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Abstract Meshfree methods based on radial basis function (RBF) appegion are of
interest for numerical solution of partial differentialuegions (PDESs) because they are flex-
ible with respect to geometry, they can provide high orderweogence, they allow for local
refinement, and they are easy to implement in higher dimaaskor global RBF methods,
one of the major disadvantages is the computational costied with the dense linear
systems that arise. Therefore, research is currentlytdud¢owards localized RBF approxi-
mations such as the RBF partition of unity collocation met{RBF—-PUM) proposed here.
The objective of this paper is to establish that RBF—PUM &bie for parabolic PDEs of
convection-diffusion type. The stability and accuracy &MRPUM is investigated partly
theoretically and partly numerically. Numerical experivteeshow that high-order algebraic
convergence can be achieved for convection-diffusion Iprob. Numerical comparisons
with finite difference and pseudospectral methods have pedaormed, showing that RBF—
PUM is competitive with respect to accuracy, and in somesals® with respect to compu-
tational time. As an application, RBF—PUM is employed fom@-dimensional American
option pricing problem. It is shown that using a node laytait taptures the solution fea-
tures improves the accuracy significantly compared withiform node distribution.
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1 Introduction

Convection-diffusion equations are ubiquitous in physied chemistry as models for flow
problems or heat transfer, but they also arise in other fiysipal application fields. The so-
lution of a convection-diffusion problem can be interpdetes the probability distribution of
one or more underlying stochastic processes. This is thetaieen in financial applications
where convection-diffusion problems therefore are abohda

There are two main classes of financial problems in this cayed he first problem
class is valuation of financial derivatives such as optidssuming that the underlying asset
prices are modeled by Brownian motion together with a (p@idrift under a no arbitrage
assumption leads to the original Black—Scholes equatiprij@he one-dimensional case,
with one underlying asset, this problem has a closed forotisol. However, for several un-
derlying assets the corresponding partial differentiaiagipn (PDE) is a high-dimensional
generalization [8, 23] of the Black—Scholes equation, Winieeds to be solved by numerical
methods. This is the test case that we will consider in thgepaHowever, more advanced
valuation models involve jump diffusion in the asset pricegesses [29,22,7] or jumps in
the (stochastic) volatility of the assets [5]. This leadpadtial integro-differential equations
or fractional PDEs instead of PDEs, which require speciatenical treatment.

The second problem class is calibration or parameter inferevhere appropriate prob-
lem parameters describing drift and diffusion are soughtfobserved market data. Given
one market observation, the forward Kolmogorov equatidrcémvection-diffusion type)
describes the transition probability density for the nebgearvation (in time) under a given
model. The forward Kolmogorov equation needs to be solveayrtienes for each observa-
tion with different model parameters. These solutions ftiimbasis for, e.g., a maximum
likelihood estimate of the model parameters [9].

Meshfree methods based on radial basis functions (RBFsyfageneral interest for
solving PDEs because they can provide high-order or specnaergence for smooth solu-
tions in complex geometries. In finance, geometries arelynoShypercube type, meaning
that ordinary spectral methods would easily apply. Howevéas been shown in [33] that
for some types of options, solving the pricing problems oringpex domain instead of
a hypercube leads to significant savings in computationa.tif a (quasi) uniform node
distribution is used, the number of unknowns is reduced kctof ofd! in d dimensions.
Furthermore, another important advantage of meshfreeadstis that adaptive refinement
can be applied locally without the necessity of preserviregtegrity of an underlying grid.
Typically, in valuation problems, the features of the solutare located in the vicinity of a
lower dimensional manifold determined by the contract fiamcof the financial derivative.
Similarly for the Kolmogorov problems, the probability dsty is concentrated to certain
regions. Finally, RBF-based methods are easy to implemmeahy number of dimensions
as the only geometrical information they use is pairwiséadices between node points.

In [10,33,4], meshfree methods based on RBF approximatwa been shown to per-
form better than finite difference methods for option pricproblems in one and two spatial
dimensions. Similar problems have also been solved in [4Fbrward Kolmogorov prob-
lems have been solved in [2, 3] with promising results. Havesll of these papers employ
global RBF collocation methods, leading to dense linearesys, and computational costs
that become prohibitive as the number of dimensions inergs]. This problem is partly
addressed in [4] where a tensor product formulation is ésgdoHowever, a tensor product
approach also limits the opportunity for local adaptivity.

In a partition of unity (PU) scheme, local approximationsawerlapping patches that
form a cover of the computational domain are weighted taggelly compactly supported
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partition of unity weight functions to form the global apgimation. The convergence prop-
erties of the local approximations can be leveraged, whdallcouplings between approxi-
mations on different patches are enforced through the Rodnaork. When RBFs are used
locally instead of globally, the computational cost is regl because the previously dense
linear systems then become sparse at the patch level.

PU schemes have been used for interpolation since arour@[28(28, 15], and more
recently, they have also been combined with RBFs in [42] 4d4dl PU methods for solving
PDEs were introduced and analyzed by B&taiand Melenk [1] in the late 1990’s. In the
forthcoming paper [26] by Larsson and Heryudono, an RBFet#&3J collocation method
(RBF-PUM) is introduced for elliptic (time-independentpPs. High order algebraic or
spectral convergence rates, depending on the type of refimgre predicted theoretically
and confirmed by numerical experiments.

In this paper, we investigate the capability of RBF—PUM fammerical solution of
parabolic (time-dependent) PDEs. We will show that the wetis viable through analy-
sis and numerical experiments, and compare the resultshate of other methods. How-
ever, strategies for automatic adaptive node refinemenhetr@ursued here, but left for
future work. As a general test problem, we use the two-dim@as convection-diffusion
equation, and as a specific test problem in finance, we careichilti-asset American put
option pricing problem.

2 Radial basis function collocation schemes

RBF methods are meshfree and work with data given at scdttesde points. GivefN
distinct pointsxy,...,xy € RY and corresponding scalar function valugs;), ..., u(xy),
the standard RBF interpolation problem is to find an inteapbbf the form

N
s(x) = > Aje(lx=xjll), 2.1)
; i i

where|| - || is the Euclidean norm}j e R for j =1,...,N, andg is a real-valued function

such as the inverse multiquadgi¢r) = —LX— or the Gaussiap(r) = e¢-'*. The param-
u inv ultiquadmi¢r ) Jer ussiap(r) p
etere is called a shape parameter and governs the flatness of the. RBR&s a significant
effect on the accuracy of the RBF approximation. The coeffitsAs, . . ., Ay are determined
by enforcing the conditions(x;) = u(xi), i = 1,...,N. Imposing these conditions leads to a

symmetric linear system of equations

whereAij = o(||% —X;[), i,j =1,...,N,u=[u(x1) ...u(xn)]", andA = [A1...An]T. When
A is known, we can with this notation evaluate the RBF intespbht a poink as

S(x) = @(X)A, (2.3)

where(x) = [@([[x —xa]), .. ., @([Ix—=xnl])]-
In the following derivations, we have chosen to express titerpolant in Lagrange

form, using cardinal basis functions. The cardinal bagigfions,y;(x), j = 1,...,N, have
the property

1 ifi=j, .
wj(m):{o fiz) A=l (24)
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leading to the alternative formulation for the interpolant

S(x) = P(x)u, (2.9)

whereI(x) = [1(X), ..., Un(X)]. Combining (2.3), (2.5), and (2.2) leads to the following
relation between the cardinal basis and the original rdudials:

S0 =PXu=eXA=9gxA U = P =gA " (2.6)
This transformation is valid whenevAris non-singular. This holds for distinct node points
X1,...,Xy @and commonly used RBFs such as Gaussians, inverse multicgiathd multi-
quadrics.
For a linear operata, we have

z

L5 = 3 LUi9ulx) 2.7)

To evaluateZs(x) at the node points, i.e., to evaluag = [.£S(X1),...,-Zs(xn)]T, we
need the differentiation matri¥y = [ .Z;(%)]i.j=1,...N. Using relation (2.6), this leads to

Sy =Wou=dsA My, (2.8)

.....

When the Lagrangian form of the RBF interpolation methodsisduin the context of
solving a time-dependent PDE problem, the solutignt) is approximated by

N
s(x,t) = > wi(xu;(t), (2.9)
=

whereu; (t) =~ u(x;,t) are the unknown functions to determine.

3 The radial basis function based PUM

This section defines the RBF-PUM collocation method for taependent PDEs in terms
of its weight functions and local RBF approximations.

3.1 The patrtition of unity weight functions

Let Q ¢ RY be an open set, and 1e02;}M, be an open cover a@ satisfying a pointwise
overlap condition and that

Vxe Q 1(x)={jxeQ;}, cardl(x)) <K, (3.1)

where the constarK is independent of the number of patchds In the RBF—PUM, the
global approximation functiog(x) in Q to the solution function(x) is constructed as

M
S0 = 3 Wi (s (%). (3.2)

=1
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wheres; is an RBF approximation afi(x) on patchQ; andw; : Q; — R are compactly
supported, non-negative weight functions subordinatédné¢ocbver. The partition of unity
weight functionsw;, which also occur under the nanshape functions, are constructed
using Shepard’s method

$;(x) :
wiX)= —————, j=1,...,M, (3.3)
i) Y kel () Px(X)
whereg;(x) are compactly supported functions with support®n Here, we select com-
pactly supported Wendland functions [41] such as

C[(@-n*4r+1) ifo<r<i,
¢(r) = {0 ifr>1, (34)
for the construction of the weight functions. L{@(j}'j\"zl be the center points, ar![cle}'j‘":l
be the radii of the circular, spherical, or hyper-spherjuaichesQ;, j = 1,...,M. Non-
negativity and compact support are guaranteed if the wéigetions are generated using

¢j<x>—¢<'X;jX‘”), j=1...M. (35)

It follows from (3.3) that the weight functions; (x) satisfy the partition of unity property

Y wix) =1 (3.6)
jel®

Moreover, the equations (3.4)-(3.5) show thatx) =0, Vj ¢ | (x). Therefore, equation (3.2)
can be rewritten as

X = > wj(X)sj(x). (3.7)

jel(®)

If the functionss;j(x), j =1,...,M from equation (3.7) are local interpolants wif{x;) =
u(x;) for each node poin; € Qj, then the global PU approximant inherits the interpolation
property of the local interpolants, i.e.

S(x) = ; w;(x)s (%) =u(x) Y wj(xi) = u(x). (3.8)
Jeltx) jel(x)

The patches can be of any (regular enough) geometrical shegheas squares, cubes, cir-
cles, and spheres. The common requirement for all shapescigs is that they cover the
domain and the boundary. In this paper, circular and edlipéitches will be employed. In the

case of elliptic patches, the functions used for generdktiagveight functions are modified

to have support on an ellipse instead of a circle. Exactly Hugis done is described in

Section 7.1.

When we use these types of patches, the overlap betweerepateh be regulated,
and covering ensured, by adjusting the radius of the patéhesibility in selection of the
radius of the patches is another advantage of the local pgiepef the PUM. Figures 4
and 16 demonstrate the discretization of a square domamaiular and elliptic patches.
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3.2 RBF-PUM for time-dependent problems

In RBF—PUM, the solutiom(x,t) for a time-dependent problem is approximated by
s(xt) =Y wi(X)sj(xt), (3.9)
jel(®)
wheres;j(x,t) is an RBF approximant of the type (2.9) @, i.e.
sixt)= % duk(t), (3.10)

ked[@;)

whered(Qj) = {kjx« € Q;} is the set of node points i2;. Combining (3.9) and (3.10), we
can express the global approximant as

sx)= Y Wi Y G =Y S (Ww)u®, (311

€M) ked([@Q)) €M ked[@))

Note that by interpolating the initial condition we @y, 0) = u(xk, 0) for all k, buts(x,t) ~
u(x,t) fort > 0.

3.3 Differentiating the RBF—PUM approximant

In order to use the RBF—PU approximation (3.11) for a PDE lgrobwe need to compute
the effect of applying a spatial differential operatgrat the interior node points. Let and

B be multi-indices and adopt common rules for multi-indexation. Then, using Leibniz’
rule, a derivative term of ordex in the differential operator can be applied to the global
approximation (3.11) as

2 s 9% (W (00t
Fya S = Sz (Wi (X)gik(¥)) u
oxe i&kedmy) 9 P
a\ !9 Plw;  9lfly
_jlzmka%z»([sz (B) axafﬁj(x) axﬁk(x)> Uk (1), (3.12)
el(x) ked(Qj <a

Fixing x = x; andk in equation (3.12) gives us thk-element of the global differentiation
matrix corresponding to the-derivative. For composite linear operators, we sum up the
contributions from each term. We denote the global difféetion matrix under operata?’

3.4 Computational cost for RBF—PUM

In all linear time-dependent PDE test cases we provide ftegdywo main parts of the com-
putational cost for RBF—PUM are the cost to form and asseRBIE-PUM differentiation
matrices and the cost for matrix—vector multiplicationsattvance solutions in time. De-
pending on the type of solver, this may be a matrix—vectortiplidation for an explicit
time step, as part of an iterative solver, or solving theddeed linear system in an implicit
method, all with the same order of cost.
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GivenM patches, each withioc local nodes, the cost to form and assemble differenti-
ation matrices iﬁ(Mnﬁ)c), where thenl?(’)C factor comes from the factorization of the local
interpolation matrices, see equations (2.8) and (3.12f plocess is embarrassingly par-
allel in terms of the patches. For the time-stepping procibes sparsity of the resulting
differentiation matrix operators results in a cé&tMnz,.) for the matrix—vector multiplica-
tion. This operation is also embarrassingly parallel.

Moreover, if we are given a global unstructured sdtlafode points initially, we need to
determine which nodes fall into which patch. A direct congpiain of the distance between
each node points and the center points of the patches corttea wost’(MN). This may
become expensive for large node sets. If th@ode points are instead organized with a
suitable data structure (e.gkal tree), the cost of associating nodes with patches becomes

O (MnygclogN).

3.5 Characterizing the RBF—PUM approximation

When we later discuss the approximation errors of RBF-PURIwill do it terms of two
levels of discretization parameters. L@f = Q; N Q. At the node level, we define the local
fill distance
hj = sup min ||[x—Xgl, (3.13)
xeQj ked(Q))
which can be explained as measuring the radius of the ldogdstmpty of nodes in the part
of patchj that falls withinQ. We also define the global fill distance

h= max hj. (3.14)
1<j<M

At the patch level, we define the patch diameédgrand the patch fill distance

H 7f€u§121j|§nM|\x—X,||7 (3.15)
which similarly measures how densely the patch cerfgover the domain. For uniform
discretizationsh is proportional to the node distance dfAdo the patch size.

Furthermore, to discuss results, the chosen type of RBFtarsthaipe parameter(see
equation (2.1)) needs to be stated. The shape parameteirficeamce both the approximation
accuracy and the conditioning of the linear systems thageali not otherwise declared ,is
assumed to be the same for all basis functions, but it carbalsaried according to location.

4 The unsteady convection-diffusion equation

Consider an unsteady convection-diffusion equation ofdha

au(x,t)
ot

= KAu(x,t)+v-Ou(x,t) = Zuxt), xeQcRY t>0, (4.1)

wherek is the diffusion coefficienty is a constant velocity vector, angx,t) may repre-
sent concentration or temperature for mass or heat tramsfgrectively. This equation also
serves as a simplified model problem for the Black—Scholeaté&mn and other equations in
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financial mathematics. The equation (4.1) must be suppledevith an initial condition of
the form

U(X7 0) = fO(X)7 (42)
and boundary conditions
PBu(x,t) = f(xt), xe€dQ, t>0, (4.3)

whereZ can be a Dirichlet, a Neumann or a mixed boundary operattiieloase of Dirich-
let boundary conditions, if we use equation (3.12) for tHéedéntiation matrices, and col-
locate the PDE (4.1) at the interior node points, we get tistesy of ODEs

S(t) = (KWa, +V-Wh ) S(t) + (KWa b+ V-Whp) F (1), (4.4)

whereW., | contains the columns of the differentiation matrix cor@sging to interior nodes
andW,, contains the columns of the differentiation matrix coreasing to the boundary
nodes. The vectdB(t) = [uy(t),...,un, (t)]T contains the unknown functions at the interior
node points and the vect®r(t) = [f (xy,+1,t),. .., f(xn,t)]T contains the known boundary
values. The matricedt; . are vector valued and the dot product with the velogighould
be taken for each node point.

The system of ODEs in equation (4.4) can be solved ikrMB for example with the
ODE solver commandde15s, which is suitable for stiff ODEs, or with any other common
time stepping method.

4.1 Error estimate

In the calculation of an upper bound for the semidiscreterewe need the following three
functions: the exact solution(x,t), the RBF approximatiors(x,t) from (3.11), and the
auxiliary functionz(x,t), which interpolates the exact solution at each time

x)= 5 3 (WW)U(Kt). (45)

€M) ked(Q))
The initial conditions for all three functions coincide hetcollocation points. That is,
s(xi,0) = z(x;,0) = u(x,0), 1<i<N. (4.6)

We define the error functiog(x,t) = u(x,t) — s(x,t) and the interpolation erref (x,t) =
u(x,t) — z(x,t). We will derive an estimate for the semidiscrete error. €fme, we de-
fine the vectorE(t) = [e(xy,t),...,e(Xy,1)]" andEg (1) = [LE (X, t),. .., LE (xn,D)]T,
as well adJ (t) = [u(xq,t),...,u(xy,,t)]T andZ(t) = [z(x4,1), ..., z(xy,,t)]T. We also define
the discrete spatial operatQr= kW | +v-Wh and the associated matrix multiplying the
boundary pointsB = kW , +V-W . For the error function evaluated at the collocation
points we have

E'(t)=U"(t)-S(t)
=ZU(t) — (QS(t) + BF(t))
= 2Z(t) — (QS(t) + BF () +.2U (1) —.2Z(1)

E(t) +E2(1), 4.7)
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where we have used the fact tiZ&t) = U (t) because of the evaluation at the node points,
and that botfZ(t) andS(t) are PU approximations of the forms (4.5) and (3.11). Thessyst
of ODEs (4.7) can be formally integrated to yield

E(t) = /: Q-1 gy (1)dr. (4.8)

A simple worst case estimate for the semidiscrete errorrbeso

t
‘ / Q-1
0

If we then assume thdD can be diagonalized with eigenvector mafvixand (diagonal)
eigenvalue matrix\, and usee? = VeV ! together with/ &'\t dt = A—1e't, we can eval-
uate the norm of the integral to

t
= eQt-Tdr

Combining (4.9) and (4.10) we get the estimate

IE) o = H [ s mar

<
(o)

£ w- 4.
_naxléz (Dl (4.9)

—[vata-env | <ot ). @0

|E® = Eq max € (1)) CEEN

In order to understand the behavior Bf over time, we will investigate its asymptotic
behavior. For small enough we can Taylor expand the matrix exponentiale®5= | +

tQ+ 2 Q2+ 0(t3Q®), which leads to

2
Qle¥—1)=t+ %Q+ ot3Q?).

For large enough values tfwe instead use the form
QHe¥—1)=vA LM -1V L (4.12)

Numerical experiments indicate that all eigenvalues hanegative real part. In this case, the
exponential in (4.12) approaches zero as time increasdsharimit value ofEg becomes
|Q Y| In Figures 1 and 2, we investigate numerically HBwvaries with time, with the
problem parameters, and with the RBF-PUM parameters. leaaks, inverse multiquadric
RBFs have been used. We can see Eak 1 in all the performed experiments. However,
the value becomes larger for convection dominated probéemdsvill grow further ak — 0.

A smaller shape parameter value (see equation (2.1)) leadkitger value oEq, although
the differences are not large in the rangeeefalues we can explore without running into
ill-conditioning. There is some variation with the disdzation parameters, but no strong
trend.

In light of the numerically observed decaye¥, we can incorporate the damping effect
of the parabolic operator on the error over time. ,e¢present the the time scale over which
the matrix exponential becomes negligible. Then we can g@iintegral in (4.9) into two
parts as

max ||€«(7)|w.
_ max [62()]ls

t—ts
IE®) o < H [ e var

t
max || € (T)]|e+ H/ eRt-dr
t—ts

o0 0ST<t—ts
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The first integral can be made arbitrarily small by incregsinand to emphasize this, we
write the estimate as

oo< [ - [ .
B < Eo (8, max, 620l +(1-8) max [62(Dl), (413

indicating that a large initial error loses importance duae. The relevant time scalgcan
be observed in Figure 1 as the time it takesEgy(t) to approach its asymptotic value. In
the following, when working with the spatial error, we witbst from (4.11) for simplicity,
but we will keep in mind that we can also combine the spatitineges with (4.13).

0.1 ‘ ‘ ‘ ‘ 0.8 :
? c=l= g=2
: 0.7 3‘ ‘== =15 ||
0.08f ~i- == > . u - o=
GPREEISIIRIIRIIEE oo ¥ - 1z
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0.06 :!g 05 g‘
u® é' L 04 B
0.04f ¢ 03 'Y
i et
H 0.2 ®
0.02}s -m-e=2 ’ ‘.‘“’*-o
i —-e=15 0L S
I -0~ £=1.25 MRS
0 0.2 0.4 06 038 1 % 0.2 0.4 06 0.8 1

t K

Fig. 1 Left: The variation ofEq with time for a convection diffusion problem witk = 1 andv = (1,1).
The discretization parameters dre- 0.05 andH = 0.2. Initially the value is close tband then approaches
the asymptotic value dfQ1||. The asymptotic results are indicated by the dashed treed.IRight: The
variation of the maximum value dq with the diffusion coefficienk for a fixedv = (1,1) and the same

discretization.
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Fig. 2 The dependence of the maximum valuekyf on the fill distancen whenH = 0.2 (left) and the
dependence on the patch fill distartdevhenh = 0.05 (right) for different values of the shape parameter
and the diffusion coefficient. In both cases, the convection speedis (1,1).
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We change the focus to the second part of the error estimaté)(dnd expand the
interpolation error to get

OO< ( 0 0 0 . .
JE() ] < Eo (K e (1)le-+ vl max ()l (4.14)

The approximation errors of RBF—PUM are discussed extelysin the forthcoming
paper [26]. Here, we briefly recapitulate the parts thatteela the interpolation error to
make the present paper self contained. A similar derivation with a focus on finitely
smooth RBFs can be found in [42]. Assuming that we have coctgd ak-stable partition
of unity according to the definition in [42]. Then the derivas of the weight functions
satisfy
Ca

laf?
j
whereH;j is the diameter of2;. For the local interpolation errors, we rely on the sam-
pling inequalities derived in [36]. Assume that the domzm]s_ QN Q are bounded by
a Lipschitz boundary and satisfy an interior cone conditidmen we can use the following
estimates from [36] for the local interpolation errors aneitt derivatives when using inverse
multiquadrics:

IDWj || (q)) < la] <k, (4.15)

mi—9—|a
IB%(z = upllia@y) < Caihi® 2 Ui L), (4.16)

D%z — )l sy < €V Uil ay)0 (4.17)

whereu; is the global solution restricted to the local dom&lp, andz; is the local RBF
interpolant. The norm in the right hand side denoted|bjf ;. is the native space norm
(cf. [11,36]) associated with the type of RBFs employed mdpproximation.

Using Leibniz’ rule we can express a derivative of the glabtrpolation error as

M
&y =D%(z—u) Z S ( )DBW,D" Bz —uj). (4.18)
=1|B|<lal
Together with the overlap condition (3.1) this yields thémeate
[€allL.(o) <K max ® ) IIDPw, @) 1D (2 — uj)| (4.19)
l<J<M\B|Za\ iLeo( L8

We choose to consider two different modes of refinement iermtol separate the de-
pendence om andH in the error estimates. For the first refinement mode, we regbée
number of nodes per patch to remain constant while we refiagdiches, meaning that
H;/h; = c. Then, applying (4.16), we get

|allu() <K max CumiH" ™ 2Nl g (4.20)

For the other refinement mode, we fix the patches and then elthegiumber of node
points locally or globally. We can then apply (4.17) to get

16alLaga) < K max Cu je~ Vl/fuuu (4.21)
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When the estimates are expressed on this form, we clearlyhsegotential for adaptive
refinement in relation to the local behavior of the solutidowever, when performing nu-
merical convergence studies in the following sections, veekwvith (quasi) uniform dis-
cretizations, in which cadd; can be replaced byl andh; by h.

Inserting (4.20) or (4.21) into (4.11) and assuming a unifakiscretization we get the
global error estimates for the convection diffusion probies

d
0 < m-3-2 o .
IE®)]l < CEQH™ 2= maxmax|u(T)ly () (4.22)
o0 < 7Y/\/ﬁ A .
[E(t)]l < CEqe qnaxmax|u(T) ]y g). (4.23)

where the constants and y that determine the order of or rate of convergence, are taken
as the minimum values over all patches. We conclude that weatxo observe algebraic
convergence i, when the number of nodes per patch is fixed, and spectratogence in

h when the patches are fixed.

Remark: When the shape parameteis small, the local RBF approximation is close to
polynomial [24], and assuming that the node set is polyntiyniaisolvent, the rate constant
m approximately relates to the multi-variate polynomial eeg) supported by the number
of node points within the patch as= J+ 1. As an example, ten degrees of freedom/nodes
in two dimensions corresponds to a polynomial of degreesaglitey tom= 4 and an overall
convergence rate 1.

Remark: The spectral estimate involveéh instead oth. This has to do with boundary
effects and can be mitigated if the nodes are distributecrdensely near the boundary of
the approximation domain [37]. This is not practical in tHe €ase, since it would mean
refining nodes near all patch boundaries. However, thesatithe interior boundaries are
in the PU case suppressed by two effects. The weight furectiowl their derivatives are
small near the patch boundaries, and hence the errors atlpatadaries are weighted with
small numbers. Furthermore, the problems at boundariesriargl are related with lack of
information, but in the PU formulation, the boundary valoéene patch are connected with
the interior values in another patch and actually 'receinfsrmation also from outside the
patch.

Remark: For most realistic problems, there are parts of the solutiwrnwhich u ¢
JV(.()]). For smooth solutions, the experience is that approximatiorks well anyway.
See for example [34], where convergence of RBF interpolamtmalytic functions is in-
vestigated. However, for solutions of limited smoothnéss convergence rates will also be
limited accordingly.

5 Numerical results for the convection-diffusion equation

With appropriate initial condition and Dirichlet boundargnditions, the following function
is a solution to the unsteady convection-diffusion equmatibl) ind = 2 space dimensions

u(x,y,t) = aexg” (exp *+exp ), (5.1)

wherea andb can be chosen freely, amd= Y2 40K V‘Z’i”b’( > 0. The experiments below have
been performed wita = 1 andb = 0.1. The convection velocity is chosen tobe (1,1) in
most experiments, arkl= 1 is used as default diffusion strength, but other valuesised
as well.
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We discretize the domai® = [0,1] x [0,1] both uniformly byN = n? nodes and non-
uniformly with a similar number of Halton node points [16]hd discretizations of the
square domai® are shown in Figure 3. The PU cover consist®lof n? circular patches.
We let the overlap of the patches be 20% of the distance batitreecenters. An example
of patches for the square domdmis shown in Figure 4.
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Fig. 3 Uniform and quasi random node distributions.
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Fig. 4 Partitioning of the square domain with circular patches.

Unless otherwise stated, inverse multiquadric RBFs haee beed. The shape param-
etere has not been optimized for accuracy. Instead the rangevadues has been chosen
such that ill-conditioning is avoided. In some cases thisdaegative effect on the results.
The conditioning problem can be avoided by using a stabléodgefor evaluation of RBF
approximations such as the RBF-QR method [13,27], whiahwallcomputations for any
small value ofe. This will be further discussed and implemented in the fasthing pa-
per [26].
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For the time-stepping, the MLAB functionode15s is used. The MTLAB codes for
the two- and three-dimensional convection-diffusion peals can be downloaded from the
authors’ web sites.

5.1 Properties of the RBF—PUM discretization matrices

Using a partition based approach instead of a global RBFoxppation introduces sparsity
in the discretization matrices. In Figure 5, the sparsitiggoas of the convection-diffusion
RBF—-PUM matrixQ for two different numbers of patches are shown. More pattdessto
more sparsity, but with the same number of nodes, the glavakrgence is also lower. Even
if only the diffusion term is present, the matrices are ngmisietric due to the collocation
involving the partition of unity weight functions.

50
100, "
150
200
250

300

‘ ‘ 350 ‘ TN
0 100 200 300 0 100 200 300
nz=19797 nz=10733

Fig. 5 Sparsity structure d@ = kWj | + VWt with 21 x 21 uniform nodes and 55 patches (left) and X 7
patches (right).

A numerical study of the stability of the semidiscrete pesblhas been performed, by
investigating the spectra and pseudospectra [40] of the-RBIM discretization matrices.
We define theu-pseudospectrum of the matixas

Ap={zeC||@-Q Hzp'}, p=0

We identify the eigenvalues (spectruv)of Q with the 0-pseudospectrumy. We denote
the u-pseudospectral abscissa, the largest real part gi{peeudospectrum, by

A, = sup(Re(z)).

zehy

As the stability for a linear problem is typically not affedt by forcing terms(here due to
the boundary conditions), we consider the homogeneoudisarete problem

U'(t) = QU (t),
wheren andm are the discretization parameters, which has the solution

U(t) = e?U(0).
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Following Reddy and Trefethen [35], we first define stabitiffhe semidiscrete problem as
le*] <gt), Wt>0,

where the functiorg(t) does not depend on the discretization parameteandn. Then,
again from [35], there is a theorem stating that(l@¥ ||) grows linearly int if and only if
the u-pseudospectral abscissas grow linearly wittSpecifically, if

/\[j <w+Cu, Vu=>0, (5.2
wherew andC are constants, then
|e¥ | < eC(n—1)%, (5.3)

where(n— 1)? is the size of the matriQ. Figure 6 shows examples of spectra and pseu-
dospectra of) for a convection dominated problem wikh= 0.001 and for a problem with
strong diffusionk = 1. The plots have been generated using EigTool [43].
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Fig. 6 Pseudospectra (contour lines) and eigenvalues (dotshédRBF—PUM coefficient matrifQ for k =
0.001,n=41,m=8, ¢ =3 (left), andk = 1,n=21,m=>5, € = 1.5 (right).

The eigenvalue with the largest real p&§tonly changes marginally with the discretiza-
tion, but does depend an For a well resolved problemdj < 0, but approaches zero as
k — 0. However, it should be noted that for convection domingtexblems, we have ob-
served eigenvalues in the right half plane if the resolutioterms of nodes and/or patches
is too low.

If we approximatew with A§, then the requirement for stability becomes

Ap—A§ <Cu.

In the left part of Figure 7, we plot the growth af; — Ag. If the slope of these curves
asymptotically is less than or equal to one, we can find a aotStsuch that (5.2) and (5.3)
are satisfied. Numerically, this holds for the rangg@:@nd the different problem parameters
that have been tested. The variation with the shape pargrtetsnumber of nodes, and the
number of patches is small, but the amount of diffusiomas a clearly visible effect.

In the right part of Figure 7, we investigate if the numeiligastimated value of for
a fixed problem, but with different discretizations staystded. There does not seem to be
an increasing trend with node refinement or with patch refer@m
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55 6 6.5 7 7.5 8

15 20 25 30 35
n

Fig. 7 Left: The growth of the pseudospectral absciss®af a function of the pseudospectrum lenebr
different parameter combinations. The three groups correspmk = 0.001 (solid line),k = 0.1 (dashed
lines), andk = 1 (dash-dot lines). In the first cadd,= m? = 64 patches and? = 412 nodes were used, and
the shape parameter was= 3. For the other cases, discretizations combimrgll,...,21 withm=5, and
combiningm=5,...,8 withn= 21 have been tested fer=1.25, 1.5, 2. The three dashed lines that deviate
somewhat from the pattern correspondre= 7 andn = 21, which is an unlucky combination in the sense
that some overlap regions between 'diagonal’ neighbor eatelie empty of nodes. Right: The estimated
constantC in the bound on the growth of the pseudospectral abscissafol for different discretizations.
In the top subplot = 1.5 andn = 21, and in the bottom subplet= 3 andm= 5.

5.2 Errors and convergence

First, we test how RBF—PUM responds to the type of node Higion and the geometry
of the computational domain. Figure 8 displays the absarrer for the uniform and quasi
random node distributions shown in Figure 4 with= 1.25 att = 1. The errors are of a
similar magnitude in both cases, and there are no obvioifadstdue to the geometry of
the patches and their overlaps.

IoglO(Error)

Fig. 8 Absolute error in the solution of the unsteady convectidgfusion equation with 21 21 uniform
node and 400 non-uniform node points.

To illustrate the capability of the proposed method fordtdarly shaped domains, the
same convection-diffusion problem (4.1) as in the previexigeriment is solved over the
non-convex domain in the left part of Figure 9. The absolutereof the approximation is
plotted in Figure 9 at timé = 1 with € = 0.75. The error is again of a similar magnitude,
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Table 1 L. error of RBF—PUM for 21x 21 uniformly distributed nodes and 400 non-uniformly digitézl
nodes withe = 1.25 in the square domain and 325 nodes with 0.75 in the non-convex domain at different
times.

t non-uniform points uniform points non-convex domain
0.1 3.013%— 005 9396%— 006 34108 — 005
0.5 3.259%— 005 10554 — 005 37100e— 005
1.0 3.427%— 005 111002— 005 39008 — 005
3.0 4.1867%— 005 13554 — 005 4764 — 005
10.0 84308 — 005 27307%— 005 95952 — 005

and apart from generating the nodes and patches for the dpthere is no added difficulty
in applying RBF—PUM for this problem.

-1 -0.5 0 0.5 1 y -1

Fig. 9 Left: the partitioning of the non-convex domain with circlatphes for 325 points. Right: absolute
error in the solution of the unsteady convection-diffusémuation for the node distribution shown in the left
figure, at time = 1.

In Table 1, the errors over time for the two discretizatiohshe square, and for the
discretization of the non-convex domain are listed. It carséen that the error growth with
time is slow, and that the accuracy of the three differentitsmhs is similar, with a slight
advantage for the uniform distribution.

The convergence of RBF—PUM has been investigated numigrioathe two refinement
modes described and analyzed in section 4.1 In the first Bogfiar a fixed number of
patches, uniformly distributed nodes with varying fill @iste are employed. In the second
scenario, different numbers of patches, ranging frormm2to 6x 6, with a close to fixed
number of local nodes per patch are considered. For theiexgmat; a fixed shape parameter
& =1.25was used.

As shown in Figure 10, increasing the number of local poiotséf fixed number of
patches results in spectral convergence. The rate cosgthntn (4.23) are estimated from
the experimental results. For the second scenario we galtiaigz convergence with respect
to H for a fixed number of local nodes. The slopes of the lines irritjte figure represent
the approximate convergence rates, and show that we camtatib order convergence. The
results are even a little better than expected from (4.22).
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Fig. 10 The convergence as a functiontofor three different patch sizé4 (left). Convergence as a function
of H when the number of nodes per patch is kept (almost) fixed. Tke tturves correspond to approximately
21, 28, and 36 nodes per interior patch (right). The thecaiyi expected convergence rates Hre H3, and

H4,

5.3 Comparison with other methods

For a square domain, both finite difference methods (FD) aedgospectral methods (PS)
are easy to implement. Therefore, we will compare the acguoh RBF—PUM with FD
and PS for such a domain, while keeping in mind that RBF—PUMinsctly applicable
also for other domains. We do not compare timings here, simeeémplementations are
not optimized and the times are quite short. However, gdgda the problem sizes and
implementations considered here, FD and PS take approedyrtae same time for a given
resolution, while RBF—PUM is about 3 times slower.
Figure 11, shows the error as functionfofor the casev = (1,1) andk = 0.1. The

10°

H
O\
b

IEI,,

._.
<DI
&

~6- FD

-o- Ps

-B- RBF-PUM

10~

-1.1

10

Fig. 11 Error as a function ofi for FD, PS, and RBF—-PUM with problem parameters (1,1) andk = 0.1
at timet = 1. For the RBF-PU methog = %1 andH = 0.2 were used.

accuracy for PS and RBF—PUM is almost the same, while FD $sdesurate.

Figure 12, shows the error as function roffor € = 1.25,H = 0.2, andh = 0.05 for
two different values o. In the left subfigure, the error of the RBF—PUM method tapers
off at around 10°. This is a typical behavior of RBF approximations in the prese of



A radial basis function partition of unity collocation metho

19

ill-conditioning, and may not be the true behavior of the moelt For convection dominated
problems, RBF—PUM is more accurate than PS (and FD).

10 10 ‘
-0~ PS -0~ PS
. -6- FD . -6- FD
107 % -o- RBF-PUM 10 g -o- RBF-PUM
“‘\" \'0\‘ ‘\5.\
_ X . _ SRS
R T 107 iy
3 St I At 3 2 el
o, b o, NGRS, “o
= 10 \"b = 10 . g
o
X o
10° R 10 S ™
Se.. “o
~e
107 10°
0 0.5 1 15 0 0.5 1 15
K K

Fig. 12 Error as a function ok for v = (1,1) (left) andv = (5,5) (right) att = 1. For RBF—-PUMh = 0.05,
H = 0.2, ande = % were used.

We conclude that RBF—PUM shows as good as or better appragimaroperties than
PS, at least in convection dominated cases. It is a bit mareatationally expensive, but
can be applied to arbitrary geometries, and allows for ladabptivity.

5.4 Experiments in three dimensions

We have also solved the convection-diffusion problem (#hhree space dimensions in a
solid domain bounded by the surface

X2 +y? 4 2 — sin(2x)?sin(2y)?sin(22)2 = 1, (5.4)
as shown in Figure 13. Boundary conditions at the surfacelasen based on the exact
solution

u(x,y,z t) = "oty (5.5)
whereb = 75 andc = /b/6. With that particular choice of exact solution, the veatan
equation (4.1) can be exactly determinedras(—c,—c, —c).

The solid domain is discretized with a total Nf= 2046 node points and covered by
M = 512 patches. Initially, all node points are distributedfammly. Interior nodes are then
slightly perturbed in a random way in the direction towatus boundary. Non-overlapping
boxes that cover the domain, which form the basis for consirg the ball cover, are shown
in Figure 13.

As in the two-dimensional casede15s is used for the time-stepping. Figure 14 shows
the distribution of the eigenvalues of the three-dimersi@onvection-diffusion operator
with the number of nodes per patofyc = 26. Gaussian RBFs with shape parameter
0.75R, whereRis the average radius of the ball patches, are used. All eddess lie in the
left half of the complex plane. The right subfigure in Figudeshows how the error evolves
in time for three different values a@i,c. The growth in time is very limited and as expected
the error decreases with increasing numbers of local nodes.
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Fig. 13 The solid domain bounded by the surface equation (5.4) ([€f¢ layout of the non-overlapping
boxes which form the skeleton for the ball cover. The dotssthate the node points (right).
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Fig. 14 Eigenvalues of the three-dimensional convection-diffasiperator discretized with Gaussian RBFs
in the partition of unity setting with 26 nodes per patchtjleError of the numerical solutions compared with
the exact solution as a function of time (right).

6 Multi-asset American option pricing

The multi-dimensional version [8,23] of the Black—Schagsiation [6] takes the form
op 132 op 3 oP
= 0SS —d)S— —rP= <t<T 1

whereP is the value of the contrac§ is the value of théth underlying assef is the time
to expiry,d is the number of underlying assefs; is the correlation between asseind
assetj, a; is the volatility of asset, r is the risk-free interest rate awklis the (continuous)
dividend yield paid by théh asset. Equation (6.1) is a final value problem, i.e., thetiom
is known at timeT and the PDE is integrated backwards in time.
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The payoff function of the American basket put option is gty

d
Fr(S):maX(EfZaiS,OL (6.2)
i=
wherekE is the exercise price of the option aod i = 1,...,d are given constants. The final
condition is given by

PST)=F (S, ScQ=RY. (6.3)

The boundary of the computational domain can be divided twtw parts. The near-field
boundary, where one or more asset prices are zero, and tfieldelooundary, where one or
more asset-prices tend to infinity.

For the near-field boundary, it can be noted that if one of #seprices is zero at time
t*, then the asset will be worthless for any t*, i.e., the solution remains at the boundary.
We denote thel near-field boundaries by = {S€ Q|S#0,5 =0},i=1,...,d. Then the
boundary values &f can be propagated by solving(d— 1)-dimensional Black—Scholes
problem. We denote the solutions of the reduced problents agd use the boundary con-
ditions

P(St)=h(St), Serl, i=1,...,d. (6.4)

However, already in [12] it was shown that the problem is webled without boundary con-
ditions at the near-field boundaries, assuming the Fichamditon on the relative strength
of the drift and diffusion term holds. For a more recent déston of the well-posedness of
the problem, see also [20]. In the numerical experiments,hvee will use (6.4) as in [10]
even if it is not needed. For an example where near-field tiondiare not used, see [33].
For put options, the contract becomes worthless as the girexey of the underlying as-
sets tends to infinity. Therefore, we employ the followingffald boundary conditions [21]:

lim P(St)=0, SecQ,i=1,...,d. (6.5)
§oo

The American option allows early exercise, which meansahsbme values &, where
it is more profitable to use the option than to keep it untilekpiry date, this will be done.
Mathematically, this corresponds to a free boundary probl€his issue can be treated in
different ways. Ito and Toivanen [19] as well as Persson amdSydow [32] use an operator
splitting approach. The approach we will use here employeralty term as described
in [45] and later refined in [30]. The penalty term takes therfo

oC

P q 66)

and ensures that the solution stays above the payoff funetiothe solution approaches
expiry. Here 0< 0 < 1 is a small regularization paramet€r> rE is a positive constant.
The so calledarrier function q(S) is defined as

d
as) =E-) ais, (6.7)
2
see [45] for a motivation of this choice. Adding the penadtyn to the Black—Scholes equa-
tion (6.1) for the American option converts it to a fixed dompioblem. The penalty term is
small enough so that the PDE still resembles the Black—8slexjuation closely. The error
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introduced by the penalty term is expected to be of the orfié:. dhe penalty term (6.6)
together with equation (6.1) lead to

1 d d P
2ZZp'JU'UJSSJasas,+Z -P
+#5C_q:o, SeQ,0<t<T. (6.8)

The terminal and boundary conditions on the fixed domainueslike before

P(ST)=F(9, SeQ, (6.9)
P(St)=hi(St), Sef, i=1,....d, (6.10)
lm P(SH=0, SeQ i=1..d (6.11)

6.1 RBF—PUM for American option pricing

Using the RBF—PUM approximation (3.12) and collocatingRi¥E (6.8) at the node points
we get the system of ODEs

[}

1 d
R(t) = 3 ZZ Pij 010} S S;Wj, R (t

___ o
R(t)+d—q

Z\ (r—d)SIM,R(t)+rRA(t)

+F(1), (6.12)

whereW, | contains the columns of the differentiation matrix core@sging to interior points,
S are diagonal matrices containing the respective cooretinat the interior node points,
R(t) = [Pu(t),...,Ay (1)]T, and

d

-T2 le £ij 010} S Sj1\W pFo(t) — ;(r — ) SIW pFo(t), (6.13)

whereW. |, contains the columns of the differentiation matrix corsging to boundary
points andm,(t) = [P(xy 11,t), -, P(Xn,t)]T contains the known boundary values.

Going back to the theoretical convergence estimates imgsestl, there are some fea-
tures of the American option pricing problem that can degrd@ convergence. The jump
in the derivative of the initial condition limits the accayawith which it can be approxi-
mated. However, if we perform a split in time of the error teras suggested in (4.13), we
see that the initial error looses importance for the errdatat times. A worse problem is
the free boundary, where the solution itself is 08 With the penalty formulation of the
problem, the modified solution is smooth, and we can expegtt brder convergence with
RBF—PUM. However, for the error in relation to the true sioint the convergence order is
limited in the patch(es) where the free boundary is located.
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7 Numerical experiments for two-asset American option pricing

The option prices are approximated using uniform and nafeum discretizations of the
domainQ = [0,S; «] X [0,S,«]. For the numerical illustrations throughout this sectios,
use the parameter values from [10,31] giverrby 0.1, 01 = 0.2,0» =0.3,p =0.5,a1 =

0.6, a» = 0.4, d; = 0.05,d, = 0.01. The time interval, the computational domain, and the
penalty term are defined by = 1, E =1, S = 4E, 6 = 0.00001 andC = 0.1. In all
experiments, inverse multiquadric RBFs are used, and ibmgrsystem of ODEs (6.12)

is solved in MATLAB using the ode solver commande15s. The MATLAB code for the
American option pricing problem can be downloaded from thihars’ web sites.

7.1 A non-uniform space discretization

We note that the payoff function (6.2) possesses a disagtytiim its first derivative at the
exercise price, see Figure 15. In practice, the region reaexercise price in thé5,S)
domain is the financially most interesting. Along tBedirections we want to have a distri-
bution of node points which is clustered in a neighborhoothefexercise price. By using a
tailored node distribution we aim to increase the accur&tyeapproximation in the region
of interest as well as to capture the initial discontinuityhie solution better. We would like
to apply the non-uniform discretization that has recendyemployed, e.g., in [39, 18].

Fig. 15 The payoff function of the two-dimensional American put opt{geft). Contour lines of the function
w(S) used for the evaluation of the weighted error norm (right).

In order to cluster nodes around the exercise dEcee define the node coordinates in
each direction through

S,j=E+Isinh¢§j), 0<j<m, (7.1)

whereé; € [&o, &m| are equidistant values amds a parameter that determines the amount
of clustering. By the requirement that the nodes shouldirfathe interval[0, S .| we can
compute the range @ to

&o=sinh (—E/l)

Em=sinh (S —E)/I).
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Note that the centers of the patches are defined with a sipaltiern as for the node dis-
tribution. In our numerical experiments we have used E/2 for both nodes and patch
centers. When the patch centers are non-uniformly diggdcircular patches do not have
a suitable shape. Instead, we use elliptic patches, atdtad in Figure 16. The Wendland
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Fig. 16 Discretization of the computational domain for the two-dimenal American option pricing prob-

lem with elliptic and circular patches.

function (3.4) is used for constructing the partition oftynweights, but here the argument
is scaled anisotropically such that for a pok= (X1,X2) in patchQ; with center point
Xj = (Xj1,Xj.2)

$j(x)=¢ \/(Xl EZXJ’I)Z 4L ;2)(]’2)2) ;o i=100M, (7.2)

i1 02

whereR;.. are the radii of the elliptic patches in the different coorde directions. The
resulting function is compactly supported on the elliptitgh. The shape parameters for the
radial basis functions used for the local approximatiorssaaled with respect to the node
density in the patch such that

=E= (7.3)
whereh is the uniform node distance corresponding to the numbeodés used, and; is
the actual minimum node distance within the patch. This maense because the adjust-

ment of the node distribution is based on the local smoothakthe solution. Where there
are higher derivatives, the shape parameter is larger @mbithes more dense, see also [14].

7.2 Errors and convergence

As mentioned earlier, the region around the strike pricelisne the solution is of financial
interest. Our computational objective is to make the emalkin that region. Therefore, we



A radial basis function partition of unity collocation metho 25

use a weighted error norm of the form
Eo= [ w(SIE(S)dS

where the functiorw(S) is normalized such thaf, w(S)dS= 1. A similar approach was

taken in [33]. Here, we have used a functiagS) 0 e~ 9S+%-22e-9(S1-%)/2? |n Fig-
ure 15, the contour lines of the function are shown.

We have compared the accuracy and convergence of RBF—PUNeféimerican option
pricing problem with two different FD implementations. hetleft part of Figure 17, RBF—
PUM with uniform nodes and non-uniform nodes is comparet ait FD implementation
that uses a penalty term. This means that the same (fixed dpmBEE is solved by all
methods. In the right part of Figure 17 the same comparis@eiformed while instead
using an FD implementation with an operator splitting appio[19,32]. In this case, the
reference solution is closer to the actual solution, as it sntroduced by the penalty term
is eliminated.

From the figures, it can be seen that the convergence ratésefemiform RBF—PUM
and uniform FD seem to be quite similar in all cases, but wighaller error for RBF—PUM.
Using the non-uniform RBF—PUM discretization, we achiggaiicantly better results for
the same number of node points. The differences betweemthedts of plots are small,
but with the penalty reference the error can falsely coetittudecrease because the penalty
error is not measured.
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Fig. 17 Convergence with respect toin the weighted error norm for RBF—PUM with a uniform dis@zat
tion, RBF—PUM with a tailored non-uniform discretizatiosgmpared with a uniform FD implementation
using a penalty approach (left) and a uniform FD implementaiging an operator splitting approach (right).
The shape parameterin equation (7.3) is chosen as= 2 in the tailored case and= 1.5 in the uniform
case. In both cases, errors are computed against an FD mreesehution of the corresponding type with
n= 101 discretization points per dimension.

7.3 Time comparison

To really compare the performance of different methods, eedrto consider the execution
times for a given problem and required accuracy. Figure I8vshruntime comparisons
for the different RBF—PUM discretizations and the two FD lempentations. For the FD—
penalty implementation, the MLAB routine ode45 is used for time-stepping, while the
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operator splitting approach uses the Crank—Nicholsonmseh&he non-uniform RBF-PUM
discretization is fastest for the range of tolerances camei here. It should be noted that
the implementations used in this comparison have not betimiapd for performance.

10 10
—o— tailored —o— tailored
—o— uniform —o— uniform
—=—FD —=—FD

107 107

3 3
w w
10" 10"
10° 10" 107 10° 10" 107
Runtime (s) Runtime (s)

Fig. 18 Error as a function of runtime for the same experimental setup Bgyure 17 with FD—penalty as
reference (left) and FD—operator splitting as referenicia{).

8 Conclusions

We have implemented and tested RBF—PUM for convectiomslifh problems such as
those typically arising in valuation and calibration pmls in computational finance. A
combination of theoretical and experimental analysisdatdis that the method is stable for
a wide range of problem parameters, and that we can achigliespectral and algebraic
convergence rates depending on the mode of refinement.

Different comparisons with FD and PS methods show that watficgent smoothness of
the solution to the problem, RBF-PUM is as accurate or mazerate than the PS method,
but about three times slower for the problem sizes consideeee. However, RBF—PUM
provides a different level of flexibility, where local appimations can easily be varied both
with respect to resolution and type, in arbitrary geomstrie

A main advantage of RBF-PUM is that it allows for local adeipti Patches can be
locally refined and have shapes adapted to the local solbébavior as in our option pricing
example. Furthermore, the node density in each partitiarbedocally adjusted. To develop
support for automatic adaptivity will be part of our futuresk, and we will also consider
larger and higher-dimensional computational problems.
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