PREPRINT. In Proc. Symposium on Optimal Algorithms, pages 106-114. Springer Verlag, 1989.

Optimal Bounds on the Dictionary Problem

Arne Andersson
Department of Computer Science
Lund University
Lund, Sweden

Abstract

A new data structure for the dictionary problem is presented. Updates are per-
formed in ©(logn) time in the worst case and the number of comparisons per op-
eration is [logn + 1 + €], where € is an arbitrary positive constant.

1 Introduction

One of the fundamental and most studied problems in computer science is the dictionary
problem, that is the problem of how to maintain a set of data during the operations search,
insert and delete. It is well known that in a comparison-based model the lower bound on
these operations is [log(n + 1)| comparisons both in the average and in the worst case.
This bound can be achieved by storing the set in an array or in a perfectly balanced
binary search tree. However, for both these data structures the overhead cost per update
is high, ©(n) in the worst case.

An efficient dynamic data structure for the dictionary problem should have a worst case
cost of O(logn) per operation. The first efficient solution was presented by Adelson-Velski
and Landis [1]. Their data structure, the AVL-tree, requires 1.44logn comparisons per
operation and allows updates in logarithmic worst case time. Other data structures for the
dictionary problem with good worst case performance are symmetric binary B-trees [3] and
trees of bounded balance [5], which require 2 log n comparisons. A close approximation to
the optimal bound was given by Mauer et. al. [4]. They presented the k-neighbour tree
which requires | (1 + €)logn + 2| comparisons where € is an arbitrary positive constant.
Similar results are obtained by van Leeuven’s and Overmars’s stratified balanced trees
[6] and by Andersson’s generalized symmetric binary B-trees [2]. For all these structures
there is a tradeoff between the number of comparisons and the maintenance cost in such a
way that a lower value of € corresponds to a higher cost for restructuring during updates.

Although a bound of (1 + €)logn is sufficiently low for practical purposes there is
still a gap between this and the optimal bound. Recently, Andersson [2] showed that
there exists a data structure, which is based on the generalized symmetric binary B-tree,
requiring at the most

1
Kl + w) log nJ +1 =logn + o(logn) (1)

comparisons per search and ©(logn) amortized cost per update. This bound is optimal
in the leading term but the o(logn)-term is quite large.

Here we show that the difference between the upper and lower bound on the dictionary
problem is only a small additive constant. We present the e-tree, which require

[logn + 1+ €] (2)

comparisons per search or update for an arbitrary small value of e. We may choose € in
such a way that mostly we make only one, and never more than two extra comparisons
compared to the lower bound.

The paper is organized in the following way: In section 2 we give a short description
of the k—neighbour tree [4], on which our result is based. We show how to improve the
insertion algorithm by adding some information to the nodes in the tree. In section 3 we
introduce the e-tree. This data structure is a k-neighbour tree in which we let the value
of the tuning parameter £ change as the number of stored elements changes. The e-tree
can be maintained with an amortized cost of © (13%—") per update. Using two e-trees we
improve the amortized bound into a worst case bound.

We use the same terminology regarding trees as used in [4]. The height of a tree
containing n elements is denoted H,, and the number of comparisons required to search
among n elements is denoted C,. log denotes the logarithm to the power of 2 and In
denotes the natural logarithm.

2 k—neighbour trees

The k-neighbour trees presented by Mauer et. al. [4] are unary-binary trees where there
are at least £ binary nodes between two unary nodes on the same level. We have the
following definition:

Definition 1 A binary tree is called a k-neighbour tree iff
1. All leaves have the same depth.
2. If a node v has only one child then

(a) v has at least one right neighbour

(b) if v has at least k right neighbours then the k nearest right neighbours have two
children otherwise all the right neighbours have two children.

An example of a k-neighbour tree is given in Figure 1. The tree is a leaf-oriented search
tree which represents an ordered set in the following way:

1. All elements are stored in the leaves in sorted order from left to right.
2. Each internal node contains the value of its smallest child.
The tree has a maximum height of

H, < Log(lo%”ﬁ) + 1J (3)

Figure 1: A 3-neighbour tree.

Although the elements are not ordered in the same way as in an ordinary binary search
tree there is an efficient search algorithm such that

Cn,=H,+1 (4)

Mauer e. al. gave maintenance algorithms with ©(logn) worst case performance. Here
we are concerned only with the insertion algorithm, which works as follows:

1. Follow a search path down the tree and locate the node p below which a new leaf is
to be inserted.

2. Create a new leaf as a child of p and call the procedure INSERT (p).
The recursive procedure INSERT(p) works as follows:
Case 1: p has two children. The insertion is completed.
Case 2: p has three children. Two subcases occur:
Case 2.1: p has a neighbour ¢ at a distance < k which has only one child. Make

both p and ¢ binary by moving all leaves between them one step.

Case 2.2: p has no neighbour ¢ as described above. Create a new unary node p’
and let its only child be the leftmost child of p. Then

Case 2.2.1: p has no parent. Create a new root of the tree to be the common
parent of p and p'.

Case 2.2.2: p has a father. Insert p’ as a new child of p’s father and call
INSERT (p’s parent).

The largest amount of restructuring work is made during case 2.1 when a number of
nodes are moved between p and ¢. The worst case cost for this is ©(k + logn). Since the
algorithm terminates in case 2.1 this work is performed only once. The search for a unary

neighbour of p in case 2 takes ©(k) time. Since case 2.2 may occur on each level of the
tree we get a worst case cost of ©(klogn) for insertion.

In order to obtain our result we have to improve the complexity of the insertion algorithm
for k-neighbour trees. This can be made by adding some information to the nodes, as
shown in Lemma 1 below.

Lemma 1 An insertion into a k-neighbour tree requires ©(logn + k) time in the worst
case.

Proof: To each internal node we add a boolean variable telling whether the node has
a unary descendant at the distance of |log(k + 1)] or not. From the definition of k-
neighbour trees follows that each node has at the most one unary descendant at this
distance.

Insertions are performed as in the algorithm described in section 2 with the following
modification: Instead of making an explicit search for a unary neighbour of p in case 2 we
check the ancestor at the distance |log(k + 1)| as well as its left and right neighbours. If
any of the three nodes has a unary descendant ¢ at the same level as p we proceed with
case 2.1 even if the distance between p and ¢ is greater than k. Using this algorithm,
the time spent locating the node ¢ in case 2 is O(1) at each level and the total time is
O(logn).

Thus the dominating cost is the one for moving nodes in case 2.1. This cost is de-
pending on the longest possible distance nodes are moved between p and ¢g. Since the
ancestors of p and ¢ at distance |log(k + 1)] are neighbours (or maybe even the same
node) the distance between p and ¢ is less than

2. oUosk+D] < 4k 1 2 = O (k)

Thus the cost for insertion is ©(logn + k) in the worst case and the proof is completed.
O

An example of the insertion algorithm is given in Figure 2.

3 e-trees

The result in Lemma 1 allows us to let k£ take a value of ©(logn), still having a logarithmic
cost per insertion. However, the nature of k-neighbour trees does not allow us to change
the value of £ dynamically. This problem is solved by changing k£ at repeated intervals.

In this way we achieve a tree with a maximum height of]logn + €|. The resulting
data structure, called the e-tree due to its low height, is defined below.

Definition 2 An e-tree is an k-neighbour tree with the following modifications
1. The stored elements are of two types: present and deleted.
2. k> [3—1°€gﬂ-|, n 18 the number of present elements.
3. The number of deleted elements is less than n

where € is an arbitrary constant greater than zero.

4

Figure 2: A insertion in a 3-neighbour tree. (a) A new leaf is inserted below p. The
ancestor at a distance of |log(k + 1)| and its neighbours (gray-coloured) are examined.
One of them has a unary descendant q, which is a neighbour of p.

(b) The tree after moving nodes between p and q.

Queries are performed in the following way:
Insertion: Insert the element into the tree and mark it as present.
Deletion: Locate the element and mark it as deleted.

Search: Locate the element. If the element is found and marked as present the search is
successful.

In order to satisfy the definition we rebuild the tree repeatedly. When the number of
updates since the latest rebuilding exceeds $n all deleted elements are removed and the
tree is rebuilt. In this way the number of inserted elements is always less than gn. Let
ngy denote the value of n at the latest rebuilding of the tree. We have

no>(1-)n (5)

When the tree is rebuilt we set

Equations (5) and (6) gives that

=[] "

In Lemma 2 and 3 below we analyze the height and maintenance cost of an e-tree.

5

Lemma 2 The following is true for an e-tree:
H, < [logn+ €]

Proof: The height of the tree depends on k and the total number of elements (present
and deleted), denoted N. From equation (3) we have

__EEQL_5+1‘ (8)

Hn = log(?—L

k+1

From the definition of the e-tree we know that the number of deleted elements is less than
sn, which implies that N < (1 + §)n. This together with the fact that k > [ﬂ’f—"-‘ gives
that

log (1 + §)n

o8 (2)
1 log (1+ £
5T + 1+ (9)
o8 (2~ puterr) 108 (2 = sty
For small values of € we have that
€ €
14+ - — . 1
10g<+3><3ln2<056 (10)
and
1
which implies that
log (1 + £ 1
5(1+5) <066<<1————>e (12)
log (2 — 1 61In2
e
Combining equation (9) and (12) gives that
1 1
H, < ogn -+<1—————)e (13)
log (2 — 1 6In2
ST T
The proof follows from the inequality
1 1
08T +<1—m)e<logn+e, 2<n<oo (14)

1
log (2 - %logn—kl)

The inequality (14) is not obvious but can be shown by the substitution

t=2— 27— (15)

This gives

5 — 1 e/ 1 €
2—1
<—-————1) 1<t <?
3logt 3(2—t t 62
1 1
2—t
< -1 , l<t<?2
logt 2—t +2ln2
t—1
logt — >0, 1I<t<?2

(1_21112)t_1+ﬁ

By setting

Derivation gives that

4In2)2 —4In2+ 1Dt2+ (12In2 = 10(In2)2 — 4)t + 4(In2)2 — 8In2 + 4
fi(t) =

(2In2—-1)t—2In2+2)%1n2

Both f(t) and f'(t) are continuous in the interval 1 <t < 2. The equation
f'(#) =0

has two solutions, namely

2 _
t1:2(ln2) 4ln2+2%1.262
4(In2)2 —4In2+1

and

Il
B

12
Inspection of f'(t) gives that

ff)>0, 1<t<ty

fft)<0, t1<t<?2

(16)

(17)

(20)

(21)

(22)

(23)

(24)

Thus f(¢) has a local maximum at ¢;. This together with the fact that f(1) = f(2) =0

gives that
fH)>0, 1<t<?

which completes the proof.

Lemma 3 The amortized cost per update in an e-tree is © (lﬁfﬂ)

(25)
O

Proof: From Lemma 1 and equation (7) we get the cost for a single update to be

1 1
@(logn+k)=@<logn+3 Og"> =®<°g"> (26)
€

€

The rebuilding of a tree requires ©(n) time. This is amortized over ©(en) updates which
implies that the amortized cost per update is © (%) Thus the dominating cost is the one
given in equation (26) which completes the proof. a

The result of Lemma, 2 and 3 allows us to achieve a very low upper bound on the dictionary
problem at a logarithmic amortized cost as shown in Theorem 1 below.

Theorem 1 For any value of €, > 0, there is a data structure such that

Cp <[logn+1+e¢|

o <logn>
€

Proof: The proof follows from equation (4) and Lemma 2 and 3. O

and the amortized cost per update is

Finally, we show how to improve the result of Theorem 1 into a worst case result. BY
keeping two e-trees we do not have to stop making queries while we are rebuilding a tree
since there will always be one tree in which the queries can be performed.

Theorem 2 For any value of €,¢ > 0, there is a data structure such that

C, < [logn+1-+¢|

o <logn>
€

Proof: We use a data structure consisting of two e-trees. In each node of the trees
we store the number of present descendants. The data structure is maintained in the
following way:

and the worst case cost per update is

1. When one of the trees is rebuilt the rebuilding work is distributed over the updates
in such a way that the maximum time spent per update is ©(logn).

2. The two trees are not being rebuilt at the same time.
3. Updates are performed in the following way:

(a) The update is made in a tree which is not being rebuilt. From the stored infor-
mation about the number of present descendants we compute the cardinality
of the inserted/deleted element.

(b) If the other tree is not being rebuilt an update is also made in that tree. For
this second update we use the cardinality of the element and therefore no
comparisons are required.

c) If the other tree is being rebuilt we store the update in a queue to be performed
g
at the end of the rebuilding. The cardinality of the element is stored in the
queue to avoid comparisons when the update is to be made in the tree.

A rebuilding consist of two phases: construction of a new tree and performance of the
queued updates. The first step requires ©(n) time and the second one requires ©(nlogn)
time. Therefore, the entire construction can be distributed over a linear number of up-
dates at a worst case cost of O(logn) per update. Although each update is performed
in both trees we make element-comparisons only the first time. The rest of the proof is
similar to the proof of Theorem 1. O

4 Comments

We have shown that there exist a data structure such that we can perform the dictionary
queries insert, search and delete in logarithmic time, making at the most two comparisons
more than the optimal number.

The method to improve complexity by using a ”varying constant” (k in the e-tree) is
not restricted to search trees and it might also be used to improve complexity in other
applications.

References

[1] G. M. Adelson-Velski and E. M. Landis. An algorithm for the organization of infor-
mation. Dokladi Akademia Nauk SSSR, 146(2), 162.

[2] A. Andersson. Binary search trees of almost optimal height. tech. report, Department
of Computer Science, Lund University, 1988.

[3] R. Bayer. Symmetric binary B-trees: Data structure and maintenance algorithms.
Acta Informatica, 1(4), 1972.

[4] H. A. Mauer, Th. Ottman, and H. W. Six. Implementing dictionaries using binary
trees of very small height. Information Processing Letters, 5(1), 1976.

[5] J. Nievergelt and E. M. Reingold. Binary trees of bounded balance. SIAM Journal
on Computing, 2(1), 1973.

[6] J. van Leeuwen and M. H. Overmars. Stratified balanced search trees. Acta Informat-
ica, 18, 1983.

