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Abstract Meshfree methods based on radial basis function (RBF) approximation are of
interest for numerical solution of partial differential equations (PDEs) because they are flex-
ible with respect to geometry, they can provide high order convergence, they allow for local
refinement, and they are easy to implement in higher dimensions. For global RBF methods,
one of the major disadvantages is the computational cost associated with the dense linear
systems that arise. Therefore, research is currently directed towards localized RBF approxi-
mations such as the RBF partition of unity collocation method (RBF–PUM) proposed here.
The objective of this paper is to establish that RBF–PUM is viable for parabolic PDEs of
convection-diffusion type. The stability and accuracy of RBF-PUM is investigated partly
theoretically and partly numerically. Numerical experiments show that high-order algebraic
convergence can be achieved for convection-diffusion problems. Numerical comparisons
with finite difference and pseudospectral methods have beenperformed, showing that RBF–
PUM is competitive with respect to accuracy, and in some cases also with respect to compu-
tational time. As an application, RBF–PUM is employed for a two-dimensional American
option pricing problem. It is shown that using a node layout that captures the solution fea-
tures improves the accuracy significantly compared with a uniform node distribution.
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1 Introduction

Convection-diffusion equations are ubiquitous in physicsand chemistry as models for flow
problems or heat transfer, but they also arise in other non-physical application fields. The so-
lution of a convection-diffusion problem can be interpreted as the probability distribution of
one or more underlying stochastic processes. This is the view taken in financial applications
where convection-diffusion problems therefore are abundant.

There are two main classes of financial problems in this category. The first problem
class is valuation of financial derivatives such as options.Assuming that the underlying asset
prices are modeled by Brownian motion together with a (positive) drift under a no arbitrage
assumption leads to the original Black–Scholes equation [6]. In the one-dimensional case,
with one underlying asset, this problem has a closed form solution. However, for several un-
derlying assets the corresponding partial differential equation (PDE) is a high-dimensional
generalization [8,23] of the Black–Scholes equation, which needs to be solved by numerical
methods. This is the test case that we will consider in this paper. However, more advanced
valuation models involve jump diffusion in the asset price processes [29,22,7] or jumps in
the (stochastic) volatility of the assets [5]. This leads topartial integro-differential equations
or fractional PDEs instead of PDEs, which require special numerical treatment.

The second problem class is calibration or parameter inference, where appropriate prob-
lem parameters describing drift and diffusion are sought from observed market data. Given
one market observation, the forward Kolmogorov equation (of convection-diffusion type)
describes the transition probability density for the next observation (in time) under a given
model. The forward Kolmogorov equation needs to be solved many times for each observa-
tion with different model parameters. These solutions formthe basis for, e.g., a maximum
likelihood estimate of the model parameters [9].

Meshfree methods based on radial basis functions (RBFs) areof general interest for
solving PDEs because they can provide high-order or spectral convergence for smooth solu-
tions in complex geometries. In finance, geometries are mostly of hypercube type, meaning
that ordinary spectral methods would easily apply. However, it has been shown in [33] that
for some types of options, solving the pricing problems on a simplex domain instead of
a hypercube leads to significant savings in computational time. If a (quasi) uniform node
distribution is used, the number of unknowns is reduced by a factor ofd! in d dimensions.
Furthermore, another important advantage of meshfree methods is that adaptive refinement
can be applied locally without the necessity of preserving the integrity of an underlying grid.
Typically, in valuation problems, the features of the solution are located in the vicinity of a
lower dimensional manifold determined by the contract function of the financial derivative.
Similarly for the Kolmogorov problems, the probability density is concentrated to certain
regions. Finally, RBF-based methods are easy to implement in any number of dimensions
as the only geometrical information they use is pairwise distances between node points.

In [10,33,4], meshfree methods based on RBF approximation have been shown to per-
form better than finite difference methods for option pricing problems in one and two spatial
dimensions. Similar problems have also been solved in [44,17]. Forward Kolmogorov prob-
lems have been solved in [2,3] with promising results. However, all of these papers employ
global RBF collocation methods, leading to dense linear systems, and computational costs
that become prohibitive as the number of dimensions increase [25]. This problem is partly
addressed in [4] where a tensor product formulation is exploited. However, a tensor product
approach also limits the opportunity for local adaptivity.

In a partition of unity (PU) scheme, local approximations onoverlapping patches that
form a cover of the computational domain are weighted together by compactly supported
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partition of unity weight functions to form the global approximation. The convergence prop-
erties of the local approximations can be leveraged, while local couplings between approxi-
mations on different patches are enforced through the PU framework. When RBFs are used
locally instead of globally, the computational cost is reduced because the previously dense
linear systems then become sparse at the patch level.

PU schemes have been used for interpolation since around 1960 [38,28,15], and more
recently, they have also been combined with RBFs in [42] and [11]. PU methods for solving
PDEs were introduced and analyzed by Babuška and Melenk [1] in the late 1990’s. In the
forthcoming paper [26] by Larsson and Heryudono, an RBF-based PU collocation method
(RBF–PUM) is introduced for elliptic (time-independent) PDEs. High order algebraic or
spectral convergence rates, depending on the type of refinement, are predicted theoretically
and confirmed by numerical experiments.

In this paper, we investigate the capability of RBF–PUM for numerical solution of
parabolic (time-dependent) PDEs. We will show that the method is viable through analy-
sis and numerical experiments, and compare the results withthose of other methods. How-
ever, strategies for automatic adaptive node refinement arenot pursued here, but left for
future work. As a general test problem, we use the two-dimensional convection-diffusion
equation, and as a specific test problem in finance, we consider a multi-asset American put
option pricing problem.

2 Radial basis function collocation schemes

RBF methods are meshfree and work with data given at scattered node points. GivenN
distinct pointsx1, . . . ,xN ∈ R

d and corresponding scalar function valuesu(x1), . . . ,u(xN),
the standard RBF interpolation problem is to find an interpolant of the form

s(x) =
N

∑
j=1

λ jφ(‖x− x j‖), (2.1)

where‖ · ‖ is the Euclidean norm,λ j ∈ R for j = 1, . . . ,N, andφ is a real-valued function

such as the inverse multiquadricφ(r) = 1√
ε2r2+1

or the Gaussianφ(r) = e−ε2r2
. The param-

eterε is called a shape parameter and governs the flatness of the RBFs. It has a significant
effect on the accuracy of the RBF approximation. The coefficientsλ1, . . . ,λN are determined
by enforcing the conditionss(xi) = u(xi), i = 1, . . . ,N. Imposing these conditions leads to a
symmetric linear system of equations

Aλ = u, (2.2)

whereAi j = φ(‖xi −x j‖), i, j = 1, . . . ,N, u = [u(x1) . . .u(xN)]
T , andλ = [λ1 . . .λN ]

T . When
λ is known, we can with this notation evaluate the RBF interpolant at a pointx as

s(x) = φ̄(x)λ , (2.3)

whereφ̄(x) = [φ(‖x− x1‖), . . . ,φ(‖x− xN‖)].
In the following derivations, we have chosen to express the interpolant in Lagrange

form, using cardinal basis functions. The cardinal basis functions,ψ j(x), j = 1, . . . ,N, have
the property

ψ j(xi) =

{

1 if i = j,
0 if i 6= j,

j = 1, . . . ,N, (2.4)
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leading to the alternative formulation for the interpolant

s(x) = ψ̄(x)u, (2.5)

whereψ̄(x) = [ψ1(x), . . . ,ψN(x)]. Combining (2.3), (2.5), and (2.2) leads to the following
relation between the cardinal basis and the original radialbasis:

s(x) = ψ̄(x)u = φ̄(x)λ = φ̄(x)A−1u ⇒ ψ̄(x) = φ̄A−1. (2.6)

This transformation is valid wheneverA is non-singular. This holds for distinct node points
x1, . . . ,xN and commonly used RBFs such as Gaussians, inverse multiquadrics and multi-
quadrics.

For a linear operatorL , we have

L s(x) =
N

∑
j=1

L ψ j(x)u(x j). (2.7)

To evaluateL s(x) at the node points, i.e., to evaluatesL = [L s(x1), . . . ,L s(xN)]
T , we

need the differentiation matrixΨL = [L ψ j(xi)]i, j=1,...,N . Using relation (2.6), this leads to

sL =ΨL u = ΦL A−1u, (2.8)

whereΦL = [L φ(‖x− x j‖)|x=xi ]i, j=1,...,N .
When the Lagrangian form of the RBF interpolation method is used in the context of

solving a time-dependent PDE problem, the solutionu(x, t) is approximated by

s(x, t) =
N

∑
j=1

ψ j(x)u j(t), (2.9)

whereu j(t)≈ u(x j, t) are the unknown functions to determine.

3 The radial basis function based PUM

This section defines the RBF–PUM collocation method for time-dependent PDEs in terms
of its weight functions and local RBF approximations.

3.1 The partition of unity weight functions

Let Ω ⊂ R
d be an open set, and let{Ωi}M

i=1 be an open cover ofΩ satisfying a pointwise
overlap condition and that

∀x ∈ Ω I(x) = { j|x ∈ Ω j}, card(I(x))≤ K, (3.1)

where the constantK is independent of the number of patchesM. In the RBF–PUM, the
global approximation functions(x) in Ω to the solution functionu(x) is constructed as

s(x) =
M

∑
j=1

w j(x)s j(x), (3.2)
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wheres j is an RBF approximation ofu(x) on patchΩ j andw j : Ω j → R are compactly
supported, non-negative weight functions subordinate to the cover. The partition of unity
weight functionsw j, which also occur under the nameshape functions, are constructed
using Shepard’s method

w j(x) =
ϕ j(x)

∑k∈I(x) ϕk(x)
, j = 1, . . . ,M, (3.3)

whereϕ j(x) are compactly supported functions with support onΩ j. Here, we select com-
pactly supported Wendland functions [41] such as

ϕ(r) =
{

(1− r)4(4r+1) if 0 ≤ r ≤ 1,
0 if r > 1,

(3.4)

for the construction of the weight functions. Let{X j}M
j=1 be the center points, and{R j}M

j=1
be the radii of the circular, spherical, or hyper-sphericalpatchesΩ j, j = 1, . . . ,M. Non-
negativity and compact support are guaranteed if the weightfunctions are generated using

ϕ j(x) = ϕ
(‖x−X j‖

R j

)

, j = 1, . . . ,M. (3.5)

It follows from (3.3) that the weight functionsw j(x) satisfy the partition of unity property

∑
j∈I(x)

w j(x) = 1. (3.6)

Moreover, the equations (3.4)-(3.5) show thatw j(x)=0, ∀ j /∈ I(x). Therefore, equation (3.2)
can be rewritten as

s(x) = ∑
j∈I(x)

w j(x)s j(x). (3.7)

If the functionss j(x), j = 1, . . . ,M from equation (3.7) are local interpolants withs j(xi) =
u(xi) for each node pointxi ∈ Ω j, then the global PU approximant inherits the interpolation
property of the local interpolants, i.e.

s(xi) = ∑
j∈I(xi)

w j(xi)s j(xi) = u(xi) ∑
j∈I(xi)

w j(xi) = u(xi). (3.8)

The patches can be of any (regular enough) geometrical shapesuch as squares, cubes, cir-
cles, and spheres. The common requirement for all shapes of patches is that they cover the
domain and the boundary. In this paper, circular and elliptic patches will be employed. In the
case of elliptic patches, the functions used for generatingthe weight functions are modified
to have support on an ellipse instead of a circle. Exactly howthis is done is described in
Section 7.1.

When we use these types of patches, the overlap between patches can be regulated,
and covering ensured, by adjusting the radius of the patches. Flexibility in selection of the
radius of the patches is another advantage of the local properties of the PUM. Figures 4
and 16 demonstrate the discretization of a square domain with circular and elliptic patches.
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3.2 RBF–PUM for time-dependent problems

In RBF–PUM, the solutionu(x, t) for a time-dependent problem is approximated by

s(x, t) = ∑
j∈I(x)

w j(x)s j(x, t), (3.9)

wheres j(x, t) is an RBF approximant of the type (2.9) onΩ j, i.e.

s j(x, t) = ∑
k∈J(Ω j)

ψk(x)uk(t), (3.10)

whereJ(Ω j) = {k|xk ∈ Ω j} is the set of node points inΩ j. Combining (3.9) and (3.10), we
can express the global approximant as

s(x, t) = ∑
j∈I(x)

w j(x) ∑
k∈J(Ω j)

ψk(x)uk(t) = ∑
j∈I(x)

∑
k∈J(Ω j)

(

w j(x)ψk(x)
)

uk(t), (3.11)

Note that by interpolating the initial condition we gets(xk,0)= u(xk,0) for all k, buts(xk, t)≈
u(xk, t) for t > 0.

3.3 Differentiating the RBF–PUM approximant

In order to use the RBF–PU approximation (3.11) for a PDE problem, we need to compute
the effect of applying a spatial differential operatorL at the interior node points. Letα and
β be multi-indices and adopt common rules for multi-index notation. Then, using Leibniz’
rule, a derivative term of orderα in the differential operator can be applied to the global
approximation (3.11) as

∂ |α |

∂xα s(x, t) = ∑
j∈I(x)

∑
k∈J(Ω j)

∂ |α |

∂xα (w j(x)ψk(x))uk(t)

= ∑
j∈I(x)

∑
k∈J(Ω j)

(

∑
β≤α

(

α
β

)

∂ |α−β |w j

∂xα−β (x)
∂ |β |ψk

∂xβ (x)

)

uk(t), (3.12)

Fixing x = xi andk in equation (3.12) gives us theik-element of the global differentiation
matrix corresponding to theα-derivative. For composite linear operators, we sum up the
contributions from each term. We denote the global differentiation matrix under operatorL
by WL .

3.4 Computational cost for RBF–PUM

In all linear time-dependent PDE test cases we provide here,the two main parts of the com-
putational cost for RBF–PUM are the cost to form and assembleRBF-PUM differentiation
matrices and the cost for matrix–vector multiplications toadvance solutions in time. De-
pending on the type of solver, this may be a matrix–vector multiplication for an explicit
time step, as part of an iterative solver, or solving the factorized linear system in an implicit
method, all with the same order of cost.
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GivenM patches, each withnloc local nodes, the cost to form and assemble differenti-
ation matrices isO(Mn3

loc), where then3
loc factor comes from the factorization of the local

interpolation matrices, see equations (2.8) and (3.12). This process is embarrassingly par-
allel in terms of the patches. For the time-stepping process, the sparsity of the resulting
differentiation matrix operators results in a costO(Mn2

loc) for the matrix–vector multiplica-
tion. This operation is also embarrassingly parallel.

Moreover, if we are given a global unstructured set ofN node points initially, we need to
determine which nodes fall into which patch. A direct computation of the distance between
each node points and the center points of the patches comes with a costO(MN). This may
become expensive for large node sets. If theN node points are instead organized with a
suitable data structure (e.g. ak-d tree), the cost of associating nodes with patches becomes
O(Mnloc logN).

3.5 Characterizing the RBF–PUM approximation

When we later discuss the approximation errors of RBF-PUM, we will do it terms of two
levels of discretization parameters. LetΩ̃ j = Ω j ∩Ω . At the node level, we define the local
fill distance

h j = sup
x∈Ω̃ j

min
k∈J(Ω j)

‖x− xk‖, (3.13)

which can be explained as measuring the radius of the largestball empty of nodes in the part
of patch j that falls withinΩ . We also define the global fill distance

h = max
1≤ j≤M

h j. (3.14)

At the patch level, we define the patch diameterH j and the patch fill distance

H = sup
x∈Ω

min
1≤ j≤M

‖x−X j‖, (3.15)

which similarly measures how densely the patch centersX j cover the domain. For uniform
discretizations,h is proportional to the node distance andH to the patch size.

Furthermore, to discuss results, the chosen type of RBF and its shape parameterε (see
equation (2.1)) needs to be stated. The shape parameter can influence both the approximation
accuracy and the conditioning of the linear systems that arise. If not otherwise declared,ε is
assumed to be the same for all basis functions, but it can alsobe varied according to location.

4 The unsteady convection-diffusion equation

Consider an unsteady convection-diffusion equation of theform

∂u(x, t)
∂ t

= κ∆u(x, t)+ v ·∇u(x, t)≡ L u(x, t), x ∈ Ω ⊂ R
d , t > 0, (4.1)

whereκ is the diffusion coefficient,v is a constant velocity vector, andu(x, t) may repre-
sent concentration or temperature for mass or heat transfer, respectively. This equation also
serves as a simplified model problem for the Black–Scholes equation and other equations in
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financial mathematics. The equation (4.1) must be supplemented with an initial condition of
the form

u(x,0) = f0(x), (4.2)

and boundary conditions

Bu(x, t) = f (x, t), x ∈ ∂Ω , t > 0, (4.3)

whereB can be a Dirichlet, a Neumann or a mixed boundary operator. Inthe case of Dirich-
let boundary conditions, if we use equation (3.12) for the differentiation matrices, and col-
locate the PDE (4.1) at the interior node points, we get the system of ODEs

S′(t) =
(

κW∆ ,I + v ·W∇,I
)

S(t)+
(

κW∆ ,b + v ·W∇,b
)

F(t), (4.4)

whereW·,I contains the columns of the differentiation matrix corresponding to interior nodes
andW·,b contains the columns of the differentiation matrix corresponding to the boundary
nodes. The vectorS(t) = [u1(t), . . . ,uNI (t)]

T contains the unknown functions at the interior
node points and the vectorF(t) = [ f (xNI+1, t), . . . , f (xN , t)]T contains the known boundary
values. The matricesW∇,· are vector valued and the dot product with the velocityv should
be taken for each node point.

The system of ODEs in equation (4.4) can be solved in MATLAB for example with the
ODE solver commandode15s, which is suitable for stiff ODEs, or with any other common
time stepping method.

4.1 Error estimate

In the calculation of an upper bound for the semidiscrete error, we need the following three
functions: the exact solutionu(x, t), the RBF approximations(x, t) from (3.11), and the
auxiliary functionz(x, t), which interpolates the exact solution at each time

z(x, t) = ∑
j∈I(x)

∑
k∈J(Ω j)

(w j(x)ψk(x))u(xk, t). (4.5)

The initial conditions for all three functions coincide at the collocation points. That is,

s(xi,0) = z(xi,0) = u(xi,0), 1≤ i ≤ NI . (4.6)

We define the error functione(x, t) = u(x, t)−s(x, t) and the interpolation errorE (x, t) =
u(x, t)− z(x, t). We will derive an estimate for the semidiscrete error. Therefore, we de-
fine the vectorsE(t) = [e(x1, t), . . . ,e(xNI , t)]

T andEL (t) = [L E (x1, t), . . . ,L E (xNI , t)]
T ,

as well asU(t) = [u(x1, t), . . . ,u(xNI , t)]
T andZ(t) = [z(x1, t), . . . ,z(xNI , t)]

T . We also define
the discrete spatial operatorQ = κW∆ ,I + v ·W∇,I and the associated matrix multiplying the
boundary points,B = κW∆ ,b + v ·W∇,b. For the error function evaluated at the collocation
points we have

E ′(t) =U ′(t)−S′(t)

= LU(t)− (QS(t)+BF(t))

= L Z(t)− (QS(t)+BF(t))+LU(t)−L Z(t)

= Q(Z(t)−S(t))+L (U(t)−Z(t))

= QE(t)+EL (t), (4.7)
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where we have used the fact thatZ(t) = U(t) because of the evaluation at the node points,
and that bothZ(t) andS(t) are PU approximations of the forms (4.5) and (3.11). The system
of ODEs (4.7) can be formally integrated to yield

E(t) =
∫ t

0
eQ(t−τ)

EL (τ)dτ. (4.8)

A simple worst case estimate for the semidiscrete error becomes

‖E(t)‖∞ =

∥

∥

∥

∥

∫ t

0
eQ(t−τ)

EL (τ)dτ
∥

∥

∥

∥

∞
≤
∥

∥

∥

∥

∫ t

0
eQ(t−τ)dτ

∥

∥

∥

∥

∞
max

0≤τ≤t
‖EL (τ)‖∞. (4.9)

If we then assume thatQ can be diagonalized with eigenvector matrixV and (diagonal)
eigenvalue matrixΛ , and useeQt =VeΛ tV−1 together with

∫

eΛ t dt = Λ−1eΛ t , we can eval-
uate the norm of the integral to

EQ ≡
∥

∥

∥

∥

∫ t

0
eQ(t−τ)dτ

∥

∥

∥

∥

∞
=
∥

∥

∥
−VΛ−1(I − eΛ t)V−1

∥

∥

∥

∞
=
∥

∥Q−1(eQt − I)
∥

∥

∞ . (4.10)

Combining (4.9) and (4.10) we get the estimate

‖E(t)‖∞ = EQ max
0≤τ≤t

‖EL (τ)‖∞. (4.11)

In order to understand the behavior ofEQ over time, we will investigate its asymptotic
behavior. For small enought, we can Taylor expand the matrix exponential aseQt = I +

tQ+ t2

2 Q2+O(t3Q3), which leads to

Q−1(eQt − I) = t +
t2

2
Q+O(t3Q2).

For large enough values oft, we instead use the form

Q−1(eQt − I) =VΛ−1(eΛ t − I)V−1. (4.12)

Numerical experiments indicate that all eigenvalues have anegative real part. In this case, the
exponential in (4.12) approaches zero as time increases, and the limit value ofEQ becomes
‖Q−1‖∞. In Figures 1 and 2, we investigate numerically howEQ varies with time, with the
problem parameters, and with the RBF-PUM parameters. In allcases, inverse multiquadric
RBFs have been used. We can see thatEQ < 1 in all the performed experiments. However,
the value becomes larger for convection dominated problemsand will grow further asκ → 0.
A smaller shape parameter value (see equation (2.1)) leads to a larger value ofEQ, although
the differences are not large in the range ofε -values we can explore without running into
ill-conditioning. There is some variation with the discretization parameters, but no strong
trend.

In light of the numerically observed decay ofeQt , we can incorporate the damping effect
of the parabolic operator on the error over time. Letts represent the the time scale over which
the matrix exponential becomes negligible. Then we can split the integral in (4.9) into two
parts as

‖E(t)‖∞ ≤
∥

∥

∥

∥

∫ t−ts

0
eQ(t−τ)dτ

∥

∥

∥

∥

∞
max

0≤τ≤t−ts
‖EL (τ)‖∞+

∥

∥

∥

∥

∫ t

t−ts
eQ(t−τ)dτ

∥

∥

∥

∥

∞
max

t−ts≤τ≤t
‖EL (τ)‖∞.
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The first integral can be made arbitrarily small by increasing ts, and to emphasize this, we
write the estimate as

‖E(t)‖∞ ≤ EQ

(

δ max
0≤τ≤t−ts

‖EL (τ)‖∞ +(1−δ ) max
t−ts≤τ≤t

‖EL (τ)‖∞

)

, (4.13)

indicating that a large initial error loses importance overtime. The relevant time scalets can
be observed in Figure 1 as the time it takes forEQ(t) to approach its asymptotic value. In
the following, when working with the spatial error, we will start from (4.11) for simplicity,
but we will keep in mind that we can also combine the spatial estimates with (4.13).
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Fig. 1 Left: The variation ofEQ with time for a convection diffusion problem withκ = 1 andv = (1,1).
The discretization parameters areh = 0.05 andH = 0.2. Initially the value is close tot and then approaches
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and the diffusion coefficientκ. In both cases, the convection speed isv = (1,1).
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We change the focus to the second part of the error estimate (4.11) and expand the
interpolation error to get

‖E(t)‖∞ ≤ EQ

(

κ max
0≤τ≤t

‖E∆ (τ)‖∞ +d‖v‖∞ max
0≤τ≤t

‖E∇(τ)‖∞

)

. (4.14)

The approximation errors of RBF–PUM are discussed extensively in the forthcoming
paper [26]. Here, we briefly recapitulate the parts that relate to the interpolation error to
make the present paper self contained. A similar derivation, but with a focus on finitely
smooth RBFs can be found in [42]. Assuming that we have constructed ak-stable partition
of unity according to the definition in [42]. Then the derivatives of the weight functions
satisfy

‖Dα w j‖L∞(Ω j) ≤
Cα

H |α |
j

, |α | ≤ k, (4.15)

whereH j is the diameter ofΩ j. For the local interpolation errors, we rely on the sam-
pling inequalities derived in [36]. Assume that the domainsΩ̃ j = Ω j ∩Ω are bounded by
a Lipschitz boundary and satisfy an interior cone condition. Then we can use the following
estimates from [36] for the local interpolation errors and their derivatives when using inverse
multiquadrics:

‖Dα(z j −u j)‖L∞(Ω̃ j)
≤ cα , jh

m j− d
2−|α |

j ‖u j‖N (Ω̃ j)
, (4.16)

‖Dα(z j −u j)‖L∞(Ω̃ j)
≤ e−γα, j/

√
h j‖u j‖N (Ω̃ j)

, (4.17)

whereu j is the global solution restricted to the local domainΩ̃ j, andz j is the local RBF
interpolant. The norm in the right hand side denoted by‖ · ‖N (·) is the native space norm
(cf. [11,36]) associated with the type of RBFs employed in the approximation.

Using Leibniz’ rule we can express a derivative of the globalinterpolation error as

Eα = Dα(z−u) =
M

∑
j=1

∑
|β |≤|α |

(

α
β

)

Dβ w jD
α−β (z j −u j). (4.18)

Together with the overlap condition (3.1) this yields the estimate

‖Eα‖L∞(Ω) ≤ K max
1≤ j≤M

∑
|β |≤|α |

(

α
β

)

‖Dβ w j‖L∞(Ω j)‖Dα−β (z j −u j)‖L∞(Ω̃ j)
. (4.19)

We choose to consider two different modes of refinement in order to separate the de-
pendence onh andH in the error estimates. For the first refinement mode, we require the
number of nodes per patch to remain constant while we refine the patches, meaning that
H j/h j = c. Then, applying (4.16), we get

‖Eα‖L∞(Ω) ≤ K max
1≤ j≤M

CH/h, jH
m j− d

2−|α |
j ‖u‖

N (Ω̃ j)
. (4.20)

For the other refinement mode, we fix the patches and then change the number of node
points locally or globally. We can then apply (4.17) to get

‖Eα‖L∞(Ω) ≤ K max
1≤ j≤M

CH, je
−γ j/

√
h j‖u‖

N (Ω̃ j)
. (4.21)
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When the estimates are expressed on this form, we clearly seethe potential for adaptive
refinement in relation to the local behavior of the solution.However, when performing nu-
merical convergence studies in the following sections, we work with (quasi) uniform dis-
cretizations, in which caseH j can be replaced byH andh j by h.

Inserting (4.20) or (4.21) into (4.11) and assuming a uniform discretization we get the
global error estimates for the convection diffusion problem as

‖E(t)‖∞ ≤CEQHm− d
2−2 max

0≤τ≤t
max

j
‖u(τ)‖

N (Ω̃ j)
, (4.22)

‖E(t)‖∞ ≤CEQe−γ/
√

h max
0≤τ≤t

max
j

‖u(τ)‖
N (Ω̃ j)

, (4.23)

where the constantsm andγ that determine the order of or rate of convergence, are taken
as the minimum values over all patches. We conclude that we expect to observe algebraic
convergence inH, when the number of nodes per patch is fixed, and spectral convergence in
h when the patches are fixed.

Remark: When the shape parameterε is small, the local RBF approximation is close to
polynomial [24], and assuming that the node set is polynomially unisolvent, the rate constant
m approximately relates to the multi-variate polynomial degreeJ supported by the number
of node points within the patch asm = J+1. As an example, ten degrees of freedom/nodes
in two dimensions corresponds to a polynomial of degree 3, leading tom = 4 and an overall
convergence rate ofH1.

Remark: The spectral estimate involves
√

h instead ofh. This has to do with boundary
effects and can be mitigated if the nodes are distributed more densely near the boundary of
the approximation domain [37]. This is not practical in the PU case, since it would mean
refining nodes near all patch boundaries. However, the errors at the interior boundaries are
in the PU case suppressed by two effects. The weight functions and their derivatives are
small near the patch boundaries, and hence the errors at patch boundaries are weighted with
small numbers. Furthermore, the problems at boundaries in general are related with lack of
information, but in the PU formulation, the boundary valuesof one patch are connected with
the interior values in another patch and actually ’receive’information also from outside the
patch.

Remark: For most realistic problems, there are parts of the solutionfor which u 6∈
N (Ω̃ j). For smooth solutions, the experience is that approximation works well anyway.
See for example [34], where convergence of RBF interpolantsto analytic functions is in-
vestigated. However, for solutions of limited smoothness,the convergence rates will also be
limited accordingly.

5 Numerical results for the convection-diffusion equation

With appropriate initial condition and Dirichlet boundaryconditions, the following function
is a solution to the unsteady convection-diffusion equation (4.1) ind = 2 space dimensions

u(x,y, t) = aexpbt(exp−cx+exp−cy), (5.1)

wherea andb can be chosen freely, andc = v±
√

v2+4bκ
2κ > 0. The experiments below have

been performed witha = 1 andb = 0.1. The convection velocity is chosen to bev = (1,1) in
most experiments, andκ = 1 is used as default diffusion strength, but other values areused
as well.
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We discretize the domainΩ = [0,1]× [0,1] both uniformly byN = n2 nodes and non-
uniformly with a similar number of Halton node points [16]. The discretizations of the
square domainΩ are shown in Figure 3. The PU cover consists ofM = m2 circular patches.
We let the overlap of the patches be 20% of the distance between the centers. An example
of patches for the square domainΩ is shown in Figure 4.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 3 Uniform and quasi random node distributions.
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Fig. 4 Partitioning of the square domain with circular patches.

Unless otherwise stated, inverse multiquadric RBFs have been used. The shape param-
eterε has not been optimized for accuracy. Instead the range ofε -values has been chosen
such that ill-conditioning is avoided. In some cases this has a negative effect on the results.
The conditioning problem can be avoided by using a stable method for evaluation of RBF
approximations such as the RBF-QR method [13,27], which allows computations for any
small value ofε . This will be further discussed and implemented in the forthcoming pa-
per [26].
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For the time-stepping, the MATLAB functionode15s is used. The MATLAB codes for
the two- and three-dimensional convection-diffusion problems can be downloaded from the
authors’ web sites.

5.1 Properties of the RBF–PUM discretization matrices

Using a partition based approach instead of a global RBF approximation introduces sparsity
in the discretization matrices. In Figure 5, the sparsity patterns of the convection-diffusion
RBF–PUM matrixQ for two different numbers of patches are shown. More patcheslead to
more sparsity, but with the same number of nodes, the global convergence is also lower. Even
if only the diffusion term is present, the matrices are non-symmetric due to the collocation
involving the partition of unity weight functions.
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Fig. 5 Sparsity structure ofQ = κW∆ ,I +νW∇,I with 21×21 uniform nodes and 5×5 patches (left) and 7×7
patches (right).

A numerical study of the stability of the semidiscrete problem has been performed, by
investigating the spectra and pseudospectra [40] of the RBF–PUM discretization matrices.
We define theµ-pseudospectrum of the matrixQ as

Λµ =
{

z ∈ C |‖(zI −Q)−1‖ ≥ µ−1} , µ ≥ 0.

We identify the eigenvalues (spectrum)Λ of Q with the 0-pseudospectrumΛ0. We denote
theµ-pseudospectral abscissa, the largest real part of theµ-pseudospectrum, by

λ ∗
µ = sup

z∈Λµ

(Re(z)).

As the stability for a linear problem is typically not affected by forcing terms(here due to
the boundary conditions), we consider the homogeneous semidiscrete problem

U ′(t) = QU(t),

wheren andm are the discretization parameters, which has the solution

U(t) = eQtU(0).



A radial basis function partition of unity collocation method 15

Following Reddy and Trefethen [35], we first define stabilityof the semidiscrete problem as

‖eQt‖ ≤ g(t), ∀t ≥ 0,

where the functiong(t) does not depend on the discretization parametersm andn. Then,
again from [35], there is a theorem stating that log(‖eQt‖) grows linearly int if and only if
theµ-pseudospectral abscissas grow linearly withµ. Specifically, if

λ ∗
µ ≤ ω +Cµ, ∀µ ≥ 0, (5.2)

whereω andC are constants, then

‖eQt‖ ≤ eC(n−1)2eωt , (5.3)

where(n−1)2 is the size of the matrixQ. Figure 6 shows examples of spectra and pseu-
dospectra ofQ for a convection dominated problem withκ = 0.001 and for a problem with
strong diffusionκ = 1. The plots have been generated using EigTool [43].
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Fig. 6 Pseudospectra (contour lines) and eigenvalues (dots) for the RBF–PUM coefficient matrixQ for κ =
0.001,n = 41,m = 8, ε = 3 (left), andκ = 1, n = 21,m = 5, ε = 1.5 (right).

The eigenvalue with the largest real partλ ∗
0 only changes marginally with the discretiza-

tion, but does depend onκ. For a well resolved problem,λ ∗
0 < 0, but approaches zero as

κ → 0. However, it should be noted that for convection dominatedproblems, we have ob-
served eigenvalues in the right half plane if the resolutionin terms of nodes and/or patches
is too low.

If we approximateω with λ ∗
0 , then the requirement for stability becomes

λ ∗
µ −λ ∗

0 ≤Cµ.

In the left part of Figure 7, we plot the growth ofλ ∗
µ − λ ∗

0 . If the slope of these curves
asymptotically is less than or equal to one, we can find a constantC such that (5.2) and (5.3)
are satisfied. Numerically, this holds for the range ofµ and the different problem parameters
that have been tested. The variation with the shape parameter, the number of nodes, and the
number of patches is small, but the amount of diffusionκ has a clearly visible effect.

In the right part of Figure 7, we investigate if the numerically estimated value ofC for
a fixed problem, but with different discretizations stays bounded. There does not seem to be
an increasing trend with node refinement or with patch refinement.
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Fig. 7 Left: The growth of the pseudospectral abscissa ofQ as a function of the pseudospectrum levelµ for
different parameter combinations. The three groups correspond to κ = 0.001 (solid line),κ = 0.1 (dashed
lines), andκ = 1 (dash-dot lines). In the first case,M = m2 = 64 patches andn2 = 412 nodes were used, and
the shape parameter wasε = 3. For the other cases, discretizations combiningn = 11, . . . ,21 withm = 5, and
combiningm = 5, . . . ,8 with n = 21 have been tested forε = 1.25, 1.5, 2. The three dashed lines that deviate
somewhat from the pattern correspond tom = 7 andn = 21, which is an unlucky combination in the sense
that some overlap regions between ’diagonal’ neighbor patches are empty of nodes. Right: The estimated
constantC in the bound on the growth of the pseudospectral abscissa forκ = 1 for different discretizations.
In the top subplotε = 1.5 andn = 21, and in the bottom subplotε = 3 andm = 5.

5.2 Errors and convergence

First, we test how RBF–PUM responds to the type of node distribution and the geometry
of the computational domain. Figure 8 displays the absoluteerror for the uniform and quasi
random node distributions shown in Figure 4 withε = 1.25 at t = 1. The errors are of a
similar magnitude in both cases, and there are no obvious artifacts due to the geometry of
the patches and their overlaps.
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Fig. 8 Absolute error in the solution of the unsteady convection-diffusion equation with 21× 21 uniform
node and 400 non-uniform node points.

To illustrate the capability of the proposed method for irregularly shaped domains, the
same convection-diffusion problem (4.1) as in the previousexperiment is solved over the
non-convex domain in the left part of Figure 9. The absolute error of the approximation is
plotted in Figure 9 at timet = 1 with ε = 0.75. The error is again of a similar magnitude,
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Table 1 L∞ error of RBF–PUM for 21×21 uniformly distributed nodes and 400 non-uniformly distributed
nodes withε = 1.25 in the square domain and 325 nodes withε = 0.75 in the non-convex domain at different
times.

t non-uniform points uniform points non-convex domain

0.1 3.0139e−005 9.3965e−006 3.4108e−005
0.5 3.2595e−005 1.0554e−005 3.7100e−005
1.0 3.4275e−005 1.1100e−005 3.9008e−005
3.0 4.1867e−005 1.3554e−005 4.7640e−005

10.0 8.4308e−005 2.7307e−005 9.5952e−005

and apart from generating the nodes and patches for the domain, there is no added difficulty
in applying RBF–PUM for this problem.
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Fig. 9 Left: the partitioning of the non-convex domain with circle patches for 325 points. Right: absolute
error in the solution of the unsteady convection-diffusionequation for the node distribution shown in the left
figure, at timet = 1.

In Table 1, the errors over time for the two discretizations of the square, and for the
discretization of the non-convex domain are listed. It can be seen that the error growth with
time is slow, and that the accuracy of the three different solutions is similar, with a slight
advantage for the uniform distribution.

The convergence of RBF–PUM has been investigated numerically for the two refinement
modes described and analyzed in section 4.1 In the first scenario, for a fixed number of
patches, uniformly distributed nodes with varying fill distance are employed. In the second
scenario, different numbers of patches, ranging from 2× 2 to 6× 6, with a close to fixed
number of local nodes per patch are considered. For the experiment, a fixed shape parameter
ε = 1.25 was used.

As shown in Figure 10, increasing the number of local points for a fixed number of
patches results in spectral convergence. The rate constants γ from (4.23) are estimated from
the experimental results. For the second scenario we get algebraic convergence with respect
to H for a fixed number of local nodes. The slopes of the lines in theright figure represent
the approximate convergence rates, and show that we can attain high order convergence. The
results are even a little better than expected from (4.22).
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Fig. 10 The convergence as a function ofh for three different patch sizesH (left). Convergence as a function
of H when the number of nodes per patch is kept (almost) fixed. The three curves correspond to approximately
21, 28, and 36 nodes per interior patch (right). The theoretically expected convergence rates areH2, H3, and
H4.

5.3 Comparison with other methods

For a square domain, both finite difference methods (FD) and pseudospectral methods (PS)
are easy to implement. Therefore, we will compare the accuracy of RBF–PUM with FD
and PS for such a domain, while keeping in mind that RBF–PUM isdirectly applicable
also for other domains. We do not compare timings here, sincethe implementations are
not optimized and the times are quite short. However, generally for the problem sizes and
implementations considered here, FD and PS take approximately the same time for a given
resolution, while RBF–PUM is about 3 times slower.

Figure 11, shows the error as function ofh for the caseν = (1,1) andκ = 0.1. The
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Fig. 11 Error as a function ofh for FD, PS, and RBF–PUM with problem parametersν = (1,1) andκ = 0.1
at timet = 1. For the RBF-PU methodε = 0.1

h andH = 0.2 were used.

accuracy for PS and RBF–PUM is almost the same, while FD is less accurate.

Figure 12, shows the error as function ofκ for ε = 1.25, H = 0.2, andh = 0.05 for
two different values ofν . In the left subfigure, the error of the RBF–PUM method tapers
off at around 10−5. This is a typical behavior of RBF approximations in the presence of
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ill-conditioning, and may not be the true behavior of the method. For convection dominated
problems, RBF–PUM is more accurate than PS (and FD).
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Fig. 12 Error as a function ofκ for ν = (1,1) (left) andν = (5,5) (right) att = 1. For RBF–PUMh = 0.05,
H = 0.2, andε = 0.1

h were used.

We conclude that RBF–PUM shows as good as or better approximation properties than
PS, at least in convection dominated cases. It is a bit more computationally expensive, but
can be applied to arbitrary geometries, and allows for localadaptivity.

5.4 Experiments in three dimensions

We have also solved the convection-diffusion problem (4.1)in three space dimensions in a
solid domain bounded by the surface

x2+ y2+ z2−sin(2x)2sin(2y)2sin(2z)2 = 1, (5.4)

as shown in Figure 13. Boundary conditions at the surface arechosen based on the exact
solution

u(x,y,z, t) = ebt−c(x+y+z) (5.5)

whereb = 1
10 andc =

√

b/6. With that particular choice of exact solution, the vectorv in
equation (4.1) can be exactly determined asv = (−c,−c,−c).

The solid domain is discretized with a total ofN = 2046 node points and covered by
M = 512 patches. Initially, all node points are distributed uniformly. Interior nodes are then
slightly perturbed in a random way in the direction towards the boundary. Non-overlapping
boxes that cover the domain, which form the basis for constructing the ball cover, are shown
in Figure 13.

As in the two-dimensional case,ode15s is used for the time-stepping. Figure 14 shows
the distribution of the eigenvalues of the three-dimensional convection-diffusion operator
with the number of nodes per patchnloc = 26. Gaussian RBFs with shape parameterε =
0.75R̄, whereR̄ is the average radius of the ball patches, are used. All eigenvalues lie in the
left half of the complex plane. The right subfigure in Figure 14 shows how the error evolves
in time for three different values ofnloc. The growth in time is very limited and as expected
the error decreases with increasing numbers of local nodes.
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Fig. 13 The solid domain bounded by the surface equation (5.4) (left). The layout of the non-overlapping
boxes which form the skeleton for the ball cover. The dots illustrate the node points (right).

Fig. 14 Eigenvalues of the three-dimensional convection-diffusion operator discretized with Gaussian RBFs
in the partition of unity setting with 26 nodes per patch (left). Error of the numerical solutions compared with
the exact solution as a function of time (right).

6 Multi-asset American option pricing

The multi-dimensional version [8,23] of the Black–Scholesequation [6] takes the form

∂P
∂ t

+
1
2

d

∑
i=1

d

∑
j=1

ρi jσiσ jSiS j
∂ 2P

∂Si∂S j
+

d

∑
i=1

(r−di)Si
∂P
∂Si

− rP = 0, 0≤ t ≤ T, (6.1)

whereP is the value of the contract,Si is the value of theith underlying asset,T is the time
to expiry, d is the number of underlying assets,ρi j is the correlation between asseti and
assetj, σi is the volatility of asseti, r is the risk-free interest rate anddi is the (continuous)
dividend yield paid by theith asset. Equation (6.1) is a final value problem, i.e., the solution
is known at timeT and the PDE is integrated backwards in time.
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The payoff function of the American basket put option is given by

FT (S) = max(E −
d

∑
i=1

αiSi,0), (6.2)

whereE is the exercise price of the option andαi, i = 1, . . . ,d are given constants. The final
condition is given by

P(S,T ) = FT (S), S ∈ Ω = R
d
+. (6.3)

The boundary of the computational domain can be divided intotwo parts. The near-field
boundary, where one or more asset prices are zero, and the far-field boundary, where one or
more asset-prices tend to infinity.

For the near-field boundary, it can be noted that if one of the asset prices is zero at time
t∗, then the asset will be worthless for anyt ≥ t∗, i.e., the solution remains at the boundary.
We denote thed near-field boundaries byΓi = {S ∈ Ω |S 6= 0,Si = 0}, i = 1, . . . ,d. Then the
boundary values atΓi can be propagated by solving a(d −1)-dimensional Black–Scholes
problem. We denote the solutions of the reduced problems byhi and use the boundary con-
ditions

P(S, t) = hi(S, t), S ∈ Γi, i = 1, . . . ,d. (6.4)

However, already in [12] it was shown that the problem is wellposed without boundary con-
ditions at the near-field boundaries, assuming the Fichera condition on the relative strength
of the drift and diffusion term holds. For a more recent discussion of the well-posedness of
the problem, see also [20]. In the numerical experiments here, we will use (6.4) as in [10]
even if it is not needed. For an example where near-field conditions are not used, see [33].

For put options, the contract becomes worthless as the priceof any of the underlying as-
sets tends to infinity. Therefore, we employ the following far-field boundary conditions [21]:

lim
Si→∞

P(S, t) = 0, S ∈ Ω , i = 1, . . . ,d. (6.5)

The American option allows early exercise, which means thatat some values ofS, where
it is more profitable to use the option than to keep it until theexpiry date, this will be done.
Mathematically, this corresponds to a free boundary problem. This issue can be treated in
different ways. Ito and Toivanen [19] as well as Persson and von Sydow [32] use an operator
splitting approach. The approach we will use here employs a penalty term as described
in [45] and later refined in [30]. The penalty term takes the form

δC
P+δ −q

, (6.6)

and ensures that the solution stays above the payoff function as the solution approaches
expiry. Here 0< δ ≪ 1 is a small regularization parameter,C ≥ rE is a positive constant.
The so calledbarrier function q(S) is defined as

q(S) = E −
d

∑
i=1

αiSi, (6.7)

see [45] for a motivation of this choice. Adding the penalty term to the Black–Scholes equa-
tion (6.1) for the American option converts it to a fixed domain problem. The penalty term is
small enough so that the PDE still resembles the Black–Scholes equation closely. The error
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introduced by the penalty term is expected to be of the order of δ . The penalty term (6.6)
together with equation (6.1) lead to

∂P
∂ t

+
1
2

d

∑
i=1

d

∑
j=1

ρi jσiσ jSiS j
∂ 2P

∂Si∂S j
+

d

∑
i=1

(r−di)Si
∂P
∂Si

− rP

+
δC

P+δ −q
= 0, S ∈ Ω , 0≤ t ≤ T. (6.8)

The terminal and boundary conditions on the fixed domain are just like before

P(S,T ) = FT (S), S ∈ Ω , (6.9)

P(S, t) = hi(S, t), S ∈ Γi, i = 1, . . . ,d, (6.10)

lim
Si→∞

P(S, t) = 0, S ∈ Ω , i = 1, . . . ,d. (6.11)

6.1 RBF–PUM for American option pricing

Using the RBF–PUM approximation (3.12) and collocating thePDE (6.8) at the node points
we get the system of ODEs

P′
I (t) =−1

2

d

∑
i=1

d

∑
j=1

ρi jσiσ jSiIS jIWi j,IPI(t)−
d

∑
i=1

(r−di)SiIWi,IPI(t)+ rPI(t)

− δC
PI(t)+δ −q

+F(t), (6.12)

whereW·,I contains the columns of the differentiation matrix corresponding to interior points,
SiI are diagonal matrices containing the respective coordinates of the interior node points,
PI(t) = [P1(t), . . . ,PNI (t)]

T , and

F(t) =−1
2

d

∑
i=1

d

∑
j=1

ρi jσiσ jSiIS jIWi j,bFb(t)−
d

∑
i=1

(r−di)SiIWi,bFb(t), (6.13)

whereW·,b contains the columns of the differentiation matrix corresponding to boundary
points andFb(t) = [P(xNI+1, t), . . . ,P(xN , t)]T contains the known boundary values.

Going back to the theoretical convergence estimates in section 4.1, there are some fea-
tures of the American option pricing problem that can degrade the convergence. The jump
in the derivative of the initial condition limits the accuracy with which it can be approxi-
mated. However, if we perform a split in time of the error terms as suggested in (4.13), we
see that the initial error looses importance for the error atlater times. A worse problem is
the free boundary, where the solution itself is onlyC1. With the penalty formulation of the
problem, the modified solution is smooth, and we can expect high order convergence with
RBF–PUM. However, for the error in relation to the true solution, the convergence order is
limited in the patch(es) where the free boundary is located.
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7 Numerical experiments for two-asset American option pricing

The option prices are approximated using uniform and non-uniform discretizations of the
domainΩ = [0,S1,∞]× [0,S2,∞]. For the numerical illustrations throughout this section,we
use the parameter values from [10,31] given byr = 0.1, σ1 = 0.2, σ2 = 0.3, ρ = 0.5, α1 =
0.6, α2 = 0.4, d1 = 0.05, d2 = 0.01. The time interval, the computational domain, and the
penalty term are defined byT = 1, E = 1, Si,∞ = 4E, δ = 0.00001 andC = 0.1. In all
experiments, inverse multiquadric RBFs are used, and the arising system of ODEs (6.12)
is solved in MATLAB using the ode solver commandode15s. The MATLAB code for the
American option pricing problem can be downloaded from the authors’ web sites.

7.1 A non-uniform space discretization

We note that the payoff function (6.2) possesses a discontinuity in its first derivative at the
exercise price, see Figure 15. In practice, the region near the exercise price in the(S1,S2)
domain is the financially most interesting. Along theSi-directions we want to have a distri-
bution of node points which is clustered in a neighborhood ofthe exercise price. By using a
tailored node distribution we aim to increase the accuracy of the approximation in the region
of interest as well as to capture the initial discontinuity in the solution better. We would like
to apply the non-uniform discretization that has recently be employed, e.g., in [39,18].

0

2

4 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

S
2S

1

P
(S

1,S
2,T

)

s
1

s 2

0 1 2
0

1

2

Fig. 15 The payoff function of the two-dimensional American put option (left). Contour lines of the function
ω(S) used for the evaluation of the weighted error norm (right).

In order to cluster nodes around the exercise priceE, we define the node coordinates in
each directioni through

Si, j = E + l sinh(ξ j), 0≤ j ≤ m, (7.1)

whereξ j ∈ [ξ0, ξm] are equidistant values andl is a parameter that determines the amount
of clustering. By the requirement that the nodes should fallin the interval[0, Si,∞] we can
compute the range ofξ to

ξ0 = sinh−1(−E/l)

ξm = sinh−1((Si,∞ −E)/l).
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Note that the centers of the patches are defined with a similarpattern as for the node dis-
tribution. In our numerical experiments we have usedl = E/2 for both nodes and patch
centers. When the patch centers are non-uniformly distributed, circular patches do not have
a suitable shape. Instead, we use elliptic patches, as illustrated in Figure 16. The Wendland
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Fig. 16 Discretization of the computational domain for the two-dimensional American option pricing prob-
lem with elliptic and circular patches.

function (3.4) is used for constructing the partition of unity weights, but here the argument
is scaled anisotropically such that for a pointx = (x1,x2) in patchΩ j with center point
X j = (X j,1,X j,2)

ϕ j(x) = ϕ

(√

(x1−X j,1)2

R2
j,1

+
(x2−X j,2)2

R2
j,2

)

, j = 1, . . . ,M, (7.2)

whereR j,· are the radii of the elliptic patches in the different coordinate directions. The
resulting function is compactly supported on the elliptic patch. The shape parameters for the
radial basis functions used for the local approximations are scaled with respect to the node
density in the patch such that

ε j = ε
h
δ j

, (7.3)

whereh is the uniform node distance corresponding to the number of nodes used, andδ j is
the actual minimum node distance within the patch. This makes sense because the adjust-
ment of the node distribution is based on the local smoothness of the solution. Where there
are higher derivatives, the shape parameter is larger and the nodes more dense, see also [14].

7.2 Errors and convergence

As mentioned earlier, the region around the strike price is where the solution is of financial
interest. Our computational objective is to make the error small in that region. Therefore, we
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use a weighted error norm of the form

Eω =
∫

Ω
ω(S)|E(S)|dS,

where the functionω(S) is normalized such that
∫

Ω ω(S)dS = 1. A similar approach was

taken in [33]. Here, we have used a functionω(S) ∝ e−9(S1+S2−2)2e−9((S1−S2)/2)2. In Fig-
ure 15, the contour lines of the function are shown.

We have compared the accuracy and convergence of RBF–PUM forthe American option
pricing problem with two different FD implementations. In the left part of Figure 17, RBF–
PUM with uniform nodes and non-uniform nodes is compared with an FD implementation
that uses a penalty term. This means that the same (fixed domain) PDE is solved by all
methods. In the right part of Figure 17 the same comparison isperformed while instead
using an FD implementation with an operator splitting approach [19,32]. In this case, the
reference solution is closer to the actual solution, as the error introduced by the penalty term
is eliminated.

From the figures, it can be seen that the convergence rates forthe uniform RBF–PUM
and uniform FD seem to be quite similar in all cases, but with asmaller error for RBF–PUM.
Using the non-uniform RBF–PUM discretization, we achieve significantly better results for
the same number of node points. The differences between the two sets of plots are small,
but with the penalty reference the error can falsely continue to decrease because the penalty
error is not measured.
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Fig. 17 Convergence with respect ton in the weighted error norm for RBF–PUM with a uniform discretiza-
tion, RBF–PUM with a tailored non-uniform discretization,compared with a uniform FD implementation
using a penalty approach (left) and a uniform FD implementation using an operator splitting approach (right).
The shape parameterε in equation (7.3) is chosen asε = 2 in the tailored case andε = 1.5 in the uniform
case. In both cases, errors are computed against an FD reference solution of the corresponding type with
n = 101 discretization points per dimension.

7.3 Time comparison

To really compare the performance of different methods, we need to consider the execution
times for a given problem and required accuracy. Figure 18 shows runtime comparisons
for the different RBF–PUM discretizations and the two FD implementations. For the FD–
penalty implementation, the MATLAB routineode45 is used for time-stepping, while the



26 A. Safdari-Vaighani, A. Heryudono, and E. Larsson

operator splitting approach uses the Crank–Nicholson scheme. The non-uniform RBF–PUM
discretization is fastest for the range of tolerances considered here. It should be noted that
the implementations used in this comparison have not been optimized for performance.
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Fig. 18 Error as a function of runtime for the same experimental setup asin Figure 17 with FD–penalty as
reference (left) and FD–operator splitting as reference (right).

8 Conclusions

We have implemented and tested RBF–PUM for convection-diffusion problems such as
those typically arising in valuation and calibration problems in computational finance. A
combination of theoretical and experimental analysis indicates that the method is stable for
a wide range of problem parameters, and that we can achieve both spectral and algebraic
convergence rates depending on the mode of refinement.

Different comparisons with FD and PS methods show that with sufficient smoothness of
the solution to the problem, RBF–PUM is as accurate or more accurate than the PS method,
but about three times slower for the problem sizes considered here. However, RBF–PUM
provides a different level of flexibility, where local approximations can easily be varied both
with respect to resolution and type, in arbitrary geometries.

A main advantage of RBF–PUM is that it allows for local adaptivity. Patches can be
locally refined and have shapes adapted to the local solutionbehavior as in our option pricing
example. Furthermore, the node density in each partition can be locally adjusted. To develop
support for automatic adaptivity will be part of our future work, and we will also consider
larger and higher-dimensional computational problems.
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