PREPRINT. In Proc. 2nd ann. International Symposium on Algorithms, pages 273-282. Springer Verlag, 1991.

Comparison-efficient and Write-optimal
Searching and Sorting

Arne Andersson Tony W. Lai
Lund University NTT Communication Science Labs
Lund, Sweden Kyoto, Japan
Abstract

We consider the problem of updating a binary search tree in O(logn)
amortized time while using as few comparisons as possible. We show
that a tree of height [log(n+1)+1/y/log(n + 1)]| can be maintained in
O(logn) amortized time such that the difference between the longest
and shortest paths from the root to an external node is at most 2.

We also study the problem of sorting and searching in the slow
write model of computation, where we have a constant size cache of
fast memory and a large amount of memory with a much slower writing
time than reading time. In such a model, it is important to sort using
only ©(n) writes into the slower memory. We say that such algorithms
are write optimal, and we introduce a O(nlogn) time, write-optimal
sorting algorithm that requires only n logn+ O(n) comparisons in the
worst case. No previous sorting algorithm that performs nlogn +
o(nlogn) comparisons in the worst case had previously been shown
to be write optimal.

The above results are based on a class of trees called k-stratum
trees, which can be viewed as a generalization of stratified search trees.

1 Introduction

In this abstract, we introduce the slow write model of computation. In this
model, we have a constant size cache of fast memory and a large amount of
memory with a much slower writing time than reading time. We justify the

model by noting that certain types of memory such as flash memories and
EEPROMSs have much slower writing times than reading times.

We consider the problem of efficiently maintaining a comparison-based
dictionary, while minimizing the number of comparisons and writes per up-
date. In particular, we want updates and searches to require only log n+0O(1)
comparisons in the worst case; we say that a dictionary with this property is
comparison-efficient. In addition, we want updates to require only a constant
number of writes; a dictionary with this property is write-optimal.

In the area of comparison-efficient bounds, we show that a binary search
tree of height at most [log(n + 1) +¢(n)]| can be maintained in O(logn)
amortized time, such that lim, ,, ¢(n) = 0. No such upper bound on the
number of comparisons has been previously demonstrated. The exact value
of €(n) we obtain is 1//log(n + 1).

In the area of write-optimal bounds, we show that a binary search tree
of height at most [log(n + 1) + €] can be maintained in O(logn) amortized
time, such that the amortized number of writes is O(1/€3). Thus, by inserting
n elements into such a structure, we obtain an O(nlogn) time sorting algo-
rithm that uses only nlogn + O(n) comparisons and ©(n) writes. Although
there are both write-optimal sorting algorithms [5, 6, 7] and sorting algo-
rithms with an optimal number of comparisons (with respect to the leading
term) [3, 8], no previous solution has been shown to combine both properties.

The presented results are based on a new data structure called a k-stratum
tree. They can be viewed as a generalization of stratified search trees [7].

Before proceeding further, we define some more terms. We define the
length of a path in a tree to be the number of internal nodes on the path. We
define the height, height(7T), of a tree T to be the length of the longest path
from the root to an external node. We define the number of complete levels,
short(T'), of a tree T to be the length of the shortest path from the root to
an external node. The incompleteness of T is given by height(7") — short(T).
A tree T is k-incomplete if height(T") — short(7T") < k. Thus, a complete tree
is 0-incomplete, and a tree of minimal internal path length is 1-incomplete.
The weight, |T|, of a tree T is the number of external nodes of 7. A tree
T is perfectly balanced if T is an external node, or 7”s subtrees are perfectly
balanced and their weights differ by at most 1.

2 Comparison efficiency

To maintain an extremely well-balanced tree, we use the following basic ideas.

e Although the amortized cost of maintaining a binary search tree of
minimal internal path length (1-incomplete tree) can be shown to be
Q(n) in general, it is possible to obtain a polylogarithmic amortized
cost when the size of the tree is not close to a power of 2.

e By keeping two layers of 1-incomplete trees on top of each other, we
achieve a 2-incomplete tree. By careful maintenance algorithms consist-
ing of partial rebuilding within both layers, 3-way splitting and merging
of subtrees, and occasional rebuilding of the entire tree, we guarantee
that the sizes of the trees in both layers are favorable all the time. We
also make the frequency of splitting, merging, and global rebuilding
low enough to achieve a total amortized cost of O(logn) per update.

Note that we also achieve an incompleteness of 2; this incompleteness can
be shown to be the smallest maintainable in O(logn) time in general, so we
obtain matching upper and lower bounds on the incompleteness of a binary
search tree.

Since we use 1-incomplete trees in two layers or strata, our tree is called
a 2-stratum tree. We give a formal definition of a 2-stratum tree below.

Definition 1 Given two positive integers Hy and Hs, a 2-stratum tree con-
sists of a topmost tree whose external nodes are replaced by leaf subtrees,
such that the following properties hold.

1. Let T be the topmost tree. Then, short(T7) > Hy — 1 and height(T}) <
H,.

2. Let T, be a leaf subtree. Then, short(7Ty) > Hy—1 and height(T3) < H,.

3. H+H, < [log(n +1)+ m-‘ , where n is the number of elements

in the tree.

We say that the topmost tree is the apex of the tree and is in stratum 1, and
the leaf subtrees are in stratum 2.

The maintenance algorithms ensure a low height by utilizing the values
of Hy and H,, which are changed only during global rebuildings of the tree.
During most updates, H; and H; remain unchanged. When the tree is glob-
ally rebuilt, we make sure that H; + Hy < [log(n +1)+ %1 Since the height
of the tree is at most H; + Hs, it cannot increase between global rebuild-
ings, so the only way the tree can become too tall is when a large number of
deletions causes the number of stored elements to become too small. If this
occurs, we make a new global rebuilding. This ensures that the height of the
tree satisfies Definition 1 all the time.

To determine which stratum a node belongs in, we store one bit in each
node.

The rest of the maintenance algorithms for a 2-stratum tree are similar
to the algorithms for B-trees [2] in that updates are performed in the lowest
layer, and leaf subtrees are split or merged when they become too large or
too small. However, special care has to be taken due to the fact that both
the topmost tree and the leaf subtrees are 1-incomplete. In order to keep a
tree 1-incomplete at a low cost, we must ensure that its size is not close to a
power of two. For this reason, the sizes of involved trees have to be carefully
controlled when splitting and merging leaf subtrees. This is achieved by using
three-way splitting and merging. The constants in the algorithms may seem
complicated, but this is due to the above restrictions.

2.1 Construction

Recall that we want to maintain a tree of height [log(n + 1) + €(n)], where
e(n) = ————. Let d(n) = 2(1 — 27(™/2). For brevity, in the following we

\/log(n+1) "

refer to €(n) as € and 6(n) and 4.

We first present the global rebuilding algorithm that allows us to obtain
a well-shaped 2-stratum tree for each value of n. Second, we present the
algorithms for insertion and deletion.

In the following, for convenience, we assume that 7 is sufficiently large to
make our formulas work.

To construct a tree of n elements (with weight N = n+ 1), we choose the
weight N; of the topmost tree and construct a tree such that the minimum
and maximum weights of the leaf subtrees are | N/N;| and [N/N;], respec-
tively. From Ny, we also determine the values of H; and H;. There are three

cases.

1. 2Ues Nl < N < WZU%M. We choose N; =
(14 5)2tos N -2Mloglog NT-1] - which implies that H, = [logN| —
2 [loglog N| and Hy = 2 [loglog N + 1.

9. WHCDollogN] < N < (2 — 3§)2U8 N In this case, we choose
N, = [(2 — (5)2L1°gNJ_2“°g1°gN]_1J, which implies that H; = [log N| —
2 [loglog N| and Hs = 2 [loglog N| + 1.

3.(2 — 36) - 2lleeNl <« N < 2. 206N We choose N; =
[1+ (5 logNJ*QHOglogNTI which implies that H; = [logN]| —

2 [loglog N| + 1 and Hy = 2 [loglog N| + 1.
Lemma 1 Immediately after a global rebuilding,

H, + H, < [log(n+1) +¢/2].

Proof: The proof follows in a straightforward manner from the construction
algorithm described above. O

2.2 Insertion

Before proceeding further, we define some more notation. For a node p in
stratum 4, we define the weight |p| to be the weight of the subtree in stratum
i rooted at p. Similarly, we define the height height(p) to be the height of the
subtree in stratum ¢ rooted at p, and short(p) to be the number of complete
levels of the subtree in stratum % rooted at the node p.

Initially, we perform an insertion in a subtree in the bottommost stra-
tum, that is, stratum 2. To insert a node z into stratum ¢, first insert x
into an appropriate subtree 7; in stratum 4. If height(7;) < H;, then exit.
Otherwise, determine the lowest ancestor p of the inserted node such that

height(p) > [(1 + (1 —) log |p|w We consider two cases.

Case 1: Such a node p exists. Rebuild the subtree inside stratum 7 rooted
at p to perfect balance.

Case 2: No such node p exists. The subtree 7; is too large. If : = 1, then
globally rebuild the entire tree. Otherwise, redistribute nodes or split
leaf subtrees as follows. Let 7] denote T;’s closest leaf subtree. (As
a measure of distance between leaf subtrees, we use the length of the
path between their roots.) Two subcases occur.

Case 2.1: |T;| + |T}| < [3.5 . QHW Redistribute nodes between T; and
T} such that they have the same weight (within £1) and terminate.

Case 2.2: |T;| + |T}!| > [3.5 : 2Hi-|. Split 7; and T into three leaf
subtrees U;, U!, and U/ of equal weight (within +1). Splitting
two leaf subtrees into three implies that some node z' is inserted
into the apex, that is, into stratum 1. Insert z’ into stratum 1
using this algorithm.

2.3 Deletion

We use a deletion algorithm similar to the insertion algorithm described
above. Note that we may always transform a deletion of an internal node x
into a deletion of a leaf by replacing = by its inorder successor y and deleting
y. Hence, to perform a deletion, we first delete a node from a subtree from
stratum 2.

To delete a node z from stratum i, first delete x from an appropri-
ate subtree 7; in stratum s. If short(Z;) > H; — 1, then exit. Oth-
erwise, determine the lowest ancestor p of the deleted node such that

1
short(p) < {(1 - 1%(}{7_5/4)) log |p|J Two cases occur.

Case 1: Such a node p exists. Rebuild the subtree inside stratum 7 rooted
at p to perfect balance.

Case 2: No such node p exists. The subtree 7; is too small. If 2 = 1, then
globally rebuild the tree. Otherwise, redistribute nodes or merge leaf
subtrees as follows. Let 7! and 7" denote 7;’s two closest leaf subtrees.
Two subcases occur.

Case 2.1: |T;| + |T]| + |T]| > [% : ZHW Redistribute nodes between
T;, T!, and T} such that they have the same weight (within +1)
and terminate.

Case 2.2: |T;| + |T!| + |T}| < [13—1 : 2H1 Merge T;, T}, and T into
two leaf subtrees U; and U] of equal weight (within +1). Merging
three leaf subtrees into two implies that some node z’ is deleted
from the apex, that is, from stratum 1. Delete 2’ from stratum 1
using this algorithm.

We also globally rebuild the entire tree whenever H; + Hy, >
[log(n +1) + m-‘

2.4 Analysis

From the description of the algorithms above it can be shown that the
above algorithms correctly maintain a 2-stratum tree. We have the following
lemma.

Lemma 2 After each update, the tree satisfies Definition 1.

It remains to show that the amortized cost of maintaining a 2-stratum
tree is logarithmic.

From the description of the maintenance algorithms, the following tech-
nical lemmas can be shown. The cumbersome proof of Lemma 3 is omitted;
details of the proofs can be found in [4].

Lemma 3 The following is true for a 2-stratum tree.

(a) When a partial rebuilding is made at a node p in a leaf subtree, at

least [E%H updates have been made below p since the last time p was

involved in a partial or global rebuilding, split, merge, or redistribution.

(b) When an update in a leaf subtree v causes a split, merge, or redistribu-

tion, at least [6?,’?21 updates have been made since the last time v was

inwvolved in a split, merge, or redistribution.

(¢) When a partial rebuilding is made at a node p in the topmost tree, at
2 . .
least 55 H1|p| updates have been made below p since the last time p was

involved in a partial or global rebuilding.

e2.9H1+Hy

95 1 updates

(d) When an update causes a global rebuilding, at least [
have been made since the last global rebuilding.

7

Lemma 4 The restructuring operations used in a 2-stratum tree have the
following costs, including the depth first search performed to decide where to
make the restructuring.

Partial rebuilding at a node p, located in a leaf subtree: O(|p|).
Split or merge of leaf subtrees: O(2%2).
Partial rebuilding at a node u, located in the topmost tree: O(|ul).

Global rebuilding of the tree: O(2H1+Hz),

Proof: Immediate from the fact that a rebuilding, split, or merge takes lin-
ear time in the sizes of the subtrees involved, including the time of a depth
first search. a

Theorem 1 A 2-incomplete bi-
nary search tree of height [log(n-ﬁ- 1)+ m-‘ can be maintained with

an amortized cost of O(logn) per update.

Proof: The theorem can be proved by a straightforward amortized analysis.
From Lemma 3 follows that the number of updates between rebuilding, split,
or merge operations is large enough to cover the costs of these operations,
given by Lemma 4. a

3 Write optimality

We generalize the 2-stratum trees above by allowing & strata, for £ > 3. This
allows us to reduce the amortized amount of restructuring, since expensive
updates high in the tree are paid by many updates lower in the tree. For
convenience, we ensure that, for each stratum 7, the subtrees in stratum ¢
have the same height and are of minimum height, but we do not impose any
restriction on their incomplete levels. Note that the resulting k-stratum trees
can be viewed as a generalization of stratified search trees [7].

Observe that if all subtrees in stratum ¢ have height H and size at least
2H-¢ then they contribute at most ¢ to the height (above logn). Thus, to ob-
tain a tree of nearly optimal height, we make the bottom stratum contribute
at most €/2 to the height, the second bottommost stratum contribute at most
€/4 to the height, and so forth. However, we can ensure only that apex has
minimum height, so it contributes 1 to the height. Thus, the total height is
less than logn 4+ 1 + ¢, or less than or equal to [log(n + 1) + €].

3.1 Construction

We define log® n = n, and, for i > 1, we define log®™ n = loglog®Y n. We
define log* n to be the smallest integer such that log!°® ™ n < 1.

Without loss of generality, assume that € < 1. Let k(N) be a varying
parameter, where N = n + 1 is the weight of the tree; we refer to k(N) as
k for brevity. Assume that 3 < k£ < log® N — log"(41/€) + 1. It is possible
to construct a k-stratum tree if log"* N < k + 3, but this is not necessary for
our purposes.

We construct the tree as follows. Let Hy = 2 [loglog N| + 1, and, for
3<i<k,let H;=2[logH; 1]+1. Let Ny = N, and, for1 <i < k—1, let N;
be the weight of the tree if the subtrees in strata ¢+1, ..., k are removed. Let
€ =¢/2¥1 " and §; = %(1—2_“), for2 < i < k. For 2 < i < k—1, we choose
N; = [Niy1/Wit1]|, where Wiy = [(2 — 2(5i+1)2Hi+1’1-‘ +1; that is, we choose
the weights of subtrees in stratum 2 to be either W; —1 or W;. We also choose
Ny = [No/Wy], where Hy = | 1log No| and Wy = [(2 — 26,)2%271] + 1. We
construct the tree such that the weight of the apex is Ny; for ¢ = 2,... k,
there are N; ; subtrees in stratum ¢, and each subtree has weight either
| N;/N;_1] or [N;/N;_1]; and, for ¢ = 1,...,k, each subtree in stratum ¢ is
perfectly balanced and has height H;.

Lemma 5 After the construction of a k-stratum tree, for 2 < i < k, the
weight of any subtree in stratum i is either W; — 1 or W;, where W; =

[(2—26;)271] +1.
3.2 Insertion

We use an insertion algorithm similar to that of the 2-stratum tree insertion
algorithm. However, we handle apex updates differently, and we use a more

general multiway splitting scheme instead of a 3-way splitting scheme.

To insert a node into the apex, we perfectly rebalance the apex. To insert
a node z into stratum 7 in a tree 7', for 7 > 1, we apply the algorithm below.
Note that insertions are performed in a bottom-up manner, so we first update
stratum k.

1. Insert x into a subtree 7T; in stratum s.

2. If height(7;) < H;, then exit.

3. Otherwise, find the lowest ancestor p of node x in 7; such that
height(p) > [(1 + %) log |p|1, where 7; = log(ﬁ).

4. If such a node exists, rebalance the maximal subtree of 7} rooted at p.

5. Otherwise, no such node exists.

(a) Locate the subtrees Uji, ..., U;m,_1 in stratum ¢ closest to T;,
where m = [%-I.
(b) If possible, redistribute nodes in T}, Us, ..., U;m—1 to obtain T},
LUl such that the following conditions hold.

i,m—1>

i [Ty = (- %)

ii. For all j, if |Uy;| > [(1 - %)QH"-I, then |Uj;| = [Uyl.

iii. For all j, if Uy < [(1-%)2%], then |Uy| < U] <
(1= %)2m].

iv. T}, Uj), ..., Uj,, , are all perfectly balanced.

(c) Otherwise, split T;, U, 1dots, U1 into m + 1 subtrees Vi,
.+, Vim+1 of equal weight (within +1); some node z;_; must be
inserted into stratum ¢ — 1. Insert x;_; using this algorithm.

3.3 Deletion

As in the case of the insertion algorithm, the deletion algorithm for k-stratum
trees is similar to the deletion algorithm for 2-stratum trees. However, we
do not use partial rebuilding, and we use general multiway merging.

10

To delete a node from the apex, we perfectly rebalance the apex. To
delete a node z from stratum ¢ in a tree 7', for + > 1, we apply the algorithm
below. Note that deletions are performed in a bottom-up manner, so we first
update stratum k.

1. Delete x from a subtree 7} in stratum 3.
2. If | T3] > [(1 — $6,)2%], then exit.
3. Otherwise, perform the following steps.
(a) Locate the subtrees Uji, ..., Ujm—1 in stratum 4 that are closest
to T;, where m = [%-‘

(b) If possible, redistribute nodes in T;, Us1, ..., U;jm—1 to obtain 77,
LUl such that the following conditions hold.

im—1;
i Ty = | (1 - 6;)2% .
ii. For all j, if U] < | (1= 6,)2"|, then [U};] = |U;].
iii. For all j, if |Uy| > |(1—6)2%|, then [Uy| > U] >
(1= 6;)2% .

iv. T}, Ujy, ..., Uj ,, , are all perfectly balanced.

(c) Otherwise, merge T;, Ui, ..., Upm—1 into m — 1 subtrees Vi,
.., Vim—1 of equal weight (within +1); some node z;_; must be
deleted from stratum ¢ — 1. Delete x;_; using this algorithm.

We also rebuild the tree after N /2 updates since the last global rebuilding,

where N is the weight of the tree during the last rebuilding.

3.4 Analysis

The analysis is similar to the one for 2-stratum trees, although the details
are more cumbersome. For brevity, we omit all the details.

Lemma 6 The following is true for a k-stratum tree, for k > 3.

11

(a) When a partial rebuilding is made at a node p in stratum i, for i >

p k In2 H;
2, at least 40\‘/2_‘H1- s g - (505 - 7m=52"7) updates have been

made below p since the last time p was involved in a partial or global
rebuilding, split, merge, or redistribution.

(b) When an update in subtree v in stratum i causes a split, merge, or
redistribution, for i > 2, at least Hfzi(;onji - gw5=72"7) updates have
been made since the last time v caused a split, merge, or redistribution,

or the last time the tree was globally rebuilt.

(c) When the apex is updated, at least H;?:Q(;(;‘\% - 557152 updates have

been made since the aper was last updated or the tree was globally re-
bualt.

Lemma 7 The restructuring operations used in a k-stratum tree have the
following costs.

Partial rebuilding at a node p, located in a subtree in stratum i: O(|p|).
Split, merge, or redistribution of subtrees in stratum i: O([%} 21,
Updating of the apex: O(241) = O(242).

Global rebuilding of the tree: O(N).

Theorem 2 A binary search tree of height at most [log(n + 1) + €] can be
maintained with an amortized cost of O(logn) per update, for any constant

€ > 0. Furthermore, the amortized amount of restructuring performed is
O(1/€®) per update.

Corollary 1 There ezists a sorting algorithm that requires O(nlogn) time,
nlogn 4+ O(n) comparisons, and O(n) writes in the worst case.

Proof: The existence follows immediately from Theorem 2. O

12

4 Comments

We have presented new algorithms for updating a dictionary in O(logn)
amortized time such that all operations require only [log(n + 1) + €(n)]
comparisons in the worst case, where ¢(n) = 1/i/log(n + 1). Observe that
lim, , €(n) = 0. This improves upon the best previously known bound
of Andersson [1]. He showed that a bound of [log(n + 1) 4+ €| comparisons
can achieved for constant ¢ > 0. However, he obtained efficient worst-case
algorithms, which suggests the open question of whether there are match-
ing upper bounds for O(logn) worst-case time and O(logn) amortized time
update algorithms.

We have also presented new algorithms for updating a dictionary in
O(logn) such that all operations require only logn + O(1) comparisons (in
the worst case) and O(1) writes (amortized). This result implies that sorting
can be performed in O(nlogn) time, such that only nlogn + O(n) compar-
isons and ©(n) writes are performed. No analogous result had been shown
previously.

It is interesting to compare the power of writes and data movements for
sorting. Munro and Raman [5] showed that n elements can be sorted in
O(nlogn) expected time with O(n) data movements, a substantially weaker
result. Because Munro and Raman restrict the number of data movements,
they also restrict the number of pointers a sorting algorithm can use, since
an algorithm with Q(n) pointers can sort elements indirectly via pointers,
and thus avoid many data movements. In contrast, the slow write model
of computation we have proposed does not allow such “loopholes,” since
pointer assignments require writes. Thus, we can obtain meaningful results
while freely exploiting pointers.

References

[1] A. Andersson. Efficient Search Trees. Ph. D. Thesis, Lund University,
Sweden, 1990.

[2] R. Bayer and E. M. McCreight. Organization and maintenance of large
ordered indices. Acta Informatica, 1:173-189, 1972.

13

3]

[4]

D. E. Knuth. The Art of Computer Programming, volume 3: Sorting and
Searching. Addison-Wesley, 1973.

T. W. Lai. Efficient maintenance of binary search trees. PhD thesis,
University of Waterloo, 1990.

J. I. Munro and V. Raman. Sorting with minimum data movement (pre-
liminary draft). In Proceedings of the 1st Annual Workshop on Algorithms
and Data Structures, pages 552-562, 1989.

H. J. Olivie. A new class of balanced search trees: Half-balanced binary
search trees. R.A.I.R.O. Informatique Theoretique, 16:51-71, 1982.

J. van Leeuwen and M. H. Overmars. Stratified balanced search trees.
Acta Informatica, 18:345-359, 1983.

I. Wegener. The worst case complexity of McDiarmid and Reed’s variant
of the bottom-up-heap sort in less than nlogn + 1.1n. In Proceedings of
the 8th Annual Symposium on Theoretical Aspects of Computer Science,
pages 137-147, 1991.

14

