman

condition says that

(1.1) |H(s)| 6 L(s) for all vectors s ∈ TC(a),

where TC(a) is the complex tangent space at the point a. See section 5 for details.
Every lineally convex domain of class C2 satisfies the differential condition, but it is
not known whether the converse is true. We shall prove that this is so in the special
case of Hartogs domains, which we now proceed to define.

A Hartogs set in Cn × C is a set which contains, along with a point (z, t) ∈
Cn ×C, also every point (z, t′) with |t′| = |t|. It is said to be a complete Hartogs

set if it contains, with (z, t), also (z, t′) for all t′ with |t′| 6 |t|. Here we shall
study open and bounded complete Hartogs sets; they are always defined by a strict
inequality |t| < R(z), thus

(1.2) Ω = {(z, t) ∈ Cn ×C; |t| < R(z)},

where R is a real-valued function on Cn. Most of our results will be concerned with
the case n = 1, thus

(1.3) Ω = {(z, t) ∈ C×C; |t| < R(z)}.

Theorem 1.1. Let Ω be a bounded complete Hartogs domain in C2 with boundary
of class C2. If Ω satisfies the differential condition (1.1) at all boundary points, then
Ω is lineally convex.

Thus for complete Hartogs domains, the property of being lineally convex is a local
property. Next we consider sets which are not smooth but of the special form

(1.4) Ω = {(z, t) ∈ ω ×C; |t| < R(z)}.

Here we assume R to be a C2 function, so that the differential condition makes sense
for points (z, t) ∈ ∂ω with z ∈ ω, but the boundary is not smooth at the points (z, t)
with z ∈ ∂ω. We shall say that Ω is a Hartogs domain over ω, or that ω is the base

of Ω, if (1.4) holds with R > 0 in ω. In this case we prove:

Theorem 1.2. Let ω be a bounded open set in the complex plane C. If the closure
of ω is not a disk, then lineal convexity over ω is not a local condition: we can find a
Hartogs domain Ω over ω and two open sets ω0 and ω1 such that the Hartogs domains
Ωj over ωj are lineally convex, j = 0, 1, but their union Ω = Ω0∪Ω1 is not. If on the
other hand ω is a disk, and Ω is a Hartogs domain of the form (1.4) satisfying the
differential condition (1.1) at all boundary points over ω, then Ω is lineally convex.

Corollary 1.3. Let ω be an open set in C which is equal to the interior of its closure,
and let Ω be a Hartogs domain over ω. Then the differential condition (1.1) imposed
on all boundary points over ω is equivalent to lineal convexity if and only if ω is a
disk.

I am grateful to Lê Hai Khôi for many helpful discussions concerning this paper.
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2. Weak lineal convexity

There are several other notions related to lineal convexity. The property called weak
lineal convexity is weaker than lineal convexity: an open connected set is called
weakly lineally convex if through any boundary point there passes a complex
hyperplane which does not intersect the set. An open set is said to be locally

weakly lineally convex if through every boundary point a ∈ ∂Ω there is a complex
hyperplane Y passing through a such that a does not belong to the closure of Y ∩Ω.
It is not difficult to prove that local weak lineal convexity implies pseudoconvexity.

For complete Hartogs sets it is very easy to see that weak lineal convexity implies
lineal convexity:

Lemma 2.1. A complete Hartogs domain which is weakly lineally convex and has a
lineally convex base is lineally convex.

Proof. Let (z0, t0) ∈ Cn×C be an arbitrary point in the complement of Ω, a Hartogs
domain defined by (1.2). If R(z0) > 0, then the point (z0, R(z0)t0/|t0|) belongs to
∂Ω, and if Ω is weakly lineally convex, there is a hyperplane passing through that
point which does not cut Ω. Then the parallel plane through (z0, t0) does not cut
Ω either. If R(z0) 6 0, then z0 does not belong to the base, and a hyperplane with
equation ζ ·z = ζ ·z0 will do, since the base is lineally convex. This proves the lemma.

3. The non-local character of lineal convexity

The domain V = {(z, t) ∈ C2; |t| < |z|} is easily seen to be lineally convex. Indeed,
if (z0, t0) /∈ V with t0 6= 0, then the complex line {(z, t); z0t = t0z} passes through
(z0, t0) and does not cut V ; if on the other hand t0 = 0, we can for instance take the
line {0} ×C. A simple example of a domain which is locally lineally convex but not
lineally convex can be built up from this set.

Example 3.1. Define first

Ω+ = {(z, t); |z| < 1 and |t| < |z − 2|}; Ω− = {(z, t); |z| < 1 and |t| < |z + 2|},

and then
Ω0 = Ω+ ∩ Ω−; Ω1 = {(z, t) ∈ Ω0; |t| < r},

where r is a constant with 2 < r <
√

5. All these sets are lineally convex. The
two points (±i,

√
5) belong to the boundary of Ω0; in the three-dimensional space of

the variables (Re z, Im z, |t|), the set representing Ω0 has two peaks, which have been
truncated in Ω1. We now define Ω by glueing together Ω0 and Ω1: define Ω as the
subset of Ω0 such that (z, t) ∈ Ω1 if Im z > 0; we truncate only one of the peaks of
Ω0. The point (i− ε, r) for a small positive ε belongs to the boundary of Ω and the
tangent plane at that point has the equation t = r and so must cut Ω at the point
(−i+ ε, r). Therefore Ω is not lineally convex, but it agrees with the lineally convex
sets Ω0 and Ω1 when Im z < δ and Im z > −δ, respectively, for a small positive δ.

Proposition 3.2. Let ω0 and ω1 be two bounded open subsets in the complex plane
such that none is contained in the closure of the other. Then there exists a Hartogs
domain over ω = ω0 ∪ω1 which is not lineally convex, but is such that the subsets Ωj

over ωj are both lineally convex, j = 0, 1.
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Proof. Take two points a ∈ ω1 r ω0 and b ∈ ω0 r ω1, which exist by hypothesis. It
is no restriction to assume that a = i, b = −i. Then take c > 0 so large that ω is
contained in the disk of radius c − 1 and with center at the origin. We then define
as in Example 3.1,

Ω0 = {(z, t) ∈ C2; |t| < |z ± c| and |t| < |z ± i
(

1 +
√

c2 + 1
)

|},

and
Ω1 = {(z, t) ∈ Ω0; |t| < r},

where r is a number slightly smaller than
√
c2 + 1 but so close to that number that

the peak that we have truncated in Ω1 near i lies outside ω0, and the peak near −i
lies outside ω1. This is possible since we have assumed that i /∈ ω0, −i /∈ ω1, and Ω0

and Ω1 differ only above small neighborhoods of ±i which shrink to {±i} as r tends
to
√
c2 + 1.
We now define Ω to agree with Ωj over ωj , j = 0, 1. The conclusion is as in

Example 3.1.

4. Smooth vs. Lipschitz boundaries

The lineally convex set Ω0 constructed in Example 3.1 has the remarkable property
that it cannot be approximated by lineally convex sets with smooth boundary. Its
boundary, which is Lipschitz, cannot in any reasonable way be rounded off if we want
to preserve lineal convexity. This is why we shall continue this investigation to see
whether smoothly bounded sets admit a passage from the local to the global.

Before doing so, however, we shall illustrate the difference between domains
which can be approximated by smoothly bounded lineally convex domains and those
that have only Lipschitz boundary.

Let Ω be a complete Hartogs domain defined by (1.3) or (1.4) with R a function
of class C1. In the former case we define ω as the open set where R > 0. Often it
will be convenient to use not R but h = R2 to define the set, thus, respectively,

(4.1) Ω = {(z, t) ∈ C×C; |t| < R(z)} = {(z, t) ∈ C×C; |t|2 < h(z)},

and

(4.2) Ω = {(z, t) ∈ ω ×C; |t| < R(z)} = {(z, t) ∈ ω ×C; |t|2 < h(z)}.

The complex tangent plane at a boundary point (z0, t0) with z0 ∈ ω has the
equation

(4.3) t− t0 = α(z − z0), where α =
hz(z0)

t0
=

2t0Rz(z0)

R(z0)
.

Here and in the sequel we write hz for the partial derivative ∂h/∂z, hzz for ∂2h/∂z∂z,
etc. The tangent plane intersects the plane t = 0 in the point

(4.4) b(z0) = z0 −
h(z0)

hz(z0)
= z0 −

R(z0)

2Rz(z0)
.

If Rz(z0) = 0, the tangent plane has the equation t = t0, and in this case we define
b(z0) = ∞, the infinite point on the Riemann sphere S2.
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Proposition 4.1. Let R ∈ C1(C) and define Ω by (1.3). If Ω is bounded and lineally
convex, then b(z), defined by (4.4), does not belong to ω, so that b is a continuous
mapping from ω into S2

r ω. Its range contains S2
r ω.

Proof. Clearly b is continuous as a mapping into C except where Rz = 0. Near such
points, however, 1/b is continuous. The point (b(z0), 0) cannot belong to Ω since Ω
is lineally convex; thus b(z0) /∈ ω. From every point (z, 0) outside the closure of Ω
we can draw a tangent to Ω: this shows that the range of b contains C r ω; clearly
it also contains ∞.

Corollary 4.2. If Ω is as in Proposition 4.1, then Ω is connected. The same is true
if Ω is the union of an increasing family of bounded lineally convex sets Ωj defined
by functions Rj ∈ C1(C).

Proof. Let ω1 be a connected component of ω. Then the image of ω1 under b contains
S2

r ω1. Since b(z0) /∈ ω there can be no other component: we must have ω1 = ω.
The statement about

⋃

Ωj is now immediate.

Corollary 4.2 should be compared with the following easy result for Lipschitz
boundaries.

Proposition 4.3. Given any open set ω in C there exists a Lipschitz continuous
function R ∈ C(C) such that ω is the set where R is positive and the set Ω defined
by R is lineally convex.

Proof. We define R(z) = infa/∈ω |z − a|. The set Ω is lineally convex since it is an
intersection of sets of the type V discussed in the beginning of section 3.

If a set does not have a boundary of class C1, we cannot give a meaning to the
notion of tangent plane. However, if the set is the union of an increasing family of
sets with smooth boundaries, it is possible to use instead their tangent planes and
then pass to the limit. Such limits of tangent planes can serve as well, as explained
in the following easy lemma.

Lemma 4.4. Let Ω be the union of an increasing family of open lineally convex sets
Ωj with boundaries of class C1. Let (jk) be a sequence tending to +∞, and let Yk

be the complex tangent plane of ∂Ωjk
at some point in the boundary of Ωjk

, k ∈ N.
Assume that Yk converges to a hyperplane Y in the topology of hyperplanes. Then Y
does not intersect Ω.

Proof. Suppose there is a point z ∈ Y ∩ Ω. Then also z ∈ Y ∩ Ωjk
for all large k.

Since Ωjk
is open, there is a ball B(z, ε) ⊂ Ωjk

for large k, say for k > k0. But then
Yk intersects B(z, ε) for all large k, say for k > k1. Thus Yk ∩ Ωjk

is non-empty for
all k > max(k0, k1), contradicting the lineal convexity of Ωjk

.

To recognize such limits of tangent planes we shall use the concept in the fol-
lowing definition.

Definition 4.5. Let X be any subset of Cn and a a point in the boundary ∂X. We
shall say that a complex hyperplane Y is an admissible tangent plane to ∂X at

a if there exists an open set A with boundary of class C1 such that A and X are
disjoint, a belongs to the boundary of A, and Y is the complex tangent plane to A at
a.
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Proposition 4.6. Let Ω ⊂ Cn be the union of an increasing family of open sets
Ωj with boundaries of class C1. Then any admissible tangent plane Y to ∂Ω is the
limit of a sequence of tangent planes Yj to ∂Ωj. Therefore, in view of Lemma 4.4, Y
cannot intersect Ω if the Ωj are lineally convex.

Proof. Let a and A be as in Definition 4.5. By a coordinate change we may suppose
that a = 0, that the real tangent plane to ∂A at the origin has the equation yn = 0,
and that A is defined by an inequality yn > f(z1, ..., zn−1, xn) near the origin for
some function f of class C1, which consequently vanishes at the origin together with
its gradient. Write z′ = (z1, ..., zn−1) ∈ Cn−1. We then know that all points in Ω
satisfy yn < f(z′, xn). Define g(z′, xn) = f(z′, xn) + |z′|2 + x2

n, and let Ac be the set
of all points such that yn > g(z′, xn) − c. We let c = cj be the largest real number
such that Ac and Ωj are disjoint. Now 0 ∈ ∂Ω and Ωj ↗ Ω; therefore we can be
sure that cj tends to zero as j → ∞. There is a point zj which is common to the
boundaries of Acj

and Ωj. Since A and Ωj are disjoint, we have |(zj)′|2 +(xj
n)2 6 cj .

The real tangent plane to ∂Acj
at zj is identical to the real tangent plane to ∂Ωj at

that point. We can control its slope, for the gradient of g is

grad g = grad f + grad(|z′|2 + x2
n),

which is continuous and vanishes at the origin. Since ((zj)′, xj
n) tends to the origin,

this shows that the real tangent plane to ∂Acj
at zj must be close to the real hyper-

plane yn = 0 if j is large, and then of course the complex tangent plane to ∂Acj
at

zj is close to the complex hyperplane zn = 0. The last statement now follows from
Lemma 4.4.

If there are three points in a triangle on the boundary of a lineally convex set,
certain values of the gradient at any of these points are forbidden as we can see from
simple geometric considerations. In the space of three real variables (Re z, Im z, |t|)
we can think of Ω as a banana and the tangent plane t = t0 + α(z − z0) as a cone
|t| = |t0 +α(z−z0)|; a cone of large opening cannot touch a banana everywhere. The
next lemma expresses this in a precise way.

Lemma 4.7. Let R be the limit of an increasing sequence of functions Rj ∈ C1(C)
and assume that the sets Ωj defined by Rj are lineally convex. Let three points 1,−1
and z0 = x0 + iy0 be such that R(1), R(−1), R(z0) > 0 and assume that −1 < x0 < 1
and y0 > 0. Consider an admissible tangent plane of ∂Ω at the point (z0, R(z0)) with
the equation t = t0 + α(z − z0) and assume that Imα is negative. Define

β = min(1− |x0|, y0) > 0,

γ = R(z0)
2 −min(R(1)2, R(−1)2) ∈ R.

Then α satisfies

(4.5) (2 + y2
0)|α|2 − 2βR(z0)|α|+ γ > 0.

This inequality will give us forbidden values of |α| provided Imα < 0, most easily if
γ 6 0, for then (4.5) implies that

(4.6) |α| > 2βR(z0)

2 + y2
0

as soon as Imα < 0.
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But also when γ > 0 there are forbidden values. If we fix α such that 2βR(z0)|α| −
(2 + y2

0)|α|2 > 0, then the lemma shows that

γ > 2βR(z0)|α| − (2 + y2
0)|α|2 > 0.

Thus it is impossible to obtain smaller values of γ.

Proof of Lemma 4.7. By Proposition 4.6 the admissible tangent plane cannot cut the
lineally convex set Ω, so in particular we must have

|t0 + α(±1− z0)|2 > R(±1)2 > R(z0)
2 − γ = t20 − γ.

Expanding the expression we find

|α|2|± 1− z0|2 + 2t0 Reα(±1− z0) + γ > 0.

Now |± 1− z0|2 6 2 + y2
0 and Reα(±1− z0) = (±1− x0) Reα+ y0 Imα, so that

|α|2(2 + y2
0) + γ > −2t0((±1− x0) Reα+ y0 Imα)

for both choices of sign. Noting that Imα is negative we obtain

|α|2(2 + y2
0) + γ > 2t0((1− |x0|)|Reα|+ y0| Imα|) > 2βt0|α|.

The lemma is proved.

Theorem 4.8. Let R be a function of class C1 or more generally a continuous
function which is the limit of an increasing sequence of functions Rj of class C1 in
the sets {z; Rj(z) > 0}. We assume that R is positive only in a bounded subset of the
complex plane. The functions Rj define open sets Ωj, which we assume to be lineally
convex. Then the set MR = {z; R(z) = supw R(w)} is convex.

Proof. Let a, b ∈MR. We have to prove that the whole segment [a, b] is contained in
MR. It is no restriction to assume that a = −1, b = 1. For every c ∈ [−1, 1] there
must exist a point z ∈ ω with Re z = c, for otherwise ω would not be connected,
in contradiction to Corollary 4.2. Thus supRe z=c R(z) > 0 for these c. Moreover
this supremum must be equal to R(1) = supR, for if there is a c ∈ [−1, 1] such that
supRe z=c R(z) < R(1), then there must exist a saddle point z0 of Rj somewhere in
the strip |Re z| < 1 with Rj(z0) < R(1), and even Rj(z0) < Rj(1) for j large. The
gradient at a saddle point is zero, so that the tangent plane of ∂Ωj at the boundary
point (z0, Rj(z0)) has the equation t = Rj(z0) and cuts Ωj at some point over 1 since
Rj(z0) < Rj(1). This contradicts the lineal convexity of Ωj .

We thus have the situation that supRe z=cR(z) = R(1) for every c ∈ [−1, 1],
which, since R is assumed continuous, means that there exists a point w with Rew = c
and R(w) = R(1), thus w ∈MR. If Imw = 0 we are done: c = w ∈MR. If Imw 6= 0,
we may assume that Imw > 0; the other case is symmetric. We may also assume that
| Imw| is minimal with this property, i.e., that the points z = c+ iy with |y| < | Imw|
do not belong to MR.
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Now Lemma 4.7 shows that the situation with these three points 1,−1 and w
in MR with Imw > 0 must lead to forbidden values of α at points near w. Most
easily this is seen if R is of class C1. We have Rz(w) = 0, so α = 2Rz(z0) is small
at all points near w; moreover, since R(x + iy) < R(w) for all y with 0 6 y < w,
there must exist points z0 = c + iy0 arbitrarily close to w with Ry(z0) positive.
Since R(z0) 6 R(1), we have γ 6 0 and (4.6) shows that all small values of |α| are
forbidden.

When R itself is not of class C1 but a uniform limit of functions Rj of class C1

we must find an admissible tangent plane.
To produce points near w where there is an admissible tangent plane with Imα <

0 we define an auxiliary function

pa(z) = R(1) + (x− c)2 + ε(y − 1
2 Imw)2 − a,

where ε > 0 and a is a real parameter. We have pa(z) < R(1) only when

(x− c)2 + ε(y − 1
2 Imw)2 < a,

i.e., inside an ellipse, which we shall choose quite narrow. We fix ε > 0 and define
b = ε( 1

2 Imw)2. This implies that pb(w) = pb(c) = R(1), so that w and c are on
the boundary of the domain pb < R(1). If ε is small enough, then pb(z) > R(z)
when Im z 6

1
2

Imw. Since pb(w) = R(w), the inequality pa > R implies a 6 b.
We now choose a as the largest real number such that pa > R; we must then have
0 < a 6 b. Moreover there must exist a point z0 such that pa(z0) = R(z0) in view of
the maximality of a, and we know that Im z0 >

1
2 Imw, ensuring that the imaginary

part of α = 2pa,z = pa,x − ipa,y is negative: Imα = −2ε(y0 − 1
2

Imw) < 0. We also
note that

| Imα| = 2ε|y0 − 1
2 Imw| 6 ε Imw and |Reα| = 2|x0 − c| 6 2

√
a 6

√
ε Imw

are arbitrarily small. Thus |α| is as small as we like, which contradicts (4.6).

The next result describes a situation in contrast to Theorem 4.8:

Proposition 4.9. Given any closed set M in the complex plane such that its comple-
ment is a union of open disks of radius ε there exists a Lipschitz continuous function
R such that MR = M and the domain Ω defined by (4.1) with this R is lineally
convex.

Proof. Define R(z) = min(ε, infa∈A |z − a|), where A is the set of all centers of disks
of radius ε in the complement of M .

5. Differential conditions

Let Ω be an open set in Cn with boundary of class C1. Then there exists a function
ρ ∈ C1(Cn), called a defining function, such that dρ 6= 0 wherever ρ = 0 and

Ω = {z ∈ Cn; ρ(z) < 0}.
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The complex tangent space at a point a on the boundary of Ω is defined by

n
∑

j=1

∂ρ

∂zj
(a)sj = 0.

We shall denote it by TC(a). The real tangent space is defined by

Re
n

∑

j=1

∂ρ

∂zj
(a)sj = 0

and will be denoted by TR(a). If ρ is of class C2 we define the Hessian form of ρ as
the quadratic form

H(s) =

n
∑

j,k=1

∂2ρ

∂zj∂zk
(a)sjsk, s ∈ Cn,

and the Levi form of ρ as the sesquilinear form

L(s) =

n
∑

j,k=1

∂2ρ

∂zj∂zk
(a)sjsk, s ∈ Cn.

Definition 5.1. We shall say that a set Ω with boundary of class C2 satisfies the

differential condition at a boundary point a of Ω if

(5.1) |H(s)| 6 L(s) for all vectors s ∈ TC(a).

We shall say that Ω satisfies the strong differential condition at a if we have

(5.2) |H(s)| < L(s) for all s ∈ TC(a) r {0}.

These conditions should be compared with the differential condition for convexity:
|H(s)| 6 L(s) for all vectors s in the real tangent space TR(a). This is a local
condition, and it is well known that it is equivalent to convexity of Ω. The proof of
this fact most conveniently goes via approximation of the set by sets satisfying the
corresponding strong condition, i.e., |H(s)| < L(s) for all s ∈ TR(a) r {0}.

The following two lemmas are well known (cf. Zinov ′ev [1971] and Hörmander
[1994, Corollary 4.6.5]). We include them for ease of reference.

Lemma 5.2. Let Ω be an open subset of Cn with boundary of class C2. If Ω is locally
weakly lineally convex, then Ω satisfies the differential condition at every boundary
point.

Proof. Let a be an arbitrary boundary point of a locally weakly lineally convex open
set Ω. Then there exists a complex hyperplane through a which does not cut Ω close
to a. This hyperplane cannot be anything but TC(a) since the boundary is of class
C1. Therefore if we take an arbitrary vector s ∈ TC(a) and consider the function
ϕ(t) = ρ(a + ts) of a real variable t, its second derivative must be non-negative
at the origin. If we express the condition ϕ′′(0) > 0 in terms of H and L we get
ReH(s) + L(s) > 0, which, since H is quadratic and L sesquilinear, is equivalent to
|H| 6 L.
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Lemma 5.3. Let Ω be an open subset of Cn with boundary of class C2. If Ω
satisfies the strong differential condition at every boundary point, then Ω is locally
weakly lineally convex.

Proof. With ϕ as in the proof of the previous lemma we must have ϕ′′(0) > 0 if Ω
satisfies the strong differential condition. This imples that TC(a) cannot cut Ω close
to a.

It is known that if Ω is a connected open set with boundary of class C1 which is
locally weakly lineally convex, then Ω is weakly lineally convex; see, e.g., Hörmander
[1994, Proposition 4.6.4]. We shall come back to this result in section 7.

6. Differential conditions for Hartogs domains

In this section we shall see what the differential conditions look like in the case of a
complete Hartogs domain in C2. Let Ω be a complete Hartogs domain in C2 defined
by (4.1). If h is of class C1, we can choose as its defining function

ρ(z, t) = tt− h(z).

It must satisfy d′ρ 6= 0 when ρ = 0, which means that d′ρ = tdt − hzdz 6= 0 when
|t|2 = h(z). Since the first term of d′ρ is tdt, which is non-zero everywhere except in
the plane t = 0, the only condition is that hz 6= 0 when h = 0, i.e., that h itself shall
be a defining function in C. It defines a subset ω of the complex plane over which Ω
is situated.

Lemma 6.1. Let h be a defining function of an open set ω in C of class Ck, k > 1.
Then the complete Hartogs domain in C2 defined by (4.1) has boundary of class Ck.
When k > 2, it satisfies the differential condition at every boundary point if and only
if h satisfies the condition

(6.1)
|hz|2
h

> hzz + |hzz| wherever h > 0.

Furthermore Ω satisfies the strong differential condition if and only if there is strict
inequality in (6.1).

Proof. Let us look at the Hessian and Levi forms of ρ(z, t) = |t|2 − h(z). They are,
respectively,

H(s) = −hzzs
2
1 and L(s) = −hzz |s1|2 + |s2|2, s = (s1, s2) ∈ C2.

The differential condition |H| 6 L takes the form

|hzz||s1|2 6 −hzz |s1|2 + |s2|2 for all s ∈ TC(a).

The tangent plane is defined by −hzs1 + ts2 = 0. When t 6= 0 we use this equation
to eliminate s2: the condition takes the form (6.1). Near t = 0 we eliminate instead
s1 and get

(hzz + |hzz|)
h

|hz|2
6 1.
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This inequality is satisfied, even strictly, at all boundary points sufficiently close to
t = 0, provided hz 6= 0 near h = 0. Therefore, if h is a defining function for ω, then
ρ is a defining function for Ω and condition (6.1) implies the differential condition at
all boundary points of Ω, including those where t = 0. Conversely, if ρ is a defining
function for Ω, then h is a defining function for ω, and the differential condition for
Ω implies the condition (6.1) for h.

Remark 6.2. We can of course express the differential condition (6.1) in terms of the
radius R =

√
h. It becomes

(6.2) |Rz|2 > |R2
z + RRzz|+ RRzz,

which is less convenient to work with than (6.1). If h is concave, then hzz + |hzz| 6 0,
so that (6.1) holds. More generally, if R is concave, then Rzz + |Rzz| 6 0, which
implies that (6.2) holds. It is also possible to express the differential condition in
terms of the function f = − logR. It then takes the form

(6.3) |fzz − 2f2
z | 6 fzz.

In Kiselman [ms] I have studied convexity properties of this function f .

7. Approximation of smoothly bounded lineally convex Hartogs domains

Theorem 7.1. Let

(7.1) Ω = {(z, t) ∈ C2; |t| < R(z)}
be a bounded complete Hartogs domain in C2 with boundary of class C2. Suppose Ω
satisfies the differential condition at all boundary points. Then Ω can be approximated
from the inside by Hartogs domains

Ωε = {(z, t); |t| < Rε(z)}
which satisfy the strong differential condition at all boundary points (z, t) except those
where Rz(z) = 0. In fact, we can take Rε =

√
R2 − ε with ε positive and small

enough.

Proof. Of course we should not try to do any calculations with R, but use R2 = h
instead. The differential condition (6.1) contains the value of h only at one place,
and hε = h− ε has the same derivatives as h, so we can write

|hz|2
h− ε

>
|hz|2
h

> hzz + |hzz|

except of course when hz = 0. Thus the boundary of Ωε satisfies the strong differential
condition except at the points where hz = 0. So far the argument is valid for all
positive ε. We need to check that hε is a defining function; otherwise we cannot
apply Lemma 6.1. But the gradient of hε is the same as that of h, which is non-zero
when h = 0, hence also when hε = 0, provided ε is small enough. Thus hε is a
defining function for all small ε, proving the theorem.

We shall now see that the approximating sets Ωε that we constructed in Theorem
7.1 are in fact lineally convex. Let us agree to say that a complex plane with the
equation z = constant is vertical and a plane with the equation t = constant is
horizontal.
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Proposition 7.2. Let Ω be a bounded complete Hartogs domain in C2 with boundary
of class C2 satisfying the strong differential condition except possibly at the points
where the tangent plane is horizontal. Then Ω is lineally convex.

We shall need the following three lemmas.

Lemma 7.3. Let Ω be as in Proposition 7.2 and let L be a complex line in C2 which
is not horizontal. Then L ∩ Ω consists of a finite number of open sets bounded by
C2 curves obtained as transversal intersections of L and ∂Ω (and L∩ ∂Ω consists of
these curves plus a finite number of isolated points).

Proof. Take an arbitrary boundary point a and let L be a complex line through a
which is not horizontal. If L is the tangent plane, L = a+ TC(a), then the proof of
Lemma 5.3 shows that L intersects Ω near a only in the point a. If, on the other hand,
L is not the tangent plane, then L∩ (a+TC(a)) 6= L, so ∂Ω cuts L transversally, and
∂Ω∩L is a C2 curve in L near a. Thus L∩∂Ω consists of a number of C2 curves plus
isolated points—by compactness there can only be finitely many curves and points.

Lemma 7.4. Let Ω and L satisfy the hypotheses of the previous lemma. Then Ω∩L
is connected, and Ω ∩ (a+ TC(a)) is empty for all a ∈ ∂Ω.

Proof. We shall follow closely the proof of Proposition 4.6.4 in Hörmander [1994]—
we only have to be careful to avoid horizontal planes. Let (zj , tj), j = 0, 1, be two
points in L∩Ω. We have to prove that they belong to the same component of L∩Ω.
Suppose first that both t0 and t1 are non-zero. Since Ω is connected, there is a curve
γ which goes from γ(0) = (z0, t0) to γ(1) = (z1, t1). We can actually do this in such
a way that the complex line Ls which contains γ(0) and γ(s), 0 < s 6 1, is never
horizontal. Indeed, we first go from (z0, t0) to (z0, 0) along a curve in the plane z = z0
avoiding (z0, t1); then along a curve in the plane t = 0 from (z0, 0) to (z1, 0); and
then finally from (z1, 0) to (z1, t1) along a curve in the plane z = z1 avoiding (z1, t0).
(We know that t0 6= t1.) Thus none of the lines Ls is horizontal, and we can apply
Lemma 7.3 to them. Consider the set C of all s ∈ ]0, 1] such that γ(0) and γ(s)
belong to the same component of Ls ∩ Ω. Then certainly C contains all sufficiently
small numbers, for γ(0) and γ(s) are then in the line z = z0, whose intersection with
Ω is a disk. The set C is open as a subset of ]0, 1] in view of Lemma 7.3, but so is
its complement with respect to ]0, 1]. Since it is non-empty, it must contain 1, i.e.,
(z0, t0) and (z1, t1) belong to the same component of L ∩ Ω. If one of t0, t1 is zero,
we choose a point with non-zero second coordinate in the neighborhood and argue
as above.

Consider now a tangent plane L = a+TC(a) and planes Lε = aε+TC(a) parallel
to it, where we write aε = (z0, (1−ε)t0) if a = (z0, t0). We already know from Lemma
5.3 that L cannot intersect Ω close to a. However, it cannot cut Ω at all, for if it did,
then a parallel plane Lε for some small positive ε would intersect Ω in a component
close to a and another nonempty set at some distance from a, thus in a disconnected
set. This proves Lemma 7.4.

Lemma 7.5. Let Ω be as in Proposition 7.2 and let a ∈ ∂Ω be such that the tangent
plane is horizontal. Then Ω ∩ (a + TC(a)) is empty; in other words R has a global
maximum at a. Consequently any horizontal plane L intersects Ω in finitely many
open sets bounded by C2 curves obtained as transversal intersections of L by ∂Ω.
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Proof. Let (z0, t0) be a boundary point such that the tangent plane is horizontal,
i.e., Rz(z0) = 0. Suppose the tangent plane cuts Ω in some point (z1, t1). We must
then have t1 = t0. Since Ω and its base ω are connected, we can find a curve γ in
ω connecting z0 to z1, say γ(s) = zs, s ∈ [0, 1]. Consider now the tangent planes at
the points (zs, R(zs)); we denote them by Ls = (zs, R(zs)) + TC(zs, R(zs)). It is no
restriction to assume t0 > 0, so that R(z0) = t0. We know that L0 is horizontal, but
certainly not all the Ls can be horizontal, since R(z1) > |t1| = |t0| = R(z0). Let s0
be the infimum of all s such that Ls is not horizontal; we must have 0 6 s0 < 1. The
planes Ls with 0 6 s 6 s0 are identical and all intersect Ω in the point (z1, t1). It is
now clear that there exists a tangent plane Ls with s just a little bit larger than s0
which is not horizontal and still cuts Ω. This contradicts Lemma 7.4.

Proof of Proposition 7.2. We know from Lemma 7.4 that a tangent plane which is
not horizontal does not intersect Ω; we obtain the same conclusion from Lemma 7.5
for a horizontal tangent plane. Thus Ω is weakly lineally convex. Lemma 2.1 shows
that this implies lineal convexity.

We can now finally state:

Theorem 7.6. Let Ω be a bounded complete Hartogs domain in C2 with boundary
of class C2. If Ω satisfies the differential condition (5.1) at all boundary points, then
Ω is lineally convex.

Proof. Using Theorem 7.1 we construct open sets Ωε which tend to Ω. Also, if
R(z0) > 0, the tangent plane of ∂Ωε at (z0,

√

R(z0)2 − ε) tends to that of ∂Ω at
(z0, R(z0)). The sets Ωε are lineally convex by Proposition 7.2. Then also their limit
Ω is lineally convex. Indeed, if a tangent plane to ∂Ω intersected Ω, then it would cut
also Ωε for all sufficiently small ε, and then also for ε small enough the corresponding
tangent plane to ∂Ωε would cut Ωε. This is a contradiction.

8. The non-local character of lineal convexity, revisited

Having settled the question of lineal convexity of smoothly bounded Hartogs domains
we now turn to sets of the form

(8.1) Ω = {(z, t) ∈ ω ×C; |t| < R(z)} = {(z, t) ∈ ω ×C; |t|2 < h(z)},

where ω is a given open set in C and h is a C2 function in the closure of ω satisfying
h > 0 and the differential condition (6.1). Its boundary is smooth enough over points
in ω, but is only Lipschitz at points over ∂ω. It turns out that when ω is a disk,
then the differential condition implies lineal convexity: we shall study this question
in section 9. On the other hand, if ω is a set such that ω is not a disk, then the
differential condition does not imply lineal convexity. This is the topic of the present
section.

The property of being a disk is invariant under Möbius mappings, and disks are
the only sets which remain convex under all Möbius mappings. This is a kind of
explanation for the phenomenon we encounter here, and it is therefore natural to
study how the differential condition (6.1) behaves under Möbius mappings. This is
explained in the next lemma.
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Lemma 8.1. Let Ω be a Hartogs domain in C2 defined by |t| < R(z), let a, b, c, d
be four complex numbers with ad− bc 6= 0, and let Ω1 be the Hartogs domain defined
by |t| < R1(z) = |c + dz|R((a + bz)/(c + dz)). Then Ω and Ω1 are lineally convex
simultaneously. The two functions h and h1(z) = |c+dz|2h((a+ bz)/(c+dz)) satisfy
the differential condition (6.1) simultaneously.

Proof. Consider the mapping

(C r {0})×C×C 3 (z0, z1, t) 7→ (z1/z0, t/z0) ∈ C2.

Under it the pull-back of the hyperplane c + ζz + τt = 0 is the hyperplane cz0 +
ζz1 + τt = 0. It follows that the pull-back of a lineally convex set in C2 is a complex
homogeneous lineally convex set in C3. Now any linear mapping of the form

C3 3 (z0, z1, t) 7→ (cz0 + dz1, az0 + bz1, t) ∈ C3

with ad− bc 6= 0 preserves lineal convexity, and mappings

C3 3 (z0, z1, t) 7→
(

1,
az0 + bz1
cz0 + dz1

,
t

cz0 + dz1

)

∈ C3

preserve lineally convex sets which are complex homogenoeus. If we transport this
back to C2 we get a mapping of the form

(z, t) 7→
(

a+ bz

c+ dz
,

t

c+ dz

)

.

This proves that Ω and Ω1 as defined in the statement of the lemma are lineally
convex at the same time. The statement about the differential condition for h and
h1 can be verified directly, perhaps easiest if we check it for the special mappings
z 7→ c+ dz and z 7→ 1/z, which together generate all Möbius mappings.

Lemma 8.2. Let K be a compact subset of C with connected complement. Assume
that K is not a disk. Then there exists a closed disk D1 containing K such that
K ∩ ∂D1 has at least two components.

Proof. Let D0 be the closed disk of minimal radius which contains K. By hypothesis
K 6= D0 and CrK is connected, so there exists a point a0 ∈ ∂D0 rK. Let H be an
open halfplane which contains K but is such that a0 /∈ H. Now consider the closed
disk D1 of minimal radius among those that contain K and have ∂H as a tangent.
We claim that there are four points a, b, c, d ∈ ∂D1 which are in that order along the
circumference and with a, c /∈ K, b, d ∈ K. This will show that b and d belong to
different components of K ∩ ∂D1. To find these points we argue as follows. Let a be
the point of ∂D1 at which ∂H is tangent; thus a ∈ ∂D1 and a /∈ K. Next, D1 6⊂ D0,
so there is a point c ∈ ∂D1 r D0. Thus c /∈ K. Finally we claim that there are
two points b, d ∈ ∂D1 ∩K on either side of the segment [a, c]. This is so because if
one of the arcs from a to c were disjoint from K, then it can easily be seen that D1

would not be minimal among the disks that contain K and are tangent to ∂H. This
completes the proof.
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Theorem 8.3. Let ω be a bounded connected open subset of C such that the com-
plement S2

r ω of its closure with respect to the Riemann sphere S2 = C ∪ {∞}
has at least one component which is not a disk. Then there exists a Hartogs domain
defined by a smooth function and with base ω such that it is not lineally convex, al-
though ω = ω0 ∪ ω1 and the Hartogs domain over ωj is lineally convex, j = 0, 1. In
particular the function defining Ω satisfies the differential condition (6.1).

Proof. Let K be the complement of a component of S2
r ω which is not a disk; thus

K contains ω. Moreover the complement of K is connected and ∂K ⊂ ∂ω. We may
assume that K is compact: if not we use a Möbius mapping to reduce ourselves to
that case. Let a, b, c, d ∈ ∂D1 be the four points whose existence is guaranteed by
Lemma 8.2; recall that b, d ∈ K and a, c /∈ K. Now take a new closed disk D2 which
does not contain a, b, or d, but contains c in its interior, and is so close to D1 that b
and d belong to different components of KrD2. This is possible because a does not
belong to K. Now we map D2 onto the closed right halfplane, taking a to 0 and some
point outside K and near c to infinity. We are thus reduced to a situation where K
is still compact in C, whereas ∂D2 is the imaginary axis, with a = 0 and Im b and
Im d of different signs, say for definiteness Im b < 0 and Im d > 0. Moreover we can
take D2 so close to D1 that the points in K which are not in D2 are never real. Then
we can define a function R as follows. First take a smooth concave function ψ of a
real variable such that ψ(s) = 1 when s > 0 and ψ(s) < 1 for s < 0, but still so that
ψ(Re z) > 0 for all points z ∈ ω. Then define

R(z) =

{

ψ(Re z) when z ∈ ω, Re z < 0, Im z < 0,

1 at other points in ω.

This function is continuous, even identically one, in a neighborhood of the intersection
of ω and the real axis.

The tangent plane at a point (z0, t0) ∈ ∂Ω with z0 ∈ ω has the equation (4.3).
In particular, we may take t0 = R(z0) and get

t = R(z0) + 2Rz(z0)(z − z0).

In the present case R is locally a function of Re z, say R(z) = k(x), so that Rz = kx/2
is real. Thus the tangent plane is

t = R(z0) + kx(x0)(z − z0) = R(z0) + kx(x0)(x− x0) + ikx(x0)(y − y0),

and, writing z = z0 + z1, we obtain

|t|2 = R(z0)
2 + 2kx(x0)R(z0)x1 + kx(x0)

2x2
1 + kx(x0)

2y2
1.

When x1 < 0 and kx(x0) is positive and small,

|t|2 ≈ R(z0)
2 + 2kx(x0)R(z0)x1 < R(z0)

2.

Since ω is connected and has the point b on its boundary, we can choose z0 such that
y0 < 0 and x0 < 0 with kx(x0) arbitrarily small, so small that indeed |t| < R(z0).
Then we choose z = z0 + z1 ∈ ω with Im z > 0. Thus R(z) = 1, so the tangent plane
at (z0, R(z0)) cuts Ω in a point above z. This proves that Ω is not lineally convex.
However, if we look at the parts of ω where Im z > −ε and Im z < ε respectively,
then R is the restriction of a globally concave function in each of them and therefore
defines a lineally convex set.
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Theorem 8.4. Let ω be a bounded open set in C such that S2
rω is not connected.

Then there is a function h ∈ C∞(ω), h > 0, which satisfies the differential condition
(6.1) but is such that the Hartogs domain it defines over ω is not lineally convex.

Proof. If one of the components of S2
r ω is not a disk, we already know the result

by Theorem 8.3. The case when all components of S2
r ω are disks remains to

be considered. This means that ω is a disk from which countably many disks (at
least one) have been removed. Any one of these holes can be moved by a Möbius
transformation so that it becomes concentric with the outer circumference of ω; in
other words ω is an annulus r0 6 |z| 6 r1 from which possibly a number of disks
have been removed. It is clearly enough to consider the case of the annulus, for the
possible presence of other holes will not destroy our conclusion.

So assume ω is the annulus r0 6 |z| 6 r1 and define R0(z) = 1−ax2−by2, where
0 < a < b and b is so small that R0 > 0 in ω. Next define ϕ to be a concave C∞

function of one real variable such that ϕ(s) = s for all s 6 1− br2
0 + ε and ϕ(s) = c

when s > 1− ar20 − ε for some positive ε and a suitable constant c; by necessity we
must have c < 1 − ar20. Define R1(z) = ϕ(R0(z)). We observe that R0 = R1 in a
neighborhood of the intersection of the imaginary axis and ω. Both R0 and R1 are
concave in C, so the corresponding Hartogs domains over |z| < r1 are convex and
therefore lineally convex. It follows that the Hartogs domains over ω are lineally
convex. Now define R to agree with R0 in the right halfplane and with R1 in the
left halfplane. Note that R(z) = R1(z) = c at points z ∈ ω close to −r0, so that the
tangent plane at a boundary point over such a point has the equation t = t0 with
|t0| = c < 1− ar20. But over a point z in ω close to r0 we have R(z) = R0(z) > c, so
the tangent plane t = t0 cuts Ω. This proves that Ω cannot be lineally convex.

9. Hartogs domains over a disk

The differential condition over a disk remains to be studied. We shall see that it is
then equivalent to lineal convexity.

We shall write D(c, r) for the open disk in the complex plane with center c and
radius r, and just D for the open unit disk D(0, 1).

Proposition 9.1. Let h ∈ C2(D), h > 0, be a real-valued function which satisfies
the differential condition

(9.1)
|hz|2
h

> hzz + |hzz|, |z| < 1.

Let ϕ ∈ C2(R) be real-valued, decreasing and satisfy ϕ 6 1 everywhere and ϕ′′ < 0
wherever ϕ < 1. Assume that there are constants a and A such that

(9.2) Re

[

2zhz(z)

h(z)

]

6 a < 1

and

(9.3)

∣

∣

∣

∣

2zhz(z)

h(z)

∣

∣

∣

∣

6 A < +∞
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wherever 0 < ϕ(zz) < 1. Then g(z) = ϕ(zz)h(z) satisfies the differential condition
wherever ϕ(zz) > 0 and |z| < 1, provided ϕ′/ϕ′′ is small enough, more precisely if
either A 6 1 or else

ϕ′(s)

sϕ′′(s)
6

2(1− a)

A2 − 1
when s is such that 0 < ϕ(s) < 1.

Proof. With g(z) = ϕ(zz)h(z) we have

gz = ϕ′zh+ ϕhz ,

gzz = ϕ′′z2h+ 2ϕ′zhz + ϕhzz,

gzz = ϕ′′|z|2h+ ϕ′h+ 2ϕ′Re zhz + ϕhzz .

Thus what we have to prove is, writing r for |z|,

|ϕ′zh+ ϕhz|2
ϕh

> r2ϕ′′h+ ϕ′h+ 2ϕ′ Re zhz + ϕhzz + |ϕ′′z2h+ 2ϕ′zhz + ϕhzz|.

We expand the left-hand side and find that the term 2ϕ′ Re zhz appears on both
sides. We shall therefore prove

r2ϕ′2h

ϕ
+
ϕ|hz|2
h

> r2ϕ′′h+ ϕ′h+ ϕhzz + |ϕ′′z2h+ 2ϕ′zhz + ϕhzz|.

This formula follows from |hz|2/h > hzz + |hzz|, which holds by hypothesis, and

(9.4)
r2ϕ′2h

ϕ
> r2ϕ′′h+ ϕ′h+ |ϕ′′z2h+ 2ϕ′zhz|,

which we shall prove now. We divide both sides of this inequality by the positive
quantity −r2ϕ′′h (if ϕ′′ is zero there is nothing to prove), and find the equivalent
inequality

− ϕ′2

ϕϕ′′
> −1− ϕ′

r2ϕ′′
+

∣

∣

∣

∣

−z
2

r2
− 2

ϕ′zhz

r2ϕ′′h

∣

∣

∣

∣

= −1− ϕ′

r2ϕ′′
+

∣

∣

∣

∣

1 +
ϕ′

r2ϕ′′
2zhz

h

∣

∣

∣

∣

.

Since −ϕ′2/ϕϕ′′ is positive, it suffices to prove that

1 + t > |1 + tw| when t =
ϕ′(r2)

r2ϕ′′(r2)
and w =

2zhz(z)

h(z)
.

This inequality in turn follows from

(1 + t)2 > |1 + tw|2 = 1 + 2tRew + t2|w|2,

which holds as soon as 2+ t > 2 Rew+ t|w|2. By hypothesis Rew 6 a < 1 and |w| 6
A, so (9.4) follows as soon as either A 6 1 or else A > 1 and t 6 2(1− a)/(A2 − 1).
This proves the proposition.
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Example 9.2. As an example of the function ϕ in Proposition 9.1 we let s0 be
an arbitrary number such that 0 < s0 < 1 and take a smooth function ϕ satisfying
ϕ(s) = 1 for s 6 s0 and whose derivative is ϕ′(s) = −C exp(−1/(s− s0)) for s > s0.
Then we determine C to make ϕ(1) = 0; this means that we choose C to satisfy

C

∫ 1

s0

e−1/(s−s0)ds = 1.

We note that ϕ′(s)/sϕ′′(s) = (s−s0)2/s, which varies between 0 and (1−s0)2. Thus
if 1− s0 is small enough, we can conclude that the new function ϕ(zz)h(z) satisfies
the differential condition (9.1) over the open unit disk and it agrees with h when
|z| 6 √

s0.
We need to study condition (9.2) more closely. In fact it has a simple geometric

meaning.

Definition 9.3. Let a complete Hartogs domain

Ω = {(z, t) ∈ ω ×C; |t|2 < h(z)}
be defined over a bounded domain ω in C by a function h ∈ C1(ω), h > 0. Denote
by (b(z), 0) the point at which the tangent at a point (z, t) ∈ ∂Ω with z ∈ ω intersects
the plane t = 0 (put b(z) = ∞ if there is no such point). We shall say that Ω satisfies
the tangent condition if

inf
z∈ω

d(b(z), ω) > 0,

where d denotes the distance from a point to a set.

If Ω is defined by a function R > c > 0 and is lineally convex, then it must satisfy
the tangent condition, but not only that—we can deduce important quantitative
information from its lineal convexity:

Lemma 9.4. Let R ∈ C1(ω) be such that the set Ω defined by (8.1) is lineally convex.
Then

(9.5) inf
z∈ω

d(b(z), ω) >

inf
ω
R

2 sup
ω
|Rz|

>

inf
ω
h

sup
ω
|hz|

.

If R > c > 0 in ω, then Ω satisfies the tangent condition.

Proof. The tangent plane at a point (z0, t0) ∈ ∂Ω with z0 ∈ ω is given by equation
(4.3), and b(z) is given by equation (4.4). The equation for the tangent can also be
written as t = α(z− b(z0)). If Ω is lineally convex, then this tangent cannot intersect
Ω, so we must have |t| > R(z) whenever z, z0 ∈ ω. Thus

|t| = |α(z − b(z0))| > R(z) for all z, z0 ∈ ω;

inserting the value of |α| = 2|Rz(z0)| = |hz(z0)|/
√

h(z0) we obtain

|z − b(z0)| >
R(z)

2|Rz(z0)|
=

√

h(z)h(z0)

|hz(z0)|
.

We now let z, z0 vary in ω to get the desired conclusion.

The idea is to prove that the tangent condition is not only necessary as in Lemma
9.4, but also sufficient if ω is a disk, which we shall do in Proposition 9.5. We then
proceed to prove that Ω does satisfy the tangent condition under our hypotheses if
ω is a disk.
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Proposition 9.5. Assume that h ∈ C2(D), h > 0, satisfies the differential condition
(9.1) and that Ω satisfies the tangent condition. Let ϕ be the function constructed in
Example 9.2. Then ϕ(zz)h(z) satisfies the differential condition if s0 is sufficiently
close to 1. Therefore, by Theorem 7.6, the open set {(z, t) ∈ D×C; |t|2 < ϕ(zz)h(z)},
which has a C2 boundary, is lineally convex; as a consequence also its limit as s0 tends
to 1, viz. Ω itself, is lineally convex.

Proof. Using formula (4.4) for b(z) the relation between the inequality (9.2) used
in the proof of Proposition 9.1 and the tangent condition is easy to establish. We
observe that |b(z)| = |z − h(z)/hz(z)| > |z| if and only if Re 2zhz(z)/h(z) < 1. Thus
if Ω satisfies the tangent condition, then h satisfies (9.2) for some a < 1 and all z in
some sufficiently narrow annulus

√
s0 6 |z| 6 1.1

Define

A = sup
|z|61

∣

∣

∣

∣

2zhz(z)

h(z)

∣

∣

∣

∣

and a(s0) = sup√
s06|z|61

Re

[

2zhz(z)

h(z)

]

.

If A 6 1 we are done; otherwise we can choose s0 < 1 so close to 1 that (1− s0)
2 6

2(1 − a(s0))/(A
2 − 1). Proposition 9.1 can be applied and shows that ϕ(zz)h(z)

satisfies the differential condition.

We shall now prove that it can never happen that Re 2zhz(z)/h(z) > 1 for any
z with |z| 6 1.

Proposition 9.6. If h ∈ C2(D), h > 0, satisfies the differential condition (9.1),
then Ω satisfies the tangent condition.

Proof. Let us define
b0(r) = inf

|z|6r
|b(z)|, 0 < r 6 1.

This is a decreasing function and it is continuous where it is finite. The tangent
condition for Ωr = {(z, t) ∈ D(0, r)×C; |t|2 < h(z)} means precisely that b0(r) > r.
It is clear that the condition is satisfied for a very small r. Indeed, b(0) = −h(0)/hz(0)
is either ∞ or a non-zero complex number; in view of the continuity, |b(z)| > r if
|z| 6 r and r is small enough.

If the tangent condition is satisfied for a particular Ωr, then by Proposition 9.5
the set Ωr is lineally convex, so Lemma 9.4 can be applied and shows that b0(r) > r+ε,
where ε = (inf |z|61R)/(2 sup|z|61 |Rz|) > 0. We know that b0(r) > r for small values
of r, and we have just seen that if b0(r) > r, then also b0(r) > r + ε, for a positive
ε which does not depend on r. Therefore that function cannot assume any value in
the interval ]r, r + ε[: it must satisfy b0(r) > r all the way up to and including r = 1.
This means that Ω satisfies the tangent condition.

Theorem 9.7. Let h ∈ C2(D), h > 0, satisfy the differential condition (9.1). Then
the open set Ω = {(z, t) ∈ D ×C; |t|2 < h(z)} is lineally convex.

1Here we could remark that it would be enough to require that b(z) /∈ ω only for all
z ∈ ∂ω, supposing that h ∈ C2(ω). The stronger condition used in Definition 9.3 is
however easier to handle in the proof of Proposition 9.6.
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Proof. If h ∈ C2(D) with h > 0 in D we see from Proposition 9.6 that Ω satisfies the
tangent condition, so that Proposition 9.5 can be applied. In the general case with
h ∈ C2(D), h > 0, we apply this result to a smaller disk rD, r < 1, to conclude that
the domain over rD is lineally convex. Then we let r → 1.
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