Model-theoretic Conservative Extension for HOL with Ad-hoc Overloading

Arve Gengelbach1 Johannes Åman Pohjola2,3 Tjark Weber1

1Uppsala University, Uppsala, Sweden
2CSIRO’s Data61, Sydney, Australia
3University of New South Wales, Sydney, Australia

CakeML Seminar Series
September 22, 2020
Motivation

In a logical framework, what does a new definition change?

Semantically, at most any term changes that uses the new symbol.

Answer for new semantics and mechanised proofs.
Motivation

Example: \[T = \{ e_{\text{bool}} \equiv f_{\text{bool}} \} \]

What does the new definition \(f_{\text{bool}} \equiv \text{True} \) change?

Extending \(T \) with the definition \(f_{\text{bool}} \equiv \text{True} \) affects which values \(e_{\text{bool}} \) may take.
Anything not mentioning \(f_{\text{bool}} \) is unaffected.
Motivation: Proof-theoretic Conservativity

Theory extension by definition is proof-theoretic conservative if for all theories T, and their extension by upd, for all formula φ (in the language of T) we have:

$$T \vdash \varphi \iff T \cup \{\text{upd}\} \vdash \varphi$$

Implies a model-theoretic conservativity (if proof-calculus complete then equivalent).
Motivation: Model-theoretic Conservativity

Theory extension by definition is model-theoretic conservative if for all theories T, and their extension by upd, for any model \mathcal{M} of T, there is a model \mathcal{M}' of $T \cup \{ \text{upd} \}$ such that for all formula φ (in the language of T) we have:

$$\mathcal{M} \models \varphi \iff \mathcal{M}' \models \varphi$$
Contribution

- Formalise model-theoretic conservativity for HOL with overloading
- Replace monolithic model construction by an incremental one
- The dual proof-theoretic conservativity (as above) may hold. \(^1\)

\(^1\)Proven in a weaker form by Kunčar and Popescu.
Higher-Order Logic (HOL)

- Typed λ-calculus
 $x_\sigma \mid c_\sigma \mid (s_\sigma \to_\tau t_\sigma)_\tau \mid (\lambda x_\sigma. t_\tau)_{\sigma \to_\tau}$$

- Rank 1 polymorphism

- With built-in types \rightarrow, bool
 and a built-in constant $=_{\alpha \to_\alpha \to \text{bool}}$

- We say symbols for types and constants
Definitions

- Overloaded constant specification
 Given witnesses, simultaneously introduce several constants satisfying a property.
 Example: $c_\mathbb{N}, c_{\text{bool}}, d_{\text{bool}} \equiv 2, \text{True}, \text{False}$
 satisfying $c_\mathbb{N} \leq 4 \land c_{\text{bool}} \neq d_{\text{bool}}$

- Type $\tau \equiv t_{\sigma \rightarrow \text{bool}}$ meaning $\tau \subseteq \sigma$, where t holds with constants abs$_{\tau \rightarrow \sigma}$ and rep$_{\sigma \rightarrow \tau}$
 Example: $2\mathbb{N} \equiv \text{even}_\mathbb{N \rightarrow \text{bool}}$

We consider only non-overlapping definitions
Example of overlapping definitions:
$c_{\alpha \times \text{bool}}, c_{\text{bool} \times \alpha} \equiv t, t'$ have common instance $c_{\text{bool} \times \text{bool}}$
We are interested in the non-built-in symbols:

- **Top-level non-built-in types**:

 \[(\mathbb{N} \to \text{bool})^\bullet = \{\mathbb{N}\} \]

 \[(\text{map}(\alpha \to \beta) \to \alpha \text{ list} \to \beta \text{ list})^\bullet = \{\alpha, \beta, \alpha \text{ list}, \beta \text{ list}\} \]

- **Non-built-in constant instances**:

 \[(\text{even} = (\lambda x_{\mathbb{N}}. x \mod 2 = 0))^\circ = \{\text{even}, \text{mod}, 2, 0\} \]
Track a definition’s dependencies (to disallow cyclic definitions).

- $u \equiv t$, and $v \in t^\bullet \cup t^\circ$ then $u \leadsto v$

 Example: $2\mathbb{N} \leadsto \mathbb{N}$, $2\mathbb{N} \leadsto \text{even}_{\mathbb{N} \rightarrow \text{bool}}$

 $c_{\mathbb{N}} \leadsto 2$, $c_{\text{bool}} \leadsto \text{True}$, $d_{\text{bool}} \leadsto \text{False}$

 (from $c_{\mathbb{N}}$, c_{bool}, $d_{\text{bool}} \equiv 2$, True, False)

- $c_{\sigma} \leadsto v$ for $v \in \sigma^\bullet$

 Example: $\text{map}(\alpha \rightarrow \beta) \rightarrow \alpha \text{list} \rightarrow \beta \text{list} \leadsto v$

 for $v \in \{\alpha, \beta, \alpha \text{list}, \beta \text{list}\}$

- $(\sigma_1, \ldots, \sigma_n)k \leadsto \sigma_i$ for a type constructor k

 Reason/Example: $\tau \rightarrow \sigma \leadsto \tau$ and $\tau \rightarrow \sigma \leadsto \sigma$
Lazy Ground Semantics

\[\varphi_{\text{bool}} \text{ satisfied w.r.t. } \lfloor \cdot \rfloor \text{ iff} \]
for all ground type substitutions \(\rho \)
and all variable assignments \(\xi_\rho : \lfloor \varphi \rfloor_\rho = \text{true} \)

Earlier semantics: \(\lfloor \rho(\varphi) \rfloor_\rho = \text{true} \)
Problem: Term variables \(x_\alpha \) and \(x_{\text{bool}} \) are distinct,
but immediately applying \(\rho \) equates these.

Lazy semantics
For \(\rho(\sigma) \) ground type, have \(\lfloor c_\sigma \rfloor_\rho = \lfloor c_{\rho(\sigma)} \rfloor \) and
\(\lfloor x_\sigma \rfloor_\rho = \xi_\rho(x_\sigma) \) such that \(\xi_\rho(x_\sigma) \in \lfloor \rho(\sigma) \rfloor \)

\(\mathcal{M} \models T \text{ iff every } \varphi_{\text{bool}} \in T \text{ is satisfied w.r.t. } \mathcal{M}. \)
Recipe to Model-theoretic Conservativity

For a definitional theory T, with a model $\mathcal{M} \models T$ we want a model of an extension of T by a new definition $u \equiv t$.

- Reuse interpretations from \mathcal{M} that are unaffected by the new definition $u \equiv t$ (called F_u).
- Define interpretations for the symbols that are affected by the definition $u \equiv t$.

A. Gengelbach, J. Åman Pohjola, T. Weber : Model-theoretic Conservative Extension for HOL with Ad-hoc Overloading
The u-independent fragment\(^2\) is

$$F_u := \text{Symb} \setminus \{ x \mid \exists u' \in u, \rho. x \rightsquigarrow^\downarrow^* \rho(u') \}.$$

F_u contains all symbols that are not depending on any instance from u.

Example: $c_\alpha \equiv d_\alpha, \ d_{\text{bool}} \equiv \text{True}$

- $c_{\text{bool}}, d_{\text{bool}} \not\in F_{d_{\text{bool}}}$ by $c_{\text{bool}} \rightsquigarrow^\downarrow^* d_{\text{bool}}$
- $c_\alpha \text{ list} \in F_{d_{\text{bool}}}$ by $c_\alpha \text{ list} \rightsquigarrow^\downarrow^* d_{\text{bool}}$

\(^2\) \text{type-substitutitive closure, } \cdot^* \text{ reflexive-transitive closure}
Model-theoretic Conservative Extension

Claim:
For a definitional theory $T \cup \{u \equiv t\}$ with $\mathcal{M} \models T$ there exists a model extension $\mathcal{M}' \models T \cup \{u \equiv t\}$ such that \mathcal{M} and \mathcal{M}' interpret terms built from F_u equally.

Example: $T = \{c_\alpha \equiv d_\alpha\}$, $T' = T \cup \{d_{\text{bool}} \equiv \text{True}\}$.
Any model \mathcal{M} for T has an extension \mathcal{M}' for T'.
Might have $\mathcal{M}(c_{\text{bool}}) \neq \mathcal{M}'(c_{\text{bool}})$ because $c_{\text{bool}} \not\in F_{d_{\text{bool}}}$. But $\mathcal{M}(c_\alpha \text{ list}) = \mathcal{M}'(c_\alpha \text{ list})$.

A. Gengelbach, J. Åman Pohjola, T. Weber : Model-theoretic Conservative Extension for HOL with Ad-hoc Overloading
Implementation:

Mutually Recursive Model Construction

\[
\text{type_interpretation_ext \ ind \ upd \ } T \ \Delta \ \Gamma \ \tau = \\
\text{if } \neg \text{wellformed} \ (T \cup \{\text{upd}\}) \\
\text{then One} \\
\text{else if } (\forall \text{tm. } \text{upd} \neq \text{NewAxiom tm}) \\
\quad \land \ \tau \in \text{indep_frag_upd} \ (T \cup \{\text{upd}\}) \ \text{upd} \\
\text{then } \Delta \ \tau \\
\text{else } \ldots \ // \ as \ in \ Åman \ Pohjola \ & \ Gengelbach, \ LPAR \ 2020
\]

\[
\text{term_interpretation_ext \ ind \ upd \ } T \ \Delta \ \Gamma \ c_\tau = \ldots
\]
For a theory T with model \mathcal{M} any axiom from T is valid in the constructed model \mathcal{M}' for $T \cup \{\text{upd}\}$.
Assumption for constant specification

For a constant specification $d_{bool}, e_{bool} \equiv False, (c_{bool} \Rightarrow True)$ with axiom $d_{bool} \neq e_{bool}$ updated with $c_{bool} = True$, show $M'(d_{bool} \neq e_{bool}) = true$

Here, $d_{bool} \not\rightsquigarrow c_{bool}$ and $e_{bool} \rightsquigarrow c_{bool}$, thus $d_{bool} \in F_{c_{bool}}$ and $e_{bool} \notin F_{c_{bool}}$.

Knowing $M(d_{bool}) = M'(d_{bool})$ and $M(d_{bool}) = false$ we can prove $M'(d_{bool} \neq e_{bool}) = true$
Theorem:
For a definitional theory \(T \cup \{ u \equiv t \} \) with \(M \models T \)
and if \(M(c) = M(t') \) for any constant \(c \) with witness \(t' \) introduced
by constant specification then
there exists a model extension \(M' \models T \cup \{ u \equiv t \} \)
such that \(M \) and \(M' \) interpret terms built from \(F_u \) equally.

By construction the additional assumption holds for \(M' \).

Corollary: Consistency
Any definitional theory has a model.
What does a new definition $u \equiv t$ change?

In a model, at most some symbols that are expressed in terms of instances of the new defined symbol u.

$$\{ x \mid \exists u' \in u, \rho. \ x \rightsquigarrow^* \rho(u') \}$$

Semantically, definitions are *merely abbreviations*. And we have formalised proof for it:

https://code.cakeml.org/tree/master/candle/overloading