Proof-theoretic Conservative Extension for HOL with Ad-hoc Overloading

Arve Gengelbach Tjark Weber

Uppsala University, Uppsala, Sweden

ICTAC, December 2, 2020
Motivation

What’s in a definition?
That is, what new theorems can be derived with a definition?

Sufficient criterion for when a formula
is also provable without some definitions
Motivation (Example)

Declared constant: d_α
$T = \{d_\alpha \text{ list} \equiv \ldots\}$

What new theorems can be derived with a definition of d_{bool}?

Assume d_{bool} not occurring in the definition of $d_\alpha \text{ list}$.
Any formula without d_{bool} is provable from T iff the formula is provable from $T \cup \{d_{\text{bool}} \equiv \text{True}\}$.
$T \cup \{d_{\text{bool}} \equiv \text{False}\}$.

Higher-Order Logic (HOL)

- Typed λ-calculus with rank 1 polymorphism
- With built-in types →, bool
 and a built-in constant =_α→α→bool
- Theories of type and constant definitions
- Constants may be overloaded
 Example: +_α→α→α may be overloaded at
 +_real→real→real and +_nat→nat→nat
Definition: Proof-theoretic Conservativity

Theory extension by definition(s) is \textit{proof-theoretically conservative} if for all theories $T \subseteq T'$ and for all formulae φ (in the language of T) we have:

$$T' \vdash \varphi \iff T \vdash \varphi$$

Initial Example:
$T = \{d_{\alpha} \text{ list} \equiv \ldots\}$ and $T' = T \cup \{d_{\text{bool}} \equiv \text{True}\}$ have the same languages.

Problem:
$T' \vdash d_{\text{bool}} = \text{True}$ and $T \not\vdash d_{\text{bool}} = \text{True}$.
In HOL with ad-hoc overloading, definitions are conservative in the following sense:

If a formula φ is independent\(^1\) of symbols defined in $T' \setminus T$ then

$$T' \vdash \varphi \iff T \vdash \varphi$$

\(^1\)expressed by closure of definitional dependencies
Example:
Proof-theoretic Conservativeness done right

\[T = \{ d_\alpha \text{list} \equiv \ldots \} \text{ and } T' = T \cup \{ d_{\text{bool}} \equiv \text{True} \}. \]
Assume \(d_{\text{bool}} \) not occurring in the definition of \(d_\alpha \text{list} \).

- Any formula \(\varphi \) without \(d_{\text{bool}} \) is independent of \(d_{\text{bool}} \),
 thus \(T' \vdash \varphi \iff T \vdash \varphi \)
- \(T' \vdash c_\alpha \text{list} = d_\alpha \text{list} \iff T \vdash c_\alpha \text{list} = d_\alpha \text{list} \)
- But we can **not** prove
 \(T' \vdash c_{\text{bool}} = d_{\text{bool}} \iff T \vdash c_{\text{bool}} = d_{\text{bool}} \)
Generalise semantics
Relaxed interpretation of function types: \([\tau \to \sigma] \subseteq [\tau] \to [\sigma]\)
Only interpret type-variable free constants and types.

HOL with ad-hoc overloading is sound and complete
(Andrews/Henkin)

Prove model-theoretic conservativity to obtain proof-theoretic conservativity for theories of definitions
Foundation of Isabelle/HOL:
Consistency; Definitions are abbreviations
Practical: Ignore unrelated definitions in proof-search
Any theory of definitions T' is a proof-theoretically conservative extension of the initial theory.

Meta-safety: Definitions in a formula can be unfolded, resulting in a logically equivalent formula.

We can recover this result (not meta-safety).
What’s in a definition?

All the definitions that are neither implicitly nor explicitly relevant to a formula are irrelevant to the provability of the formula.
Track a definition’s dependencies (to disallow cyclic definitions).

- $u \equiv t$, and $v \in t^* \cup t^\circ$ then $u \rightsquigarrow v$

 Example: $2\mathbb{N} \rightsquigarrow \mathbb{N}$, \hspace{1em} $2\mathbb{N} \rightsquigarrow \text{even}_{\mathbb{N} \rightarrow \text{bool}}$

 (from a definition $2\mathbb{N} \equiv \text{even}_{\mathbb{N} \rightarrow \text{bool}}$)

- $c_\sigma \rightsquigarrow v$ for $v \in \sigma^*$

 Example: $\text{map}(\alpha \rightarrow \beta) \rightarrow \alpha \text{ list} \rightarrow \beta \text{ list} \rightsquigarrow v$

 for $v \in \{\alpha, \beta, \alpha \text{ list}, \beta \text{ list}\}$

- $(\sigma_1, \ldots, \sigma_n) k \rightsquigarrow \sigma_i$ for a type constructor k

 Reason/Example: $\tau \rightarrow \sigma \rightsquigarrow \tau$ \hspace{1em} and \hspace{1em} $\tau \rightarrow \sigma \rightsquigarrow \sigma$
The U-independent fragment2 is

\[F_U := \text{Symb} \setminus \{x \mid \exists u \in U, \rho. \ x \xrightarrow{\cdots} \rho(u)\}. \]

F_U contains all symbols that are not depending on any instance from U.

Typically, $U = \text{set of symbols defined by definitions}$.

Example: $c_\alpha \equiv d_\alpha$, $d_{\text{bool}} \equiv \text{True}$

\[c_{\text{bool}}, d_{\text{bool}} \not\in F\{d_{\text{bool}}\} \quad \text{by} \quad c_{\text{bool}} \xrightarrow{\cdots} \rho(u) \]

\[c_\alpha \text{ list} \in F\{d_{\text{bool}}\} \quad \text{by} \quad c_\alpha \text{ list} \xrightarrow{\cdots} \rho(u) \]

\[^2 \quad \downarrow \text{type-substitutive closure}, \quad \ast \text{ reflexive-transitive closure} \]
Let $T \subseteq T'$ be a wellformed definitional extension and let \mathcal{M} be a model of T. There exists a model \mathcal{M}' of T' such that \mathcal{M} and \mathcal{M}' interpret terms equally, that are independent of symbols defined in $T' \setminus T$.

Example: $T = \{ c_\alpha \equiv d_\alpha \}$, $T' = T \cup \{ d_{\text{bool}} \equiv \text{True} \}$. Any model \mathcal{M} for T has an extension \mathcal{M}' for T'.

c_{bool} is dependent on d_{bool}, thus may have $\mathcal{M}(c_{\text{bool}}) \neq \mathcal{M}'(c_{\text{bool}})$. But $\mathcal{M}(c_\alpha \text{ list}) = \mathcal{M}'(c_\alpha \text{ list})$.
Model-theoretic Conservativity implies Proof-theoretic Conservativity

Theorem: Let $T \subseteq T'$ be a wellformed definitional extension. If φ independent from the symbols defined in $T' \setminus T$ and $T' \vdash \varphi$ then $T \vdash \varphi$.

Proof:
With completeness it suffices to prove: φ holds in all models of T. For a model M of T model-theoretic conservativity gives a model M' of T' such that $M(\varphi) = M'(\varphi)$. From $T' \vdash \varphi$ soundness gives $M'(\varphi) = \text{true}$, thus $M(\varphi) = \text{true}$.
Lazy Ground Semantics [Åman Pohjola & Gengelbach 2020]

- \(\varphi_{\text{bool}} \) satisfied w.r.t. \([\cdot]\) iff

 for all ground type substitutions \(\rho \)
 and all variable assignments \(\xi_\rho : [\varphi]_{\xi_\rho} = \text{true} \)

- Earlier semantics: \([\rho(\varphi)]_{\xi_\rho} = \text{true} \)
 Problem: Term variables \(x_\alpha \) and \(x_{\text{bool}} \) are distinct,
 but immediately applying \(\rho \) equates these.

- Lazy semantics

 For \(\rho(\sigma) \) ground type, have \([c_\sigma]_{\xi_\rho} = [c_{\rho(\sigma)}] \) and
 \([x_\sigma]_{\xi_\rho} = \xi_\rho(x_\sigma) \) such that \(\xi_\rho(x_\sigma) \in [\rho(\sigma)] \)

- \(\mathcal{M} \models T \) iff every \(\varphi_{\text{bool}} \in T \) is satisfied w.r.t. \(\mathcal{M} \).