PREPRINT. Computer Journal, 33(5):471-472, 1990.

A Note on the Expected Behaviour of Binary
Tree Traversals

Arne Andersson
Department of Computer Science
Lund University
Lund, Sweden

Abstract

Brinck and Foo [1, 2] have analyzed tree traversal algorithms using
threads and stack. In this note we show that, contrary to the results
in the two referred papers, a preorder traversal is performed faster with
a stack than with threads, in terms of pointer assignments. Moreover,
the preorder-stack traversal is faster than any of the other standard
traversals analyzed in [1] and [2].

1 Introduction

It is well known that adding threads to a binary tree makes it possible to
traverse the tree in preorder, inorder or postorder without using any stack.
Although the asymptotic complexity are the same for the stack and thread
algorithms the time constant may differ. A comparison of the two methods
has been made by Brinck and Foo [1, 2]. They present efficient algorithms for
each traversal and analyze their average behaviour for uniformly distributed
trees and randomly generated (i. e. generated by insertions from a ran-
dom permutation) binary search trees. As a measure of the cost they use
the number of pointer assignments required, including pushing and popping
a pointer on and off a stack. According to their results the thread algo-
rithm runs about 25% faster for inorder traversal. For preorder traversal the
difference is small when traversing trees of uniform distribution while the



difference for randomly generated trees, which are more likely to occur in
reality, is 40%.

In this note we show that a preorder traversal with a stack can be per-
formed faster than what is computed by Brinck and Foo. We are only con-
cerned with the preorder traversal and for a detailed presentation and analysis
of the other traversals we refer to [1] and [2].

2 The Original Preorder Algorithm

The preorder-stack algorithm analyzed in [1, 2] is given in Figure 1. The
algorithm uses a stack containing all visited nodes wich have a non-visited
right-child. The successor of a node v is found as follows.

1. v has two children. We push v on the stack and proceed to the left-
child.

2. v has one child. We proceed to this child.

3. v 1s a leaf. We pop a node from the stack and proceed to the right-child
of this node.

During a traversal each node in the tree except the root is retrieved by a
pointer assignment and each node with two children is pushed and popped
once. Let n be the number of nodes in the tree and let ny be the number of
nodes with two children. The traversal cost can be expressed as

From [1, 2] we know that the average value of ny is % for uniformly
distributed trees and ”T’Q for randomly generated binary search trees. Thus
the average cost for the uniform distribution is asymptotic to

3n 9

! @

as n increases. For randomly generated search trees the average cost is

5n 7

Bk @)



3 An Improved Algorithm

A closer look at the preorder algorithm by Brinck and Foo shows that we may
reduce the required number of pointer assignments. Instead of keeping the
nodes with unvisited right-childs on the stack we can keep the right-childs
themselves. In this way we avoid taking the circuitous route over a node
when passing from its left to its right subtree. We find the successor of v in
the following way:

1. v has two children. We push v’s right-child on the stack and proceed
to v’s left-child.

2. v has one child. We proceed to this child.
3. v is a leaf. We pop a node from the stack and proceed to this node.

A complete traversal algorithm with this modification is given in Figure 2.
The difference between the two algorithms is small but gives a significant
decrease in the number of pointer assignments, since we save one assignment
per node with two children. We have the following traversal cost:

1. Each node is retrieved either by a pointer assignment or by popping
the stack.

2. Each right-child node with a sibling is pushed on the stack once.

The cost for this can be expressed as

n—1+4+ o (4)
Thus the expected number of pointer assignments for the uniform distribu-
tion is ) 5
L =De=2)
2(2n — 1)
5n 13 3
- 6

4 8 16n—8
which is asymptotic to



as n increases. For randomly generated trees the cost is

n—2

n—1+

4n

3

5
3
4 Comments

In Table 1 the performance of the modified traversal algorithm is compared to
the cost of other algorithms. The maybe surprising result is that a preorder
traversal may be performed faster (at least in the sense of pointer assign-
ments) using a stack instead of threads. This is not true only for randomly
generated and uniformly distributed trees but for all trees, which is shown
below.

Theorem 1 Let Ps be the number of pointer assignments required by our
stack algorithm and Pr the number required by the thread algorithm used in
[1, 2]. Then Ps < Pr for any binary tree.

Proof: The algorithm given in [1, 2] to find the preorder successor in a
threaded tree is as follows:

1. The node has at least one child. Proceed to the leftmost child.
2. The node is a leaf. Follow right-threads until a node with two children
is found. Proceed to the right-child of this node.

It is not hard to see that the number of pointer assignments required by this
algorithm is

n — 14+ ny + number of nodes with only a left-child (8)

Clearly, this is > n — 1 + ng, which is the cost for our stack algorithm. This
completes the proof. O

In fact, from the table we can conclude that the cost for a preorder-stack
traversal is lower than for any of the other traversals analyzed in the papers
referred. However, as pointed out by Brinck and Foo the algorithms do not
consist only of pointer assignments and therefore the differences in the values
in Table 1 do not necessarily correspond to a difference in real execution time.

4



References

[1] K. Brinck. The expected performance of traversal algorithms in binary
trees. Computer Journal, 28(4), 1985.

[2] K. Brinck and N. Y. Foo. Analysis of algorithm on threaded trees. Com-
puter Journal, 24(2), 1981.



type Pointer = 1Node;
Node = record
(* data *)
left, right: Pointer;
end;
procedure PreScan (p: Pointer);
var S: Stack;
begin
Clear (S);
while p # nil do
begin
while pt.left # nil do
begin
Visit (p);
if pf.right # nil then
Push (S, p);
p := pT.left;
end;
Visit (p);
if pf.right = nil then
Pop (S, p);
p := pt.right;
end;

)

end;

Figure 1: Preorder-stack traversal by Brinck and Foo. We assume the tree
to be declared with the type definitions above. We also assume an abstract
data type Stack with the operations Clear, Push and Pop to be defined. The
procedure Visit(p) processes the information in the node p.



procedure PreScan (p: Pointer);
var S: Stack;
begin
Clear (S);
while p # nil do
begin
while pft.left # nil do
begin
Visit (p);
if pt.right # nil then
Push (S, pt.right);
p := pt.left;
end;
Visit (p);
if pt.right = nil then
Pop (S, p);
else
p := p?.right;
end;
end;

Figure 2: The improved algorithm for preorder traversal.



stack algorithm thread algorithm
uniform distribution
- 3n _ 9 3n 3
preorder by Brinck and Foo 5 1 5 -+ 5
n reorder on __ 13
ew preorde 1 3
: 3n 1
inorder 2n — 2 5 5
postorder in — 3 4n — 6
random search trees
- on __ 1 3n 4 3
preorder by Brinck and Foo 5 3 9 -+ 9
. an _ 1
new preorder 3 3
. 3n 1
inorder 2n — 2 5 5
postorder dn — 3 4.19n — 2h,

Table 1: Average costs for traversal algorithms. All values except for the new
preorder algorithm are taken from Brinck and Foo. h, is the nth harmonic
number (=1+1/24+1/3+ ...+ 1/n).



