PREPRINT. Algorithmica 23, 1999.

Suffix Trees on Words

Arne Andersson N. Jesper Larsson Kurt Swanson
Dept. of Computer Science, Lund University,
Box 118, S-221 00 LUND, Sweden
{arne, jesper,kurt}@dna.lth.se

Abstract

We discuss an intrinsic generalization of the suffix tree, designed to
index a string of length n which has a natural partitioning into m multi-
character substrings or words. This word suffiz tree represents only the m
suffixes that start at word boundaries. These boundaries are determined
by delimiters, whose definition depends on the application.

Since traditional suffix tree construction algorithms rely heavily on the
fact that all suffixes are inserted, construction of a word suffix tree is non-
trivial, in particular when only O(m) construction space is allowed. We
solve this problem, presenting an algorithm with O(n) expected running
time. In general, construction cost is ©(n) due to the need of scanning
the entire input. In applications that require strict node ordering, an ad-
ditional cost of sorting O(m') characters arises, where m’ is the number
of distinct words. In either case, this is a significant improvement over
previously known solutions.

Furthermore, when the alphabet is small, we may assume that the n
characters in the input string occupy o(n) machine words. We illustrate
that this can allow a word suffix tree to be built in sublinear time.

1 Introduction

The suffiz tree [18] is a very important and useful data structure for many
applications [6]. Traditional suffix tree construction algorithms rely heavily on
the fact that all suffixes are inserted, in order to obtain efficient time bounds.
Little work has been done for the common case where only certain suffixes of
the input string are relevant, despite the savings in storage and processing times
that are to be expected from only considering these suffixes.

Baeza-Yates and Gonnet [7] have pointed out this possibility, by suggesting
inserting only suffixes that start with a word, when the input consists of ordinary
text. They imply that the resulting tree can be built in O(n#H(n)) time, where
H(n) denotes the height of the tree, for n characters. While the expected height
is logarithmic under certain assumptions [16], it is unfortunately linear in the
worst case, yielding an algorithm that is quadratic in the size of the input.

One important advantage of this strategy is that it requires only O(m) space
for m words. Unfortunately, with a straightforward approach such as that of
the aforementioned algorithm, this is obtained at the cost of a greatly increased
time complexity. We show that this is an unnecessary tradeoff.

We formalize the concept of words to suit various applications and present a
generalization of suffix trees, which we call word suffix trees. These trees store,
for a string of length n in an arbitrary alphabet, only the m suffixes that start
at word boundaries. Linear construction time is maintained, which in general
is optimal, due to the requirement of scanning the entire input.

2 Definitions and main results

We study the following formal problem: We are given an input string consisting
of n characters from an alphabet of size k, including two, possibly implicit,
special characters $§ and b. The $ character is an end marker which must be
the last character of the input string and may not appear elsewhere, while
b represents some delimiting character which appears in m — 1 places in the
input string. We regard the input string as a series of words—the m non-
overlapping substrings ending either with b or §. There may of course exist
multiple occurrences of the same word in the input string. We denote the
number of distinct words by m/. For convenience, we have chosen to regard
each b or § character as being contained in the preceding word. This implies
that there are no empty words; the shortest possible word is a single b or $. The
goal is to create a trie structure containing m strings, namely the suffixes of the
input string that start at the beginning of words.

Figures 2 and 3 constitute an example where the input consists of a DNA
sequence, and the character T is viewed as the word delimiter. (This is a
special example, constructed for illustrating the algorithm, not a practical case.)
Figure 3b shows the word suffix tree for the string shown in Figure 2a. These
figures are more completely explained throughout this article.

Our definition can be generalized in a number of ways to suit various practical
applications. The b character does not necessarily have to be a single character,
we can have a set of delimiting characters, or even sets of delimiting strings, as
long as the delimiters are easily recognizable.

We define a lexicographic trie as a trie for which the strings represented
at the leaves appear in lexicographical order in an in-order traversal. A non-
lexicographic trie is not guaranteed to have this property. We now list the main
results of this article:

e A word suffix tree for an input string of size n containing m words can be
built in O(n) expected time and O(m) deterministic space.

e A lexicographic word suffix tree for an input string of size n containing
m words of which m' are distinct can be built in O(n + s(m')) expected
time and O(m) deterministic space, where s(m') is the time required to
sort m' characters.

e A lexicographic word suffix tree for an input string of size n containing
m words of which m' are distinct can be built deterministically in O(n +
i(m,m')) time and O(m) space, where i(m, m') is the time required to
insert m characters into ordered dictionaries each bounded in size by m/'.

In addition, we obtain the following results, which show that the seemingly
inherent lower bound of Q(n) construction time can in some cases be surpassed
when constructing word suffix trees:

e When the positions of all delimiters are known, a lexicographic word suffix
tree on a string comprising m words of which m' are distinct, can be
constructed in time

0] (% +m+ sb(m'))

for some integer parameter b < w, where N is the number of bits in the
input, w is the machine word length, and s(m') is the time to sort m/
b-bit integers.

e Given a Huffman coded input string of n characters coded in N bits where
the alphabet size k satisfies k = O(y/n/log”n), a word suffix tree on m
natural words can be constructed in time

O(N +m)
logn

with construction space O(m + /n).

3 Data structure considerations

All tries discussed (the word suffix tree as well as some temporary tries) are
assumed to be path compressed, i.e., they contain no nodes with out-degree one
(other than possibly the root), and the edges of the trie are labeled with strings
rather than characters. In order to reduce space requirements, these strings
are represented by pointers into the original string. Thus, a trie with m leaves
occupies ©(m) space.

When choosing a trie implementation, it is important to be aware of which
types of queries are expected. One important concept is the ordering of the
nodes. Maintaining a lexicographic trie may be useful in some applications, e.g.
to facilitate neighbor and range search operations. Note, however, that in many
applications the alphabet is merely an arbitrarily chosen enumeration of unit
entities with no tangible interpretation of range or neighbor, in which case a
lexicographic trie has no advantage over its non-lexicographic counterpart.

Most of the work done on suffix tree construction seems to assume that a
suffix tree is implemented as a lexicographic trie. However, it appears that
the majority of the applications of suffix trees, for example all those given by
Apostolico [6], do not require a lexicographic trie. Indeed, in his classic article
on suffix tree construction, McCreight [15] concludes that the use of hash coding,
which implies a non-lexicographic trie, appears to be the best representation.

Because of the factors of different applications, it is necessary to discuss
several versions of tries. We consider specifically the following possibilities:

1. Each node is implemented as an array of size k. This allows fast searches,
but consumes a lot of space for large alphabets.

2. Each node is implemented as a linked list or, preferably, as a binary search
tree. This saves space at the price of a higher search cost, when the
alphabet is not small enough to be regarded as constant.

3. The edges at each node are hash-coded (randomized construction). Using
dynamic perfect hashing [8], we are guaranteed that searches spend con-
stant time per node, even for a non-constant alphabet. Furthermore, this
representation may be combined with variant 2.

4. Instead of storing pointers into the input string for each edge, the pointers
are stored only at the leaves, and the character distinguishing each edge is
stored explicitly. Thereby, the input string is not accessed while traversing
internal nodes during search operations. Hence, an input string stored in
secondary memory needs to be accessed only once per search operation.

In the following sections, we assume that the desired data structure is a
non-lexicographic trie and that a randomized algorithm is satisfactory, except
where otherwise stated. This makes it possible to use hash coding to represent
trees all through the construction. However, we also discuss the creation of
lexicographic suffix trees, as well as deterministic construction algorithms.

An important fact is that a non-lexicographic trie can be made lexicographic
at low cost by sorting all edges according to the first character of each edge,
and then rebuilding the tree in the sorted order. We state this in the following
observation:

Observation 1 A non-lexicographic trie with | leaves can be transformed into
a lexicographic trie in time O(l + s(1)), where s(l) is the time required to sort !
characters.

4 Wasting space: Algorithm A

We first observe the possibility of creating a word suffix tree from a traditional
O(n) size suffix tree. This is relatively straightforward. Delimiters are not
necessary when this method is used—the suffixes to be represented can be chosen
arbitrarily. Unfortunately however, the algorithm requires much extra space
during construction.

We refer to the procedure as Algorithm A:

1. Build a traditional non-lexzicographic suffix tree for the input string in O(n)
time with a traditional algorithm [15, 17], using hashing to store edges.

2. Refine the tree into a word suffix tree: remove the leaves that do not
correspond to any of the desired suffixes, and perform explicit path com-
pression. The time for this is bounded by the number of nodes in the
original tree, i.e. O(n).

3. If so desired, make the trie lexicographic in time O(m + s(m)) (by Obser-
vation 1), where s(m) denotes the time to sort m characters.

If the desired final result is a non-lexicographic tree, the construction time
is O(n), the same as for a traditional suffix tree. If a sorted tree is desired
however, we have an improved time bound of O(n + s(m)) compared to the
O(n + s(n)) time required to create a lexicographic traditional suffix tree on
a string of length n. (Note that while Farach [9] obtains linear construction
time, his approach requires sorting as a preparatory step.) We state this in the
following observation:

Observation 2 A word suffix tree on a string of length n with m words can be
created in O(n) time, using O(n) space, and made lexicographic at an extra cost
of O(m + s(m)), where s(m) denotes the time to sort m characters.

The disadvantage of Algorithm A is that it consumes as much space as tradi-
tional suffix tree construction. Even the most space-economical implementation
of Ukkonen’s or McCreight’s algorithm requires several values per node in the
range [0,n] to be held in primary storage during construction, in addition to
the n characters of the string. While this is infeasible in many cases, it may
well be possible to store the final word suffix tree of size ©(m).

5 Saving space: Algorithm B

In this section we present Algorithm B, the main word suffix tree construction
algorithm, which in contrast to Algorithm A uses only ©(m) space.

The algorithm is outlined as follows: First, a non-lexicographic trie with m/'
leaves is built, containing all distinct words: the word trie. Next, this trie is
traversed and each leaf (corresponding to each distinct word in the input string)
is assigned its in-order number. Thereafter, the input string is used to create
a string of m numbers by representing every word in the input by its in-order
number in the word trie. A lexicographic suffix tree is constructed for this string.
This number-based suffix tree is then expanded into the final non-lexicographic
word suffix tree, utilizing the word trie.

Below, we discuss the stages in detail.

1. Building the word trie. We employ a recursive algorithm to create a non-
lexicographic trie containing all distinct words. Since the delimiter is included
at the end of each word, no word can be a prefix of another. This implies that
each word will correspond to a leaf in the word trie. We use hash coding for
storing the outgoing edges of each node. The construction is performed top-
down by the following algorithm, beginning at the root, which initially contains
all words:

1. If the current node contains only one word, return.
2. Set the variable i to 1.

3. Check if all contained words have the same ith character. If so, increment
1 by one, and repeat this step.

4. Let the incoming edge to the current node be labeled with the substring
consisting of the ¢ — 1 character long common prefix of the words it con-
tains. If the current node is the root, and 7 > 1, create a new, unary, root
above it.

5. Store all distinct ¢th characters in a hash table. Construct children for
all distinct ith characters, and split the words, with the first ¢ characters
removed, among them.

6. Apply the algorithm recursively to each of the children.

Each character is examined no more than twice, once in step 3 and once
in step 5. For each character examined, steps 3 and 5 perform a constant
number of operations. Furthermore, steps 2, 4, and 6 take constant time and
are performed once per recursive call, which is clearly less than n. Thus, the
time for construction is O(n).

2. Assigning in-order numbers. We perform an in-order traversal of the trie,
and assign the leaves increasing numbers in the order they are visited, as shown
in Figure 2. At each node, we take the order of the children to be the order
in which they appear in the hash table. It is crucial for the correctness of the
algorithm (Stage 5), that the following property holds:

Definition 1 An assignment of numbers to strings is semi-lexicographic if and
only if for all strings, a, B, and ~y, where o and B have a common prefix that
is not also a prefix of v, the number assigned to vy is either less or greater than
both numbers assigned to a and (3.

For an illustration of this, consider Figure 2b. The requirement that the
word trie is semi-lexicographic ensures that consecutive numbers are assigned
to the strings AGAT and AGAAT, since these are the only two strings with the
prefix AGA.

The time for this stage is the same as for an in-order traversal of the word
trie, which is clearly O(m'), where m' < m is the number of distinct words.

3. Generating a number string. In this stage, we create a string of length m in
the alphabet {1,...,m'}.

This is done in O(n) time by scanning the original string while traversing
the word trie, following edges as the characters are read. Each time a leaf is
encountered, its assigned number is output, and the traversal restarts from the
root.

4. Constructing the number-based suffiz tree. In this stage we create a tra-
ditional lezicographic suffix tree from the number string. For this, we use an
ordinary suffix tree construction algorithm, such as McCreight’s [15] or Ukko-
nen’s [17]. Edges are stored in a hash table. The time needed for this is O(m).

Since hash coding is used, the resulting trie is non-lexicographic. However,
it follows from Observation 1 that it can be made lexicographic in O(m) time
using bucket sorting. In the lexicographic trie, we represent the children at each
node with linked lists, so that the right sibling of a node can be accessed in
constant time.

As an alternative, the suffix tree construction algorithm of Farach [9] can
be used to construct this lexicographic suffix tree directly in O(m) time, which
eliminates the randomization element of this stage.

5. Ezxpanding the number-based suffiz tree. In this stage, each node of the
number-based suffix tree is replaced by a local trie, containing the words cor-
responding to the children of that node. First, we preprocess the word trie for
least common ancestor retrieval in O(m') time, using for example the method
of Harel and Tarjan [12]. This allows lowest common ancestors to be obtained
in constant time. The local tries are then built left-to-right, using the fact that

since the assignment of numbers to words is semi-lexicographic and the number-
based suffix tree is lexicographic, each local trie has the essential structure of
the word trie with some nodes and edges removed. We find the lowest common
ancestor of each pair of adjacent children in the word trie, and this gives us
the appropriate insertion point (where the two words diverge) of the next node
directly.

More specifically, after preprocessing for computation of lowest common an-
cestors, we build the local trie at each node in the following manner. (The node
expansion is illustrated in Figure 3a-b.)

1. Insert the first word.

2. Retrieve the next word in left-to-right order from the sorted linked list
of children. Compute the lowest common ancestor of this word and the
previous word in the word trie.

3. Look into the partially built trie to determine where the lowest common
ancestor of the two nodes should be inserted, if it is not already there.
This is done by searching up the tree from the last inserted word until
reaching a node that has smaller height within the word trie.

4. If necessary, insert the internal (lowest common ancestor) node, and insert
the leaf node representing the word.

5. Repeat from step 2 until all children have been processed.

6. If the root of the local trie is unary, remove it via path compression.

Steps 1 and 6 take constant time, and are executed once per internal node of
the number-based suffix tree. This makes a total of O(m') time for these steps.
Steps 2, 4 and 5 also take constant time, and are executed once per node in
the resulting word suffix tree. This implies that their total cost is O(m). The
total work performed in Step 3 is essentially an in-order traversal of the local
subtree being built. Thus, the total time for Step 3 is proportional to the total
size of the final tree, which is O(m). Consequently, the expansion takes a total
of O(m) time.

The correctness of the algorithm can be verified in a straightforward manner.
The crucial point is that the number-based suffix tree has the essential structure
of the final word suffix tree, and that the expansion stage does not change this.

Theorem 1 A word suffix tree for an input string of size n containing m words
can be built in O(n) expected time and O(m) deterministic space.
6 Extensions and variations

Although the use of randomization (hash coding) and non-lexicographic suffix
trees during construction is sufficient for a majority of practical applications,
we describe extensions to Algorithm B in order to meet stronger requirements.

6.1 Building a lexicographic trie

Although applications commonly have no use for maintaining a lexicographic
trie, there are cases where this is necessary. (A specialized example is the
number-based suffix tree created in Stage 4 of Algorithm B).

If the alphabet size k is small enough to be regarded as a constant, it is trivial
to modify Algorithm B to create a lexicographic tree in linear time: instead of
hash tables, use any ordered data structure (most naturally an array) of size
O(k) to store references to the children at each node.

If hashing is used during construction as described in the previous section,
Algorithm B can be modified to construct a lexicographic trie simply by re-
quiring the number assignments in Stage 2 to be lexicographic instead of semi-
lexicographic. Thereby, the number assignment reflects the lexicographic order
of the words exactly, and this order propagates to the final word suffix tree.
A lexicographic number assignment can be achieved by ensuring that the word
trie constructed in Stage 1 is lexicographic. Observation 1 states that the trie
can be made lexicographic at an extra cost which is asymptotically the same as
for sorting m' characters, which yields the following;:

Theorem 2 A lexicographic word suffix tree for an input string of size n con-
taining m words of which m' are distinct can be built in O(n + s(m')) expected
time and O(m) deterministic space, where s(m') is the time required to sort m'
characters.

For the general problem, with no restrictions on alphabet size, this implies
an upper bound of O(nloglogn) by applying the currently best known upper
bound for integer sorting [2].

6.2 A deterministic algorithm

A deterministic version of Algorithm B can be obtained by representing the tree
with only deterministic data structures, such as binary search trees. Also, when
these data structures maintain lexicographical ordering of elements (which is
common, even for the data structures with the best known time bounds) the
resulting tree becomes lexicographic as a side effect. We obtain a better worst
case time, at the price of an asymptotically inferior expected performance.

We define i(m,m') to denote the time to insert m characters into ordered
dictionaries each bounded in size by m’, where m' < m is the number of distinct
words. In a straightforward manner, we can replace the hash tables of Stages 1
and 4 with deterministic data structures. Since no node may have higher out-
degree than m', the resulting time complexity is O(n + i(m,m')).

Theorem 3 A lexicographic word suffix tree for an input string of size n con-
taining m words of which m' are distinct can be built deterministically in O(n+
i(m,m')) time and O(m) space, where i(m,m') is the time required to insert m
characters into ordered dictionaries each bounded in size by m'.

Using binary search trees, i(m,m') = O(mlogm'). There are other possi-
bilities, for example we could implement each node as a fusion tree [10], which
implies

i(m,m') = O(mlogm'/loglogm')

or as an exponential search tree [1], which implies
i(m,m') = O(m+/logm’)

or
i(m,m’) = O(mloglogm' loglogk)

the latter bound being the more advantageous when the alphabet size is rea-
sonably small.

7 Sublinear construction: Algorithm C

In some cases, particularly when the alphabet is small, we may assume that the
n characters in the input string occupy o(n) machine words. Then it may be
possible to avoid the apparently inescapable 2(n) cost due to reading the input.

This theme can be altered in many ways, the details depend on the appli-
cation. The purpose of this (somewhat technical) section is to show that a cost
of (n) is not a theoretical necessity.

We start by studying the case when the positions of the delimiters are known
in advance. Then we describe an application where the input string can be
scanned and delimiters located in o(n) time.

If the alphabet size is k, then each character occupies log k bits and the total
length of the input is N = nlogk bits stored in N/w machine words, where w
is the number of bits in a machine word. (In this section, it is important to dis-
tinguish between “words” in the input string and hardware-dependent “machine
words”.)

We make the following observation:

Lemma 1 A lexicographic trie containing strings of a-bit characters can be
transformed into the corresponding lexicographic trie in a b-bit alphabet in linear
time, where a and b are not larger than the size of a machine word.

Proof (sketch) The transformation is made in two steps. First, we transform
the trie of a-bit characters into a binary trie. The binary trie is then transformed
into the final b-bit trie. For the first part, the essential observation is that the
lowest common ancestor of two neighboring strings can be computed by finding
the position of their first differing bit. This position can be found in constant
time [10]. Using this information, we can construct a binary path compressed
trie in the same manner as the node expansion stage of Algorithm B. The binary
trie, in turn, can be trivially transformed into a trie of the desired degree in linear
time. (For a more detailed discussion, we refer to [2]). O

The following algorithm, which we refer to as Algorithm C, builds a word
suffix tree, while temporarily viewing the string as consisting of n’ b-bit pseudo-
characters, where n’ = o(n). It is necessary that this transformation does not
cause the words to be comprised of fractions of pseudo-characters. Therefore,
in the case where a word ends at the ith bit of a pseudo-character, we pad this
word implicitly with b — ¢ bits at the end, so that the beginning of the next
word may start with an unbroken pseudo-character. This does not influence the
structure of the input string, since each distinct word can only be replaced by

another distinct word. Padding may add at most m (b — 1) bits to the input.

Consequently,

We are now ready to present Algorithm C:

1. Construct a non-lexicographic word trie in the b-bit alphabet in time
O(n'), asin Stage 1 of Algorithm B. The padding of words does not change
the important property of direct correspondence between the words and
the leaves of the word trie.

2. Sort the edges of this trie, yielding a lexicographic trie in the b-bit alphabet
in O(m' + sp(m')) time, by Observation 1, where s;(m') is the time to sort
m' b-bit integers.

3. Assign in-order numbers to the leaves, and then generate the number
string in time O(n'), in the same manner as Stage 3 of Algorithm B.

4. Convert this word trie into a word trie in the original k-size alphabet,
utilizing Lemma 1. (This does not affect the in-order numbers of the
leaves).

5. Proceed from Stage 4 of Algorithm B.

The first four steps take time O(n'+sp(m')), and the time for the completion
of the construction from Stage 4 is O(m). Thus the complexity of Algorithm C
is O(n' + m + sp(m')). Thereby we obtain the following theorem:

Theorem 4 When the positions of all delimiters are known, a lexicographic
word suffix tree on a string comprising m words of which m' are distinct, can
be constructed in time

0 (% +m+ Sb(m'))

for some integer parameter b < w, where N is the number of bits in the input,
w 1s the machine word length, and sy(m') is the time to sort m' b-bit integers.

Note that Theorem 4 does not give a complete solution to the problem of
creating a word suffix tree. We still have to find the delimiters in the input
string, which may take linear time. Below, we illustrate a possible way around
this for one application.

Example: Huffman Coded Text

Suppose we are presented with a Huffman coded text and asked to generate an
index on every suffix starting with a word. Furthermore, suppose that word
boundaries are defined to be present at every position where a non-alphabetic
character (a space, comma, punctuation etc.) is followed by an alphabetic
character (a letter), i.e. we have implicit b characters in these positions. The
resulting word suffix tree may be a binary trie based on the Huffman codewords,
or a trie based on the original alphabet. Here we assume the former.

We view the input as consisting of b-bit pseudo-characters, where b = ligﬁ
The algorithm is divided in two main parts.

10

1. Create a code table. We start by creating a table containing 2° entries,
each entry corresponding to one possible pseudo-character. For each entry, we
scan the corresponding pseudo-character and examine its contents by decoding
the Huffman codewords contained in it. If there is an incomplete Huffman
codeword at the end, we make a note to the length of this codeword. We denote
the decodable part of the pseudo-character as a chunk. While decoding the
contents of a table entry, we check if any word boundaries are contained in the
decoded chunk. If so, this is noted in the table entry. Furthermore, we check
if the last character in the chunk is non-alphabetic, in which case we note that
this character, together with the first character in the next chunk, may define
a word boundary.

The time to create and scan the table is at most proportional to the total
number of bits it contains, which is 2° - b.

2. Scan the input and locate delimiters. We use p as a pointer into the input
string.

1. Set p to 1.
2. Read a pseudo-character (b bits), starting at position p.

3. Use the pseudo-character as an address in the code table. Examine if any
word boundaries are contained in the corresponding decoded chunk. Let
i be the length of the chunk. We have two cases:

(a) i > b/2. Update p to point at the first bit after the chunk and go
to 2.

(b) i < b/2. Continue reading bits in the input string one at a time
while traversing the Huffman tree until the end of a character is
found. Update p to point at the first bit after this character and go
to 2.

Assuming that b consecutive bits can be read in O(1) time, the time consumption
for Step 2 is constant. This step is performed a total number of O ([N/b]) times.

Case 3a takes constant time plus the number of found word boundaries.
Hence the total cost of this case is O(IN/b+ m).

Case 3b occurs when more than the last /2 bits are occupied by a single
character. It consumes time proportional to the number of bits in the character’s
codeword each time it occurs. Hence, the total cost of Case 3b equals the total
number of bits occupied by codewords of length more than b/2.

The length of a Huffman coded text asymptotically approaches the entropy
of the text. Therefore, we may assume that the length of the codeword for a
character with frequency f approaches —log f. This yields the following:

Observation 3 Given a Huffman coded input string of n characters, a charac-
ter whose Huffman codeword occupies i bits occupies a total of O(ni/2%) bits in
the coded string.

Since the number of characters occupying ¢ bits can not exceed the alphabet
size, k, the total number of bits taken by codewords of length i or longer is
O(kNi/2%). Hence, the total number of bits taken by codewords of length b/2
or longer is O(kNb/2"), which gives us a bound on the cost of Case 3b above.

11

The total cost for finding delimiters becomes

N END N kENlogn
2t . — =)= 1 - Shiaent - R
O(b+b+m+ 2b) O(ﬁogn+logn+m+ Tn)

The first term can be canceled since N > n and the last term can be canceled
if k = O(v/n/log®n). We then get a cost of

0(N +m>
logn

Next, applying Theorem 4 with the same choice of b, we find that

sp(m') = O(m' +2°) = O(m' + /n)

by using bucket sorting; this cost is negligible. The space used by this algorithm
is O(m + /n), the last term being due to the table. This yields:

Observation 4 Given a Huffman coded input string of n characters coded in
N bits where the alphabet size k satisfies k = O(y/n/log® n), a word suffix tree
on m natural words can be constructed in time

O(N +m)
logn

with construction space O(m + /n).

It should be noted that even if the alphabet is very large, the complexity of our
algorithm would be favorable as long as characters with long Huffman codewords
are rare, i.e. when the entropy of the input string is not too high.

8 A comment on the time—space tradeoff in prac-
tice

Asymptotically, our space requirement is better than that of alternative data
structures, like the traditional suffix tree and the suffix array [14] or PAT ar-
ray [11]. In practice, however, an asymptotic advantage may sometimes be
neutralized by high constant factors.

There are two aspects of space efficiency: the space required to construct the
data structure and the space required by the data structure after construction.

First, we study the construction space. Recall that we have n characters, m
words, and m' distinct words. The space taken by our construction algorithm
equals the space required to construct a traditional suffix tree of m characters,
plus the space required to store m’ words in the word trie, (including lowest
common ancestor links). In many practical cases, see Figure 1 for example, m/
is considerably smaller than m and we can neglect the space required by the
word trie.

Next, we discuss the space required by the final data structure. As a very
natural and space-efficient alternative to a tree structure, one may store the
suffix references in a plain sorted array, denoted suffix array [14] or PAT ar-
ray [11]. Such an array may be searched through binary search, but in order to

12

| Work [n | m | m |

Mark Twain’s Tom Sawyer 387922 | 71457 | 7389
August Strindberg’s Rida rummet || 539473 | 91771 | 13425

Figure 1: Examples of natural language text

speed up the search, Manber and Myers [14] suggest using an additional bucket
array. The idea is to distribute the suffixes among b buckets according to their
first log b bits, as in traditional bucket sorting. Manber and Myers suggested
b =n/4 as a suitable value, but other values are possible. This method is very
helpful is cases when the suffix array is stored in secondary memory; by storing
a small bucket array in internal memory, we may decrease the number of disk
accesses significantly. One disadvantage with the bucket array, however, is that
the number of suffixes may vary a lot between the buckets, many buckets may
even be empty. Therefore, Andersson and Nilsson suggested an improvement [5]:
instead of the bucket array, a small, efficiently implemented suffix tree may be
used to index the array of pointers. It is experimentally demonstrated that
this data structure uses less space than the bucket array while the number of
disk accesses is smaller. The reason for this advantage is that a trie in general,
and a level compressed trie in particular [3, 4], adapts more nicely to the input
distribution than a bucket array. For the same reasons, we conjecture that an
efficiently implemented word suffix tree will offer a better time—space tradeoff
than a bucket array.

Of course, an obvious advantage compared with the suffix array is the con-
struction cost; we need only ©(n) time (in some cases we also need to sort m/
characters) while Manber and Myers’ suffix array algorithm requires ©(nlogn)
time.

9 Additional comments

The word suffix tree is indeed a natural data structure, and it is surprising
that no efficient construction algorithm has previously been presented. We now
discuss several practical cases where word suffix trees would be desirable.

With natural languages, a reasonable word partitioning would consist of
standard text delimiters: space, comma, carriage return, etc. We could also use
implicit delimiters, as in the example in the preceding section. Using word suffix
trees, large texts can be manipulated with a greatly reduced space requirement,
as well as increased processing speed [7]. Figure 1 indicates that the number of
words, m, in common novels, is much less than the length of the work in bytes,
n. This difference is even greater when one considers the number of distinct
words, m'.

In the study of DNA sequences, we may represent a large variety of genetic
substructures as words, from representations of single amino acids, up to entire
gene sequences. In many such cases, the size of the overlying DNA string is sub-
stantially greater than the number of substructures it contains. As an example,
there are merely tens of thousands of human genes, whilst the entire length of
human DNA contains approximately three billion nucleotides.

13

The word suffix tree is of particular importance in the case where the indexed
string is not held in primary storage while the tree is utilized. Using the repre-
sentation of case 4 in Section 3 our data structure allows search operations with
a single access to secondary storage, using only O(m) cells of primary storage,
regardless of the length of the search string.

The related problem of constructing evenly spaced suffiz trees has been
treated by Karkkainen and Ukkonen [13]. Such trees store all suffixes for which
the start position in the original text are multiples of some constant. We note
that our algorithm can produce this in the same complexity bounds by assuming
implicit word boundaries at each of these positions.

It should be noted that one open problem remains, namely that of removing
the use of delimiters—finding an algorithm that constructs a trie of arbitrarily
selected suffixes using only O(m) construction space.

References

[1] Arne Andersson. Faster deterministic sorting and searching in linear space.
In Proceedings 37" IEEE Symposium on Foundations of Computer Science
(FOCS’96), pages 135-141, 1996.

[2] Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman.
Sorting in linear time? In Proceedings 27" ACM Symposium on Theory of
Computing (STOC’95), pages 427-436. ACM Press, 1995.

[3] Arne Andersson and Stefan Nilsson. Improved behaviour of tries by adap-
tive branching. Information Processing Letters, 46:295-300, 1993.

[4] Arne Andersson and Stefan Nilsson. Faster searching in tries and
quadtrees—an analysis of level compression. In Proceedings 2" Annual Eu-
ropean Symposium on Algorithms (ESA’94), volume 855 of Lecture Notes
in Computer Science, pages 82-93. Springer-Verlag, 1994.

[5] Arne Andersson and Stefan Nilsson. Efficient implementation of suffix trees.
Software—Practice and Ezperience, 25(2):129-141, 1995.

[6] Alberto Apostolico. The myriad virtues of subword trees. In Alberto Apos-
tolico and Zvi Galil, editors, Combinatorial Algorithms on Words, NATO
IS8T Series, pages 85—96. Springer-Verlag, 1985.

[7] Ricardo A. Baeza-Yates and Gaston H. Gonnet. Efficient text searching of
regular expressions. In Proceedings 16t" International Colloquium on Au-
tomata, Languages and Programming (ICALP’89), volume 372 of Lecture
Notes in Computer Science, pages 46—62. Springer-Verlag, 1989.

[8] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf
der Heide, Hans Rohnert, and Robert E. Tarjan. Dynamic perfect hashing;:
Upper and lower bounds. STAM Journal on Computing, 23(4):738-761,
1994.

[9] Martin Farach. Optimal suffix tree construction with large alphabets. In
Proceedings 38" IEEE Symposium on Foundations of Computer Science
(FOCS’97), pages 137-143, October 1997.

14

b b bbb b bbb b b
(a) CAGTAGATAGAATCTTCAGTCTTTAGATCAGTCAGS
1 4 5 36 1 366 4 1 2

Figure 2: A sample string where b = T, and its number string (a), created from
its corresponding word trie (b).

Figure 3: The number suffix tree (a) and its expansion into the final word suffix
tree (b). (Dotted lines denote corresponding levels.)

15

[10] Michael L. Fredman and Dan E. Willard. Surpassing the information the-
oretic bound with fusion trees. Journal of Computer and System Sciences,
47:424-436, 1993.

[11] Gaston H. Gonnet and Ricardo A. Baeza-Yates. Handbook of Algorithms
and Data Structures. Addison-Wesley, 1991. ISBN 0-201-41607-7.

[12] Dov Harel and Robert E. Tarjan. Fast algorithms for finding nearest com-
mon ancestors. SIAM Journal on Computing, 13(2):338-355, 1984.

[13] Juha Kéarkkiinen and Esko Ukkonen. Sparse suffix trees. In Proceed-
ings 2™ International Conference on Computing and Combinatorics (CO-
COON’96), volume 1090 of Lecture Notes in Computer Science, pages 219—
230. Springer-Verlag, 1996.

[14] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string
searches. STAM Journal on Computing, 22(5):935-948, October 1993.

[15] Edward M. McCreight. A space-economical suffix tree construction algo-
rithm. Journal of the ACM, 23:262-272, 1976.

[16] Wojciech Szpankowski. A generalized suffix tree and its (un)expected
asymptotic behaviors. SIAM Journal on Computing, 22(6):1176-1198, De-
cember 1993.

[17] Esko Ukkonen. On-line construction of suffix trees. Algorithmica,
14(3):249-260, September 1995.

[18] Peter Weiner. Linear pattern matching algorithms. In Proceedings 14"
IEEFE Symposium on Foundations of Computer Science (FOCS13), pages
1-11, 1973.

16

