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1. Introduction

D igital geometry is, simply put, the geometry of the computer screen. Mathematical
morphology is, in equally simple words, the theory and practice of transformations

of sets and functions with an emphasis on their shape. In many cases these transfor-
mations have been known for a long time, but they have come into focus for the same
reason as digital geometry: the operations can actually be performed on a computer.

These notes form the basis of my lectures at Uppsala University during the spring
semester of 2002. The reader will probably notice that I am trying to learn the subject
at the same time. Hopefully this will not make the notes more difficult to read.

1.1. Why digital geometry?
As everyone knows by now, there is a universal answer (Why not? ) to all such questions,
but I shall nevertheless try to give some motivation for this relatively new field and
why I think it is worthwhile as a mathematical theory.

Points, straight lines and planes have been studied for well over two millenia, and
certain curves, like ellipses and hyperbolas, have been an object for our curiosity for
almost as long. More general curves, like lemniscates and cardioids, have been studied
for several centuries. In the study of these curves we rely very much on the fact that
we can draw them on paper. But with the advent of computers we have acquired a new
method of drawing pictures. On the computer screen we see images, and the images
consist of little picture elements, pixels, that the eye puts together to form geometric
objects. A straight line is therefore not what Euclid understood by a straight line, but
rather a finite collection of dots on the screen, which the eye nevertheless perceives as
a connected line segment. Is there a geometry for these images on the screen? The
answer is in the affirmative. We need not be content with the images as more or less
accurate approximations of ideal straight lines or curves: we can treat these finite sets
of points with the same accuracy as that which Euclid had in his geometry. This is
digital geometry.

The field is young in comparison with Euclid’s: the notion of a straight line was
clarified in 1974 by Azriel Rosenfeld. We can also talk about curves in the digital
plane. In fact, we can take any notion in Euclidean geometry, try to translate it to
digital geometry, and see if a certain result in Euclidean geometry becomes true in a
digital interpretation. The Jordan curve theorem is an instructive example.

For an elementary discussion of digital geometry and in particular of the Jordan
curve theorem, see Kiselman (ms).
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The plane may be divided into triangles, rectangles, or hexagons. Then the centers
of the pixels form, respectively, a hexagonal, rectangular, or triangular pattern (Figures
1 and 2). In all these cases we may use a pair of integer coordinates to indicate the
location of a pixel. This is obvious and easy in the rectangular case, but useful also in
the other two cases, although we need to be careful about the metric then. Therefore
we often speak of Z2 as the set of pixels, although, more precisely, a pair of integers
x = (x1, x2) ∈ Z2 is just the address of a pixel.

1.2. Why mathematical morphology?

The field that has become known as mathematical morphology is quite old in a sense;
it is about operations on sets and functions that have been around for a long time, but
which are now being systematized and studied under a new angle, precisely because it
is possible to actually perform operations on the computer and see on the screen what
happens.

My personal view is that morphology has its origin in our trying to understand a
complicated world. The world is so complex that the human mind—and the human
eye—cannot perceive all its minute details, but needs a simplified image, a simplified
structure. The need to simplify a complicated object is, in this view of things, the basic
impulse behind mathematical morphology, and this is what mathematical morphology
does. Related to this is the fact that an image may contain a lot of disturbances, or
rather, it almost always does. Therefore, most images need to be tidied up. Thus
another need to process images; it is related to the first, for the border line between
dirt and other kind of disturbances is not too clear.

Let us think first of Euclidean geometry, and consider cardinalities. The set N
of nonnegative integers is infinite, and its cardinality is denoted by card(N) = ℵ0.
The set of real numbers R has the same cardinality as the set of all subsets of N,
thus card(R) = 2ℵ0 . The points in the Euclidean plane have the same cardinality:
card(R2) = card(R). But the set of all subsets of the plane has the larger cardinality
22ℵ0 , which is too much for our brains to keep track of. There are simply too many
sets in the plane: we need to restrict attention to some not too large subclass of nice
sets. For instance, the set of all disks has a much smaller cardinality, because three
numbers suffice to determine a disk in the plane: its radius and the two coordinates
of its center. This leads to the idea of simplifying a general, all too wild set, to some
reasonable, more well-behaved set.

If we consider digital geometry we can make a similar discussion about cardinality.
On a computer screen with, say, 1,024 pixels in a horisontal row and 768 pixels in a
vertical column there are 1, 024 × 768 = 786, 432 pixels. To describe a subset of the
screen we need to specify for each pixel whether it belongs to the set or not. This means
that there are 2786,432 ≈ 10236,740 different subsets of the screen, or binary images. A
binary image is a black-and-white image, i.e., we only specify whether a point belongs to
the set or to the background. (If we want to consider gray-level images, or color images,
the cardinality goes up of course.) The really pure mathematician then says: there are
only finitely many binary images. But the number of binary images must be compared
with other finite numbers. Some astronomers estimate the mass of the universe at
1053 kg, which is 6× 1079 proton masses or 1083 electron masses. One sometimes talks
about “astronomical numbers,” which Webster defines as “enormously or inconceivably
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large” numbers. This metaphor has not only faded; it is actually misleading in the
world of image analysis.1

Thus, although the number of binary images on a computer screen is finite, it is so
huge that the conclusion must be the same as in the case of the infinite cardinal 22ℵ0 :
there are too many, and we must simplify. This leads, again, to image processing and
mathematical morphology, this time of subsets of Z2, or, a little more generally, of Zn,
the set of all n-tuples of integers.

When we discuss mathematical morphology we want to keep both cases in mind,
i.e., both the vector space Rn of all n-tuples of real numbers and the digital space
Zn. The latter covers the case of rectangular pixels, but, as already pointed out, also
triangular and hexagonal pixels. What is common to Rn and Zn is that they form an
abelian group. Therefore we shall always start the discussion assuming that the space,
called image carrier, is just an abelian group. When necessary we shall then specialize
to Rn and Zn. In many ways, Rn will guide us in the more difficult study of Zn.

Serra (1982:6–15) lists “four principles of quantification.” These are about our ways
to gather information about the external world. They apply also, but not exclusively,
to image analysis. Let us discuss them briefly in mathematical terms.

Serra’s first principle is “compatibility under translation.” Mathematically speak-
ing, this means that if we translate the object (i.e., move it some distance without
rotating it) and then do something to it, then the result should be the same as
if we perform the two operations in the other order. For a mapping, this simply
means that f(A + b) = f(A) + b, which we may express as f ◦ Tb = Tb ◦ f , thus
a kind of commutativity, writing Tb for the translation, Tb(A) = A + b. We say
that f commutes with translations. However, when it comes to applications of this
idea to images on the computer screen, we are in deep trouble. On a finite screen
{x ∈ Z2; 0 6 x1 < 1, 024, 0 6 x2 < 768} almost nothing can commute with transla-
tions. To escape from this difficulty we introduce the ideal, infinite, computer screen
Z2. This principle is equally useful in Rn and Zn.

Serra’s second priciple is “compatibility under change of scale.” For a mapping this
means that it commutes with homotheties (or dilatations), i.e., mappings of the form
x 7→ λx. So f(λA) = λf(A) for (say) positive λ. This is not problematic if we are in
Rn, but it certainly is if we are in Zn. This principle will therefore need to be suitably
interpreted in Zn.

The third principle is that of “local knowledge.” This principle says that in order
to know some bounded part of f(A), we shall not need to know all of A, only some
bounded part of A. Mathematically speaking: for every bounded set Y , there exists
a bounded set Z such that f(A ∩ Z) ∩ Y = f(A) ∩ Y . To know the result f(A) in
an arbitrary bounded set Y , we need not know all of A; it is enough to know how A
looks in some bounded set Z. The principle of local knowledge shall therefore not be
understood in the topological sense: the key notion is boundedness.

Serra’s fourth principle of quantification is that of “semicontinuity.” It means that
if a decreasing sequence (Aj) of closed sets tends to a limit A, thus A =

⋂
Aj, then

f(Aj) tends to f(A). We shall later express this as a semicontinuity.... To do so we

1In case you think that this conclusion depends on the universe having a rather low density, please
calculate the mass of a fictitious universe with a radius of 14× 109 light years ≈ 1.3× 1026 m and the
density of a neutron star, say 1017 kg/m3. The conclusion is the same.
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must of course define a topology.

2. Morphological operations on sets and functions

2.1. Infimal convolution

Let G be a semigroup, with the operation written as juxtaposition. This means that
for any two elements x, y ∈ G there is defined a product in G, written xy; the product
must be associative, i.e., x(yz) = (xy)z for all x, y, z ∈ G. That’s all. We do not
assume that there is a neutral element; we do not assume that there are inverses; we
do not assume commutativity. With this meager structure we may nevertheless define
the product of two subsets A and B as

(2.1) AB = {xy;x ∈ A, y ∈ B}.

If G happens to be commutative, it is customary to write the semigroup operation
as addition, and we then speak of Minkowski addition of two subsets;

(2.2) A+B = {x+ y;x ∈ A, y ∈ B}

is called the Minkowski sum of A and B. However, for a while let us not assume
commutativity.

In this way the family P(G) of all subsets of G becomes a semigroup. The empty
set is a zero of this semigrioup: AØ = ØA = Ø for all A ∈ P(G). If G happens to
have a neutral element 1, then {1} is a neutral element of P(G): {1}A = A{1} = A
for all A ∈ P(X). In the commutative case we write A+ Ø = Ø and A+ {0} = A.

The product AB of two subsets can be put into the wider framework of infimal
convolution. Given two functions f, g : G → [−∞,+∞] defined on the semigroup and
with values in the extended real line [−∞,+∞] = R ∪ {−∞,+∞}, we define a new
function h = f ut g, called the infimal convolution of f and g, as

(2.3) (f ut g)(z) = h(z) = inf
x,y∈G

(
f(x)+· g(y);xy = z

)
, z ∈ G.

The infimum is taken over all elements x, y ∈ G such that their product is z, the
argument of h. If there are no such elements, the infimum is plus infinity; that element
is by definition the infimum over the empty set. There is a complication if f takes the
value +∞ at x and g takes the value −∞ at y. We resolve this conflict by declaring
that +∞ shall win. So s+· t is the usual sum if s and t are real numbers; if only one
is infinite or both are infinite of the same sign, the sum takes that value; if s and t are
infinite of opposite signs, we define the sum to be +∞. In this way, this operation,
called upper addition, becomes an upper semicontinuous mapping from [−∞,+∞]2 into
[−∞,+∞]. It is easy to check that it is associative. Similarly we define lower addition,
s+· t = −((−s)+· (−t)); here minus infinity wins. In my experience, using upper and
lower addition is the most convenient method to calculate with the two infinities. This
will be apparent, I hope, when we want to show that infimal convolution is associative.

For surveys of the properties of infimal convolution we refer to Moreau (1970),
Rockafellar (1970), or Strömberg (1996).
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The points where f or g takes the value +∞ play no role in the formation of
the infimum: the definition of upper addition guarantees this. Removing these points
therefore yields an equivalent definition:

(2.4) (f ut g)(z) = inf
x,y∈G

(f(x) + g(y);xy = z, f(x) < +∞, g(y) < +∞) , z ∈ G.

The effective domain, written dom f , of a function f : X → [−∞,+∞] defined on
an arbitrary set X is the set where it is strictly less than plus infinity:

(2.5) dom f = {x ∈ X; f(x) < +∞}.

With this notation we can write (2.4) as

(2.6) (f ut g)(z) = inf
x∈dom f
y∈dom g

xy=z

(f(x) + g(y)) , z ∈ G.

Here there is no doubt about the meaning of the sum; the disadvantage with this
approach is that we have to remember, each time we take an infimum, over which set
the variables range.

Intuitively, plus infinity corresponds to vacuum and −∞ to an infinitely dense
neutron star. This may appear to be upside down. However, we should think of the
density as e−f(x), and then of course e−(+∞) = 0. Infimal convolution is related to a
kind of supremal convolution of the functions e−f , e−g, viz.

sup
y

[
e−f(y)e−g(x−y)

]
= e−(f ut g)(x).

The supremum is often comparable to integration in Rn, which means that we some-
times have a remarkably good approximation

e(f ut g)(x) = sup
y∈Rn

[
e−f(y)e−g(x−y)

]
≈
∫

Rn

e−f(y)e−g(x−y)dy =
(
e−f ∗ e−g

)
(x), x ∈ Rn,

where the asterisk denotes usual convolution.

Proposition 2.1. Infimal convolution is associative: (f1 ut f2) ut f3 = f1 ut (f2 ut f3).

Proof. We start calculating:

(
(f1 ut f2) ut f3

)
(z) = inf

y,x3
yx3=z

([
inf

x1,x2
x1x2=y

(
f1(x1)+· f2(x2)

)]
+· f3(x3)

)
.

According to the following lemma this expression is equal to

inf
y,x3

yx3=z

inf
x1,x2

x1x2=y

([
f1(x1)+· f2(x2)

]
+· f3(x3)

)
= inf

x1,x2,x3
x1x2x3=z

(
f1(x1)+· f2(x2)+· f3(x3)

)
.

A similar calculation shows that the last expression is also equal to (f1 ut (f2 ut f3))(z).
This proves associativity.

At a point in the proof we needed the following result.
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Lemma 2.2. For any element c ∈ [−∞,+∞] and any function f : X → [−∞,+∞]
defined on an arbitrary set X we have

inf
x∈X

(c+· f(x)) = c+· inf
x∈X

f(x).

Proof. We just need to check all possibilities where our intuition is less reliable than
usual, i.e., c = ±∞ or X empty.

Note that there are no exceptions to this formula. As a nasty little exercise, try
to find the exact conditions under which the equality supx(c+

· f(x)) = c+· supx f(x)
holds.

If G is a group, we know that xy = z if and only if x = zy−1, which in turn is
equivalent to y = x−1z, so the definition of f ut g can be written

(f ut g)(z) = inf
x∈G

(
f(x)+· g(x−1z)

)
= inf

y∈G

(
f(zy−1)+· g(y)

)
, z ∈ G.

In the case of an abelian group this formula reads

(f ut g)(z) = inf
x∈G

(
f(x)+· g(z − x)

)
= inf

y∈G

(
f(z − y)+· g(y)

)
, z ∈ G.

Now why is infimal convolution more general that the product of sets or Minkowski
addition? This is because of the formula

(2.7) dom(f ut g) = dom f + dom g,

which is easily proved. A special case of this formula is obtained when we consider
indicator functions.

To any subset A of a set X we define its indicator function iA, which is simply
defined as iA(x) = 0 when x ∈ A and iA(x) = +∞ when x /∈ A. It is clear that
dom iA = A. We then have iA ut iB = iAB for all subsets A,B of a semigroup G, or, in
the commutative case, iA ut iB = iA+B. Hence the Minkowski sum may be defined in
terms of infimal convolution as A+B = dom(iA ut iB).

If G has a neutral element 1, then i{1} is a neutral element for infimal convolution.
More generally, if f(x) = 0 when x ∈ A and f(x) > 1 otherwise and similarly with g
and B, then (f ut g)(z) = 0 when z ∈ AB and (f ut g)(z) > 1 when z /∈ AB.

Thus multiplication of sets and Minkowski addition can be expressed in terms of
infimal convolution. But we can go also in the other direction and express any infimal
convolution as a product of sets, at the expense of adding one more dimension. This
is done using the notion of strict epigraph.

Let us first define the epigraph of a function f : X → [−∞,+∞] defined on an
arbitrary set X as

(2.8) epi f = {(x, t) ∈ X ×R; f(x) 6 t},

and the strict epigraph using instead strict inequality:

(2.9) epis f = {(x, t) ∈ X ×R; f(x) < t}.
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IfX = G is a semigroup, then we make G×R into a semigroup by defining (x, s)(y, t) =
(xy, s+ t). It is not difficult to show that

epis(f ut g) = (epis f)(epis g).

This means that the function f ut g can be defined as the function whose strict epigraph
is the product (epis f)(epis g). With the additive notation we have of course

epis(f ut g) = epis f + epis g.

For the epigraph we always have

epi(f ut g) ⊃ epi f + epi g,

where the inclusion relation may be strict (find examples).

2.2. Dilations and erosions
Let us now consider the commutative case and look at the Minkowski sum of two sets
A and B:

(2.10) A+B =
⋃
y∈B

(A+ y) =
⋃
x∈A

(x+B).

Here A+y = A+{y} is a translate of A: all points in A are moved by a fixed vector y.
Thus the Minkowski sum is a union of translates of A, and equally a union of translates
of B. We can view the sum in either way. We move A around in a manner determined
by B or vice versa. Often A is some complicated set and B is a simple, small set, called
the structural element. Then we say that A + B is A dilated by B. Think of G = R2

or Z2 and with B equal to a ball. We fix B and apply the operation A 7→ A+ B to a
lot of sets A. We call this operation dilation by B.2 Note that A + Ø = Ø and that
A+ {0} = A. The mapping A 7→ A+B will be denoted by δB.3

We note that dilation by B commutes with translations:

Ty(A+B) = (A+B) + y = (A+ y) +B = (TyA) +B,

which we may write as Ty ◦ δB = δB ◦ Ty. It also commutes with the formation of
unions:

(2.11)
⋃
j∈J

(Aj +B) =

(⋃
j∈J

Aj

)
+B,

where (Aj)j∈J is a finite or infinite family of subsets of a semigroup G. Conversely,
any mapping f : P(G) → P(G) which commutes with translations and the formation
of infinite unions is dilation by f({0}).

2This seems to be the most common term today; Matheron (1975:17) calls it dilatation, a term
which is often reserved for mappings x 7→ λx.

3Sometimes A + B is written A⊕B; see Matheron (1975:16), Serra (1982, 2001) and Gonzalez &
Woods (1993); note however that the sign ⊕ is used in other contexts for the direct sum. There is no
risk of misunderstanding A + B.
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If B is finite, as is often the case in Zn, only finitely many checks are needed to
decide whether a point x belongs to A + B: we check whether x − b belongs to A for
some b ∈ B. Therefore dilation by a finite set satisfies Serra’s third principle (see the
introduction, section 1.2).

To any given subset A of an abelian group G we define its opposite set as Ǎ =
{−x;x ∈ A}. Then we can also define Minkowski subtraction by the formula

A−B = A+ B̌ = {x− y;x ∈ A, y ∈ B}.

Note that B̌ = {0} −B = 0−B; we may also write it as −B. We should not mix this
up with the set-theoretical minus:

ArB = A ∩ {B = A ∩Bc = {x ∈ A;x /∈ B},

where we have written the complement of B in two different ways: {B = Bc; both are
quite usual. We now introduce another minus sign, written 	:

(2.12) A	B = {
(
{A+B

)
= (Ac +B)c;

it is called the erosion of A by B. Note that A	 Ø = G and that A	 {0} = A. The
mapping A 7→ A	B will be denoted by εB.

To illustrate the difference in meaning between these three minus signs, note that
ArA = Ø for all sets A; that A−A 6= Ø if A is a nonempty subset of an abelian group;
and that, finally, A 	 Ǎ is a subsemigroup if A is a subset of an abelian group G, cf.
Lemma 2.3 below; if A is a bounded subset of Rn or Zn for example, then A	Ǎ = {0}.

Erosion is dual to dilation in a natural sense. Indeed, A	B = {({A+B) = fd(A),
where we define a mapping fd for every mapping f by fd(A) = {f({A) = f(Ac)c; in
this case f(A) = A+B for a fixed B. Thus εB = (δB)d = { ◦ δB ◦ {. We shall say that
fd is the mapping dual to f .

We may also express an erosion as an intersection of translates of A. More precisely
we have the following result.

Lemma 2.3. For all subsets A and B of an abelian group G we have

(2.13) A	B = {({A+B) =
⋂
y∈B

(A+ y) = {x ∈ G;x+ B̌ ⊂ A}.

Proof. Here the first equality is the definition of erosion. Let us call the third set Y .
Then its complement is

{Y = {
⋂
y∈B

(A+ y) =
⋃
y∈B

{(A+ y) =
⋃
y∈B

({A+ y) = {A+B = {(A	B),

so that Y = A	B. Here we have used that translations commute with the operation
of taking the complement: {(A+ y) = {A+ y.

Now x ∈ Y means that x ∈ A + y for all y ∈ B, which is equivalent to the
statement that x − y ∈ (A + y) − y = A for all y ∈ B. This, in turn, is equivalent to
x−B = x+ B̌ ⊂ A, i.e., that x belongs to the last set in the statement of the lemma.
Thus we have now proved the whole chain of equalities.
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Using the duality of erosion and dilation it is easy to prove that erosion by B
commutes with translations:

Ty(A	B) = (TyA) +B,

succintly, Ty ◦ εB = εB ◦ Ty. It also commutes with the formation of intersections:

(2.14)
⋂
j∈J

(Aj 	B) =

(⋂
j∈J

Aj

)
	B.

Conversely, any mapping g : P(G)→ P(G) which commutes with translations and the
formation of infinite intersections is erosion by {g

(
{{0}

)
.

2.3. Exercises

2.1. Dilate and erode A by B when
(a) A is a disk in R2, B a pair of points. (Here the word disk shall be understood with regard
to one of the norms ‖ · ‖p, p = 1, 2,∞.)
(b) A is an open disk in R2 of radius R, B a closed disk of radius r.
(c) B is a translate of A.
(d) B is a translate of Ǎ.

2.2. (a) Prove that A + B ⊂ C if and only if A ⊂ C	 B̌, where A,B, C are arbitrary subsets
of an abelian group.
(b) Show by examples that it is not true that A 	 B ⊂ C if and only if A ⊂ C + B̌. Is one
of the implications true?
(c) Give examples to show that we do not have an equivalence A + B = C if and only if
A = C 	 B̌. However, the equivalence holds for certain families of sets...

2.3. Prove that, in an abelian group, erosion by B satisfies εB(A) ⊂ A for all sets A if and
only if 0 ∈ B.

2.4. Calculate in R2 the Minkowski sum of two arbitrary segments [a, b] =
{(1− t)a + tb; 0 6 t 6 1} and [c, d], where a, b, c, d are four arbitrary points in R2.

2.5. Calculate in R2 the sum of three arbitrary segments.

2.6. Calculate in R3 the sum of three orthogonal segments.

2.7. Calculate in R3 the Minkowski sum of four segments, three of which are in one plane
while the other is not.

2.8. (a) Calculate in R3 the sum of the four segments [(0, 0, 0), (1, 0, 0)],
[(0, 0, 0), (0, 1, 0)], [(0, 0, 0), (0, 0, 1)], and [(0, 0, 0), (1, 1, 1)]. The result is a polyhedron. How
many vertices, edges, and faces does it have?
(b) Calculate in R3 the sum of the four unit normals to a regular tetrahedron.

2.9. (a) Calculate in R3 the Minkowski sum of the six segments [(0, 0, 0), (1, 0, 0)],
[(0, 0, 0), (0, 1, 0)], [(0, 0, 0), (0, 0, 1)], [(0, 0, 0), (0, 1, 1)], [(0, 0, 0), (1, 0, 1)], and
[(0, 0, 0), (1, 1, 0)]. How many vertices, edges, and faces are there?
(b) Describe the Minkowski sum of the six edges of a regular tetrahedron in R3.

2.10. Prove that a triangle cannot be the Minkowski sum of a finite number of segments.

2.11. A heptagon in R2 can never be the sum of a finite number of segments.
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2.12. A tetrahedron cannot be the sum of a finite number of segments.

2.13. The vector sum of two triangles in R2 is a polygon. How many sides can it have? How
many sides can the sum of a triangle and a square have?

2.14. Give an example of a quadrilateral in R2 that is not the sum of two segments.

3. Ordered sets: first notions
Let us define first the notion of preorder, which is even more fundamental than that
of order. A preorder in a given set X is a relation (a subset of X2) which satisfies two
conditions: it is reflexive and transitive. This means, if we denote the relation by 6,
that for all x, y, z ∈ X,

(3.1) x 6 x,

and

(3.2) x 6 y and y 6 z implies x 6 z.

If, in addition, the relation is antisymmetric, i.e., satisfies

(3.3) x 6 y and y 6 x implies x = y,

it is said to be an order. (Sometimes one says partial order.)
A preordered set is a set together with a preorder; an ordered set a set together

with an order.
Suppose we have two preorders defined in a set X; denote them by 6 and 4. The

preorder 6 is said to be finer than the preorder 4, and 4 is said to be coarser than
6, if x 6 y implies x 4 y for all x, y.

There is a finest preorder in a set, viz. when we define x 6 y to mean that x = y.
This preorder is of course an order; let us call it the discrete order. There is also a
coursest preorder in any set X, when we declare that x 6 y for all x, y ∈ X. Let us
call this the chaotic preorder.

Given any preorder we define [a,→[ as the set of all x such that a 6 x and ]←, a]
as the set of all x such that x 6 a. The sets [a,→[ and ]←, a] determine a for all a ∈ X
if and only if 6 is an order.

Given a preorder 6 in X, we can introduce an equivalence relation ' in X (a
reflexive, symmetric and transitive relation) by defining x ' y to mean that x 6 y and
y 6 x. If 6 is an order, then ' is just equality. We can form the quotient space X/'
of all equivalence classes of X modulo '. The equivalent classes are just

[a,→[ ∩ ]←, a] = {x ∈ X; a 6 x 6 a}, a ∈ X.

In this quotient space, 6 induces an order.
If two preordered sets X, Y are given, we may consider mappings f : X → Y , and

of these the increasing (order preserving, isotone4) mappings are of interest; these are
the mappings which satisfy

(3.4) for all x, x′ ∈ X, x 6X x′ implies f(x) 6Y f(x′).

4Birkhoff 1948:49
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We shall write Incr(X, Y ) for the set of all increasing mappings X → Y . When X = Y
we shall sometimes write X ′ for Incr(X,X). We may think of Incr(X, Y ) as an analogue
of the linear mappings from a vector space into another.

A preorder 6 is finer than another preorder 4 if and only if the identity (X,6)→
(X,4) is increasing.

Note that if X has the discrete order, where x 6 y means x = y, then Incr(X, Y )
consists of all mappings X → Y ; Incr(X, Y ) = Y X . The conclusion is the same if Y
is equipped with the chaotic preorder. If on the other hand Y has the discrete order,
then Incr(X, Y ) consists of those mappings X → Y that are constant on any chain of
comparable elements, thus f(xj) is constant if x1 6 x2 > x3 6 · · · 6 x2n. Let us say
that a preordered set X is connected if, given any elements a, b ∈ X, there exists a
finite chain of elements x1 6 x2 > x3 6 · · · 6 x2n passing through a and b. Then any
mapping f ∈ Incr(X,Y ) is constant if X is connected and Y has the discrete order.
The same conlusion holds if X has the chaotic preorder and Y is ordered.

Another interesting property is obtained when we turn around the implication sign
in (3.4). Let us agree to call a mapping f : X → Y coincreasing if it satisfies

(3.5) for all x, x′ ∈ X, f(x) 6Y f(x′) implies x 6X x′.

Increasing does not imply coincreasing; coincreasing does not imply increasing; cf.
exercise 2.1. If X is ordered, then a mapping is coincreasing if and only if it is injective
and the mapping f(x) 7→ x is increasing.

A basic example of an ordered set is the set P(W ) of all subsets of a set W , with the
order relation given by inclusion, thus A 6 B being defined as A ⊂ B for A,B ∈ P(W ).

Definition 3.1. A closure operator 5 (or closing6) in an ordered set X is a mapping
X 3 x 7→ x ∈ X which is extensive7 (or expanding), increasing, and idempotent; in
other words, which satisfies the following three conditions for all x, y ∈ X:

(3.6) x 6 x;

(3.7) x 6 y implies x 6 y;

(3.8) x = x.

When checking (3.8) it is of course enough to prove that x 6 x if we have already
proved (3.6).

The element x is said to be the closure of x. Elements x such that x = x are called
closed (for this operator). An element is closed if and only if it is the closure of some
element (and then it is the closure of itself).

5Ore (1944:494) and Birkhoff (1948:49) used the term closure operation; the latter attributed the
concept to Moore (1910:53–80). However, although Moore wrote about closure and closure properties,
he did not give a clearcut definition. Everett (1944) used closure operator. Dubreil & Dubreil-Jacotin
(1964:9, 177) calls the operator fermeture de Moore.

6This term seems to have been introduced by Matheron (1975:18). In Matheron (1967:18) he used
the French term fermeture for the notion.

7Birkhoff (1948:49).
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Sometimes we shall consider operators that are defined only on a subset of X.
Let f : Y → X be a mapping, where Y ⊂ X. Then it is not obvious what idempo-

tency shall mean, for f(f(y)) need not be defined. We solve this problem by a modified
definition; see Kiselman (1969:336).8

Definition 3.2. We shall say that f : Y → X, where Y is a subset of an ordered set
X, is a closure operator if it satisfies the following two conditions for all x, y ∈ Y :

(3.9) x 6 f(x);

(3.10) x 6 f(y) implies f(x) 6 f(y).

It follows from this that f is increasing, and that f(f(x)) = x for every y ∈ Y such that
f(y) happens to belong to Y . It is also clear that if Y = X, then the new definition
agrees with Definition 3.1. Any closure operator f in the sense of Definition 3.2 can be
extended to an idempotent operator f1 : Z → X by taking Z = Y ∪ imf and defining
f1(x) = x when x ∈ Z r Y .

A basic example of a closure operator is the topological closure operator which
associates to a set in a topological space its topological closure, i.e., the smallest closed
set containing the given set. In fact a closure operator in P(W ) defines a topology in
W if and only if it satisfies, in addition to (3.6), (3.7), (3.8) above, two extra conditions,
viz. that Ø = Ø and

A ∪B = A ∪B for all A,B ⊂ W.

Another closure operator of great importance is the operator which associates to a
set A in Rn its convex hull, the smallest convex set containing the given set, denoted
by cvxA. The composition A 7→ cvxA is a closure operator, whereas the composition
in the other order, A 7→ cvx

(
A
)

is not idempotent (find examples). We see that the
composition of two closure operators is sometimes, but not always, a closure operator.

In both these examples X is the power set of some set W , and the closure operator
is given as an intersection:

A =
⋂

(Y ;Y is closed and Y ⊃ A).

More generally, if a closure operator x 7→ x is given and we denote by F the set of its
closed elements, then

(3.11) x = inf(y ∈ F ; y > x).

Conversely, any subset F of X such that the infimum9 of a subset of F always exists
defines a closure operator by formula (3.11).

Dual to the notion of closure operator is the notion of opening.

Definition 3.3. A mapping X 3 x 7→ x◦ ∈ X is said to be an opening10 if it is
antiextensive, increasing, and idempotent; in other words, if it satisfies the following

8Matheron (1975:186) required instead that f(y) belong to Y whenever y ∈ Y .
9For the definition of infimum in an ordered set, see Chapter 7

10This term seems to have been introduced by Matheron (1975:18). In his earlier book (1967:18)
he used the French term ouverture. Tucker (1936:94) used the term aperture for the dual of closure.
However, I do not know how to name the operator x 7→ x◦ using this word.
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three conditions for all x, y ∈ X:

(3.12) x◦ 6 x;

(3.13) x 6 y implies x◦ 6 y◦;

(3.14) (x◦)◦ = x◦.

Definition 3.4. Let g : Y → X be a mapping of a subset Y into X. We shall say that
g is an opening if it satisfies the following two conditions for all x, y ∈ Y :

(3.15) g(x) 6 x;

(3.16) g(x) 6 y implies g(x) 6 g(y).

4. Closure operators on subsets of an abelian group

4.1. Combining erosions and dilations
We have defined in section 2 dilations and erosions. We shall now combine them.

It is clear that (A+B)+C = A+(B+C), so the composition of two dilations is a
dilation: δC◦δB = δB+C . Similarly, (A	B)	C = A	(B+C), so the composition of two
erosions is an erosion: εC ◦ εB = εB+C . But what about the composition of a dilation
and an erosion? Let us consider f = εC ◦ δB̌, defined by f(A) = (A − B) 	 C, where
B and C are fixed subsets of an abelian group. This operation is always increasing,
and it is extensive if and only if C ⊂ B, which in turn is equivalent to f({0}) ⊃ {0}.
We shall now study this operator when C = B and see that it is idempotent then (cf.
Exercise 4.4). We shall also see that, in typical cases, it is neither a dilation nor an
erosion.

Given two subsets A and B of an abelian group G we define

(4.1) AB = (A+B̌)	B = (A−B)	B = {
(
{ (A−B) +B

)
= {x ∈ G;x−B ⊂ A−B}.

This means that we perform on A first a dilation by B̌, then an erosion by B:

(4.2) AB = εB(δB̌(A)) = (εB ◦ δB̌)(A).

(In many applications, B is symmetric, so that B̌ = B.) We shall see that this is a
closure operator in the sense of section 3. So we call AB the B-closure of A, and a set
A is called B-closed if AB = A.11

Analogously we define

(4.3) AB = (A	 B̌) +B = {
(
{A−B

)
+B =

⋃
x∈G

(x+B;x+B ⊂ A)

11Matheron (1975) and Serra (1982, 2001) use the notation AB ; Gonzalez & Woods (1993:524) write
A •B.
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by performing first an erosion by B̌ and then a dilation by B:

(4.4) AB = δB(εB̌(A)) = (δB ◦ εB̌)(A).

We call AB the B-opening of A, and a set A is called B-open if AB = A.12

Since εB is the mapping dual to δB, i.e., εB = (δB)d = { ◦ δB ◦ {, we have

δB ◦ εB̌ = δB ◦ { ◦ δB̌ ◦ { = { ◦ εB ◦ δB̌ ◦ {,

which implies that { (AB) =
(
{A
)B

and shows that a set is B-open if and only if its
complement is B-closed.

Theorem 4.1. For any subset B of an abelian group G, the mapping P(G) 3 A 7→
AB ∈ P(G) is a closure operator, and the mapping A 7→ AB is an opening.

The theorem will follow on combining Propositions 4.2 and 4.4 below.

Proposition 4.2. For any subset B of an abelian group G, the mappings A 7→ AB

and A 7→ AB are increasing; the first is extensive and the second is antiextensive.

Proof. It is obvious that the mappings are increasing. The last formula in (4.3) shows
that AB is contained in A. That A ⊂ AB follows by duality.

Proposition 4.3. For any subsets A,B of an abelian group G, A+ B is A-open and
B-open, and A	B is {A-closed and B-closed.

Proof. We always have (A + B)B ⊂ A + B (Proposition 4.2). On the other hand,
(A + B)B = ((A + B) 	 B̌) + B = AB̌ + B ⊃ A + B by the same proposition, so we
have equality: (A+B)B = A+B, meaning that A+B is B-open. By symmetry it is
also A-open.

Passing to complements, we deduce that {(A + B) is A-closed and B-closed. But
{(A+B) = {A	B, so the set {A	B is A-closed and B-closed. We now just replace
A by {A to get the second statement of the proposition.

Proposition 4.4. For any subsets B of an abelian group G, the mappings A 7→ AB

and A 7→ AB are idempotent.

Proof. By Proposition 4.3, AB = (A−B)	B is B-closed, which means that (AB)B =
AB. The statement about AB follows by duality.

For any fixed B, the family of all sets A	 B is equal to the family of all B-closed
sets. This is the same as the family of all sets AB. Suppose we put on spectacles
blocking out everything except the B-closed sets. The whole world becomes B-closed:
our B-spectacles do not permit us to see anything else. Then we can only see sets of the
form A 	 B. However, AB is also B-closed and usually a much better approximation
of A than A	B.

12Matheron (1975) and Serra (1982, 2001) use the notation AB , Gonzalez & Woods (1993:524) use
A ◦B. Note, however, that ◦ is already used to denote an operation in mathematics, viz. composition
of functions or relations.



16 4. Closure operators on subsets of an abelian group

4.2. Characterizing closure operators which commute with translations

In an abelian group the mappings that commute with translations are of special sig-
nificance. We can characterize closure operators which commute with translations in
terms of Minkowski addition as follows.

Theorem 4.5. Let G be an abelian group and A a subfamily of P(G) such that A
contains all singleton sets {x}, x ∈ G, and such that A+B ∈ A for all A,B ∈ A. Let
f : A → P(G) be a closure operator in the sense of Definition 3.2. Then the following
conditions are equivalent.
(A) f commutes with all translations;
(B) f(A+ x) ⊃ f(A) + x for all A ∈ A and all x ∈ G;
(C) f(A+B) ⊃ f(A) +B for all A,B ∈ A (thus f ◦ δB ⊃ δB ◦ f for all B ∈ A);
(D) f(A+B) ⊃ f(A) + f(B) for all A,B ∈ A.

Proof. That (A) and (B) are equivalent is easily proved.
Assume that (B) holds. Then f(A+B) ⊃ f(A+ y) ⊃ f(A) + y for all y ∈ B. Now

(C) follows on taking the union over all y.
If (C) holds we know that f(A + B) ⊃ A + f(B), which implies that f(A + B) ⊃

f(A+ f(B)) by (3.8). Applying (C) a second time we see that the latter set contains
f(A) + f(B); hence (D) holds.

Finally, if (D) holds, then f(A+ x) ⊃ f(A) + g({x}) ⊃ f(A) + x. Thus (B) holds.

In the case of a vector space and a mapping which commutes with homotheties,
thus f(λA) = λf(A) for nonnegative λ, it follows from (D) that f(λA+µB) ⊃ λf(A)+
µf(B) for all λ, µ > 0, which is a property analogous to concavity.13

4.3. Matheron’s structure theorems

We are now acquainted with dilations, erosions, closings, and openings. They are
examples of morphological mappings, but we have so far no idea how general they are.
Are they just some special mappings that we have come across? There are obviously
many more mappings P(G) → P(G). It is reasonable to limit our consideration to
increasing mappings which commute with all translations. How special are the dilations
and erosions etc. we have studied so far in the family of these more general mappings?

Georges Matheron found a structural theorem which describes the structure of
increasing mappings in Rn which commute with translations in terms of dilations and
erosions. Actually the result holds in every abelian group.

For any mapping f : P(G)→ P(G) of the family of all subsets of an abelian group
G into itself we define its kernel as ker f = {A ∈ P(G); 0 ∈ f(A)}. The notion is due to
Matheron (1975:217). A mapping which commutes with all translations is completely
determined by its kernel.

We mention some examples of kernels.
1. The kernel of the identity Id: P(G)→ P(G) is ker Id = {A ∈ P(G); 0 ∈ A}.
2. The kernel of a translation Tb, Tb(A) = A+ b, is kerTb = {A; b ∈ Ǎ}.
3. A dilation δB̌ : A 7→ A+ B̌ has kernel ker(δB̌) = {A;A ∩B 6= Ø}.
4. The kernel of an erosion εB̌ : A 7→ A	 B̌ is ker(εB̌) = {A;A ⊃ B}.

13This property was introduced and used to study closure operators appearing in the theory of
partial differential equations in Kiselman (1969); however, I did not know at the time that it is
implied by (A).
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5. The kernel of a closure operator f = εB ◦ δB̌ is ker f =
⋂

y∈B ker(δB−y).
6. An opening g = δB ◦ εB̌ : A 7→ AB has kernel ker g =

⋃
y∈B ker(εB−y).

Matheron’s first structural theorem (below) shows that very general mappings can
be expressed in terms of the dilations and erosions we have already studied. It is
important because it underlines the fact that the mappings we already know are the
building blocks of a much more general class of mappings.

Theorem 4.6 (Matheron (1975: Proposition 8-1-3)). Let G be an abelian group and
f : P(G) → P(G) an increasing mapping which commutes with translations. Then f
is a union of erosions as well as an intersection of dilations:

(4.5) f(A) =
⋃

B∈ker f

(A	 B̌) =
⋂

B∈ker fd

(A−B), A ∈ P(G),

where fd(A) = {f
(
{A
)

is the mapping dual to f .

Proof. If B ∈ ker f , then 0 ∈ f(B) and, since f commutes with all translations,
x ∈ f(x + B) for all x ∈ G. Therefore, given any subset A of G, x ∈ A 	 B̌ implies
that x + B ⊂ A and x ∈ f(x + B) ⊂ f(A) (f is increasing). Since x is arbitrary in
A	 B̌, we have proved that A	 B̌ ⊂ f(A) for all A and all B ∈ ker f . Letting B vary
in ker f we see that the union of all the A	 B̌ is contained in f(A).

To prove the inclusion in the other direction, take an arbitrary element x of f(A).
Then 0 ∈ f(A− x), i.e., A− x ∈ ker f . If we now define B as A− x, then x ∈ A	 B̌.
This means that there exists a B ∈ ker f such that x ∈ A 	 B̌, and we have proved
that f(A) is contained in the union of all the A	 B̌.

The second representation follows on applying the first to fd.

Let X be an arbitrary set and A a subset of P(X). For any mapping f : A → P(X)
we then define

(4.6) f�(B) =
⋃

A∈A
A⊂B

f(A) and f �(B) =
⋂

A∈A
A⊃B

f(A).

Lemma 4.7. The mappings f� and f � are dual to each other in the sense that (f�)
d =

(fd)� and (f �)d = (fd)�. If f : A → P(X) is an increasing mapping, then f� is the
smallest increasing extension of f to all of P(X), and f � is the largest increasing
extension of f to all of P(X).

Proof. To prove the duality result is straightforward. If f is increasing, it follows that
f� is actually an extension of f , i.e., that f�

∣∣
A = f . If g is an arbitrary increasing

extension, we see that we must have g(B) ⊃ f�(B) for all B, proving that f� is the
smallest increasing extension. The result for f � follows by duality.

Proposition 4.8. Let X be any set, A a subset of P(X), and let g : A → P(X) be an
opening in the sense of Definition 3.4. Assume that g(A) ∈ A for every A ∈ A. Then
g� : P(X)→ P(X) is an opening.

Proof. That g� is increasing and antiextensive is obvious. It remains to be proved
that g� is idempotent. We know that g� is an extension of g, which implies that
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g�(g(A)) = g(g(A)) = g(A) for all A ∈ A, since by hypothesis g(A) ∈ A. Hence
g�(g�(B)) ⊃ g�(g(A)) = g(A) if A ∈ A and A ⊂ B. On taking the union over all
A ∈ A contained in B we get

g�(g�(B)) ⊃
⋃

A∈A
A⊂B

g(A) = g�(B) ⊃ g�(g�(B)),

showing that g� is idempotent.

Remark. The hypothesis that g maps A into itself cannot be dispensed with. Indeed,
take X = [0,+∞[, Aj = [0, j] for j = 0, 1, 2, 3, and define g(Aj) = Aj−1 = [0, j − 1],
j = 1, 3, andA = {A1, A3}. Then g : A → P(X) is an opening in the sense of Definition
3.4; in particular (3.14) holds: g(Aj) ⊂ Ak implies g(Aj) ⊂ g(Ak) for j, k = 1, 3. But
g� is not idempotent: A0 = g�(g�(A3)) 6= g�(A3) = A2.

For any mapping f : A → P(G) we shall say that a set A is f -invariant if f(A) = A,
and we shall denote by Invf = {A ∈ A; f(A) = A} the set of all f -invariant sets. If f
is a closing, this is the set of all f -closed elements; if f is an opening, it is the set of
all f -open elements.

Proposition 4.9. If g : A → P(X) is an opening, then Invg is closed under the
formation of unions (in particular Ø ∈ Invg), and g =

(
IdInvg

)
�

∣∣
A, i.e., g is the smallest

increasing extension to A of the identity on Invg. Conversely, let a class C ⊂ P(X)
be given. Then (IdC)�, the smallest increasing extension of the identity on C, is an
opening h, and Invh is the class closed under the formation of unions generated by C.

Proof. If Aj ∈ A, j ∈ J , are g-invariant, then g(
⋃
Aj) ⊃ g(Ak) for all k, so g(

⋃
Aj) ⊃⋃

g(Ak) =
⋃
Ak. Since on the other hand we always have g(

⋃
Aj) ⊂

⋃
Aj, it follows

that
⋃
Aj ∈ Invg. (We have actually only used (3.12) and (3.13) here.)

That g is the smallest increasing extension of the identity on Invg follows from(
IdInvg

)
� (B) =

⋃
A∈A
A⊂B

A = B if B ∈ A.

Since the inclusion mapping C → P(X) is an opening, it follows from Proposition
4.7 that (IdC)� is an opening. To prove the last assertion in the statement of the
proposition, we note that by the definition of (IdC)�, h(B) = B implies that B =
h(B) =

⋃
(A;A ∈ C, A ⊂ B), which means that B belongs to the set closed under

union formation generated by C.
In case X = G is an abelian group, let us say that a subset B of Invg is a basis for

Invg if Invg is the class closed under formation of unions and translations generated by
B. This means that Invg is the family of all sets of the form

⋃
(B,x)∈M(B + x) for some

subset M of B ×G.

Matheron also proved a second structure theorem, which characterizes general (al-
gebraic) closings and openings in terms of the elementary operations A 7→ AB, AB, the
closings and openings by a given subset B. His result, which shows that the latter are
not so special as one could imagine, is as follows.
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Theorem 4.10 (Matheron (1975: Proposition 7-1-3]). Let G be an abelian group and
g : P(G)→ P(G) a mapping which commutes with translations. Then g is an opening
if and only if it admits a representation

g(A) =
⋃
B∈B

AB

for some class B ⊂ P(G). If this is so, the class of sets invariant under g is the family
of all elements of B and all translates and unions of these. If g is an opening, the dual
mapping gd is a closing and has the representation

gd(A) =
⋂
B∈B

AB.

Proof. First assume that g is an opening. The smallest extension of the identity on
Invg is given by

(4.7) g(A) =
(
IdInvg

)
� (A) =

⋃
C∈Invg

C⊂A

C =
⋃
B∈B

⋃
x∈G

(B + x;B + x ⊂ A),

if B is a basis for Invg as defined before the statement of the theorem. Let us now note
that

AB = (A	 B̌) +B =
⋃
x∈G

(B + x;B + x ⊂ A).

Therefore the last expression in (4.7) is equal to
⋃

B∈B AB.
Conversely, if gj, j ∈ J , are openings, so is g defined by g(A) =

⋃
gj(A). Indeed, g

is certainly increasing and antiextensive, and idempotency follows from

g(g(A)) =
⋃
j

gj

(⋃
k

gk(A)

)
⊃
⋃
j

gj(gj(A)) =
⋃
j

gj(A) = g(A).

4.4. Exercises

4.1. Define in an abelian group G a mapping g = δC ◦εB̌, thus g(A) = (A	B)+C, A ∈ P(G),
where B and C are fixed subsets of G. Prove that g is antiextensive if and only if C ⊂ B,
which in turn is equivalent to g(G r {0}) ⊂ G r {0}. Prove that if B and C are nonempty
bounded subsets of Zn or Rn with C ⊂ B, then g is idempotent only if B = C, thus only if
g(A) = AB. Hint: Calculate g(B) and g(g(B)).

4.2. Study the dual mapping f = εC ◦ δB̌.

5. Distance transforms

5.1. Definition and basic properties of distance transforms
Distance transformations of digital images are a useful tool in image analysis. The
distance transform of a set (or shape, or image) is a function on the image carrier.
Outside the set, the value of the distance transform at a certain pixel is defined to be
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the distance from that pixel to the set. Inside the set, it is often defined as the distance
to the complement, but we shall find it convenient to define it as minus the distance
to the complement, for reasons that will become clear soon.

The distances can be measured in different ways, e.g., by approximating the Eu-
clidean distance in the two-dimensional image, the Euclidean distance between two
pixels x = (x1, x2) and y = (y1, y2) being

‖x− y‖2 =
√

(x1 − y1)2 + (x2 − y2)2.

Other distances that have been used are the city-block distance or l1-distance

‖x− y‖1 = |x1 − y1|+ |x2 − y2|

and the chessboard distance or l∞-distance

‖x− y‖∞ = max(|x1 − y1|, |x2 − y2|).

Let X be any nonempty set. Let us agree to call a function d : X × X → R a
distance if d is positive definite:

(5.1) d(x, y) > 0 with equality precisely when x = y, x, y ∈ X,

and symmetric:

(5.2) d(x, y) = d(y, x) for all x, y ∈ X.

A distance will be called a metric if in addition it satisfies the triangle inequality:

(5.3) d(x, z) 6 d(x, y) + d(y, z) for all x, y, z ∈ X.

Every nonempty set can be equipped with a metric, viz. the discrete metric d0

defined as

(5.4) d0(x, x) = 0, d0(x, y) = 1 if x 6= y.

We shall use the word distance in a noncommital way, thus not implying that it is
a metric.

The set X will usually be the image plane Z2 consisting of all points in the plane
with integer coordinates (the pixels), or more generally the image space Zn. Whenever
X is an abelian group it is of particular interest to use translation-invariant distances,
i.e., those which satisfy

(5.5) d(x− a, y − a) = d(x, y) for all a, x, y ∈ X.

A metric space is simply a set provided with a metric. In any metric space we
define balls as follows: the closed ball of center c and radius r is the set of all points
x satisfying d(x, c) 6 r and will be denoted by B6(c, r); the open ball of center c and
radius r is the set of all points satisfying the strict inequality d(x, c) < r; it will be
denoted by B<(c, r). In the Euclidean case these notions are well known, but in general
we must be a bit careful: the closure of B<(c, r) with respect to the topology defined by
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d is not necessarily equal to B6(c, r), and the interior of B6(c, r) is not necessarily equal
to B<(c, r) (construct examples). Also note that if two balls B<(c1, r1) and B<(c2, r2)
with r1, r2 > 0 are disjoint, then we can only conclude that max(r1, r2) 6 d(c1, c2),
whereas in a normed space a stronger inequality, max(r1, r2) 6 r1 + r2 6 ‖c1 − c2‖,
holds.

Every metric defines a topology: a set is declared to be open if and only if it is
a union of open balls. However, we shall sometimes use another topology on X than
that defined by d.

We note that in any abelian group with a translation-invariant metric we have the
relations

B<(c1, r1) +B<(c2, r2) ⊂ B6(c1, r1) +B<(c2, r2) ⊂ B<(c3, r3);

B6(c1, r1) +B6(c2, r2) ⊂ B6(c3, r3),

where c1 + c2 = c3, r1 + r2 = r3. In a vector space, with d defined by d(x, y) = ‖x− y‖
using some norm ‖ · ‖, the inclusions here are actually equalities if r1, r2 > 0.

If a metric is defined we define the distance transform DTA of a subset A of X by

(5.6) DTA(x) =

 − inf
y/∈A

d(x, y) = − sup (r;B<(x, r) ⊂ A) , x ∈ A;

inf
y∈A

d(x, y) = sup
(
r;B<(x, r) ⊂ {A

)
, x ∈ X r A.

Thus when x does not belong to a set A, DTA(x) is what we naturally understand by
the distance from x to A, but we complement this idea by defining also the distance
transform inside A. It is then natural to take it negative there, so that A is approx-
imately the set where the transform is negative. It is also very convenient that, in a
normed space, the distance transform of a convex set is a convex function; see Corollary
5.8.

Note the symmetry: DTXrA = −DTA. The distance transformation A 7→ DTA is
decreasing in the sense that DTA(x) > DTB(x) for all x ∈ X if A ⊂ B.

In the two extreme cases A = Ø and A = X we have DTØ = +∞ and DTX = −∞.
In all other cases DTA is real-valued, DTA : X → R.

Every real-valued function can be written as the difference between two nonnegative
functions: f = f+ − f−, where f+ = max(f, 0) and f− = max(−f, 0). In particular,
DTA = (DTA)+ − (DTA)−. The function (DTA)− is sometimes called the quench
function of A.14

Proposition 5.1. If A is a subset of a metric space X other than Ø and X, then
(DTA)+ and (DTA)− are Lipschitz continuous with Lipschitz constant 1 with respect
to d:

(5.7) |(DTA)+(x)− (DTA)+(y)| 6 d(x, y), x, y ∈ X,

and similarly for (DTA)−. (In particular the restrictions DTA

∣∣
A

and DTA

∣∣
{A

are Lip-
schitz continuous with Lipschitz constant 1.) As a consequence, DTA is Lipschitz con-
tinuous with Lipschitz constant 2. If X is a vector space with distance d(x−y) = ‖x−y‖
defined by a norm, the Lipschitz constant is 1.

14Serra (1982:377), who attributes the term to L. Calabi. However, it seems not to be widely used.
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Let us say for brevity that a function is Lip-1 if it is Lipschitz continuous with
Lipschitz constant 1, i.e., when it satisfies (5.7).

Proof. The restriction to A of DTA is the supremum of a family of Lip-1 functions
x 7→ d(x, y); the restriction to {A is the infimum of such a family; it is well-known
that these operations preserve the Lipschitz constant. It follows that |(DTA)−(a) −
(DTA)−(b)| 6 d(a, b) if a, b ∈ A. If a, b /∈ A the function takes the value zero at both
points.

Now take a ∈ A and b ∈ X rA and define r = −DTA(a) > 0 and s = DTA(b) > 0.
Then the strict ball B<(a, r) is contained in A, and the strict ball B<(b, s) is contained
in {A, so that r, s 6 d(a, b). The two balls are disjoint. In general this only implies
that max(r, s) 6 d(a, b), but in a normed vector space case the stronger inequality
s+ r 6 d(a, b) follows, thus that 0 6 DTA(b)−DTA(a) = s+ r 6 d(a, b); proving that
the Lipschitz constant is 1 in this case.

Returning to the general case, we note that, when a ∈ A and b /∈ A, we have
0 = −(DTA)−(b) 6 DTA(a)− − DTA(b)− = r 6 d(a, b) and the Lipschitz continuity of
(DTA)− is established. Passing to the complement, we obtain the result for (DTA)+ =
(DTXrA)−.

The difference DTA = (DTA)+ − (DTA)− thus has Lipschitz constant at most 2.
There are easy examples which show that the constant cannot be improved.

If G is an abelian group with a translation-invariant metric, then the distance
transform of any subset A can be expressed as an infimal convolution in the complement
of A: DTA = iA ut f in GrA, where f(x) = d(x, 0) is the distance from x to the neutral
element 0 and iA is the indicator function of the set. Passing to the complement we
get of course DTA = −DT{A = −(i{A ut f) in A. We see that

(DTA)+ = max(DTA, 0) = iA ut f and (DTA)− = max(−DTA, 0) = i{A ut f,

and, taking the difference between the two,

DTA = (DTA)+ − (DTA)− = (iA ut f)− (i{A ut f).

Proposition 5.2. Let G be an abelian group with a translation-invariant metric d.
Then for any subsets A,B of G we have

(DTA+B)+ = (DTA)+ ut iB = iA ut (DTB)+ = (DTA)+ ut (DTB)+.

Proof. We know from the discussion preceding the proposition that (DTA)+ = iA ut f ,
where f(x) = d(x, 0) is the distance from x to the origin. Hence, using freely the asso-
ciativity and commutativity of infimal convolution as well as the functional equation
f ut f = f (cf. Lemma 5.14 below),

(DTA)+ ut (DTB)+ = (iA ut f) ut (iB ut f) = (iA ut iB) ut f = (DTA+B)+.

Also

(DTA)+ ut iB = (iA ut f) ut iB = (iA ut iB) ut f = (DTA+B)+.
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5.2. Distance transforms and sublevel sets

The sublevel sets of a function f : X → [−∞,+∞] are the sets of the form

{x ∈ X; f(x) < s} or {x ∈ X; f(x) 6 s}

for some element s of [−∞,+∞]. For brevity we shall denote them by {f < s} rather
than {x ∈ X; f(x) < s} when no misunderstanding seems possible.

Lemma 5.3. If X is a metric space with metric d, and DTA is the distance transform
of a subset A of X calculated with the use of d, then the closure, interior and boundary
of A can all be recovered from knowledge of the sublevel sets of DTA:

A = {DTA 6 0}, A◦ = {DTA < 0}, ∂A = {DTA = 0}.

Moreover DTA = DTA in {A and DTA◦ = DTA in A.

Proof. To prove the equality A = {x; DTA(x) 6 0}, first note that if x ∈ A, then x ∈ A
and DTA(x) 6 0 by definition. If on the other hand x /∈ A, then x ∈ A if and only if
there are points y ∈ A such that d(x, y) is arbitrarily small, which happens if and only
if DTA(x) = 0. This proves the first equality.

The second equality in the statement follows by passing to the complement, and
the third by taking the set-theoretical difference Ar A◦ = ∂A.

If A is any subset of Rn satisfying B<(c, r) ⊂ A ⊂ B6(c, r), where we use the
distance d(x, y) = ‖x−y‖ defined by some norm ‖·‖ on Rn, then DTA(x) = ‖x−c‖−r.
This simple example shows that we cannot expect to recover A exactly from DTA; we
have to be content with its interior and closure. However, if X = Zn, then the topology
induced by a norm in Rn is the discrete topology, so that, for any set A,

A = A◦ = A = {DTA < 0} = {DTA 6 0}.

Proposition 5.4. Let G be an abelian group with a translation-invariant metric d,
and let A be an arbitrary subset of G. Then for all positive numbers r and ε we have

{DTA < r} = A+B<(0, r) ⊂ A+B6(0, r) ⊂ {DTA 6 r} ⊂ {DTA < r + ε};

and

{DTA 6 −r} = A	B<(0, r) ⊃ A	B6(0, r) ⊃ {DTA < −r} ⊃ {DTA 6 −r − ε}.

Proof. This is easy; we omit the proof. It is enough to prove the first chain of inclusions;
the second follows by duality.

Give examples to show that where an inclusion sign is written, the inclusion may
be strict.

The dilations A+B<(0, r) thus determines the strict sublevel sets of DTA for positive
values; similarly for the erosions A 	 B<(0, r) and the nonstrict sublevel sets of DTA

for negative values.
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Proposition 5.5. Let G be an abelian group and fj : G 7→ [−∞,+∞], j = 1, 2, two
arbitrary functions defined on G. Define f3 = f1 ut f2. Then for all real numbers r1, r2
and r3 = r1 + r2 we have

{f1 < r1}+ {f2 < r2} ⊂ {f1 < r1}+ {f2 6 r2} ⊂ {f3 < r3};

{f1 6 r1}+ {f2 6 r2} ⊂ {f3 6 r3}.

Proof. We always have (f1 ut f2)(x1 + x2) 6 f1(x1) + f2(x2), so if f1(x1) < r1 and
f2(x2) 6 r2, then f3(x1 + x2) < r1 + r2 = r3.

In the other direction we can prove the following for distance transforms.

Proposition 5.6. Let G be an abelian group equipped with a translation-invariant
metric, and let Aj, j = 1, 2, be two subsets. Then their distance transforms fj = DTAj

satisfy

{f1 ut f2 < r} =
(
{f1 6 0}+ {f2 < r}

)
∪
(
{f1 < r}+ {f2 6 0}

)
= A1 + A2 +B<(0, r)

for all positive r.

What can be said when r is negative?....

Proof. That {f1 ut f2 < r} contains {f1 6 0} ∪ {f2 < r} follows from Proposition 5.5.
To prove the inclusion in the other direction, let us assume that (f1 ut f2)(x3) < r.

Then there exists x1, x2 such that x1 + x2 = x3 and f1(x1) + f2(x2) < r. If both f1(x1)
and f2(x2) happen to be nonpositive, we are done. The case when f1(x1) or f2(x2) is
positive remains to be considered. Assume first that f1(x1) is positive. Then x1 /∈ A1

and we know that, to any given positive ε, there exists a point y1 ∈ A1 such that
d(x1, y1) < f1(x1)+ε. We may choose ε = r−f1(x1)−f2(x2). Define y2 = x1 +x2−y1.
Then f1(y1) 6 0 and the Lipschitz continuity of f2 implies that

f2(y2) 6 f2(x2) + d(y2, x2) < f1(x1) + f2(x2) + ε = r.

(Note that y2 − x2 = x1 − y1, so that d(y2, x2) = d(y1, x1) < f1(x1) + ε.) Hence
x3 = x1 + x2 = y1 + y2 ∈ {f1 6 0}+ {f2 < r}. The case f2(x2) > 0 is similar.

To prove the last equality we note that {f1 6 0} is equal to the closure A1 of A1

and that {f2 < r} = A2 + B<(0, r). However A + B = A + B if B is open, so both
terms in the union simplify to A1 + A2 +B<(0, r).

5.3. Distance transforms in normed vector spaces
In this section we shall calculate the distance transforms of some subsets of normed
spaces. In such spaces we shall always use the metric defined by the given norm of the
space, d(x, y) = ‖x− y‖.

The space Rn of all n-tuples can be normed by the lp-norms ‖ · ‖p, 1 6 p 6 +∞,
which are defined by

(5.8) ‖x‖p =
(∑

|xj|p
)1/p

, x = (x1, ..., xn) ∈ Rn.

When p = +∞ this has to be interpreted as a limit. More explicitly one defines

(5.9) ‖x‖∞ = max
j
|xj|, x ∈ Rn.
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For any normed vector space E we consider its dual E ′, consisting of all continuous
linear forms on E. On the dual we define the norm dual to ‖·‖ by ‖ξ‖′ = sup‖x‖61 |ξ(x)|
for ξ ∈ E ′. It follows that |ξ(x)| 6 ‖ξ‖′‖x‖ for all x ∈ E and all ξ ∈ E ′.

When E = Rn, we may identify also E ′ with Rn, and the evaluation of ξ at the
point x, i.e., the number ξ(x), is then the inner product ξ · x. The Euclidean norm
‖ · ‖2 is dual to itself:

‖ξ‖′2 = sup
‖x‖261

ξ(x) = ‖ξ‖2 =
√∑

ξ2
j .

It is not difficult to prove that the norm dual to ‖ · ‖1 is ‖ · ‖∞ and vice versa. More
generally, one may prove that the norm dual to ‖ · ‖p is ‖ · ‖q, where q = p/(p − 1),
1 < p < +∞, with a natural interpretation also when p = 0,+∞. This statement
follows from Hölder’s inequality and its converse.

In all what follows we may take E as Rn with one of these norms. However, the
more general statements are really not more difficult to prove.

In particular we shall look at the case of a convex subset A of a normed vector space.
We already noted that the distance transform of a ball B = B6(c, r) is DTB(x) =
‖x− c‖ − r. Another simple convex set is a half-space, and it is easy to determine its
distance transform:

Proposition 5.7. Let Y be a closed half-space in a normed space E, defined by an
inequality ξ(x − a) 6 0 for some continuous linear form ξ ∈ E ′, ξ 6= 0. Then its
distance transform is DTY (x) = η(x− a), where η = ξ/‖ξ‖′.

Proof. We may as well define Y by the inequality η(x−a) 6 0. We note that ‖η‖′ = 1.

By definition DTY (x) = infη(y)6η(a) ‖x− y‖ when x /∈ Y . Without loss of generality
we may assume that x = 0 and η(a) = −1; this can be achieved by a change of variable.
We shall thus have to prove that

(5.10) inf
y∈E

η(y)6−1

‖y‖ = 1.

This is a well-known fact. To prove it, we note that sup‖z‖61 η(z) = 1 by the definition
of the dual norm, and that, given any ε with 0 < ε < 1, we can take zε of norm at most
1 so that η(zε) > 1−ε. Then yε = −zε/η(zε) satisfies η(yε) = −1 and ‖yε‖ 6 1/(1−ε).
Hence the infimum in (5.8) is at most 1/(1 − ε), thus at most 1. On the other hand,
the infimum is at least 1, for ‖y‖ > |η(y)| > 1. This proves the formula for DTY in
the complement of Y . We note that for open half-spaces the formula is the same. For
x ∈ Y we can therefore use the symmetry DT{Y = −DTY .

We note that if Y is a half-space which is not closed (equivalently, defined by a
discontinuous linear functional), then DTY = 0 identically.

Theorem 5.8. Let A be any convex set in a normed vector space E. Then its distance
transform is

DTA = sup
Y

(DTY ;Y is a closed half-space containing A) .
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Proof. We first note that the theorem is trivially true if A = Ø or A = E. Assume
now that A 6= Ø, E.

For every set Y containing A we have DTY 6 DTA, so the supremum in the
statement of the theorem can never exceed DTA.

If x /∈ A we consider the open ball B<(x, r), where r = DTA(x) > 0. This ball and
A are disjoint. By the Hahn–Banach theorem there is a hyperplane separating the two.
This means that there is a continuous linear form ξ such that ξ(y) 6 ξ(z) for all y ∈ A
and all z ∈ B<(x, r). Thus the closed half-space Y defined by ξ(y) 6 infz∈B< (x,r) ξ(z)
contains A, and DTY (x) > r = DTA(x). This shows that the supremum in the
statement of the theorem attains DTA at the point x.

Now take x ∈ A. Then there is an open ball B<(x, r) with maximal radius r =
−DTA(x) > 0 contained in A. (Note that r = 0 is allowed this time.) Take r′ =
r + ε > r, where ε is arbitrarily small. There exists a point b in B6(x, r′) rA. By the
Hahn–Banach theorem again there is a closed hyperplane passing through b with A on
one side. The corresponding half-space Y solves our problem, for −DTY (x) cannot be
larger than d(x, b) 6 r′, so that DTY (x) > −r′ = DTA(x) − ε. Since the two sides
are equal in A, they are also equal in the closure of A by continuity. Since we already
proved that they are equal in the complement of A, we are done.

Corollary 5.9. The distance transform of an arbitrary convex subset of a normed
vector space is a convex function.

Proof. The distance transform of a half-space is an affine function as we have seen.
Every affine function is convex, and the supremum of any family of convex functions
is convex.

Given any subset A of a vector space E we define its supporting function HA by

(5.11) HA(ξ) = sup
x∈A

ξ(x), ξ ∈ E?,

where E? is the space of all linear forms on E. It is called the algebraic dual of E, and
contains the dual E ′, maybe strictly.

Corollary 5.10. The distance transform of a closed convex subset A of a normed
space E is equal to

DTA(x) = sup
‖η‖′=1

(η(x)−HA(η)) , x ∈ E.

Proof. We know that the distance transform at a point x is equal to the supremum of
all values DTY (x) when Y varies in the family of all closed half-spaces containing A.
However, every such half-space is contained in a minimal half-space, and the minimal
half-spaces Y = {y; η(y) 6 α} are precisely those for which α = HA(η), thus with
distance transform η(x)−HA(η).

To any function f : E → [−∞,+∞] we define its Fenchel transform f̃ : E? →
[−∞,+∞] on the algebraic dual E? of E by

f̃(ξ) = sup
x∈E

(ξ(x)− f(x)) , ξ ∈ E?.
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The Fenchel transform generalizes the supporting function: ĩA = HA. Corollary 5.10
shows that the distance transform is the Fenchel transform of the supporting function
restricted to the unit sphere. We may therefore ask what happens if we apply the
transformation again.

Corollary 5.11. If A is a nonempty closed convex subset of E, the Fenchel transform
f̃ of its distance transform f = DTA is

f̃(ξ) =


HA(ξ), ‖ξ‖′ = 1;
+∞, ‖ξ‖′ > 1;
the largest convex minorant of HA

∣∣
S′
, ‖ξ‖′ < 1.

Here S ′ is the unit sphere for the dual norm ‖ · ‖′. If A is empty, then f̃ is −∞
identically.

Proof. Let g denote the restriction of HA to the unit sphere S ′ and h the restriction
of HA to the closed unit ball of E ′. We note that, by Corollary 5.10, f is the Fenchel
transform of g. The transform of f is therefore the second Fenchel transform of g:

f̃ = ˜̃g. The general theory of the Fenchel transformation tells us that ˜̃g is the largest

lower semicontinuous convex minorant of g. Since h 6 g we have
˜̃
h 6 ˜̃g, and we know

that
˜̃
h = h since h is convex, lower semicontinuous, and never takes the value −∞;

h =
˜̃
h 6 ˜̃g 6 g. Therefore, since h and g agree on S ′, ˜̃g = g = HA on S ′. Outside B′

we have g = h = +∞, so f̃ = ˜̃g >
˜̃
h = +∞ there. Finally we note that, since g is plus

infinity in the open unit ball, ˜̃g is as described in the statement of the corollary in that
ball.

All this holds if A is nonempty; otherwise we easily see that f̃ = HA = −∞
identically.

5.4. Chamfer distances

While the Euclidean distance is easy to visualize geometrically, it has certain drawbacks
when it comes to calculations: we need to keep in memory a vector rather than a scalar
at each pixel; we need more operations per pixel; and, perhaps most importantly, the
Euclidean distance is more difficult to use for various morphological operations, such
as skeletonizing, than for instance the city-block distance; see Borgefors (1994). For a
study of the computation of the Euclidean distance transform in any dimension, see
Ragnemalm (1993).

In the case of the city-block (l1) and chessboard (l∞) distances, one first defines
the distances between neighboring pixels; we shall call them, following Starovoitov
(1995:501), prime distances. Then the distance between any two pixels is defined by
following a path and taking as the distance the minimum over all admissible paths
of the sum of the prime distances. As an example, for the city-block distance the
admissible paths consists of horizontal and vertical moves only, and the prime distance
between two pixels which share a side is declared to be one. Thus the distance is
calculated successively from neighboring pixels, which is convenient both for sequential
and parallel computation. This is impossible for the Euclidean distance in spaces of
dimension two or more.
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It turns out that many metrics used in image analysis are conveniently defined from
the prime distances by infimal convolution over all grid points. We shall now explain
this, following Kiselman (1996).

The following result is well known and easy to prove.

Lemma 5.12. Any translation-invariant distance d on an abelian group G defines a
function f(x) = d(x, 0) on X which is positive definite:

(5.12) f(x) > 0 with equality precisely when x = 0;

and symmetric:

(5.13) f(−x) = f(x) for all x ∈ X.

Conversely, a function f which satisfies (5.9) and (5.10) defines a distance d(x, y) =
f(x− y).

Lemma 5.13. Let d be a translation-invariant distance on an abelian group G and f
a function on G related to d as in Lemma 5.12. Then d is a metric if and only if f is
subadditive:

(5.14) f(x+ y) 6 f(x) + f(y) for all x, y ∈ X.

Proof. If d is a metric, we can write, using the triangle inequality and the translation
invariance,

f(x+ y) = d(x+ y, 0) 6 d(x+ y, y) + d(y, 0) = d(x, 0) + d(y, 0) = f(x) + f(y).

Conversely, if f is subadditive,

d(x, z) = f(x− z) 6 f(x− y) + f(y − z) = d(x, y) + d(y, z),

proving the triangle inequality.

In the definition of an infimal convolution the infimum operator acts over an infinite
set of points, and therefore sometimes cannot be computed in finitely many steps.
However, there are many situations where the infimum is in fact a minimum over a
finite set. One such case is when f is bounded from below and g is coercive in the
strong sense that all sublevel sets {y; g(y) 6 a}, a ∈ R, are finite. Then in particular
the sublevel set {y; g(y) 6 (f ut g)(x) + 1− inf f} is finite for every x, and it is enough
to search for a minimizing y in that set. Even simpler is the case when g is less than
+∞ in a finite set P only. Then the infimal convolution with any function f is equal
to the minimum

(f ut g)(x) = min
y∈P

(
f(x− y)+· g(y)

)
, x ∈ G.

This is indeed the case for the distances we shall consider: here P is a small set around
the origin where the prime distances are defined.
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We have seen that subadditive functions are important when it comes to defining
metrics (Lemma 5.2). Therefore it is of interest to know that subadditivity can be
characterized using infimal convolution:

Lemma 5.14. A function f on an abelian group is subadditive in the sense of (5.11)
if and only if it satisfies the inequality f ut f > f . If f(0) = 0, this is equivalent to the
equation f ut f = f .

Proof. If f is subadditive we have f(x− y)+· f(y) > f(x), so taking the infimum over
y gives (f ut f)(x) > f(x). Conversely, f(x)+· f(y) > (f ut f)(x + y) for all x, y, so
f ut f > f implies subadditivity. Finally, we always have (f ut f)(x) 6 f(x)+· f(0), so
if f(0) = 0 it follows that f ut f 6 f .

Infimal convolution is a commutative and associative operation on functions (see
Proposition 2.1), so we can write iterated convolutions as f ut g ut h without using
parentheses. A k-fold convolution can be defined by

(5.15) (f1 ut · · · ut fk)(x) = inf
k∑

i=1

fi(x
i), x ∈ G,

where the infimum is over all choices of elements xi ∈ G such that x1 + · · · + xk = x,
and with the understanding that the sum receives the value +∞ as soon as one of
the terms has that value, even in the presence of a value −∞. In (5.12) it is natural
to think of a path leading from 0 to x consisting of segments [0, x1], [x1, x1 + x2],...,
[x1 + · · ·+ xk−1, x]; if G = Z2 this path can be realized in R2.

If A is a subset of an abelian group G, we shall write N · A for the semigroup
generated by A:

N · A = {
∑
miai; mi ∈ N, ai ∈ A} ,

where all but finitely many of the mi are zero. Similarly, we shall write Z · A for the
group generated by A:

Z · A = {
∑
miai; mi ∈ Z, ai ∈ A} .

If A is symmetric, A = −A, then of course Z · A = N · A.
It seems plausible that if a repeated convolution F ut F ut · · · ut F has a limit f as

the number of terms tends to infinity, then this limit will satisfy the equation f ut f = f .
Indeed this is the case under very general hypotheses:

Theorem 5.15. Let F : G → [0,+∞] be a function on an abelian group G satisfying
F (0) = 0. Define a sequence of functions (Fj)

∞
j=1 by putting F1 = F , Fj = Fj−1 ut F ,

j = 2, 3, ..., in other words, Fj is the infimal convolution of j terms all equal to F . Then
the sequence (Fj)j is decreasing and its limit limFj = f > 0 is subadditive. Moreover
dom f = N · domF , i.e., f is finite precisely in the semigroup generated by domF .

Remark. It is easy to prove that f is the largest subadditive minorant of F .

Proof. That the sequence is decreasing is obvious if we take y = 0 in the definition of
Fj+1:

Fj+1(x) = inf
y

(
Fj(x− y) + F (y)

)
6 Fj(x) + F (0) = Fj(x).
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Next we shall prove that f(x + y) 6 f(x) + f(y). If one of f(x), f(y) is equal to
+∞ there is nothing to prove, so let x, y be given with f(x), f(y) < +∞ and fix a
positive number ε. Then there exist numbers j, k such that Fj(x) 6 f(x) + ε and
Fk(y) 6 f(y) + ε. By associativity Fj+k = Fj ut Fk, so we get

f(x+ y) 6 Fj+k(x+ y) 6 Fj(x) + Fk(y) 6 f(x) + f(y) + 2ε.

Since ε is arbitrary, the inequality f(x+y) 6 f(x)+f(y) follows. Finally, the statement
about dom g is an easy consequence of (2.7).

Theorem 5.16. With F as in Theorem 5.15, assume in addition that there is a
translation-invariant metric d1 on G such that F (x) > d1(x, 0) for all x ∈ G. Then
the limit f of the sequence Fj also satisfies this inequality, f(x) > d1(x, 0), so that
it is positive definite. If F is symmetric, f is also symmetric and defines a metric
d(x, y) = f(x − y) > d1(x, y) on the subgroup Z · P = N · P of G generated by
P = domF .

Proof. Define H(x) = d1(x, 0) and let Hj be the infimal convolution of j terms equal
to H. From Lemmas 5.13 and 5.14 it follows that H ut H = H and so all Hj are equal
to H. Therefore F > H implies Fj > H and also the limit f must satisfy f > H. This
proves the theorem.

When applying this theorem we could for instance let d1 be εd0, where ε is a small
positive number and d0 is the discrete metric defined by (5.4). In Zn we can also use
d1(x, y) = ε‖x− y‖ for any norm on Rn.

Corollary 5.17. Let P be a finite set in an abelian group G containing the origin,
and let F be a function on G with F (0) = 0, taking the value +∞ outside P and
finite positive values at all points in P r {0}. Then f = limFj is a positive definite
subadditive function. If P is symmetric and F (−x) = F (x), then f defines a metric
on the subgroup Z · P = N · P of G generated by P .

Proof. Since P is finite, there is a positive number ε such that F (x) > ε for all x ∈ P
except x = 0. Thus F (x) > εd0(x, 0), where d0 is the discrete metric defined by (5.4).
We can now apply the theorem.

It is by no means necessary that f be positively homogeneous. In fact, we can let
P = {0,±1,±2} ⊂ Z and define F (±1) = a, F (±2) = b, where a and b are arbitrary
positive numbers. If b > 2a, then f(x) = a|x| for all x ∈ Z, but if b < 2a, then
f(x) = 1

2
b|x| when x is even, x = 2k, k ∈ Z, whereas f(x) = b|k| + a > 1

2
b|x| when x

is odd, x = ±(2k + 1), k ∈ N. Nevertheless f is subadditive.

A more interesting example is perhaps this in two dimensions. Let P =
{x ∈ Z2; |xj| 6 1}, and define the prime distances as F (±1, 0) = F (0,±1) = a > 0,
F (±1,±1) = b > 0. Then if b > a we get f(x1, 0) = a|x1|. But if b < a, then
f(2, 0) = 2b < 2a, so that f(2, 0) < 2f(1, 0) = 2a. In fact, by the definition of infimal
convolution, f(2, 0) 6 F2(2, 0) 6 F (1, 1) + F (1,−1) = b + b. On the other hand, it is
not difficult to see that for any k, Fk(2, 0) > 2b, so that actually f(2, 0) = 2b. This
is because if we take k > 2 nonzero steps to go from the origin to (2, 0), the distance
assigned to the path is at least F (x1) + · · ·+ F (xk) > kb.
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Several metrics on Z2 have been studied. When presenting the generating function
F defining the prime distances it shall be understood in the sequel that F is invariant
under permutation and reflection of the coordinates. Therefore it is enough to define
F (x) for 0 6 x2 6 x1. Also it is understood that F (0) = 0 in all cases, and that F (x) =
+∞ when not mentioned. Consider first P = {x ∈ Z2;

∑
|xj| 6 1} and F (1, 0) = 1.

Then the corresponding metric is the city-block metric, introduced and studied by
Rosenfeld & Pfaltz (1966). If instead we let P = {x ∈ Z2; |xj| 6 1} and F (1, 0) =
F (1, 1) = 1, then the metric is the chessboard metric, introduced by Rosenfeld & Pfaltz
(1968). Some other metrics that have been studied are modifications of this; to define
them, put F (1, 0) = a and F (1, 1) = b. Then the choices (a, b) = (1,

√
2) (Montanari

(1968)); (a, b) = (2, 3) (Hilditch & Rutovitz (1969)); and (a, b) = (3, 4) (Borgefors
(1984)) have all been studied. Next we can increase the size of the neighborhood
where prime distances are defined to include the knight’s move (2, 1) as an element
of P . The distance defined by this move only has been studied by Das & Chatterji
(1988). It seems more natural, however, to allow also (1, 0) and (1, 1) in P . Then a
very good choice under certain criteria is F (1, 0) = 5, F (1, 1) = 7, and F (2, 1) = 11
(the 5-7-11 weighted distance). This distance was proposed and studied by Borgefors
(1986).

We always have f 6 F , and it may happen that f(x) < F (x) for some pixel x ∈ P .
Let for instance F (1, 0) = a, F (2, 1) = c, and extend F by reflection and permutation
of the coordinates. Then

f(1, 0) 6 F3(1, 0) 6 F (2, 1) + F (1,−2) + F (−2, 1) = 3c,

so if 3c < a we get f(1, 0) 6 3c < a = F (1, 0). This is undesirable, because we expect
the prime distance originally defined between the origin and (1, 0) ∈ P to survive and
to be equal to the distance defined by the minimum over all paths. It is therefore
natural to require that f = F everywhere in P .

Definition. 5.18. Let us say that a metric d(x, y) = f(x− y) is a chamfer distance,
or finitely generated if it is constructed as in Corollary 5.17.

It is easy to prove that the Euclidean metric d(x, y) =
√∑

(xj − yj)2 on Zn is a
chamfer distance if and only if n 6 1.

Borgefors (1984:324, 1986:345) calls F (x−y) the local distances; Verwer (1991:672)
adopted this term. Starovoitov (1995:501) calls F the prime distance function. The
resulting metric, (x, y) 7→ f(x − y), was called a quasi-Euclidean distance by Monta-
nari (1968) and a chamfer distance by Borgefors (1984:326). The term has then been
used, e.g., by Verwer (1991:672) and Marchand-Maillet & Sharaiha (2000:21). How-
ever, Borgefors herself now prefers the term weighted distances, and refers to them as
constructed by chamfering ;15 the latter term is derived from the method of calculating
distance transforms by passing a mask twice over the image. Nevertheless, the term
chamfer distance for the metrics constructed in Corollary 5.17 has won acceptance.

Since f(x) is the limit of an infinite sequence Fj(x), it is reassuring to know that
this sequence is in fact stationary in the cases of interest here. It is easy to explicitly
give an index j such that Fj(x) is equal to the limit f(x):

15Gunilla Borgefors, personal communication 2002-03-22.
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Proposition 5.19. Let F be as in Corollary 5.17. Then the sequence (Fj) is pointwise
stationary, i.e., for every x ∈ G there is an index px such that Fj(x) = f(x) for all
j > px.

Proof. If f(x) = +∞, then of course Fj(x) = +∞ for all j. Consider a point such that
f(x) < ∞. Then there is an index m such that Fm(x) < +∞. For every j there are
elements y1, y2, ..., yj in P such that x = y1 + · · ·+ yj and Fj(x) = F (y1) + · · ·+F (yj)
(cf. (5.12)). Now by hypothesis F (y) > ε > 0 for all y ∈ P except y = 0, so that
Fj(x) > pxε, where px is the number of indices i such that yi 6= 0. If j > m we
conclude that Fm(x) > Fj(x) > pxε, so that px 6 Fm(x)/ε. Therefore the number
px of nonzero terms in a representation of Fj(x) is never larger than Fm(x)/ε. Now
Fj(x) = Fpx(x), so the fact that px is bounded means that the sequence is stationary.

Summing up, we note that the positive part of a distance transform is a limit
(DTA)+ = lim(iA ut F ut F ut · · · ut F ), where the number of terms tends to infinity.
This formula can be used in actual calculations: starting from g0 = iA one calculates
gj = gj−1 ut F and stops when the criterion of Proposition 5.18 is satisfied. (It is not
true that gj(x) = gj−1(x) implies that gk(x) = gj(x) for all k > j, so gj(x) = gj−1(x)
at a particular point x is not a sufficient criterion. Example ....)

5.5. Comparing distances

The l1 (city-block) and l∞ (chessboard) metrics are translation invariant but not rota-
tion invariant. (In the plane a rotation can distort distances by a factor of up to

√
2;

in higher dimensions more.) The Euclidean metric is rotation invariant, and it is desir-
able to construct a chamfer distance in Zn which is reasonably close to being rotation
invariant. There are many studies on the problem of defining an optimal distance in
a given family of finitely generated distances. Of course the property of being optimal
depends on the criteria employed; as always, beauty is in the eye of the beholder. A
basic problem is how to measure deviation: we may ask how far the quotient of two
quantities is from 1, alternatively how far their difference is from 0. In this section
we shall look briefly into this problem and describe four methods of comparing two
nonnegative functions; two of these have been studied in the literature.

It is natural to measure the deviation of a function f : X → [0,+∞[ from a given
nonnegative function g defined on the same set by the smallest constant C ∈ [0,+∞]
such the inequalities f(x) 6 Cg(x) and g(x) 6 Cf(x) hold for all x ∈ X. We introduce
a notation for this constant,

(5.16) Λ(f, g) = max

(
sup
x∈X

f(x)

g(x)
, sup
x∈X

g(x)

f(x)

)
,

where the supremum is taken over all points in the common domain of definition,
and where we count 0/0 as 0 and t/0 as +∞ if t > 0 (this is to allow for zeros;
Λ(f, g) is finite only if the two functions have the same zero set). It is noteworthy that
log Λ(f, g) = ‖ log f − log g‖∞ is a distance on a suitable space of functions.

If f satisfies an inequality C1 6 f(x)/g(x) 6 C2, then a slightly modified function,
viz. f1 = f/

√
C1C2, satisfies Λ(f1, g) 6

√
C2/C1.

Another, closely related measure of the deviation was studied by Verwer (1991).
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He used the functional

(5.17) Λ′(f, g) = sup
x∈X

∣∣∣∣f(x)

g(x)
− 1

∣∣∣∣ .
However, one might just as well consider Λ′(g, f). It is readily seen that Λ′(f, g) =
Λ(f, g) − 1 when f > g, and that Λ′(f, g) = 1 − 1/Λ(f, g) when f 6 g. In general,
Λ′(f, g), Λ′(g, f) as well as log Λ(f, g) lie between two limits,

1− 1

Λ(f, g)
6 Λ′(f, g),Λ′(g, f), log Λ(f, g) 6 Λ(f, g)− 1,

where we have put in also the well-known inequality 1 − 1/t 6 log t 6 t − 1. In
particular, |Λ′(f, g) − log Λ(f, g)| 6 (Λ(f, g) − 1)2/Λ(f, g); the same estimate holds
of course for Λ′(g, f). We may also note that, although Λ′ is not symmetric, it is
approximately symmetric when f and g are close, and there is an estimate

Λ′(f, g)

Λ(f, g)
6 Λ′(g, f) 6 Λ(f, g)Λ′(f, g),

which, by the way, may be written as

Λ(Λ′(f, g),Λ′(g, f)) 6 Λ(f, g).

When f and g are reasonably close, Λ′(f, g) ≈ Λ′(g, f) ≈ log Λ(f, g). For many
purposes either one may be used. Note, however, that Λ(f, g) has better functional
properties than Λ′(f, g). In particular, as already noted, log Λ(f, g) is a metric, whereas
Λ′(f, g) does not satisfy the triangle inequality and is not even symmetric.

We note that for every pair (f, g) of functions there are constants c0, c1, and c2
such that, respectively, Λ(c0f, g), Λ′(c1f, g) and Λ′(g, c2f) are minimal. It is easy to
see that c0 is the geometric mean of c1 and c2.

In particular we shall compare the chamfer distances with the Euclidean norm
g = ‖ · ‖2. In the exercises below we let the reader determine or estimate the deviation
from the Euclidean norm of some well-known finitely generated metrics. If the prime
vectors are (±1, 0), (0,±1) and (±1,±1) with prime distances a and b respectively, we
note that the optimal prime distances for both Λ and Λ′ are related by b = a

√
2, but

that the actual values are slightly different. For Λ(f, ‖ · ‖2), the optimal choice is
(5.18)

a = a0 =
4

√
2 +
√

2

4
≈ 0.961186523, b = b0 = a0

√
2 =

4

√
2 +
√

2 ≈ 1.359323017,

whereas Verwer (1991:676) found the optimal choice for Λ′(f, ‖ · ‖2) to be

a = a1 ≈ 0.9604 and b = b1 = a1

√
2 ≈ 1.3583.

The exact values are

(5.19) a1 =
1

1
2

+
√

1− 1/
√

2
and b1 = a1

√
2.
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One can calculate also the optimal choice for Λ′(‖ · ‖2, f), which is

(5.20) a = a2 = 1
2

+
1

4

√
2 +
√

2 ≈ 0.961939766 and b = b2 = a2

√
2 ≈ 1.3603882.

In this case the optimality has a clear geometrical meaning: the vertices of the octagon
protrude as much outside the disk as the midpoints of the edges go into the disk. As
we can expect from an earlier remark, a0 =

√
a1a2.

In her pioneering work on finitely generated distances (1984, 1986), Gunilla Borge-
fors used instead the functional

(5.21) Λ′
2,∞(f) = sup

x∈Z2

∣∣∣∣f(x)

‖x‖2
− 1

∣∣∣∣ ‖x‖2‖x‖∞
= sup

x∈Z2

|f(x)− ‖x‖2|
‖x‖∞

,

and she determined the optimal distances for this measure as follows:

Λ′
2,∞(f) = 1

2

√
2
√

2− 2− 1
2
≈ 0.04491,

attained for
(5.22)

a = a3 = 1
2

√
2
√

2− 2 + 1
2
≈ 0.95509 and b = b3 =

√
2− 1

2
+ 1

2

√
2
√

2− 2 ≈ 1.36930;

note that b3 > a3

√
2 here (1986:351). She also determined the optimal values for

the functional Λ′
2,∞ when a is restricted to be 1 and b is free to vary; in this case

Λ′
2,∞(f) = 1/

√
2−

√√
2− 1 ≈ 0.06 and is attained for

(5.23) a = a4 = 1 and b = b4 = 1/
√

2−
√√

2− 1 ≈ 1.351;

here b4 < a4

√
2 (1984:327).

5.6. The calculus of balls
In any metric space the inequality d(c, c′) + r 6 r′ implies that the open ball B<(c, r)
is contained in B<(c′, r′) and also that B6(c, r) ⊂ B6(c′, r′). In a normed vector space
of dimension at least one and equipped with the distance d(x, y) = ‖x − y‖ defined
by the norm, the converse implications hold, provided r > 0 (r > 0 for closed balls).
In particular, two open balls B<(c, r) and B<(c′, r′) with r > 0 are equal if and only
if c = c′ and r = r′ (r > 0 suffices for closed balls). But in a general metric space
very little can be said: from B6(c, r) ⊂ B6(c′, r′) we can only deduce that d(c, c′) 6 r′,
assuming that r > 0.

We note, however, that if, in an abelian group with a translation-invariant metric,
B6(c, r) is contained in B6(c′, r′), r′ 6 r, and r > 0, then c− c′ belongs to a bounded
subgroup. In the most common applications, like normed spaces and groups with a
chamfer distance, the only bounded subgroup is {0}, thus c = c′.

The mappings

X ×R 3 (c, r) 7→ B6(c, r), B<(c, r) ∈ P(X)

are in general far from injective and induce complicated equivalence relations in X×R.
Similarly, the inclusion relations B6(c, r) ⊂ B6(c′, r′), B<(c, r) ⊂ B<(c′, r′) induce
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preorders in X ×R (see (3.1) and (3.2)). The purpose of this section is to study these
relations.

In any metric space X with metric d we fix a point c in X and define two functions
which are of interest when defining balls:

ρ(r) = sup
x∈X

(
d(x, c); d(x, c) 6 r

)
and σ(r) = inf

x∈X

(
d(x, c); d(x, c) > r

)
, r ∈ [−∞,+∞] .

The functions depend of course in general on the choice of c, but in most applications
we shall let X be an abelian group and assume that d is translation invariant. Then
the choice of c is immaterial.

The functions

ρ−(r) = sup
s<r

ρ(s) = sup
x∈X

(
d(x, c); d(x, c) < r

)
, r ∈ [−∞,+∞] ,

and

σ+(r) = inf
s>r

σ(s) = inf
x∈X

(
d(x, c); d(x, c) > r

)
, r ∈ [−∞,+∞] ,

are also of interest. It is clear that

ρ− 6 ρ 6 Id[−∞,+∞] 6 σ 6 σ+.

On the negative half-axis we have ρ(r) = −∞ for −∞ 6 r < 0 and σ(r) = 0 for
−∞ 6 r 6 0.

We have B6(c, r) = B6(c, ρ(r)) and B<(c, r) = B<(c, σ(r)). The interval ]ρ(r), σ(r)[
contains no distances d(c, x)—a sphere with center at c and radius in that interval is
empty. The functions ρ and σ solve the uniqueness problem for balls with a common
center: B6(c, r) = B6(c, r′) if and only if ρ(r) = ρ(r′), and B<(c, r) = B<(c, r′) if and
only if σ(r) = σ(r′).

The mappings ρ, σ : [−∞,+∞]→ [−∞,+∞] are idempotent; in fact ρ is an open-
ing and σ is a closing (Definitions 3.1 and 3.3). By way of contrast, ρ− and σ+ are in
general not idempotent. However, ρ ◦ ρ− = ρ−.

In a metric space with a translation-invariant distance, the value of the distance
transform of a set A at a point x ∈ A, DTA(x) = −r, satisfies r = σ(r). Similarly
for x /∈ A, we have DTA(x) = r with r = σ(r). Thus the values of |DTA| are always
contained in the invariant set Invσ of σ.

In a normed vector space of dimension at least one, we always have ρ(r) = σ(r) = r
for positive r, so there is no need to introduce them in the study of such spaces. In Zn

equipped with the l∞ or l1 metrics we have ρ(r) = brc and σ(r) = dre for positive r.
While the functions ρ and σ solve the problem of comparing two balls with a

common center, more hypotheses will be needed if we are to compare successfully balls
with different centers. This is why we are led to an analysis of the triangle inequality.

We shall say that a translation-invariant metric d(x, y) = f(x − y) defined on an
abelian group is upper regular for the triangle inequality if, given any x and y, there is
a point ỹ such that

(5.24) f(ỹ) = f(y) and f(x+ ỹ) = f(x) + f(ỹ).



36 5. Distance transforms

We shall say that the distance is lower regular for the triangle inequality if given any
x and y such that f(x) > f(y), there is a point x̃ such that

(5.25) f(x̃) = f(x) and f(x̃) = f(x̃− y) + f(y).

Upper regularity means that in the triangle inequality f(x+ y) 6 f(x) + f(y) we can
always find ỹ at the same distance from the origin as y and turning the inequality into
an equality (by raising the left-hand side); lower regularity means that we can lower
the right-hand side in the triangle inequality f(x) 6 f(x− y) + f(y) without changing
the left-hand side by replacing x by x̃—but of course only if the left-hand side is at
least as large as f(y).

It is clear that normed spaces are both upper and lower regular for the triangle
inequality; we may choose ỹ as a suitable multiple of x if x 6= 0 and x̃ as a suitable
multiple of y if y 6= 0. It is also easy to see that in Zn the l∞ and l1 distances are upper
and lower regular for the triangle inequality.

The chamfer distance in Z2 with P = {0, (±1, 0), (0,±1), (±1,±1)} is upper regular
provided a = F (1, 0) 6 b = F (1, 1). If b > 2a, then f(x) = ‖x‖1; if b = a, then
f(x) = ‖x‖∞. In the remaining cases, when a < b < 2a, the balls are octagonal, and
we may argue as follows. By symmetry and reflection of the coordinates it is enough to
consider a point x ∈ Z2 with 0 6 x2 6 x1. Then x can be written as m(1, 0) + n(1, 1)
for some uniquely determined integers m,n > 0, and f(x) = ma + nb. If y is in the
same sector, thus satisfying 0 6 y2 6 y1, then f(x+ y) = f(x) + f(y), so we may take
ỹ = y. If y is in one of the other seven sectors we take ỹ = (|y1|, |y2|) or (|y2|, |y1|) so
that ỹ is in the same sector as x and we know that we have equality in the triangle
inequality (5.24). However, this chamfer distances is not lower regular if a < b < 2a
as can be shown by simple examples. It seems therefore that lower regularity is too
stringent a criterion.

Theorem 5.20. Let G be an abelian group and d(x, y) = f(x − y) a translation-
invariant metric in G. Assume that d is upper regular for the triangle inequality. Then
for all r, r′ ∈ R, B6(c, r) is contained in B6(c′, r′) if and only if d(c, c′) + ρ(r) 6 ρ(r′).

Proof. By the definition of ρ, B6(c, r) = B6(c, ρ(r)). The inequality d(c, c′) + ρ(r) 6
ρ(r′) implies that B6(c, ρ(r)) ⊂ B6(c, ρ(r′)) and hence that B6(c, r) ⊂ B6(c′, r′).

For the other implication we argue as follows, assuming that B6(0, r) is contained
in B6(c′, r′) (we may take c = 0 to simplify notation). Take a point x in the first
ball. Then f(x) 6 ρ(r). It follows that f(x − c′) 6 ρ(r′). In the triangle inequality
f(x−c′) 6 f(x)+f(c′) we can find an element x̃ with the same distance to the origin as
x and turning the inequality into an equality: f(x̃−c′) = f(x̃)+f(c′). Now f(x̃) = f(x)
can take values as close to ρ(r) as we like, say larger than ρ(r)− ε for a given positive
ε. We get ρ(r′) > f(x̃− c′) = f(x̃) + f(c′) > ρ(r)− ε+ d(c, c′), proving the inequality.
Note that f(x̃ − c′) 6 ρ(r′) follows from the inequality f(x̃) = f(x) 6 ρ(r) and the
inclusion B6(0, r) ⊂ B6(c′, r′).

Theorem 5.21. Let G be an abelian group and d(x, y) = f(x − y) a translation-
invariant metric in G. Assume that d is lower regular for the triangle inequality.
Then for all r, r′ ∈ R with r > 0, B<(c, r) is contained in B<(c′, r′) if and only if
d(c, c′) + σ(r) 6 σ(r′).
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Proof. By the definition of σ, B<(c, r) = B<(c, σ(r)). The inequality d(c, c′) + σ(r) 6
σ(r′) implies that B<(c, σ(r)) ⊂ B<(c′, σ(r′)), and hence that B<(c, r) ⊂ B<(c′, r′).

To prove the other implication we assume that B<(c, r) ⊂ B<(0, r′) (we may take
c′ = 0). This means that f(x) > σ(r′) implies f(x − c) > σ(r). For any given ε > 0
we can find x such that σ(r′) 6 f(x) 6 σ(r′) + ε. Then f(x− c) > σ(r) and we obtain
the rather useless string of inequalities

σ(r) 6 f(x− c) > f(x)− f(c) 6 σ(r′) + ε− f(c).

However, since f(c) < r′ 6 σ(r′) 6 f(x) (at this point we need to know that c ∈
B<(c, r), thus that r is positive), we can by hypothesis find x̃ such that f(x̃) = f(x)
(thus f(x̃ − c) > σ(r)) and turning the triangle inequality > in the last formula into
an equality:

σ(r) 6 f(x̃− c) = f(x̃)− f(c) 6 σ(r′) + ε− f(c).

If we now let ε tend to zero we obtain σ(r) 6 σ(r′)− f(c), which concludes the proof.

Since chamfer distances are in general not lower regular for the triangle inequality
it is desirable to impose only upper regularity. Now upper regularity was used for the
inclusion of closed balls, lower regularity for the inclusion of open balls. But, luckily,
for chamfer distances all open balls are closed! We shall now study such spaces.

We consider metric spaces X such that the set of all distances {d(x, c);x ∈ X}
from a fixed point c ∈ X is a discrete subset of R. This is equivalent to the statement
that the set {d(x, c);x ∈ X, d(x, c) 6 t} is finite for every real number t. The main
examples are of course the chamfer distances in any abelian group.

If the set {d(x, c);x ∈ X} of all distances from a fixed point c is discrete, the set
is denumerable and either finite or equal to a set {rj; j ∈ N}. In the latter case we
shall choose the indices so that r0 = 0 and rj < rj+1 for all j ∈ N. A sphere S(c, r) is
nonempty if and only if r = rj for some j. The functions ρ and σ defined above satisfy

ρ(r) = rj, when r ∈ [rj, rj+1[ , ρ−(r) = rj, when r ∈ ]rj, rj+1] ,

and
σ(r) = rj, when r ∈ ]rj−1, rj] , σ+(r) = rj, when r ∈ [rj−1, rj[ .

Proposition 5.22. Let X be a metric space where the set of all distances from a fixed
point c is discrete. Then all closed balls with center at c are open and all open balls
with center at c are closed. More exactly,

B6(c, r) = B<(c, σ+(r)) and B<(c, r) = B6(s, ρ−(r)).

Proof. We consider the case when the set of distances is infinite—easy modifications will
take care of the case of finitely many distances. It is convenient in the proof to define
r−1 = −∞. Given any r ∈ R we choose j ∈ N so that r ∈ [rj−1, rj[. Then B6(c, r) =
B<(c, s) for all s ∈ ]rj−1, rj]. In particular B6(c, r) = B<(c, rj) = B<(c, σ+(r)).

Similarly, given any r ∈ R we choose j ∈ N such that r ∈ ]rj−1, rj]; then B<(0, r) =
B6(0, s) for all s ∈ [rj−1, rj[. In particular, B<(c, r) = B6(c, rj−1) = B6(c, ρ−(r)) for
all r ∈ R.
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Theorem 5.23. Let G be an abelian group and d(x, y) = f(x − y) a translation-
invariant metric in G. Assume that d is upper regular for the triangle inequality and
that the set of all distances is discrete. Then for all r, r′ ∈ R, B<(c, r) is contained in
B<(c′, r′) if and only if d(c, c′) + ρ−(r) 6 ρ−(r′).

Proof. We know that the open ball B<(c, r) is equal to the closed ball B6(c, ρ−(r)).
Theorem 5.19 shows that the inclusion B6(c, ρ−(r)) ⊂ B6(c′, ρ−(r′)) is equivalent to the
inequality d(c, c′) + ρ(ρ−(r)) 6 ρ(ρ−(r′)). However, we always have ρ(ρ−(r)) = ρ−(r).
This completes the proof.

A final remark on chamfer distances. The elements of the finite set P will be
denoted by p0 = 0, p1 = −p−1,..., pm = −p−m, and the values of the prime distance
function F at ±pj = p±j, j = 1, ...,m, by aj > 0. It is of interest to consider the
functions ϕ, ψ : [−∞,+∞]→ [−∞,+∞] defined by

ϕ(r) = sup
nj∈N

(∑
njaj;

∑
njaj < r

)
and ψ(r) = sup

nj∈N

(∑
njaj;

∑
njaj 6 r

)
.

The supremum in the definition of ρ is over all distances from the origin that can
occur; these are all of the form of a finite sum

∑m
1 njaj with nj ∈ N, which shows that

ρ(r) 6 ψ(r) 6 r. Also ρ−(r) 6 ϕ(r) < r. However, it may happen that ρ(r) < ψ(r) for
some values of r, because a certain sum

∑
njaj, although it is allowed in the definition

of an infimal convolution F ut · · · ut F , never occurs as an infimum. The property
ψ = ρ is an important regularity property....??

We note that we have ψ(r) = ρ(r) for Zn with the l∞ or l1 metrics. Indeed, here
all aj are equal to 1 and all integers can occur as distances

∑
njaj =

∑
nj. The

same is true for the example in Z2 we considered with P consisting of nine points and
a = F (1, 0) and b = F (1, 1) provided a 6 b 6 2a; these inequalities guarantee that all
numbers of the form ma + nb, m,n ∈ N, do occur as distances....?? [Compare with
semiregularity in the sense of Borgefors (1994, Definition 2)....??]

5.7. Exercises

5.1. Let A be the (filled) square {x ∈ R2; |x1|, |x2| 6 1} and B a Euclidean closed disk of
radius r, viz. B = {x ∈ R2; x2

1 + x2
2 6 r2}. Describe for all positive r the seven sets A + B,

A	B, B	A, AB, BA, AB, BA. Calculate the distance transforms DTA and DTB when the
distance is given by d(x, y) = ‖x− y‖p, p = 1, 2,∞.

5.2. Given a subset A of a normed space, does the equality DTA+B< (0,r) = DTA − r hold in
A if we use the distance defined by the norm? If the statement is not always true, find some
hypotheses under which it is true. What if we only know that we are in an abelian group
with a translation-invariant metric??....

5.3. Let X be a metric space with metric d. Define a metric dα in X ×R by

dα

(
(x, s), (y, t)

)
= αd(x, y) + |s− t|, (x, s), (y, t) ∈ X ×R,

where α is any positive number. Prove that, for any subset A of X,

DTepiDTA
(x, s) = DTA(x)− s, (x, s) ∈ X ×R,

if α > 1. Show by examples that this is not necessarily so if 0 < α < 1.
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5.4. Square pixels. The centers of square pixels can be placed at the points Z2 with integer
coordinates in R2. Since Z2 is group, we can use infimal convolution. Actually we can work
indifferently in R2 or Z2. Define a function F : R2 → [0, +∞] by F (0) = 0, F (±1, 0) =
F (0,±1) = a > 0, F (±1,±1) = b > 0 (four points with value b), and F (x) = +∞ at all other
points. Then let f = lim F ut F ut · · · ut F as the number of terms tends to infinity.
(a) Show that if a = 1, b =

√
2, then

1 6
f(x)
‖x‖2

6

√
2
√

2√
2 + 1

≈ 1.08239, x ∈ Z2.

(b) Show that the best choice for a and b if we want to have

1 6
f(x)
‖x‖2

6 C, x ∈ Z2,

with C as small as possible is a = 1, b =
√

2.
(c) For all a, b > 0 there is a constant C depending on a, b such that

C−1 6
f(x)
‖x‖2

6 C, x ∈ Z2.

Take b = a
√

2 and find the a which renders C as small as possible. Show that the smallest
possible value of C is

C = Λ(f, ‖ · ‖2) = 4

√
4

2 +
√

2
≈ 1.04038,

and that it is attained when a and b = a
√

2 take the values (5.18).
(d) Now vary both a and b. Show that the smallest C such that C−1 6 f(x)/‖x‖2 6 C for
all x ∈ Z2 is the same as in (c), i.e., that we do not gain anything by taking b different from
b = a

√
2.

(e) Prove that if we use Λ′(f, ‖ · ‖2) to measure deviation from the Euclidean distance, then
the optimal values are as indicated in (5.19).
(f) Prove that if we use Λ′(‖ · ‖2, f) to measure deviation from the Euclidean distance, then
the optimal values are as indicated in (5.20).

5.5. Hexagonal pixels. The centers of hexagonal pixels form a triangular pattern: if we
identify R2 with C for convenience they can be placed at the points p + qω, p, q ∈ Z, where
ω = 1

2 + i
√

3
2 .

(a) Define a function F : C → [0, +∞] by F (0) = 0, F (±1) = F (±ω) = F (±(1 − ω)) = 1,
and F (x) = +∞ at all other points. Then let f = lim F ut F ut · · · ut F as the number of
terms tends to infinity. Show that

1 6
f(x)
‖x‖2

6
2√
3
≈ 1.15470, x ∈ Z + Zω.

Thus a suitable multiple f1 of f has Λ2(f1) 6
√

2/ 4
√

3 ≈ 1.07457.
(b) Now define F : Z2 → [0, +∞] by F (0) = 0, F (±1, 0) = F (0,±1) = F (1,−1) = F (−1, 1) =
1 and F (x) = +∞ at all other points. Let f = lim F ut F ut · · · ut F as the number of terms
tends to infinity. Find a Euclidean norm ‖ · ‖, i.e., a norm defined by an inner product, such
that

‖x‖ 6 f(x) 6 C‖x‖, x ∈ Z2,
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with C as small as possible.

5.6. Triangular pixels. The centers of triangular pixels form a hexagonal pattern. These
hexagonally placed points do not form a subgroup of R2, and therefore infimal convolution
cannot be applied directly as in the case of square or hexagonal pixels. However, if we take
two steps in the hexagons, we get a group of triangularly placed points, which is isometric
to the group Z + Zω formed by the hexagonal pixels considered in exercise 5.5. For an even
number of steps, the inequalities for hexagonal pixels can be applied; for an odd number of
steps, we first take an even number of steps and then one extra step. Investigate what the
inequalities of exercise 5.5 yield.

5.7. Prove that in an abelian group with a translation-invariant metric which is upper regular
for the triangle inequality, B6(c, r) = B6(c′, r′) implies that c = c′.

5.8. Prove that the chamfer distance in Z2 defined by F (±1, 0) = F (0,±1) = 3, F (±1,±1) =
4 is not lower regular for the triangle inequality.

6. Skeletonizing

6.1. Definition of the skeleton
If A is any subset of a metric space X, then its interior A◦ is the union of all open balls
contained in A. This is typically the union of a very large family of sets. We would
like to describe A◦ as the union of a smaller family. It is obvious that if we have two
balls contained in A, B<(c, r) and B<(c′, r′), and one is contained in the other, then
we may throw away the smaller ball without changing the union. In fact, for every
ball B<(c, r) in the union, we may throw away all balls contained in that ball without
changing the union. This leads to the concept of a maximal ball. A maximal ball must
be retained, but all balls contained in a maximal ball may be dispensed with.

The importance of skeletons in applications is due to the fact that they are thin in
some sense but nevertheless retain important information about an object, for instance
its general shape, and that, given the skeleton and the distance transform at the points
in the skeleton, we can reconstruct the whole object. Typically we save memory when
listing only the skeleton and the quench function.

If c is the center of a maximal open ball B<(c, r) contained in a set A, then nec-
essarily r = −DTA(c). In fact, when we defined the distance transform DTA(c) at a
point c, we looked at all balls with center c contained in A and we took the largest
such ball. Note that then we kept the center fixed. There is a largest ball with center
c, which in particular is maximal among these balls. By way of contrast, when we
define the skeleton we shall vary both the center and the radius and look at all balls
contained in A, regardless of their centers. We shall now give a name to the centers of
maximal balls.

If A is a subset of a metric space X, then we shall define the skeleton16 of A,
denoted by Sk(A), as the set of all centers of maximal open balls contained in A.
This means that c ∈ Sk(A) if and only if there exists a number r > 0 such that
B<(c, r) ⊂ A and such that if a ball B<(c′, r′) is contained in A and contains B<(c, r),
then B<(c′, r′) = B<(c, r).17 The skeleton may be empty: think of a set with empty
interior or of a half-space in Rn. A half-space contains lots of balls, but there are

16It seems that the term skeleton was first used in this context by Rosenfeld & Pfaltz (1966).
17I did not say that c′ = c and r′ = r.
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no maximal balls. So obviously we need to investigate whether there exist maximal
balls—and whether there are enough of them in the formation of the interior of A. For
this we shall need Zorn’s Lemma.

6.2. Existence of skeletons

An ordered set X is said to be totally ordered if for any two elements x, y ∈ X we
have x 6 y or y 6 x. An ordered set X is said to be inductive or inductively ordered
(Bourbaki (1963:34)) if every totally ordered subset of X possesses a majorant in X.18

This means that for every Y ⊂ X which is totally ordered, there exists an element
b ∈ X such that y 6 b for all y ∈ Y . This concept is of interest because it is used as
an hypothesis in Zorn’s Lemma, which guarantees the existence of maximal elements.

Theorem 6.1 (Zorn’s Lemma). Every inductively ordered set possesses a maximal
element.

We shall accept Zorn’s Lemma here. One can prove it using the Axiom of Choice;
conversely, the latter can be proved from Zorn’s Lemma. To establish the existence of
a maximal element we shall have to prove that a certain order is inductive.

Theorem 6.2. Let Zn be equipped with a metric which either is inherited from a norm
on Rn or a chamfer distance in the sense of Definition 5.18, and let A be a finite
subset. Then the set of all open balls contained in A is inductively ordered.

Proof. Let us consider a union AM =
⋃

(c,r)∈M B<(c, r) of a family of open balls, where
M is a subset of Zn ×R. Assume that the family is totally ordered, i.e., for any two
pairs (c, r), (c′, r′) ∈ M , either B<(c, r) is a subset of B<(c′, r′) or conversely. The set
of radii must be bounded since A is finite. So clearly AM is finite, which implies that
it is equal to one of the balls B<(c, r) with (c, r) ∈M . We are done.

In Rn things are less simple.

Theorem 6.3. Let A be a set in a finite-dimensional normed vector space E. Assume
that A is bounded. Then the set of open balls contained in A is inductively ordered.

Proof. Let as before AM =
⋃

(c,r)∈M B<(c, r) be a union of open balls, where M is a
subset of E×R. We assume that the family of these balls is totally ordered. Define R
as the supremum of all numbers r such that there exists a c ∈ E such that (c, r) ∈M .
Since A is bounded, this supremum is necessarily finite. For every j = 1, 2, 3, ... there
exists a number rj > R− 1/j and a point cj in A such that (cj, rj) ∈M . Unless one of
the radii is equal to R we may also choose the rj so that rj+1 > rj. Since the sequence
of centers (cj) is bounded, it has a converging subsequence; let us change notation so
that (cj) itself is converging. Let its limit be C. We claim that AM is equal to the ball
B<(C,R).

We shall prove first that AM is contained in B<(C,R). Let x ∈ AM ; there exists
(c, r) ∈ M such that d(x, c) < r. Define ε = r − d(x, c) > 0. Then the ball B<(x, ε)
is contained in B<(c, r). If r = R, then we must have B<(c, r) = B<(C,R). If,
on the other hand r < R, then we take k so large that rk > r, and we must have
B<(c, r) ⊂ B<(ck, rk) since the opposite inclusion is impossible and one of them must
hold by hypothesis. Thus B<(x, ε) ⊂ B<(cj, rj) for all j > k, which implies, on letting

18The empty set is totally ordered, so an inductively ordered set must be nonempty.
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j tend to infinity, that B<(x, ε) ⊂ B6(C,R). But then x belongs also to the open ball
B<(C,R) and we are done. (Note that this part of the proof is not valid in a general
metric space.)

In the other direction, let us prove that B<(C,R) is contained in AM . Take any
point x ∈ B<(C,R). Then d(x,C) < R, and we may define ε = R − d(x,C) > 0. We
then have d(x, cj) 6 d(x,C) + d(C, cj) = R − ε + d(C, cj), where the right-hand side
is less than rj for large j. Hence x belongs to B<(cj, rj), and therefore to AM . (This
part of the proof is valid in any compact metric space.)

If the norm is Euclidean, it is enough to assume that A does not contain a half-
space. Also, for any given norm in Rn, it is enough to assume that A does not contain
a cone of a certain aperture.

Example. One might think that the result should hold in any compact metric space.
However, simple examples show that this is not so. Define a compact metric space X
as consisting of the segment A = [−1, 1] × {0} in R2 and join to it the point (0, 1).
The metric shall be that induced by the usual Euclidean metric in R2. Consider now
the open balls B<(cj, rj), where cj = (1/j, 0) and rj = 1, j = 1, 2, ... . Note that
B<(cj, rj) = ]−1 + 1/j, 1] ⊂ A. The sequence of balls is increasing with j, and its
union is the segment AM = ]−1, 1]×{0}. However, this segment is not an open ball in
X. What is worse: it is not contained in an open ball in A. Hence the family of open
balls in A is not inductively ordered.

There is a well-known trick to get rid of the hypothesis that A must not contain any
half-space. Indeed a half-space is a limiting case of a ball, and if we compactify Rn by
adding a point at infinity, then Rn ∪ {∞} can be regarded as the n-sphere. The balls
in Rn then become spherical caps on the sphere, and so do the half-spaces. But these
spherical caps are actually balls for a suitable metric on the sphere. So Rn ∪ {∞} is a
metric space and the open balls contained in any given subset are inductively ordered—
the proof is very much like the one we have done in Rn. The compactification allows
us to define a generalized skeleton, which may contain ∞, but we need of course to
modify the quench function.

Corollary 6.4. Let A be a bounded subset of a finite-dimensional normed vector
space, or a bounded subset of Zn, where Zn is provided with a metric as in Theorem
6.2. The union of all open balls with center c belonging to the skeleton and radius equal
to −DTA(c) is equal to the interior of A. In particular, if A has interior points, then
the skeleton of A is nonempty.

Proof. Take any point x ∈ A◦. The ball B<(x, ε) is contained in A◦ for some small
positive ε. By Zorn’s lemma (Theorem 6.1) and Theorem 6.2 or 6.3, respectively, there
is a maximal ball B<(c, r) containing B<(x, ε) and contained in A. Thus c ∈ Sk(A)
and x ∈ B<(c, r), with r = −DTA(c).

In any metric space where the conclusion of Theorem 6.3 holds we have A◦ =⋃
c∈Sk(A)B<(c,−DTA(c)). Here −DTA(c) = (DTA(c))− is the quench function eval-

uated at c. Knowledge of Sk(A) and the restricion of DTA to Sk(A) is equivalent
to knowing A◦. This shows how we can reconstruct A◦ from Sk(A) and the quench
function.
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6.3. Properties of skeletons
In some sense the skeleton is a thin set. For instance, it is easy to prove that the
skeleton in Rn has no interior points (cf. exercises 6.1 and 6.2). On the other hand, the
closure of the skeleton need not be of Lebesgue measure zero (cf. exercise 6.3). These
results are mentioned in Serra (1982:378) and Matheron (1988:218). It is also stated
there that it is unknown whether the skeleton has Lebesgue measure zero, and whether
the interior of its closure is empty.19

The skeleton of a set A in R2 need not be a closed set, even if A has a smooth
boundary. To construct an example, let first U = A + B, the dilation of the segment
A = [(−1, 1), (1, 1)] by the unit disk B = {(x, y) ∈ R2;x2+y2 < 1}. This is an open set
and its skeleton is Sk(U) = A. Then modify U as follows. The lower boundary of U is
just the segment [(−1, 0), (1, 0)], so that U is locally defined by the inequality y > 0 near
this segment. We replace it by an inequality y > ϕ(x), where ϕ(x) =

∑∞
1 cjψ(2jx−1),

ψ being an even, nonpositive function in C∞
0 with ψ(0) = −1 and support contained

in [−1
3
, 1

3
]. For a suitable choice of positive constants cj, the function ϕ is in C∞,

and the skeleton of the new open set V so defined contains segments {2−j} × [a, b]
for j = 1, 2, 3, ... for a suitable choice of a and b > a. But no point on the limiting
segment {0} × [a, b], belongs to it. (This example is essentially taken from Matheron
(1988:219).)

The following result was proved in Rn by Matheron (1988:225).

Theorem 6.5. Let E be a normed space with metric given by the norm: d(x, y) =
‖x − y‖. Let A be a nonempty proper subset of E, fix a point c in the interior of A,
and define h(x) = d(x, c) + DTA(x), x ∈ E. Then c belongs to the skeleton of A if and
only if h has a minimum only at c.

Proof. If B<(c, r) ⊂ B<(x, r′) ⊂ A, where r = −DTA(c) > 0, then r′ > d(c, x) + r.
This implies that h(x) = d(x, c) + DTA(x) 6 d(x, c) − r′ 6 d(c, c) − r = h(c). If c is
the only point where h attains its minumum, we must have x = c and it follows that
B<(c, r) is maximal, hence that c ∈ Sk(A).

Conversely, assume that c is in the skeleton and that x is a point where h(x) 6 h(c).
Then d(c, x) − r′ 6 −r, where we define r = −DTA(c), r′ = −DTA(x). This implies
that B<(x, r′) contains B<(c, r). Since c is in the skeleton of A, the two balls must be
equal, which implies that x = c. Therefore the infimum of h is attained at c and only
there.

Thanks to the calculus of balls developed in section 5.6 we can generalize this result
to other groups. In a normed space of positive dimension, the open ball of radius
r = −DTA(c) is the interior of the closed ball of the same radius and the same center.
In a group where the set of distances is discrete, the open ball B<(c, r) can be described
as the closed ball of radius ρ−(r). Since the conditions for working with closed balls
are more easily satisfied than those for open balls, we will get a more applicable result
if we replace the function x 7→ d(x, c) + DTA(x) by x 7→ d(x, c)− ρ−(−DTA(x)).

Theorem 6.6. Let G be an abelian group with a translation-invariant metric d which
is upper regular for the triangle inequality and such that the set of all distances is
discrete. Let A be a nonempty proper subset of G, fix a point c ∈ A, and define

19It seems that the answers to these questions are still unknown.
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h(x) = d(x, c)− ρ−(−DTA(x)), x ∈ G. Then c belongs to the skeleton of A if and only
if h has a minimum only at c.

Proof. If B<(c, r) ⊂ B<(x, r′) ⊂ A, where r = −DTA(c), then by Theorem 5.22
ρ−(r′) > d(c, x) + ρ−(r). This implies that h(x) = d(x, c)− ρ−(−DTA(x)) 6 d(x, c)−
ρ−(r′) 6 d(c, c)− ρ−(r) = h(c). If c is the only point where h attains its minumum, we
must have x = c and it follows that B<(c, r) is maximal, hence that c ∈ Sk(A).

Conversely, assume that c is in the skeleton and that x is a point where h(x) 6 h(c).
Then d(c, x) − ρ−(r′) 6 −ρ−(r), where we define r = −DTA(c), r′ = −DTA(x). This
implies that B6(x, ρ−(r′)) contains B6(c, ρ−(r)). But B6(x, ρ−(r′)) = B<(c, r′) and
B6(c, ρ−(r)) = B<(c, r) by Proposition 5.21. Since c is in the skeleton of A, the two
balls must be equal, which implies that the difference between their centers belongs to
a bounded subgroup, thus that x = c (cf. exercise 5.7). Therefore the infimum of h is
attained at c and only there.

Continuity properties of skeletons....

6.4. Exercises

6.1. Show that in Rn with a Euclidean metric every skeleton has an empty interior.

6.2. Let G be an abelian group and P any nonempty subset of G. A set A ⊂ G will be
called P -open if it is if the form

⋃
x∈M (x + P ) for some M ⊂ G. The set of all P -open sets

form what we may call a semitopology τP on G: an arbitrary union of P -open sets is P -open.
Assume now that P is finite, symmetric and contains the origin, let F be an even function
satisfying the conditions in Corollary 5.17, and let f obtained from F as in that corollary.
Let finally Sk(A) be the skeleton of a set A defined by the distance d(x, y) = f(x− y). Prove
that interior of Sk(A) defined by τP is empty: there is no nonempty P -open set contained in
Sk(A).

6.3. Construct an example of an open set in R2 such that the closure of its skeleton with
respect to a Euclidean metric is of positive Lebesgue measure. Hint: Take U as the unit disk,
and add to it denumerably many equilateral triangles with two points on the circumference
and the third point with rational argument. This will yield a set whose skeleton contains a
lot of rays; the limits of these rays have arguments in a set of measure 2π − ε.

6.4. Show that if we use the l∞ distance there exists a bounded open connected set in R2

such that its skeleton is not connected.

6.5. We define the r-skeleton, associated to the radius r > 0, as the set Skr(A) of points in
the skeleton where the quench function is equal to r. Therefore Sk(A) =

⋃
r>0 Skr(A).

Assume now that we are in a normed vector space with distance d(x, y) = ‖x− y‖.
(a) Find some conditions on a set A which guarantee that the skeleton of its dilation by a
ball is the same as that of A:....

Sk (A + B<(0, R)) = Sk(A).

(b) Find conditions on a set A which ensure that the skeleton of an erosion is simply obtained
by deleting a certain part of the skeleton:....

Sk(A	B6(0, R)) =
⋃
r>R

Skr(A).
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(c) Show that

SkR(A) =
⋂
r>0

[
(A	B<(0, R)) r (A	B<(0, R))B6 (0,r)

]
.

(d) Show that the reconstruction of the interior of A takes the form??.... Hjälper det om A
inte inneh̊aller ett halvrum??....

A◦ =
⋃
r>0

(Skr(A) + B<(0, r)) .

(d) Show that we can also reconstruct the dilations and erosions by balls from the r-
skeletons:??....

A + B<(0, R) =
⋃
r>0

(Skr(A) + B<(0, R + r)) ,

A	B6(0, R) =
⋃
r>R

(Skr(A) + B<(0, r −R)).

6.6. What remains of exercise 6.5 if we only know that we are in an abelian group with a
translation-invariant metric?

7. Lattices

7.1. Definition and first properties of lattices
Lattice theory was developed by Garrett Birkhoff and others in the beginning of the
twentieth century (Birkhoff 1940, 1948). There is an analogy between lattice theory
and the theory of vector spaces. The theory of topological vector spaces was developed
to a large extent because of the theory of distributions, which in turn was motivated
by applications in partial differential equations. Developments in image processing
motivated a renewed interest in lattice theory, in particular in complete lattices. Lattice
theory was applied to switching circuits, and it was then enough, because of general
finiteness conditions, to form models using lattices, but in image processing it is more
convenient to assume completeness.

While vector spaces are useful in modelling linear problems, lattices seem to be
more adapted to nonlinear problems. Auditory phenomena are often additive: all the
instruments of an orchestra can be heard; while with visual phenomena this is not so:
one object can block another from our view. This indicates that linear models may
suffice for the first kind of phenomena, while the visual ones are more in agreement
with nonlinear operators like supremum and infimum.

There are also analogies between preordered sets, in particular lattices, and topo-
logical spaces as we shall see. The increasing mappings in the first case correspond to
continuous mappings in the second.

Let L be an ordered set and A a subset of L. An element b ∈ L is said to be the
infimum of all elements a ∈ A if b is the largest minorant of all a ∈ A. This means
that b 6 a for all elements a ∈ A, and that if b′ 6 a for all a ∈ A, then b′ 6 b. The
infimum, if it exists, is necessarily unique. The infimum over the empty set exists if
and only if L possesses a largest element, and if so the infimum is this largest element.
Similarly supx∈Ø x exists if and only if L has a smallest element.
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We shall write b = infa∈A a = inf(a; a ∈ A) =
∧

a∈A a; if A has only n elements
we write b = a1 ∧ · · · ∧ an, in particular b = a1 ∧ a2 if n = 2. Similarly we define the
supremum c = supa∈A a =

∨
a∈A a as the smallest majorant of all elements in A. If any

set consisting of two elements in L has an infimum, we shall call L an inf-semilattice;
similarly, if any two-set of L has a supremum, we shall call L a sup-semilattice. If L is
both an inf-semilattice and a sup-semilattice we shall call L a lattice.

If any nonempty subset, finite or infinite, has an infimum, L will be said to be a
complete inf-semilattice; analogously we define complete sup-semilattice and complete
lattice. A complete inf-semilattice has a smallest element, which is the infimum of
all elements, denoted by 0, and a complete sup-semilattice has a largest element, the
supremum of all elements, denoted by 1.

A complete inf-semilattice with a largest element 1 is also a complete lattice. In-
deed, the supremum of any set of elements is equal to the infimum of all majorants of
the set—this set is not empty since 1 is a majorant.

In a complete lattice, the infimum of the empty set exists and is 1, and the supre-
mum over the empty set is supj∈Ø xj = 0.

It is possible to define a lattice as a set with two binary operations ∧ and ∨ satisfying
certain axioms.

A sublattice is defined just like a subgroup with respect to the operations ∧ and
∨: that M is a sublattice of L means that for all x, y ∈ M , x ∧ y and x ∨ y, when
calculated in L, are elements of M . A sublattice is therefore something more than a
subset with the induced order; see the following examples.

Example. The space of real-valued continuous functions on a topological space is a
lattice with the usual order: f 6 g if and only if f(x) 6 g(x) for all x. The space
C1(Rn) of continuously differentiable functions on Rn is not a sublattice of C(Rn). It
is not even a lattice on its own.

Example. The set [−∞,+∞]R
n

of all functions defined on Rn and with values in the
extended real line is a lattice under the usual order for real numbers, extended in an
obvious way to the two infinities. The subset of all convex functions is ordered in
the same way, and is also a lattice under this order. However, the convex functions
CVX(Rn) do not form a sublattice of [−∞,+∞]R

n
. The supremum of two convex

functions is equal to the pointwise supremum of them:

f ∨ g = max(f, g),

but the infima are different in the two lattices: the infimum in the lattice of convex
functions is

f ∧cvx g = sup
[
h ∈ CVX(Rn);h 6 f, g

]
6 min(f, g),

where the supremum is calculated in [−∞,+∞]R
n

and has a sense because that lattice
is complete.

Example. The family P(W ) of all subsets of a set W is a complete lattice, with∧
Aj =

⋂
Aj and

∨
Aj =

⋃
Aj. The compact sets in Rn form a sublattice C(Rn) of

P(Rn). This lattice is a complete inf-semilattice but not a complete sup-semilattice.
The family K(Rn) of all convex compact sets is a lattice but not a sublattice of C(Rn):
the supremum of two compact sets is not the same in the two lattices.
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Example. The family of all closed sets in Rn, denoted by F(Rn), is a sublattice of
P(Rn): the union and intersection of two closed sets are closed. But, although F(Rn)
is a complete lattice, it is not a sub-complete-lattice of the complete lattice P(Rn).
The union of a family of closed sets is not always closed, but there is a supremum, viz.
the closure of the union. Thus, finite suprema agree with those in P(Rn) while infinite
suprema do not. This example shows that we would need a different word for complete
lattice, to allow for a better term than “sub-complete-lattice.”

7.2. Morphology on lattices
We already defined the epigraph of a mapping X → [−∞,+∞]; see (2.8). The defini-
tion makes of course sense for any mapping X → Y , where X is an arbitrary set and
Y a preordered set, thus

(7.1) epi f = {(x, y) ∈ X × Y ; f(x) 6 y}.

It will be convenient to define also the hypograph of a mapping f : X → Y ; it is

(7.2) hypo f = {(x, y) ∈ X × Y ; y 6 f(x)}.

The intersection of the two, epi f ∩ hypo f , contains the graph of f , which is the set of
all pairs (x, f(x)):

(7.3) graph f = {(x, y) ∈ X × Y ; y = f(x)}.

If Y is not only preordered but ordered, the intersection is equal to the graph. If Y
has the discrete order, then epi f = hypo f = graph f ; if Y has the chaotic preorder,
then epi f = hypo f = X × Y .

In L′ = Incr(L,L), the set of all increasing mappings of an ordered set into itself,
the idempotent mappings are of particular interest. We shall call an increasing and
idempotent mapping from L into L a morphological filter, and denote the set of all
such mappings by Filt(L). Openings and closings are examples: an opening is an
antiextensive mapping in Filt(L), and a closing is an extensive mapping in Filt(L).

We have studied dilations in an abelian group, i.e., mappings of the form A 7→ A+B.
We also remarked (cf. (2.11)) that a mapping which commutes with translations and the
formation of infinite unions is necessarily of this form. In lattice theory it is therefore
natural to say that a mapping δ : L → M , where L and M are complete lattices, is a
dilation if it commutes with the formation of suprema, i.e., δ

(∨
j xj

)
=
∨

j δ(xj) for
all indexed families (xj)j∈J . In particular we get δ(0L) = 0M (take J empty), while
δ(1L) =

∨
x∈L δ(x) 6 1M (give an example where δ(1L) 6= 1M). Similarly we shall

say that ε is an erosion if it commutes with the formation of infinite intersections,
ε
(∧

j xj

)
=
∧

j ε(xj). We note that ε(1L) = 1M (take J empty), while ε(0L) =∧
x∈L ε(x) > 0M .
Dilations and erosions are always increasing. Indeed, we have δ(x∨y) = δ(x)∨δ(y).

If x 6L y, this equation simplifies to δ(y) = δ(x) ∨ δ(y) >M δ(x), which shows that δ
is increasing, δ ∈ Incr(L,M). A similar argument shows that erosions are increasing.

We now recall the exercise 2.2 (a) where it was stated that A + B ⊂ C in an
abelian group if and only if A ⊂ C 	 B̌; in other words that δB(A) ⊂ C if and only if
A ⊂ εB̌(C). In a lattice this may be written as δ(x) 6 y iff x 6 ε(y), equivalently as
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epi δ = (hypo ε)−1, where the exponent −1 means that we swap the components: for a
subset A of a Cartesian product X × Y we define A−1 = {(y, x); (x, y) ∈ A} ⊂ Y ×X.
May we use this as a model to define erosions from dilations and conversely in the more
general lattice situation? Indeed this is the case, and we shall now show this.

7.3. Inverses of mappings between lattices
Let L be a complete lattice, M a preordered set, and f : L → M any mapping. We
then define the upper inverse f [−1] : M → L and the lower inverse f[−1] : M → L as
the mappings

(7.4) f [−1](y) =
∧
x∈L

(x; f(x) >M y) =
∧
x∈L

(x; (x, y) ∈ hypo f), y ∈M ;

(7.5) f[−1](y) =
∨
x∈L

(x; f(x) 6M y) =
∨
x∈L

(x; (x, y) ∈ epi f), y ∈M.

As a first observation, let us note that these inverses are always increasing. If there
exists a smallest element 0M , then f [−1](0M) = 0L. Similarly, if M possesses a largest
element 1M , then f[−1](1M) = 1L. If M has the chaotic preorder, then both inverses
are constant, f [−1] = 0L and f[−1] = 1L identically.

If, given a mapping f : L → M , we can find a mapping g : M → L such that
epi g = (hypo f)−1 we would be content to have a kind of inverse to f . However, usually
the best we can do is to study mappings with epi g ⊃ (hypo f)−1 or epih ⊂ (hypo f)−1.
This we shall do in the following proposition, which shows that the upper and lower
inverses are solutions to certain extremal problems.

Proposition 7.1. Let L be a complete lattice, M a preordered set, and let f : L→M ,
g, h : M → L be mappings. If epi g ⊃ (hypo f)−1 ⊃ epih, then g 6 f [−1] 6 h and

epi g ⊃ epi f [−1] ⊃ (hypo f)−1 ⊃ epih.

Hence f [−1] is the largest mapping g such that epi g ⊃ (hypo f)−1. If on the other hand
hypo g ⊂ (epi f)−1 ⊂ hypoh, then g 6 f[−1] 6 h and

hypo g ⊂ (epi f)−1 ⊂ hypo f[−1] ⊂ hypoh.

Hence f[−1] is the smallest mapping h which satisfies hypoh ⊃ (epi f)−1.

The proof is straightforward.

Corollary 7.2. With f , g and h given as in the proposition, assume that epi g =
(hypo f)−1. Then g = f [−1]. Similarly, if hypoh = (epi f)−1, then h = f[−1]. If also
M is a complete lattice, then epi g = (hypo f)−1 implies that g[−1] = f . Similarly,
hypoh = (epi f)−1 implies h[−1] = f .

An ideal inverse g would satisfy g ◦f = IdL, f ◦g = IdM , and the inverse of g would
be f . It is therefore natural to compare f [−1] ◦ f and f[−1] ◦ f with IdL; f ◦ f [−1] and
f ◦ f[−1] with IdM ; and (f[−1])

[−1] and (f [−1])[−1] with f . This is what we shall do now.

Proposition 7.3. If L is a complete lattice and M a preordered set, then for all
mappings f : L→M one has f [−1]◦f 6 IdL 6 f[−1]◦f with equality if f is coincreasing
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as defined in (3.5). Conversely, if f [−1] ◦ f = IdL or f[−1] ◦ f = IdL, then f is
coincreasing.

Proof. It is clear that f [−1](f(a)) =
∧

(x; f(x) > f(a)) 6 a. If f is coincreasing, then
{x; f(x) > f(a)} is contained in {x;x > a}, so that f [−1](f(a)) >

∧
(x;x > a) = a.

Conversely, if f [−1](f(a)) > a, then for all x, f(x) > f(a) implies x > a. If this is
true for all a, then f is coincreasing.

Proposition 7.4. If g, h are increasing mappings such that g ◦ f 6 IdL 6 h ◦ f ,
then g 6 f [−1] and h > f[−1]. Hence, in view of Proposition 7.3, f [−1] is the largest
increasing mapping g such that g◦f 6 IdL, and f[−1] is the smallest increasing mapping
h such that h ◦ f > IdL.

Proof. If g and h are increasing and g ◦ f 6 IdL 6 h ◦ f , then epi g ⊃ (hypo f)−1 and
hypoh ⊃ (epi f)−1. We can now apply Proposition 7.1.

Proposition 7.5. Let L be a complete lattice and M a preordered set. Then f [−1](y) 6
f[−1](y) for all y ∈ imf , and also for all y majorizing or minorizing imf . In particular,
f [−1] 6 f[−1] if f is surjective.

Proof. If y = f(a) ∈ imf , then f[−1](y) =
∨

(x; f(x) 6 y) > a and f [−1](y) =∧
(x′; f(x′) > y) 6 a. If y majorizes all elements in imf , then f[−1](y) = 1, and if y

minorizes all elements in imf , then f [−1](y) = 0.

Proposition 7.6. Let L be a complete lattice and M a preordered set. Then the
following four conditions are equivalent.
(a) f is coincreasing;
(b) f [−1] ◦ f > IdL;
(c) f[−1] ◦ f 6 IdL;
(d) f[−1] 6 f [−1].

Proof. (a) implies (b) and (c). If f is coincreasing we know already from Proposition
7.3 that (b) and (c) hold with equality.

(b) or (c) implies (a). If (b) or (c) holds, then, in view of Proposition 7.3, they hold
with equality, and f is coincreasing.

(a) implies (d). Assume that f is coincreasing and fix an element y ∈ M . Let
x, x′ ∈ L be such that f(x) 6 y 6 f(x′). Then x 6 x′. Letting x vary we see that
f[−1](y) 6 x′. Letting x′ vary, we see that f[−1](y) 6 f [−1](y). Thus (d) holds.

(d) implies (a). If x and x′ are given with f(x) 6 f(x′) we define y = f(x). Then
x 6 f[−1](y) and f [−1](y) 6 x′. If we know that f[−1](y) 6 f [−1](y) it follows that
x 6 x′, proving that f is coincreasing.

Next we compose f[−1] with f in the other order. This will lead to a characterization
of dilations—and, by duality, of erosions.

Theorem 7.7. If L and M are complete lattices and f : L → M any mapping, then
the following five properties are equivalent.
(A) f is a dilation;
(B) epi f ⊃ (hypo f[−1])

−1;



50 7. Lattices

(C) epi f = (hypo f[−1])
−1;

(D) f is increasing and epi f ⊃ (graph f[−1])
−1;

(E) f is increasing and f ◦ f[−1] 6 IdM .

Proof. (A) implies (B). Suppose that (A) holds. Then if (y, x) ∈ hypo f[−1], in other
words if x 6 f[−1](y), we obtain, since f is increasing by hypothesis,

f(x) 6 f(f[−1](y)) = f
(∨

(x; f(x) 6 y)
)

=
∨(

f(x); f(x) 6 y
)

6 y,

which means that (x, y) ∈ epi f . Thus (B) holds.
(B) implies (A). We note first that f is increasing if (B) holds. Indeed, if x 6 x′

and we define y = f(x′), then f[−1](y) = f[−1](f(x′)) > x′ > x (see Proposition 7.3),
which by (B) implies that f(x) 6 y = f(x′).

Let now any family (xj)j of elements of L be given and define z =
∨
f(xj), w =

f(
∨
xj). Since f is increasing we always have z 6 w. Is it true that w 6 z? We note

that, by Proposition 7.3, xj 6 f[−1](f(xj)) 6 f[−1](z). Taking the supremum over all
j we obtain

∨
xj 6 f[−1](z), which by (B) implies that w = f(

∨
xj) 6 z. We have

proved (A).
(B) is equivalent to (C). This is clear since we always have epi f ⊂ (hypo f[−1])

−1.
(B) implies (D). We have just seen that (B) implies that f is increasing. That (B)

implies (graph f[−1])
−1 ⊂ epi f follows from the inclusion graph f[−1] ⊂ hypo f[−1].

(D) implies (B). If x 6 f[−1](y) we define x′ = f[−1](y) and note that x 6 x′ and
that (y, x′) ∈ graph f[−1]. If (D) holds, we conclude that f(x′) 6 y. Hence, if f is
increasing, f(x) 6 f(x′) 6 y, proving (B).

(D) and (E) are equivalent: (E) is just a rewriting of (D).

Remark. We may use (B) to define dilations L→M when M is only a preordered set.

Corollary 7.8. If L and M are complete lattices and f : L → M and g : L → M are
two mappings such that epi f = (hypo g)−1, then f is a dilation and g is an erosion,
and f[−1] = g, g[−1] = f .

Proof. It follows from epi f = (hypo g)−1 that f is increasing and that f[−1] = g, hence
that (D) in the theorem holds. Since (D) is equivalent to (A), we see that f is a
dilation. The rest follows by duality.

Proposition 7.9. If L and M are complete lattices and f : L→M any mapping, then

quite generally
(
f[−1]

)[−1]
6 f 6

(
f [−1]

)
[−1]

. Equality holds at the first place if and only

if f is a dilation; at the second place if and only if f is an erosion.

Proof. We always have epi f ⊂ (hypo f[−1])
−1, i.e., y > f(a) implies f[−1](y) > a. This

yields

(f[−1])
[−1](a) =

∧
(y; f[−1](y) > a) 6

∧
(y; y > f(a)) = f(a).

If f is a dilation, then, as the last theorem shows, epi f = (hypo f[−1])
−1 and equality

follows.
Conversely, let us note that we always have

epi f ⊂
(
hypo f[−1]

)−1 ⊂ epi
(
f[−1]

)[−1]
.
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Now if
(
f[−1]

)[−1]
= f , then these inclusions are equalities, and we conlcude that

epi f = (hypo f[−1])
−1, which according to Theorem 7.7 means that f is a dilation.

Theorem 7.10. If L and M are complete lattices and δ : L → M a dilation, then
δ[−1] : M → L is an erosion. Similarly, if ε : L → M is an erosion, then ε[−1] is a
dilation.

Proof. We know that g = δ[−1] is increasing, so we have g(
∧
yj) 6 g(yk) for all k; hence

g(
∧
yj) 6

∧
g(yk). We need to prove the opposite inequality,

∧
g(yk) 6 g(y), where

y =
∧
yj. This follows from δ(

∧
g(yk)) 6 y. From (E) in Theorem 7.7 we learn that

δ(g(yk)) 6 yk for all k, which implies that δ(
∧
g(yj)) 6 yk, hence that δ(

∧
g(yj)) 6 y

as we wanted. This completes the proof.

Corollary 7.11. For any dilation δ : L→M we have δ◦δ[−1]◦δ = δ and δ[−1]◦δ◦δ[−1] =
δ[−1]. Dually ε ◦ ε[−1] ◦ ε = ε and ε[−1] ◦ ε ◦ ε[−1] = ε[−1] for any erosion ε : L→M . In
particular, δ[−1]◦δ and δ◦δ[−1] are idempotent: δ[−1]◦δ ∈ Filt(L) and δ◦δ[−1] ∈ Filt(M).
The first is a closing in L, the second an opening in M . Also ε[−1] ◦ ε and ε ◦ ε[−1] are
idempotent; the first an opening, the second a closing.

Proof. We always have f[−1] ◦f > IdL (Proposition 7.3); it follows that f[−1] ◦f ◦f[−1] >
f[−1]. If f is increasing, we also get f ◦ f[−1] ◦ f > f .

For dilations we have δ ◦ δ[−1] 6 IdM (Theorem 7.7), from which we deduce that
δ ◦ δ[−1] ◦ δ 6 δ and δ[−1] ◦ δ ◦ δ[−1] 6 δ[−1]. This shows what we want for dilations; the
rest follows by duality.

7.4. Division of mappings between lattices

We shall now generalize the definitions of upper and lower inverses. Let three sets
L,M,N be given, and let us assume that M is a complete lattice and N a preordered
set. (We shall often assume that all three are complete lattices, but this is not necessary
for the definitions to make sense.) Let also two mappings f : L → M and g : L → N
be given. Then we may define two mappings f/?g, f/? g : N →M by

(7.6) (f/?g)(y) =
∧
x∈L

(f(x); g(x) >N y), y ∈ N,

(7.7) (f/? g)(y) =
∨
x∈L

(f(x); g(x) 6N y), y ∈ N.

We shall call them the upper and lower quotient of f and g. The quotients f/?g
and f/? g increase when f increases and they decrease when g increases. Just as with
division of positive numbers,

(7.8) f1 6M f2 and g1 >N g2 implies that f1/
?g1 6M f2/

?g2 and f1/? g1 6M f2/? g2.

The mappings f/?g and f/? g are always increasing. If g(x) >N y, then f(x) >M

(f/?g)(y); if g(x) 6N y, then f(x) 6M (f/? g)(y). In particular, if g(x) = y, then
(f/?g)(y) 6M f(x) 6M (f/? g)(y).
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If we specialize the definitions to the situation when L = M and f = IdL, then
f/?g = IdL/

?g = g[−1] and f/? g = IdL/? g = g[−1]; see (7.4) and (7.5).
On the other hand, if we specialize to the situation where L is an arbitrary subset

of a complete lattice M , N = M , and g is the inclusion mapping L → M , then
f/?g = f � and f/? g = f�; cf. (4.6). If we specialize further, letting also f be the
inclusion mapping, we obtain

(f/?g)(y) = (f/?f)(y) = f�(y) =
∨
x∈L

(x;x 6 y) = y◦ ∈M.

It is easy to verify that y 7→ y◦ is an opening. The elements y such that y◦ = y are
called L-convex. The reason should be clear from the following example.

Example. Le M be the complete lattice [−∞,+∞]E of functions on a vector space E,
let F be a vector subspace of its dual E?, and let L be the set of affine functions with
linear part in F , i.e., functions of the form a(x) = ξ(x) + c for some linear form ξ ∈ F
and some real constant c. Then a function on E is L-convex if and only if it is equal
to the supremum of all its affine minorants belonging to L. By Fenchel’s theorem, this
happens if and only if it is convex in the usual sense, lower semicontinuous for the
topology σ(E,F ) on E generated by the linear forms in F , and not taking the value
−∞ except when it is equal to the constant −∞.

Proposition 7.12. If f : L → M is increasing and g : L → N is coincreasing, then
f/? g 6 f/?g. If f is arbitrary and y ∈ img, then (f/?g)(y) 6 (f/? g)(y). In particular,
if g is surjective and f is arbitrary, then f/?g 6 f/? g.

The upper quotient f/?g is the optimal solution to an inequality:

Proposition 7.13. For all mappings f : L→M and g : L→ N we have

(7.9) (f/?g) ◦ g 6 f 6 (f/? g) ◦ g,

with equality if f is increasing and g is coincreasing. Conversely, if h, k ∈ Incr(N,M)
are two increasing functions such that h ◦ g 6 f 6 k ◦ f , then h 6 f/?g and k > f/? g.
Thus f/?g is the largest increasing function h such that h ◦ g 6 f , and f/? g is the
smallest increasing function k such that f 6 k ◦ g. In the special case L = N and
g = IdL we obtain

f/?IdL 6 f 6 f/? IdL,

where f/?IdL is the largest increasing minorant of f and f? /IdL is the smallest increas-
ing majorant of f ; when f itself is increasing we therefore get equality.

We next compare the quotient f/?g and the composition f ◦ g[−1]:

Proposition 7.14. For all increasing mappings f : L→M and all mappings g : L→
N we have f/?g > f ◦ g[−1] with equality if f is an erosion, and f/? g 6 f ◦ g[−1] with
equality if f is a dilation. If g is coincreasing, then f/? g 6 f ◦ g[−1] 6 f ◦ g[−1] 6 f/?g.

Proposition 7.15. If h ∈ Incr(M,P ), where P is an ordered set, we have h◦ (f/?g) 6
(h◦f)/?g with equality if h is an erosion. Similarly h◦ (f/? g) > (h◦f)/? g with equality
if h is a dilation. A special case is h ◦ (f/?IdL) 6 (h ◦ f)/?IdL (take L = N and
g = IdL). Another special case is Proposition 7.13 (take L = M and f = IdL).
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Proposition 7.16. For all mappings f : L→M we have

(7.10) f/? f 6 IdM 6 f/?f.

Corollary 7.17. For all mappings f : L→M we have

(7.11) (f/? f) ◦ f = f = (f/?f) ◦ f.

Proof. The result follows on combining (7.9), taking g = f , and (7.10), multiplied from
the right by f—or directly from the definitions.

Theorem 7.18. Let f : L → M be any mapping from a set L into a complete lattice
M . Then γ = f/? f : M → M is an opening. Conversely, any opening in M is of this
form for some mapping f : L→M with L = M .

Proof. It is clear that γ(y) =
∨

(f(x); f(x) 6 y) defines a mapping M → M which
is increasing and antiextensive. The latter property implies that γ ◦ γ 6 γ (γ is an
underfilter). It remains to be proved that γ ◦ γ > γ. To do so we note that, by
definition, f(x) 6 y implies f(x) 6 γ(y). Therefore

γ(y) =
∨

(f(x); f(x) 6 y) 6
∨

(f(x); f(x) 6 γ(y)) = γ(γ(y)),

proving that γ 6 γ ◦ γ. Note that, by (7.11), γ ◦ f = f , proving that the image of f is
a subset of Invγ; in other words, all elements f(x) are γ-open.

The last statement follows from the formula γ/? γ = γ, which holds for any opening
γ : M →M and is straightforward to prove. Writing out the formula in full if γ = f/? f ,
we obtain (f/? f)/? (f/? f) = f/? f .

7.5. Exercises

7.1. Consider the following four properties of a mapping f : X → Y between two preordered
sets.
(A) f is increasing: x 6 y ⇒ f(x) 6 f(y);
(B) f is strictly increasing: x < y ⇒ f(x) < f(y), where x < y means that x 6 y and x 6= y;
(C) f is injective: f(x) = f(y)⇒ x = y;
(D) f is coincreasing: f(x) 6 f(y)⇒ x 6 y.
Prove that (B) implies (A); that (A)&(C) implies (B); and that, if X is ordered, (D) implies
(C).
Prove by examples that the implications (B)⇒ (C); (B)&(C)⇒ (D); (D)⇒ (A) do not hold,
not even in lattices and mappings f : X → X.
If we assume (A), we thus have (D) ⇒ (C) and (C) ⇒ (B), but the converse implications do
not hold.

7.2. We know that f[−1] 6 f [−1] if f is coincreasing, i.e., satisfies (D) in the previous exercise.
On the other hand f [−1] 6 f[−1] when f is surjective. Find a lattice X and a function
f : X → X such that f [−1] and f[−1] are not comparable (even with f strictly increasing and
injective, i.e., satisfying (B) and (C) in the previous exercise).

7.3. (a) Formulate and prove the statement dual to Theorem 7.7.
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(b) Formulate and prove the statement dual to Theorem 7.17.

(c) Formulate and prove (at least in some special cases) the statement dual to To be, or not
to be, that is the question.

8. Notions of topology

8.1. Mappings
Let X and Y be two sets and f : X → Y a mapping from X into Y . We denote as
before by P(X) the power set of X, i.e., the set of all subsets of X. We associate with
f a mapping f ∗ : P(Y ) → P(X) and a mapping f∗ : P(X) → P(Y ) defined by the
formulas

(8.1) f ∗(B) = {x ∈ X; f(x) ∈ B} and f∗(A) = {f(x) ∈ Y ; x ∈ A}.

Thus f ∗(B), often denoted by f−1(B), is the preimage (inverse image) of B ⊂ Y and
f∗(A), often denoted by f(A), is the direct image, or just image, of A ⊂ X. It is
however convenient to have a special notation for f∗ : P(X)→ P(Y ), so that it is not
confused with f : X → Y ; similarly f ∗ is not the pointwise inverse of f .

Given three sets X, Y and Z and a mapping f : X → Y , it is customary to define
a mapping f ∗ : ZY → ZX by the formula f ∗(g) = g ◦ f , g ∈ ZY . The mapping
f ∗(g) : X → Z is called the pull-back of g. We thus have two mappings denoted by f ∗,
one mapping ZY into ZX as just defined, and one mapping P(Y ) into P(X) defined by
(8.1). Hopefully this will not cause confusion, since the two definitions are compatible
in a natural way if Z = R: if g ∈ RY is the characteristic function of a set B ⊂ Y ,
g = χB, then f ∗(χB) = χf∗(B), where we use the notation from (8.1) in the right-hand
side.

We note that f ∗ is a homomorphism of Boolean algebras: it satisfies

(8.2) f ∗(B1 ∪B2) = f ∗(B1) ∪ f ∗(B2), f ∗(B1 ∩B2) = f ∗(B1) ∩ f ∗(B2),

(8.3) f ∗(B1 rB2) = f ∗(B1) r f ∗(B2), in particular f ∗
(
{B
)

= {f ∗(B).

The formulas (8.2) can be generalized to infinite unions and intersections, implying
that f ∗ is both a dilation and an erosion. The homomorphism f ∗ is an endomorphism
if and only if f is surjective, and an epimorphism if and only if f is injective.

The mapping f∗ is not so well-behaved: it always satisfies

(8.4) f∗(A1 ∪ A2) = f∗(A1) ∪ f∗(A2) and f∗
(⋃

Aj

)
=
⋃
f∗(Aj);

it is thus a dilation. But for intersections we have only f∗(A1 ∩A2) ⊂ f∗(A1)∩ f∗(A2);
f∗ is in general not an erosion. Also there is in general no inclusion relation between
f∗
(
{A
)

and {f∗(A).
We note that A ⊂ f ∗(B) if and only if f∗(A) ⊂ B, i.e., that (hypo f ∗)−1 = epi f∗.

By Corollary 7.2 this implies that (f ∗)[−1] = f∗ and that (f∗)[−1] = f ∗; f∗ is the dilation
corresponding to the erosion f ∗; see Corollary 7.8. Moreover

f ∗ ◦ f∗ ◦ f ∗ = f ∗ and f∗ ◦ f ∗ ◦ f∗ = f∗.
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It follows that
(
(f ∗)[−1]

)
[−1]

= f ∗ =
(
(f ∗)[−1]

)[−1]
and

(
(f∗)[−1]

)[−1]
= f∗; cf. Proposition

7.9.
Proposition 7.3 shows that

(8.5) f ∗ ◦ f∗ > IdP(X) and f∗ ◦ f ∗ 6 IdP(Y ).

(These formulas can of course also be proved directly.) The first formula means that
f ∗(f∗(A)) ⊃ A; equality holds for all A if and only if f is injective. The second means
that f∗(f

∗(B)) = B ∩ imf ⊂ B; equality holds for all B if and only if f is surjective.
Since f ∗ is also a dilation, Theorem 7.7 implies that f ∗ ◦ (f ∗)[−1] 6 IdP(X). Proposition
7.3 implies that

(f ∗)[−1] ◦ f ∗ > IdP(Y ) and (f∗)
[−1] ◦ f∗ 6 IdP(X).

Finally we note that (f ∗)[−1] = { ◦ f∗ ◦ { = (f∗)
d = ((f ∗)[−1])d. (There seems to be

no analogous formula for (f∗)
[−1].)

We can now pass to mappings on a higher level by taking the upper and lower star
again. There are four mappings on the next level:

(8.6) (f ∗)∗, (f∗)∗ : P(P(X))→ P(P(Y )) and (f∗)
∗, (f ∗)∗ : P(P(Y ))→ P(P(X));

two go in the same direction as f and two in the opposite direction. Of these four, two
will be used to transport topologies, viz. (f ∗)∗ and (f ∗)∗.

8.2. Definition of topologies
A topology on a set X is a collection τ = U(X) of subsets of X—thus an element
of P(P(X))—which is stable under arbitrary unions and finite intersections. The
elements of U(X) are called open sets ; thus any union of open sets is open and any
finite intersection of open sets is open. In particular, the union and the intersection of
the empty family is open, so Ø and X are always open subsets of X.

In a metric space there is a topology defined by the metric: it consists of all unions
of balls B<(c, r).

A topology can be given in several different ways. We define a set as closed if its
complement is open. Then the family F(X) of all closed sets is stable under arbitrary
intersections and finite unions. We may also impose these conditions as axioms, and
then define a set to be open if its complement is closed. A topology can be equivalently
defined using open or closed sets.

Another notion is that of neighborhood. If a topology U(X) is given, we say that a
set V is a neighborhood of a point x if there exists an open set U such that x ∈ U ⊂ V .
The families V(x), x ∈ X, of all neighborhoods of points in X satisfy the following
conditions:

(8.7) If V ∈ V(x), then x ∈ V ;

(8.8) If V ∈ V(x) and W ⊃ V , then W ∈ V(x);

(8.9) If V,W ∈ V(x), then V ∩W ∈ V(x);

(8.10) If V ∈ V(x), then there exists W ∈ V(x) such that V ∈ V(y) for all y ∈ W .
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These properties are easy to verify if the topology is given and the neighborhoods are
defined as above. On the other hand, if we have a collection V(x) for every x ∈ X
satisfying the axioms (8.7)–(8.10) and define a set U to be open if it belongs to V(x)
for every x ∈ U , then we get a topology for which the neighborhoods are the given
ones.

We can also define a topology using closure operators. If a topology is given, then
we can define a closure operator in P(X) by taking A as the intersection of all closed
sets containing A. Then this closure operator satisfies Ø = Ø and A ∪B = A ∪ B.
Conversely, if a closure operator is defined satisfying these two conditions we can define
a set to be closed if A = A; we then get a topology, a topology for which the topological
closure operator is the given one.

Finally, the interior A◦ of a set A is the largest open set contained in the set. It is
related to the closure by the formula

A◦ = {
(
{A
)
.

The operation A 7→ A◦ is antiextensive, increasing, and idempotent. It is thus an
opening in the algebraic sense, which of course means that it is a closure operator if
we reverse the order: A 6 B shall mean A ⊃ B. In addition to being an opening, it
satisfies X◦ = X and (A ∩ B)◦ = A◦ ∩ B◦. Conversely, we may take these properties
as axioms and define a set to be open if it is in the image of the operator. Then we get
a topology and the operation of taking the interior of a set for this topology is equal
to the original operator.

Summing up, we have five equivalent ways to define a topology: using open sets,
closed sets, neighborhoods, taking the topological closure, and taking the interior.

If we have two topologies U1(X) and U2(X) on the same set X we say that the first
is weaker or coarser than the second, and that the second is finer or stronger than
the first, if U1(X) ⊂ U2(X). Expressed in terms of closure operators, this means that
c2 6 c1 if cj denotes the closure operator associated with Uj(X), j = 1, 2. The weakest
topology is the chaotic topology {Ø, X} and the strongest is the discrete topology P(X).
The closure of a nonempty set in the chaotic topology is always the whole space, wheras
the closure of a set in the discrete topology is the set itself.

A two-point space can have four topologies: in addition to the two just mentioned,
they are {Ø, {x}, {x, y}} and {Ø, {y}, {x, y}}. The two latter are called Sierpiński
topologies.20 Of the four, only three are different in the sense that they cannot be
obtained from another one by renaming the points.

8.3. Transport of topologies

If f : X → Y is a mapping from a set X into a topological space Y we can transport
the topology on Y to X by defining a subset of X to be open if and only if it is of the
form f ∗(U) for some open subset U of Y . Because f ∗ is both a dilation and an erosion,
it is clear that the family of all sets

(f ∗)∗(U(Y )) = {f ∗(U); U ∈ U(Y )}

20Wac law Sierpiński, 1882–1969.
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is a topology. Here we have used the notation introduced in (8.1) at the next higher
level: f ∗ : P(Y )→ P(X), (f ∗)∗ : P(P(Y ))→ P(P(X)); see (8.6). For brevity we shall
denote (f ∗)∗(τ) = (f ∗)∗(U(Y )) by f

←
(τ) = f

←
(U(Y )), the pull-back of τ = U(Y ).

If d : P(Y ) → P(Y ) is a closure operator in Y , then d
←

= f ∗ ◦ d ◦ f∗ is a closure
operator in X, and if d satisfies the topological axioms d(Ø) = Ø and d(B1 ∪ B2) =
d(B1) ∪ d(B2), then d

←
does the same. Thus we can transport topological closure

operators from Y to X. One can verify that the transported open sets correspond to
the transported closure operator.

A particularly common case is when X is a subset of Y and f is the inclusion
mapping. Then we say that the topology f

←
(U(Y )) defined on X is the induced

topology. We see that U is open in X if and only if U = V ∩ Y for some open set in Y ;
we also see that the closure operator d

←
in X is defined as d

←
(A) = d(A) ∩X.

If X is a topological space and f : X → Y a mapping of X into a set Y , we can
of course consider the family {f∗(A); A ∈ U(X)} ⊂ P(Y ). However, this family is
usually not a topology on Y , since f∗ is not an erosion. Instead we use again f ∗ and
declare a subset B of Y to be open if f ∗(B) is open in X. And we can verify that this
is indeed a topology on Y ; we shall denote it by

f→(σ) = f→(U(X)) = (f ∗)∗(U(X)) = {B ∈ P(Y ); f ∗(B) ∈ U(X)},

the push-forward of the topology σ = U(X) on X.
A common instance of this definition is when Y is a quotient set of X, i.e., when

we have an equivalence relation ∼ in X and let Y = X/∼ be the set of all equivalence
classes in X with respect to the relation. The mapping f associates to each element in
X its equivalence class in Y . Then a subset B of Y is open in Y with respect to the
topology we have pushed forward from X if and only if the union of all equivalence
classes in B is open in X. The topology obtained in this way on X/∼ is called the
quotient topology.

If f : X → Y is injective, and if we have a topology on X, push it forward to Y and
then pull it back to X, the new topology agrees with the original one: f

←
(f→(U(X))) =

U(X). Similarly, if f is surjective and we start with a topology on Y , pull it back to X
and then push it forward to Y , we obtain the original topology; f→(f

←
(U(Y ))) = U(Y ).

(This works so well because we did not use f∗ but f ∗ in the definition of f→ .)
However, if we have a closure operator c in X, we cannot define a closure operator

in Y by something like c→ = f∗ ◦ c ◦ f ∗.
8.4. Continuous mappings
Let f : X → Y be a mapping of a topological space X into a topological space Y and
let x be a point in X. We say that f is continuous at x if f ∗(V ) is a neighborhood of
x for every neighborhood V of f(x). It is called continuous if it is continuous at every
point in X. We can translate this well-known notion into the language of open sets,
closed sets, and closure operators. We can prove that f is continuous if and only if
f ∗(U) ∈ U(X) for every U ∈ U(Y ); in other words if and only if the topology f

←
(U(Y ))

is weaker than the topology U(X).

8.5. Connectedness
The family of all open and closed sets of a topological space X (sometimes called the
clopen sets) is a Boolean algebra. This algebra must contain the two sets Ø, X, for they
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are always both open and closed. (If X is empty, there is of course only one such set.)
A topological space is said to be connected if it is nonempty and the only sets which are
both open and closed are the empty set and the whole space. A subset of a topological
space is called connected if it is connected as a topological space with the induced
topology.21 A connectivity component (sometimes called a “connected component”) of
a topological space is a connected subset which is maximal with respect to inclusion.

A connected subset which is both open and closed is a component. It is easy to
prove that the closure of a connected subset is connected. Therefore all components
are closed. They need not be open.

Proposition 8.1. Let f : X → Y be a continuous mapping of a topological space X
into a topological space Y . If X is connected, then so is f∗(X) = imf .

Proof. Let B be a clopen subset of imf . Then f ∗(B) is clopen in X. Hence f ∗(B) is
either empty or equal to X. Therefore f∗(f

∗(B)) = B ∩ imf = B is either empty or
equal to imf . This means that imf is connected.

Corollary 8.2. Let f : X → Y be a mapping of a topological space X into a set
Y . Equip Y with the strongest topology such that f is continuous. Suppose that X is
connected. Then imf is connected, and the points in Y rimf are isolated. In particular,
any quotient space of a connected topological space is connected.

Proof. For any point y ∈ Y not in the image of f , the inverse image f−1(y) = f ∗({y}) is
empty, thus both open and closed. This means that Y r imf has the discrete topology
and the connectivity components are just the singleton sets.

Of the four topologies that can live on a space consisting of two points, only three
are connected, and out of these, only two are different in the sense that they cannot
be obtained from another one by renaming.

8.6. Quotient spaces
In particular we shall use Corollary 8.2 with X = R and Y = Z to define connected
topologies on the digital line Z. Let f : R → Z be a surjective mapping. Then Z
equipped with the strongest topology such that f is continuous is a connected topolog-
ical space. Thus we consider Z as a quotient space of R, not as a subspace. Now there
exist very many surjective mappings R → Z. It is not unnatural to restrict attention
to increasing surjections f : R → Z. Then f ∗({n}) is an interval for every integer n;
denote its endpoints by an and bn > an, so that

]an, bn[ ⊂ f ∗({n}) ⊂ [an, bn].

We can normalize the situation to an = n − 1
2
, bn = n + 1

2
; this does not change the

topology on Z. Then f(x) = bx + 1
2
c for all x ∈ R r (Z + 1

2
), and f(n + 1

2
) = n or

f(n + 1
2
) = n + 1 for n ∈ Z. The topology is therefore determined if we know for

which n we have f(n + 1
2
) = n. For every subset A of Z we get a topology on Z by

declaring that f(n+ 1
2
) = n for n ∈ A and that, for all other real numbers x, we have

21According to Bourbaki (1961:I:§11:1) the empty space is connected. Here I follow instead the
advice of Adrien Douady (personal communication, 2000-06-26), declaring the empty set not to be
connected.



8. Notions of topology 59

f(x) = bx + 1
2
c. Thus A describes faithfully all topologies obtained from increasing

surjections—the others are just too many...
This can be explained as follows. It is natural to think of Z as an approximation

of the real line R and to consider mappings f : R → Z expressing this idea. We may
define f(x) to be the integer closest to x; this is well-defined unless x is a half-integer:
f(x) = bx+ 1

2
c when x ∈ Rr (Z+ 1

2
). So when x = n+ 1

2
we have a choice for each n:

shall we define f(n+ 1
2
) = n or f(n+ 1

2
) = n+ 1? If we choose the first alternative for

every n, thus putting f ∗({n}) =
]
n− 1

2
, n+ 1

2

]
, the topology defined in Corollary 8.2

is called the right topology on Z; if we choose the second, we obtain the left topology
on Z; cf. Bourbaki (1961:I:§1: Exerc. 2).

Another choice is to always choose an even integer as the best approximant of a
half-integer. Then the closed interval [−1

2
, 1

2
] is mapped to 0, so {0} is closed, whereas

the inverse image of 1 is the open interval
]

1
2
, 3

2

[
, so that {1} is open. This topology was

introduced by E. D. Halimskĭı (Efim Khalimsky), and we shall call it the Khalimsky
topology ; Z with this topology is called the Khalimsky line. The Khalimsky line is
connected, but the complement of any point is disconnected. Among all the topologies
defined by increasing surjections f : R → Z only two have this property: the one
just defined and the one obtained by translating everything by one step. For the left
topology, for instance, all nonempty subsets are connected.

8.7. Separation axioms

The closure of a subset A of a topological space X will be denoted by A. The intersec-
tion of all neighborhoods of a point x will be denoted by N(x). We note that x ∈ {y}
if and only if y ∈ N(x). The relation x ∈ {y} defines a preorder in X, i.e., a relation
satisfying (3.1) and (3.2) but not necessarily (3.3). We shall denote it by x 4 y; thus
x 4 y if and only if x ∈ {y}. It was introduced by Aleksandrov (1937:503). We shall
call it the specialization preorder ; cf. Kong et al. (1991:905).

A Kolmogorov space (Bourbaki (1961:I:§1: Exerc. 2)), also called a T0-space, is a
topological space such that x ∈ N(y) and y ∈ N(x) only if x = y, thus precisely
when the specialization preorder is an order (satisfies (3.3)). It is quite reasonable to
impose this axiom; if x belongs to the closure of {y} and vice versa, then x and y are
indistinguishable from the point of view of topology, we cannot distinguish points from
knowledge of the open sets to which they belong. We should therefore identify them
and consider a quotient space.

So every topology τ on a set X defines a preorder P (τ) = 4 in X, and this preorder
is an order if and only if τ satisfies Kolmogorov’s axiom.

Conversely, every preorder 4 in a set X defines a topology T (4) on X whose
smallest neighborhoods are

N(x) = {y ∈ X;x 4 y}.

This means that a subset A of X is open if and only if, for all a ∈ A and all y ∈ X,
a 4 y implies y ∈ A.

If we start with a preorder 4, define the topology T (4), and then define the preorder
P (T (4)), then we get back to the original preorder: 4 = P (T (4)); in other words P ◦T
is the identity. However, if we start with a topology τ , construct the preorder P (τ),
then the topology T (P (τ)) defined by that preorder is not equal to τ in general; T ◦P is
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not the identity. However, T (P (τ)) = τ if and only if τ defines a smallest-neighborhood
space as defined in the next section.

The separation axiom T1 states that N(x) = {x}. It is too strong to be of interest
for the spaces considered here. The specialization preorder in this case is the discrete
order: we have x 4 y if and only if x = y.

Two points x and y in a topological space Y are said to be adjacent if x 6= y and
{x, y} is connected. We note that {x, y} is connected if and only if either x ∈ N(y) or
y ∈ N(x).

8.8. Smallest neighborhood spaces

In a topological space the union of any family of open sets is open. It may happen that
also the intersection of any family of open sets is open. Equivalently, every point in the
space possesses a smallest neighborhood. A topological space with this property we
shall call a smallest-neighborhood space. Another suitable name would be a P. S. Aleks-
androv space, in honor of P. S. Aleksandrov,22 who introduced them in (1935, 1937). It
is equivalent to require that the union of an arbitrary family of closed sets be closed.

The intersection N(x) of all neighborhoods of a point x is open for all x if and only
if the space is a smallest-neighborhood space.

Aleksandrov (1935, 1937) introduced the term espace discret, diskreter Raum (dis-
crete space) for a topological space such that the intersection of any family of open
sets is open. The intersection of all closed sets containing a set M he called its Hülle
(hull), and denoted it by M or AM . The intersection of all open sets containing a set
M he called its Stern (star) and denoted it by OM . He noted that the star of a set is
a closure operation satisfying the two extra conditions Ø = Ø and A ∪B = A∪B (see
the discussion in section 3), and therefore defines a topology, which he called réciproque
(1935) or dual (1937). The closed set of a smallest-neighborhood space satisfies the
axioms of the open sets of a topology, so there is a complete symmetry between the
two topologies in such a space.

It is easy to see that a mapping f : X → Y between two smallest-neighborhood
spaces is continuous if and only if it is increasing for the specialization preorder. Thus
continuity in these spaces is actually order theoretic, and the smallest-neighborhood
spaces are actually special cases of preordered sets. This means that the rich theory of
(pre)ordered sets can be put to work here.

Alexandrov’s choice of terms seems fortunate, but nowadays it is not possible to
use the term discrete space in Aleksandrov’s sense, since the discrete topology in mod-
ern usage refers only to the topology where every set is open, the strongest of all
topologies. This is why I propose to call a discrete space in Aleksandrov’s sense a
smallest-neighborhood space or a P. S. Aleksandrov space.

The closed points, i.e., the points x such that {x} = {x}, Aleksandrov called
Eckpunkte (vertices), and the open points, i.e., the points x such that the singleton
{x} is open, he called Grundpunkte (base points).

We can define a topology on the digital line Z by declaring all odd points to be
open, thus N(2k+ 1) = {2k+ 1}, and all even points to have a smallest neighborhood
N(2k) = {2k − 1, 2k, 2k + 1}. It follows that the even points are closed, for the

22Pavel Sergeevič Aleksandrov, 1896–1982; not to be confused with Aleksandr Danilovič Aleks-
androv, 1912–1999.
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complement of an even point 2k is the union of all N(x) with x 6= 2k, thus an open
set. This is the Khalimsky topology already defined in Chapter 8.5. Thus in the
Khalimsky topology the even points are Eckpunkte and the odd points are Grundpunkte
in Aleksandrov’s terminology. In the specialization order, the base points are higher
than the vertices....??

A Khalimsky interval is an interval [a, b] ∩ Z equipped with the topology induced
by the Khalimsky topology on Z. A Khalimsky circle is a quotient space Zm = Z/mZ
of the Khalimsky line for some even integer m > 4. (If m is odd, the quotient space
receives the chaotic topology, which is not interesting.)

The Khalimsky plane is the Cartesian product of two Khalimsky lines, and more
generally, Khalimsky n-space is the Cartesian product of n copies of Z. Equivalently,
we can define Khalimsky n-space by declaring {x ∈ Zn; ‖x − c‖∞ 6 1}to be open for
any point c ∈ (2Z)n and then taking all intersections of such sets as open sets, then all
unions of such intersections.

There are, however, other topologies in Z2 which are of interest: we may declare
{x ∈ Z2; ‖x − c‖1 6 1} to be open for any c such that

∑
cj ∈ 2Z as well as all

intersections of such sets.23 The Khalimsky topology and the topology just defined are
not comparable: none is stronger than the other. However, they are related, for if we
turn the Khalimsky plane 45◦ and delete all points which are not open or closed, we
obtain the new topology.

To exhibit some of the analogies between topological spaces and preordered sets,
let us list some properties of continuous and increasing mappings.

Continuous mappings X → Y between Increasing mappings X → Y between
topological spaces preordered sets

X has the discrete topology ⇒ X has the discrete order ⇒
all mappings are continuous all mappings are increasing

Y has the chaotic topology ⇒ Y has the chaotic preorder ⇒
all mappings are continous all mappings are increasing

X has the chaotic topology and X has the chaotic preorder and
Y has a Kolmogorov topology ⇒ Y is ordered ⇒
only the constants are continuous only the constants are increasing

Y has the discrete topology and Y has the discrete order
X is connected ⇒ and X is connected ⇒
only the constants are continuous only the constants are increasing

8.9. Exercises

8.1. Prove that if f : X → Y is a mapping of a set X into a set Y , then the closing f∗/?f∗

is equal to f∗ ◦ f∗ > IdP(X). Similarly f∗/? f∗ = f∗ ◦ f∗ (an opening; cf. Theorem 7.18).

8.2. Show that if we have a closure operator c in X and a mapping f : X → Y , then we
cannot define a closure operator in Y by something like c→ = f∗ ◦c◦f∗. In general c→ will be

23I found this topology in response to a question asked by Timur Sadykov on February 1, 2000.
However, I found out later that it was defined already by Wyse (1970).
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neither extensive nor idempotent. Construct examples which show this. How shall we define
the closure operator connected with the topology f→(U(X)) on Y ?

8.3. Express the continuity of a mapping f : X → Y from one topological space X into
another, Y , in terms of the families of all closed sets F(X) and F(Y ) as well as in terms of
the closure operators in X and Y .

8.4. We have seen that a two-point space can have four topologies. How many topologies are
there on a three-point space? How many of these are different in the sense that they cannot
be obtained from another one by renaming the points? How many are connected? How many
of these are different?

9. A closer look at the Khalimsky plane

9.1. Continuous functions
In this chapter we shall take a closer look at the Khalimsky plane, and in particu-
lar consider the Jordan curve theorem and Brouwer’s fixed-point theorem in the new
setting. We first explain the meaning of continuity.

We recall that a subset A of Z is open for the Khalimsky topology if and only if, for
every even number 2n ∈ A, also the two odd numbers 2n±1 belong to A. To construct
the Khalimsky plane, we take the Cartesian product of two copies of the Khalimsky
line. The topology is then determined by the rule that a subset A of the Khalimsky
plane is open if and only if, for every pair of even numbers x = (2m, 2n), all pairs y ∈ Z2

with ‖y−x‖∞ 6 1 belong to A, for every pair (2m, 2n+1) ∈ A also (2m±1, 2n+1) ∈ A,
and, finally, for every pair (2m+ 1, 2n) ∈ A, also (2m+ 1, 2n± 1) ∈ A.

A function f : X → Y from one smallest-neighborhood space into another is con-
tinuous at a point x if and only if the direct image of NX(x) is contained in NY (f(x)),
or, equivalently, the inverse image of NY (f(x)) contains NX(x):

(9.1) f∗(NX(x)) ⊂ NY (f(x)), equivalently NX(x) ⊂ f ∗(NY (f(x))).

Here NX(x) and NY (y) denote the smallest neighborhood of x ∈ X and y ∈ Y ,
respectively. If we apply this to the case when X = Y = Z, it means the following. If
x ∈ Z is odd, the property always holds; if x is even and f(x) is odd, it means that
f(x±1) = f(x), and if x is even and also f(x) is even, it means that |f(x±1)−f(x)| 6 1.
In particular, a continuous function is Lip-1, but it must sometimes have intervals of
constancy, viz. every time it takes an odd value at an even point (and hence also when
it takes an even value at an odd point).

We observe that the following functions are continuous: (1) Z 3 x 7→ a ∈ Z, where
a is a constant; (2) Z 3 x 7→ ±x + c ∈ Z, where c is an even constant; (3) max(f, g)
and min(f, g) if f, g are continuous. Actually every continuous function on a bounded
Khalimsky interval can be obtained by a finite succession of the rules (1), (2), (3).
Note that the function x 7→ x+ 1 is discontinuous.

For functions of two variables, f : Z2 → Z, (9.1) means the following. We list the
eight possible parities of the triple (x1, x2, f(x)) ∈ Z3:
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Parity of x1 Parity of x2 Parity of f(x) Condition
Odd Odd Odd None
Odd Odd Even None
Odd Even Odd y1 = x1, |y2 − x2| 6 1⇒ f(y) = f(x)
Odd Even Even y1 = x1, |y2 − x2| 6 1⇒ |f(y)− f(x)| 6 1
Even Odd Odd |y1 − x1| 6 1, y2 = x2 ⇒ f(y) = f(x)
Even Odd Even |y1 − x1| 6 1, y2 = x2 ⇒ |f(y)− f(x)| 6 1
Even Even Odd ‖y − x‖∞ 6 1⇒ f(y) = f(x)
Even Even Even ‖y − x‖∞ 6 1⇒ |f(y)− f(x)| 6 1

This table lists what it means for f to be continuous at a particular point x. However,
the description becomes much simpler if we use the specialization order 4, for then a
continuous function is just an increasing function. We know that, in Z,

· · · 4 −2 < −1 4 0 < 1 4 2 < 3 4 4 < · · ·

In Z2, (0, 0) < (1, 0), (0, 1) < (1, 1) and, in general,

(2m, 2n) < (2m+ 1, 2n), (2m, 2n+ 1) < (2m+ 1, 2n+ 1) for all m,n ∈ Z.

So continuity at x boils down to x 4 y ⇒ f(x) 4 f(y) for all y ∈ Z2; continuity
everywhere to the same implication but now for all x, y ∈ Z2. For example, if both
components of x are odd, the only y which satisfies x 4 y is y = x, so f(x) 4
f(y) holds automatically. If, on the other hand both components of x are even, then
{y;x 4 y} = B6(x, 1) for the l∞ norm, and if f(x) in addition is odd, then f(x) 4 f(y)
holds only for f(y) = f(x), so f must be constant on B6(x, 1).

We note that if x, y ∈ Z and x 4 y, then |x−y| 6 1. Conversely, if |x−y| 6 1, then
either x 4 y or y 4 x. Hence |x− y| 6 1 implies |f(x)− f(y)| 6 1 for any continuous
function f : Z → Z, and we see that f is Lip-1. In two variables we have the same
conclusion. In the proof of this fact we shall need the following notation. For any two
points x, y ∈ Z2 we define q(x, y) = (x1, y2). The four points x, y, q(x, y), q(y, x) thus
form a rectangle (perhaps degenerate); if yj = xj±1, j = 1, 2, they form a square with
side length 1.

Theorem 9.1. A continuous function f : Z2 → Z is Lip-1 for the l∞ norm. More
generally, the conclusion holds for any continuous function f : X → Z, where X is
a connected subset of Z2 such that q(x, y), q(y, x) ∈ X for all x, y ∈ X such that
yj = xj ± 1, j = 1, 2, and we do not have x 4 y, nor y 4 x.

Proof. It is enough to prove that if ‖x− y‖∞ 6 1, then |f(x)− f(y)| 6 1. If x, y ∈ X
with x 4 y, then f(x) 4 f(y), which in turn implies that |f(x)−f(y)| 6 1. Assume now
that ‖x−y‖∞ 6 1 but that we do not have x 4 y, nor y 4 x. Then we have essentially
the case x = (1, 0), y = (0, 1). We have q(y, x) = (0, 0) < x, y < (1, 1) = q(x, y), which
implies that f(0, 0) < f(x), f(y) < f(1, 1). (By hypothesis both (0, 0) and (1, 1) belong
to X.) Hence |f(0, 0)−f(1, 1)| 6 1. Also, |f(0, 0)−f(x)| 6 1 and |f(x)−f(1, 1)| 6 1,
which implies that f(x) = f(0, 0) or f(1, 1). Similarly, f(y) = f(0, 0) or f(y) = f(1, 1).
Therefore |f(x)− f(y)| 6 1.
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This result holds for many subsets X of Z2, but not for all:

Example. Let X = {x ∈ Z2; ‖x‖1 6 1} , the l1 ball in Z2 and define f(x) = x1 − x2.
Then X is connected for the Khalimsky topology and f is continuous, but f is not
Lip-1. We note that q(y, x) = (0, 0) ∈ X but that q(x, y) = (1, 1) /∈ X if we take
x = (1, 0) ∈ X, y = (0, 1) ∈ X. So both q(x, y) and q(y, x) need to be elements of X.

Theorem 9.2. A function f : Z2 → Z is continuous if and only if it is separately
continuous. More generally, the equivalence holds for any function f : X → Z where
X is a subset of Z2 such that one of q(x, y), q(y, x) belongs to X if yj = xj ± 1 and
x 4 y.

Proof. Assume that f is separately continuous and that x 4 y. Then we shall prove
that f(x) 4 f(y). If x1 = y1, then x2 4 y2, and the inequality f(x) 4 f(y) follows
from the separate continuity of the function x2 7→ f(x) for a fixed x1. The conclusion
is similar if x2 = y2; then the continuity of x1 7→ f(x) for a fixed x2 does the job. The
case when x1 6= y1 and x2 6= y2 remains to be considered. Then yj = xj ± 1. One
of the points q(x, y) and q(y, x) belongs to X; let z be one of them that does. Then
clearly x 4 z 4 y, which in view of the separate continuity implies f(x) 4 f(z) and
f(z) 4 f(y), and we are done.

Example. Let X = {0} ∪ {x ∈ Z2; |x1| = |x2| = 1}. This set is connected for the
Khalimsky topology. Every function f : X → Z is separately continuous, but not all of
them are continuous. With x = (0, 0) and y = (1, 1) we see that none of q(x, y) = (0, 1)
and q(y, x) = (1, 0) belongs to X.

Like in real analysis there is an intermediate-value theorem for the Khalimsky line:

Theorem 9.3. Let two continuous functions f, g : I → Z be given on a Khalimsky
interval I = [a, b] ∩ Z. Assume that there are points s, t ∈ I with f(s) > g(s) and
f(t) 6 g(t). Then there exists a point p, intermediate between s and t, such that
f(p) = g(p).

Proof. Without loss of generality we may assume that s 6 t. Define

M = {x ∈ Z; s 6 x 6 t and f(x) > g(x)}.

Clearly s ∈ M , so M is not empty. Let p = maxx∈M x. If p = t, then f(t) = g(t) and
we are done; if not, p + 1 6 t. Then we must have f(p) > g(p), f(p + 1) < g(p + 1).
We claim that f(p) = g(p). If this were not true, we would have f(p) > g(p) + 1,
f(p+ 1) 6 g(p+ 1)− 1. Because of the Lipschitz continuity, the only possibility then
would be f(p) = g(p) + 1 and f(p + 1) = g(p + 1) − 1. But even this situation is
impossible. If p and f(p) are of different parity, then f(p + 1) = f(p), which would
require a jump of two units in g. If on the other hand p and f(p) are of the same
parity, then p and g(p) are of different parity, so that g(p+1) = g(p), requiring a jump
of two units in f . This contradiction leaves us with the only possibility f(p) = g(p).

9.2. A fixed-point theorem
Let us say that a topological space X has the fixed-point property if every continuous
mapping f : X → X possesses a fixed point, i.e., a point p such that f(p) = p. The
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famous Brouwer24 fixed-point theorem states that a closed ball in Rn has the fixed-
point property. This theorem is a deep result when n > 2 but easy to prove if n = 1:
we may take

(9.2) p = sup
x

(x; f(x) > x).

If f : [0, 1] → [0, 1] is a mapping from a compact interval into itself which is in-
creasing for the usual order inherited from the real axis, then it also has a fixed point,
and formula (9.2) again gives a fixed point. This generalizes to complete lattices; if
f : L → L is an increasing mapping of a complete lattice L into itself, then the point
p defined by (9.2) is a fixed point of f . This is Tarski’s fixed point theorem (1955),
exhibiting one of the many analogies between continuous mappings and increasing
mappings. However, a Khalimsky interval of more than two points is not a lattice.

In this section we shall prove that certain subsets of the Khalimsky plane possess the
fixed-point property. Since the Khalimsky line and the Khalimsky plane are ordered
sets and the continuous mappings are precisely the increasing mappings, there are
theorems from the theory of ordered sets that can be applied here; cf. Baclawski &
Björner (1979). However, the proofs presented here are more direct in the context of
digital geometry.

A topological space cannot have the fixed-point property unless it is connected.
Indeed, if U and V are two disjoint nonempty open sets whose union is the whole
space X, then we may define f(x) = b for all x ∈ U and f(x) = a for all x ∈ V , where
a is an arbitrary point in U and b ∈ V . Then all inverse images are open, for they are
either empty, equal to U , equal to V , or equal to X. Thus f is certainly continuous,
but it has no fixed point.

On the other hand, connectedness is by no means sufficient. The mapping f(x) =
−x is continuous in Rn, and in fact in any abelian group with a reasonable topology;
it has no fixed point in X if 0 /∈ X. Any nonempty subset X of such a group with
0 /∈ X and such that x ∈ X implies −x ∈ X will be a space such that some continuous
selfmapping is without fixed point.

In a finite set X with N points there are NN selfmappings X → X. Out of these,
(N − 1)N do not have fixed points; there are thus NN − (N − 1)N mappings which
have a fixed point. The proportion of mappings with a fixed point is 1− (1− 1/N)N ,
which tends to 1 − 1/e (about 63 percent) when N tends to infinity. If we introduce
a topology on X we may ask how many of the NN mappings are continuous. Let us
denote by C the number of continuous mappings. If the space possesses the fixed-point
property the number of mappings of different kinds can then be listed as follows. The
table contains only one unknown, C, the number of continuous mappings.

Continuous Discontinuous Sum

Fixed point C NN − (N − 1)N − C NN − (N − 1)N

No fixed point 0 (N − 1)N (N − 1)N

Sum C NN − C NN

24Luitzen Egbertus Jan Brouwer, 1881–1966.
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We shall now prove that a continuous mapping of an interval into itself has a fixed
point. Later we shall consider subsets of the Khalimsky plane, which we shall attack
using an implicit-function theorem.

Theorem 9.4. Let us define a subset A of the set of all continuous mappings of Z
into itself,

(9.3) A = {f ∈ C(Z,Z);∃s ∈ Z, f(s) > s and ∃t ∈ Z, f(t) 6 t}.

Then f ∈ C(Z,Z) has a fixed point if and only if f ∈ A.

Proof. If f has a fixed point, it is obvious that f belongs to A. The converse is a
special case of the intermediate-value theorem (Theorem 9.3), taking g(x) = x.

Corollary 9.5. Every bounded Khalimsky interval has the fixed-point property.

Proof. Let f : I → I be a continuous mapping, where I = [a, b] ∩ Z is a bounded
interval. Extend f to a mapping g : Z → Z by defining g(x) = f(a) for x < a and
g(x) = f(b) for x > b. Then it is easy to check that g is continuous, and it is obvious
that g belongs to A. Thus it has a fixed point p ∈ Z, but as p ∈ img ⊂ I, p is a fixed
point also of f .

Example. For a Khalimsky interval consisting of two points only, say {a, a+ 1}, there
are four mappings: the two constant mappings, the identity, and the one interchanging
a and a + 1. The first three obviously have a fixed point; the fourth does not. But it
is discontinuous. Thus the statistics looks like this (N = 2, C = 3):

Continuous Discontinuous Sum
Fixed point 3 0 3

No fixed point 0 1 1
Sum 3 1 4

Theorem 9.6. Every bounded Khalimsky rectangle I × J ⊂ Z2 has the fixed-point
property.

We shall prove this result using an implicit-function theorem. In real analysis there is
an implicit-function theorem which says the following. If f is a real-valued function of
class C1 defined in an open subset Ω of R2 with a zero a ∈ Ω, and its derivative with
respect to the first variable, ∂f/∂x1, is non-zero at a, then there is a function g of one
variable defined near a2 such that f(g(x2), x2) = 0 for all x2 near a2. This function
g is also of class C1. One says that the equation f(x1, x2) = 0 defines x1 implicitly
as a function of x2; the equation f(x1, x2) = 0 is equivalent to the explicit formula
x1 = g(x2) near a. The result is local in the sense that we only assert something in a
neighborhood of a.

In the digital plane we have an implicit-function theorem of a similar kind. We
shall solve the implicit equation f(x, y) = x. (In real analysis, this is equivalent to
f(x, y) − x = 0, but the left-hand side f(x, y) − x is not continuous in general in the
digital case even if f is.)
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Theorem 9.7. Let us define an order, and hence a topology, in the space A of mappings
defined by (9.3), by declaring that f 4 g if and only if f(x) 4 g(x) for all x ∈ Z. Let
us also define a mapping F : A→ A by

(9.4) F (g) = max(x ∈ Z; g(x) > x), g ∈ A;

F (g) is thus the largest fixed point of g. The mapping F is continuous.

Lemma 9.8. The mapping F defined by (9.4) satisfies

(9.5) g(x) > x if and only if F (g) > x, x ∈ Z, g ∈ A.

Proof. The implication to the right follows easily from the definition of F . For the
other implication we use the Lip-1 property of g: if g(x) < x, then g(x′) < x′ for all
x′ > x, which implies that F (g) < x.

Proof of Theorem 9.7. We shall prove that f 4 g implies F (f) 4 F (g). Fix two
functions f and g satisfying f 4 g. We consider the two cases F (f) odd, F (f) even.

Case 1. Assume that F (f) is odd. Without loss of generality we may assume that
F (f) = 1, thus that f(1) = 1 and that f(2) = 1 or f(2) = 0. We shall prove that F (g)
is 0, 1, or 2. We write the inequality 0 6 F (g) 6 2 as 0 6 F (g) < 3 and then translate
it using Lemma 9.8 as 0 6 g(0) and g(3) < 3. We know that g(1) < f(1) = 1, which
implies that g(1) > 0 and that g(0) > 0. Hence it only remains to be proved that
g(3) < 3.

Case 1.1. Assume that f(2) = 1. Then f(1) = f(2) = f(3) = 1, so that g(3) <
f(3) = 1 and g(3) 6 2 < 3.

Case 1.2. Assume that f(2) = 0. Then g(2) < f(2) = 0, which implies that
g(2) = 0; by Lipschitz continuity g(3) 6 1 < 3.

Case 2. If F (f) is even, we may assume that F (f) = 0 without loss of generality.
We shall then prove that F (g) = 0. We write this as 0 6 F (g) < 1 and translate it
using Lemma 9.8 as 0 6 g(0) and g(1) < 1. From F (f) = 0 it follows that f(0) = 0
and that f(1) = 0 or f(1) = −1. Since 0 = f(0) 4 g(0), it follows that g(0) = 0. It
remains to be proved that g(1) < 1.

Case 2.1. Assume that f(1) = −1. Then g(1) < f(1) = −1, which implies that
g(1) 6 0 < 1.

Case 2.2. Assume finally that f(1) = 0. Then g(1) < f(1) = 0, so g(1) = 0 < 1.

Corollary 9.9. Let f : I×J → I be a continuous function defined in a rectangle I×J ,
where I and J are Khalimsky intervals, I being bounded. Then

(9.6) h(y) = max
x∈I

(x; f(x, y) > x), y ∈ J,

is continuous in J . The function h satisfies f(h(y), y) = h(y).

Proof. The function h is given by h(y) = F (x 7→ f(x, y)). It depends continuously on
the function x 7→ f(x, y), which in turn is a continuous function of y.

Example. It is natural to ask if the function

h(y) = max
x∈I

(
x; f(x, y) > g(x, y)

)
, y ∈ J,
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is continuous for more general choices of functions f and g. That this is not always so
is shown by the example f(x, y) = y, g(x, y) = min(x, 0). Then h(y) = y if y < 0 and
h(y) = b if y > 0, assuming the interval I to be [a, b] ∩ Z. This yields a discontinuous
function if a 6 −1, b > 1.

Proof of Theorem 9.6 The mapping f has two components f1 and f2. As in (9.6)
we let h(y) denote the largest fixed point of the partial mapping x 7→ f1(x, y) for a
fixed y, h(y) = F (x 7→ f1(x, y)). So f1(h(y), y) = h(y) for all y ∈ J . We then form
the composition k(y) = f2(h(y), y). As a composition of continuous mappings it is
continuous, and by the one-dimensional theorem it possesses a fixed point q, k(q) = q.
Collecting what we have, we see that f1(h(q), q) = h(q) and that k(q) = f2(h(q), q) = q,
which means that we have proved that f(h(q), q) = (f1(h(q), q), f2(h(q), q)) = (h(q), q),
thus that (h(q), q) is a fixed point.

Example. The Khalimsky square {0, 1}2 ⊂ Z2. There are NN = 44 = 256 selfmappings
of {0, 1}2, of which (N − 1)N = 34 = 81 do not have fixed points. The remaining
256 − 81 = 175 have a fixed point. Of the 16 mappings {0, 1}2 → {0, 1}, 6 are
continuous. There are therefore 62 = 36 continuous mappings {0, 1}2 → {0, 1}2, and
we know already that they all have fixed points.

The table of different kinds of mappings therefore looks as follows (N = 4, C = 62).

Continuous Discontinuous Sum
Fixed point 36 139 175

No fixed point 0 81 81
Sum 36 220 256

In this simple case we can of course see directly that all continuous mappings have
a fixed point. Indeed, of the 6 continuous mappings {0, 1}2 → {0, 1}, five map (0, 0)
to 0; the remaining one is the constant 1. Therefore, of the 36 continuous mappings
{0, 1}2 → {0, 1}2, (0, 0) is a fixed point except when one of the components is the
constant 1. Thus they all have a fixed point.

It is easy to generalize the implicit-function theorem and the fixed-point theorem
to somewhat more general sets. We formulate an example of the latter:

Theorem 9.10. Let X be a subset of Z2 defined as

X = {(x, y) ∈ Z× J ;ϕ(y) 6 x 6 ψ(y)},

where J is a bounded Khalimsky interval, and ϕ and ψ two continuous functions defined
on J . Assume that ϕ(y) < ψ(y), y ∈ J . Then X has the fixed-point property.

Proof. Take an interval I = [a, b]∩Z which is so large that ϕ(y), ψ(y) ∈ I for all y ∈ J .
Then extend f : X → X to a mapping g : I × J → I × J by defining g(x, y) = ϕ(y)
when a 6 x < ϕ(y) and g(x, y) = ψ(y) when ψ(y) < x 6 b. Then g is continuous. It
must have a fixed point in I × J according to Theorem 9.5. However, the fixed point
must actually lie in X and be a fixed point of f .

The result on separate continuity (Theorem 9.2) makes it easy to go up in dimension.
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9.3. Jordan curve theorems

There is a Jordan curve theorem in the Khalimsky plane. During the lectures I dis-
cussed this; here [at least in this version of the notes] I just refer to Kiselman (2000)
and the references therein.

9.4. Exercises

9.1. How many continuous selfmappings are there in a Khalimsky interval with three ele-
ments?

9.2. How many continuous selfmappings are there in a Khalimsky interval with four elements
like {0, 1, 2, 3}?
9.3. Prove in detail that there are six continuous mappings {0, 1}2 → {0, 1} and hence that
there are 36 continuous mappings {0, 1}2 → {0, 1}2. Compare with the previous exercise;
both spaces have four elements.

9.4. Try to estimate the number C of continuous mappings I → J between Khalimsky
intervals, and more generally mappings I1 × · · · × Im → J1 × · · · × Jm between boxes in
Khalimsky spaces. Compare with the number of Lip-1 mappings.

10. Digitization
Digital geometry is about geometry in digital spaces—however, we shall not at this
point give a formal definition. Suffice it to say that digital is used here as opposed to
continuous. The space Rn is a space where we do continuous geometry; the space Zn

is an example of a space where we do digital geometry.25

In this section we shall first discuss what a good digitization should mean, and then
study the notion of a digital line.

10.1. What is digitization?

Let X be a set and Z an arbitary subset of X. (Think of X as Rn and Z as Zn if
you want a basic example.) If we want to digitize X we may start with a mapping
f : X → Z and then define the digitization of a set A as f∗(A) = {f(x);x ∈ A}; cf.
(8.1).

However, this approach is too narrow; it is often not possible to start with a point-
wise mapping. Instead, we shall define here a digitization of X into Z as a mapping
F : P(X)→ P(Z) with certain desirable properites. We shall think of F (A) as a digital
representation of A. A very simple such representation is F (A) = A ∩ Z, but it is not
very faithful, since many sets are mapped to the empty set, for example A = X r Z.
(However, it might work for sufficiently fat sets.) One desirable condition is therefore
that F (A) be empty only if A is empty. We also remark that this mapping is not of
the form F = f∗.

We recall that the mappings f∗ are dilations; see (8.5). It seems desirable to require
in general that a digitization F : P(X) → P(Z) shall be a dilation. In particular this

25The word itself comes the Latin digitus, meaning ‘finger, toe’ and being related to the Greek
daktylos with the same meaning. The Greek word is also the origin of the name of a fruit, date. If you
look at dates, not in a box, but growing high up in a palm Phoenix dactylifera, you will appreciate
the similarity—dactylifera means ‘carrying fingers.’ So digital geometry is about counting on fingers
and toes (perhaps implying using a system of base twenty) but if that seems to you not to be sweet
enough, think of counting dates.
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means that it is determined by its images on points, i.e., F (A) =
⋃

x∈A F ({x}). So it is
enough to know the digitization of an arbitrary point in X; however, nothing requires
the F ({x}) to be singleton sets.

The following setup seems to be sufficiently flexible.

Definition 10.1. Let two sets X and Z be given, Z being a subset of X. Let there be
given, for every p ∈ Z, a subset C(p) of X, called the cell with nucleus p. Then the
digitization determined by these cells is defined by

(10.1) F ({x}) = {p ∈ Z;x ∈ C(p)}

and

(10.2) F (A) =
⋃
x∈A

F ({x}) = {p ∈ Z;A meets C(p)}.

We may think of the cell C(p) as a pixel or voxel, and of p as its address. If we
think of C as a mapping C : Z → P(X), then F (A) = C∗(BA), where BA is the family
of all cells which meet A.

It is clear that a digitization in this sense is always a dilation. As already pointed
out, it is desirable that a nonempty set have a nonempty digitization; this is true if
and only if the union of all cells is equal to the whole space X.

If X is an abelian group and Z a subgroup it is desirable that the digitization
commute with translations, which means that C(p) = C(0) + p for all p ∈ Z. Indeed,
if C(p)− p varies too much, it is easy to construct strange examples.

Example. A simple choice is C(p) = {p}. This yields the digitization F (A) = Z ∩ A
already mentioned. If the set is fat, this digitization may work out well. In an abelian
group with a metric we can even fatten the set using a dilation, defining C(p) to be a
ball B6(p, r) of radius r; this yields F (A) = Z ∩ (A+B6(0, r)).

Example. If X = R and Z = Z we may choose C(p) = [p − 1
2
, p + 1

2
]. Then every

set has a nonempty digitization, but the half-integers have a digitization consisting
of two points. If we choose instead C(p) =

]
p− 1

2
, p+ 1

2

[
, then the digitization of

a half-integer is empty. As a compromise we may choose C(p) =
]
p− 1

2
, p+ 1

2

]
; the

digitization of a point is then always a point: F ({x}) =
{
dx− 1

2
e
}
. But then a new

disadvantage appears: this digitization does not commute with the reflection x 7→ −x.

Example. If X = R2 and Z = Z2 we may construct digitizations from what we have
already done on the real axis. We may take

C(p) =
[
p1 − 1

2
, p1 + 1

2

]
×
[
p2 − 1

2
, p2 + 1

2

]
, p ∈ Z2,

and similarly for the open and half-open intervals. Another choice is not to take the
Cartesian product but to define C(0), the cell with nucleus 0, as

(10.3) C(0) =
{
x;x1 = 0 and − 1

2
< x2 6 1

2

}
∪
{
x;−1

2
< x1 6 1

2
and x2 = 0

}
,

and then C(p) as C(0)+p. Thus C(p) is a cross with center at p. This is the digitization
used by Rosenfeld (1974). It is based on the mapping R 3 x 7→ dx − 1

2
e ∈ Z, already
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mentioned, a digitization of R which takes a non-half-integer to the closest integer
and moves down by one half in the case of half-integers. Let us call it the Rosenfeld
digitization of R2.

It is clear that in this case the union of the cells is very small compared with R2, so
that many sets have empty digitization. However, the union of all cells is equal to all
grid lines (R× Z) ∪ (Z×R), so that every straight line has a nonempty digitization.
The same is true of a sufficiently long straight line segment. Thus this digitization can
be used in the study of digital straight lines. Note that the family of all cells is disjoint,
which implies that the digitization of a point is either empty or a singleton set.

The definition as such says nothing about how close a digitization of a point is to
the point. To achieve this we must of course add some requirement that points in the
cell C(p) shall be reasonably close to p. This leads us to the next topic, that of Voronoi
cells.

10.2. Voronoi cells

Let a metric space X be given as well as a subset Z. The metric of X shall be denoted
by d. For a point x ∈ X we view the points in Z close to x as approximations; there
might be a best approximation. Given p ∈ Z we shall give a name to the set of all x for
which this particular p is a (not necessarily unique) best approximation: the Voronoi
cell26 with nucleus a is

Vo(a) = {x ∈ X;∀b ∈ Z, d(x, a) 6 d(x, b)}.

We also define the strict Voronoi cell as

Vos(a) = {x ∈ X;∀b ∈ Z r {a}, d(x, a) < d(x, b)}.

Finally, one might define the very strict Voronoi cell as

Vovs(a) = {x ∈ X; d(x, a) < inf
b∈Zr{a}

d(x, b)}.

It is easy to construct examples where the very strict Voronoi cell is different from the
strict Voronoi cell, but in all applications we are interested in they are equal.

Two different strict Voronoi cells are disjoint. Even more can be said: a (nonstrict)
Voronoi cell is disjoint from every strict Voronoi cell with a different nucleus. The
union of all strict Voronoi cells is almost equal to the whole space X; there is only
some garbage left out: these are the points which have at least two best approximants
in Z. However, since we are mathematicians, we do not have the right to throw away
that garbage; we must be careful and consider both the strict and the nonstrict Voronoi
cells.

We now return to the topic of digitization. It seems reasonable that the digitization
of a point should be contained in the set of all nuclei of Voronoi cells which contain
that point. After all, these nuclei are the best approximants in Z of the point. This
argument leads us to the following definition.

26Named for Georgi Fedoseevič Voronoi (1868–1908)....
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Definition 10.2. Let X be a metric space and Z a subset of X such that Z ∩B<(c, r)
is finite for all c ∈ X and all r ∈ R. A Voronoi digitization of X into Z is a dilation
Dig : P(X)→ P(Z) such that

(10.4) Dig({x}) ⊂ {a ∈ Z;x ∈ Vo(a)}.

Note that if x belongs to some strict Voronoi cell Vos(c), then it can belong to only one
Voronoi cell, viz. the nonstrict cell Vo(c) with the same nucleus, so that the right-hand
side in (10.4) is a singleton set. Hence, Dig(x) is either empty or equal to the singleton
set {c}. But if x belongs to, say, two Voronoi cells, the right-hand side in (10.4) consists
of a set {a, b} with a 6= b, and there is a choice: Dig(x) may be equal to Ø, {a}, {b},
or {a, b}. And if x belongs to m Voronoi cells, the value can be any of 2m subsets of Z.

Thus Dig(x) is either empty or a singleton set whenever x belongs to the union of
all strict Voronoi cells, but in the complement, the value of the function may be a set
with several elements. In some situations we do make a choice and define Dig(x) to
be a singleton set by introducing some new criterion. In fact, we have already done so
when we defined the Khalimsky topology. If X = R and Z = Z, then the Voronoi cells
are the intervals [n− 1

2
, n+ 1

2
] and the strict cells are the open intervals

]
n− 1

2
, n+ 1

2

[
,

n ∈ Z. It is clear the digitization of a real number which is not of the form n + 1
2

is
the empty set or {bx + 1

2
c}. When x = n + 1

2
, we may choose F ({x}) to be Ø, {n},

{n + 1}, or {n, n + 1}. When we defined the Khalimsky topology, we chose {n} for n
even and {n+ 1} for n odd. But this is of course only one of many admissible choices.

Example. We get examples of Voronoi digitizations by taking C(p) = Vo(p) or C(p) =
Vos(p). Sometimes it is possible to choose a cell in between these two so that the space
is covered exactly once by the different cells; an example was already mentioned: if
X = Rn, Z = Zn we may choose C(p) =

∏]
pj − 1

2
, pj + 1

2

]
.

Example. The digitization used by Rosenfeld (1974) is a Voronoi digitization, since
the cell C(p) defined in (10.3) is contained in the Voronoi cell, which is Vo(p) ={
x ∈ R2; ‖x− p‖∞ 6 1

2

}
.

10.3. Digital lines

In R2 we know what a straight line is: it is a set of the form {(1 − t)a + tb; t ∈ R},
where a and b are two distinct points in the plane. And a straight line segment is a
connected subset of that line. We shall consider closed segments of finite length only,
and may then write them as {(1− t)a+ tb; 0 6 t 6 1}, where a and b are the endpoints.
We shall denote this segment by [a, b].

We shall choose Z = Z2 in the discussion that follows. The digitization of a straight
line segment is the image under Dig of [a, b], thus

Dig([a, b]) =
⋃

t∈[0,1]

F ({(1− t)a+ tb}) ⊂ Z2.

Suppose we are dealing with a Voronoi digitization. When x = (1− t)a+ tb belongs
to a strict Voronoi cell, which in this case is Vos(p) = {x; ‖x− p‖∞ < 1

2
}, p ∈ Z2, the

function has the value {(bx1
1
2
c, bx2

1
2
c)}. When x1 is a half-integer, and x2 is not, the
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digitization may be empty or consist of one or two points; when both coordinates are
half-integers, the value may be a set of zero, one, two, three or four points.

In his famous paper (1974), Azriel Rosenfeld defined the digitization as in (10.3).
In particular a point is always mapped to a point. For straight lines with slope less
than 45◦, he considered the intersections of its line segments with the vertical grid lines
only. However, a line segment may intersect a horizontal grid line but no vertical grid
line at all. In this case the cell is just the first segment in the union (10.3), but it does
not matter so much, since the result will be trivially true for empty digitizations and
the digitization is nonempty anyway for sufficiently long line segments.

We shall say with Rosenfeld that a subset A of R2 has the chord property if for all
points a, b ∈ A the segment [a, b] is contained in A+B<(0, 1), the dilation of A by the
open unit ball (or disk or square) for the l∞ metric.

Theorems 10.3 and 10.4 are due to Rosenfeld (1974) and give together a character-
ization of the digitization of a straight line segment. The proof of Theorem 10.4 is new
and is much shorter than the original proof.27

Theorem 10.3. The Rosenfeld digitization of a straight line segment has the chord
property.

Example. Let A be the set consisting of the five points (0, 0), (1, 0), (2, 0), (3, 1), (4, 2).
This set does not have the chord property. Indeed, the point (2, 1) belongs to the
segment [(0, 0), (4, 2)], but it does not belong to the dilated set A+B<(0, 1), although
it does belong to the closed set A+ B6(0, 1). Thus, in view of the theorem, it cannot
be the Rosenfeld digitization of a straight line segment. However, we may define a
Voronoi digitization by declaring the digitization of (0,−1

2
) to be (0, 0), that of (2, 1

2
)

to be (2, 0), and that of (4, 11
2
) to be (4, 2). Then A is the digitization of the straight

line segment [(0,−1
2
), (4, 11

2
)]. This digitization does not commute with translations,

which offers a kind of explanation—of course it should not be allowed to move up by
one half from (0,−1

2
) and (4, 3

2
) and down by one half from (2, 1

2
). Rosenfeld avoided

this by always moving down in the case of half-integers.

Example. Slightly more generally we consider a set A consisting of five or six points
(0, 0), (1, 0), (2, 0), and a = (a1, a2), (a1 − 1, a2 − 1), (a1 − 2, a2 − 2), where a1 > 4,
a2 > 2. (If a = (4, 2) we get the former example.) Then for no choice of a does this
set have the chord property. Indeed, if a2 > 1

2
a1, then the point (2, 2a2/a1), which

is on the segment [(0, 0), (a1, a2)], does not belong to A + B<(0, 1); if on the other
hand a2 6 1

2
a1, then (a1 − 2, (a1 − 2)a2/a1) on the same segment does not belong to

A+B<(0, 1).

Proof of Theorem 10.3. Let L be a straight line and D ⊂ Z2 the digitization of a
segment [a, b] of L. Let p, q be two points in D and r an arbitrary point on the
segment [p, q]. We shall prove that there exists a point d ∈ D such that ‖d− r‖∞ < 1.

First we reduce to the case when the slope of L is between −1 and 1—note that
the whole setup is invariant under permutation of the coordinates. When it is exactly
0 or ±1 the result is easy. When it is strictly between 0 and 1 we consider four cases:
(1) r1 ∈ Z;

27I found it during a refreshing walk in H̊agadalen 2002-05-26.
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(2) r1 /∈ Z with m < r1 < m+ 1 for some m ∈ Z;
(2.1) L is under [p, q] (in a non-strict sense) at m+ 1;
(2.2) L is over [p, q] (in a non strict sense) at m;
(2.3) L is over [p, q] at m+ 1 and under [p, q] at m.

In each of these cases we can find a point d ∈ D with ‖d− r‖∞ < 1. When the slope
is strictly between −1 and 0 things are similar.

In case (1) we take a point s ∈ L with s1 = r1 and |s2−r2| 6 1
2
. Then there is a point

d ∈ D such that d1 = r1 = s1 and |d2−s2| 6 1
2
, so ‖d−r‖∞ 6 ‖d−s‖∞+‖s−r‖∞ 6 1.

But can equality occur here? No. If we analyze the definition of the digitization we
find that

d2 − 1 < s2 − 1
2

6 r2 < s2 + 1
2

6 d2 + 1,

so that actually |d2 − r2| < 1, while |d1 − r1| = 0.
In case (2.1) we have m < r1 < m + 1 and we know that L lies under [p, q] at the

abscissa x1 = m + 1. We choose s1 = d1 = m + 1 and then find a point d ∈ D with
|s2 − r2| 6 1

2
, |s2 − d2| 6 1

2
. More precisely, denoting by r′ the point on [p, q] with

abscissa equal to m + 1, we have d2 > s2 − 1
2

> r′2 − 1 > r2 − 1, for r′2 > r2; and
d2 6 s2 + 1

2
6 r′2 + 1

2
< r2 + 1, for s2 6 r′2 and the slope of L is strictly less than one

half. This shows that |d2 − r2| < 1; we also know that |d1 − r1| < 1. Case (2.2) is
similar to (2.1).

In case (2.3) we let s′ be the intersection of L with the vertical line x1 = m and
let s′′ be the intersection of L with the line x1 = m + 1. Thus s′, s′′ ∈ L and s′1 = m,
s′′1 = m+1. If L passes over [p, q] at r we take d ∈ D with d1 = m = s′1 and |s′2−d2| 6 1

2
.

Then d2 > s′2− 1
2
> r2−1 and d2 6 s′2 + 1

2
< r2 + 1

2
, so that |d2−s′2| < 1 and d2 = s′2. If

on the other hand L is under [p, q] at r, then we take d ∈ D with d1 = m+ 1 = s′′2 and
|s′′2 − d2| 6 1

2
. Then d2 6 s′′2 + 1

2
< r2 + 1 and d2 > s′′2 − 1

2
> r2− 1 so that |d2− s′′2| < 1

and d1 = s′′1. The theorem is now completely proved.

To prove a converse we shall need the concept of digital arc, or Khalimsky arc. This
is a continuous mapping from a finite Khalimsky interval into the Khalimsky plane Z2.
By abuse of language we shall call also the image of such a mapping a digital arc. It is
thus a finite subset {p1, ..., pm} of Z2 such that pj has exactly two adjacent points pj−1

and pj+1 for j = 2, ...,m− 1, while p1 has only one adjacent point p2, and pm only one
adjacent point pm−1; two points x and y are called adjacent if ‖x− y‖∞ = 1.

Theorem 10.4. If a digital arc D in Z2 has the chord property, then it is the Rosenfeld
digitization of some straight line segment in R2.

Lemma 10.5. Denote by πj : Z2 → Z the projection (x1, x2) 7→ xj, j = 1, 2. If a digital
arc D has the chord property, then one of the restrictions πj

∣∣
D

: D → Z, j = 1, 2, is
injective.

Proof. Assume that D is a digital arc and that, contrary to hypothesis, there are two
pairs of points a, a′ and b, b′ in D such that a1 = a′1, a2 < a′2 and b2 = b′2, b1 < b′1. Then
it is not difficult to see that D cannot have the chord property....

Proof of Theorem 10.4. Let D be a digital arc with the chord property. In view of the
lemma and the symmetry of the digitization procedure, we may assume that there are
no pairs of points a, a′ in D with a1 = a′1, a2 6= a′2. Given three real numbers α, β, γ
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we define a strip in the plane by

S(α, β, γ) = {x ∈ R2;αx1 + β 6 x2 6 αx1 + γ}.

Let us define the height of the strip as γ − β. The boundary ∂S(α, β, γ) of the strip
has two components, given by the stright lines x2 = αx1 + β and x2 = αx1 + γ. A set
D of integer points is a subset of the digitization of a straight line segment if and only
if D is contained in a strip of height strictly less than 1.

For every given α there is a smallest strip S(α, β, γ) containing D. Moreover,
varying also α, there is a strip S0 = S(α0, β0, γ0) of smallest height. If D consists of
only one or two points, the conclusion follows easily, so let us assume that D has at
least three points. Clearly there must be at least one point of D in each component of
the boundary of S0; otherwise we could increase β or decrease γ to obtain a narrower
strip. And one of these lines must contain a second point of D; otherwise we could
rotate the line slightly to obtain a strip of smaller height. For definiteness we shall
assume that the three points on the boundary of the strip are p, s, q with p1 < s1 < q1
and where p and q are on the lower boundary and s on the upper boundary. Let r
be the point on [p, q] with abscissa equal to that of s. (We note that p, s, q belong to
Z2, while r need not do so.) If D is not a subset of the digitization of a straight line,
then the height of this smallest strip is at least 1, so that s2 > r2 + 1, showing that r
does not belong to s+B<(0, 1). To see that D does not satisfy the chord property we
must however show that there is no d ∈ D such that r ∈ d+ B<(0, 1). So far we only
know that r does not belong to s+B<(0, 1). However, s is the only point in D on the
vertical line x1 = s1 and all other points d ∈ D satisfy |d1− r1| = |d1− s1| > 1, so that
‖r − d‖∞ > |r1 − d1| > 1. Therefore D does not satisfy the chord property.

We have thus proved that a digital arc D having the chord property is a subset of
the digitization of some straight line L. However, since D is a digital arc, D must be
connected. It is therefore the digitization of a connected subset of L. Obviously this
subset can be taken to be compact, i.e., a straight line segment.

Generalize to other Voronoi digitizations....
Generalize to digitizations of convex sets....

10.4. Exercises

10.1. Let X = R2, Z = {(0, 0), (a1, a2)} and determine the Voronoi cells
(a) when the metric is the Euclidean metric l2 determined by the norm ‖ · ‖2;
(b) when the metric is the l∞ metric;
(c) when the metric is the l1 metric.

10.2. Determine the Voronoi cells when Z ⊂ C is the set of all complex numbers m + nω,
m,n ∈ Z, where ω = 1

2 + i
2

√
3 and we use the l2 metric. What about other metrics?
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