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SUMMARY

An algorithm for searching in a binary search tree using two-way comparisons is
presented. The number of comparisons required by this algorithm is only one more
than when using three-way comparisons. Since most high-level programming lan-
guages do not supply three-way comparisons, the number of comparisons used de
facto are reduced by a factor of two. We give experimental results to indicate the

speedup that may be achieved by the presented algorithm.
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Introduction

An operation which is often assumed to be present when designing algorithms is the
three-way comparison with outcome <, = or >. An example of an algorithm where
this operation is used is when searching an element in a binary search tree. This is a
fundamental algorithm and it is often presented in various text books and papers [1, 3,
4,5, 7). The basic algorithm uses one three-way comparison per visited node. Depending
on the outcome of the comparison the algorithm terminates or continues in one of the
subtrees. However, even though the three-way comparison may exist at the machine-
level this operation is not available in most high-level programming languages. Thus,
when the search algorithm is presented, it is coded as in Figure 1. In this procedure two
two-way comparisons are used per visited node although it is claimed that one three-way
comparison is made. However, so far the author has never observed a compiler which
actually translates these two comparisons into one three-way comparison. Thus, when
the search procedure is actually run, two comparisons are made per visited node in the
tree.

Since binary tree searching is a common operation in computer programs, some care to
optimize this operation seems worthwhile. A well-known technique to optimize the code

is to use a sentinel [4, 6, 7]. In a binary search tree the sentinel is an extra node which is
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PROCEDURE StandardSearch (x: Data; T: NodePtr): NodePtr;
BEGIN
WHILE (T # NIL) & (Tt.key # x) DO
IF x < T1.key THEN

T = T1.left;
ELSE
T := T1.right;
END;
END;
RETURN T;

END StandardSearch;

Figure 1: The search procedure with three-way comparisons. The code is given in
MODULA-2.

the common child of all leaves in the tree. By putting the searched value in the sentinel
before the search starts we can guarantee that the value will always be found either in
the tree or in the sentinel. If the algorithm terminates in the sentinel the search has been
unsuccessful. The advantage of this algorithm compared to the original one is that we do
not have to test for empty pointers. Thus the termination condition of the algorithm can
be made simpler. The search algorithm using a sentinel is given in Figure 2.

In this paper we discuss another way of optimizing the search procedure. We present
an algorithm for searching in a binary search tree using two-way comparisons only. The
algorithm is very simple and may scarcely be called new (in [4] it is observed that binary
search in an array, which can be made efficiently with two-way comparisons, corresponds
to searching in an implicit tree). However, it seems that this way of improving binary tree
search has been overlooked. With this algorithm we obtain the same simple termination
condition as when using a sentinel but instead of removing the test for empty pointers
we remove the extra comparison made at each node in the tree. In the likely case that
element-comparisons are more expensive than pointer operations, our improvement is
more significant than the improvement caused by using a sentinel. This makes it possible

to code an efficient (in terms of the number of comparisons used) search procedure in



PROCEDURE SentinelSearch (x: Data; T: NodePtr): NodePtr;
BEGIN
sentinelf.key := x;
WHILE T4 .key # x DO
IF x < T1.key THEN

T := T1.left;
ELSE
T := T1.right;
END;
END;
IF T # sentinel THEN
RETURN T
ELSE
RETURN NIL;
END;

END SentinelSearch;

Figure 2: Searching with sentinel. The node sentinel is assumed to be the child of each
leaf in the tree.

high-level languages independently of the optimizing capability of the compiler employed.
We also give experimental results to indicate the speedup that is achieved by the presented

algorithm.

The Improved Algorithm

The number of two-way comparisons required in binary tree search may be decreased by
a simple modification of the procedure in Figure 1. The price we have to pay is some

extra pointer assignments.

Theorem 1 A node in a binary search tree with height h can be found in h + 1 two-way

COmMparisons.

Proof: We use a global pointer candidate and the following algorithm: At each node
we make one two-way comparison to decide whether the searched value is smaller than

the node’s value or not. If the searched value is smaller we turn left, otherwise we let
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PROCEDURE TwoWaySearch (x: Data; T: NodePtr): NodePtr;
VAR candidate: NodePtr;
BEGIN
candidate := NIL;
WHILE T # NIL DO
IF x < T1T.key THEN

T := T1.left;
ELSE

candidate := T;

T := T1.right;
END;

END:;
IF (candidate # NIL) & (candidatef.key = x) THEN
RETURN candidate
ELSE
RETURN NIL:
END;

?

END TwoWaySearch;

Figure 3: Efficient searching with two-way comparisons.

candidate point at the current node and turn right. When an empty node is found we
examine candidate. The search has been successful if and only if candidate points to a
node containing the searched value.

When the searched node is reached the algorithm does not terminate but continues in
the right subtree. Since all elements in that subtree are larger than the one searched for,
the algorithm will make no more right turns after passing that node. Thus if the element
searched for is to be found in the tree it has to be in the node where the last right turn
was made, which is the node referred to by candidate.

The maximal number of comparisons required by this algorithm equals the height of
the tree plus one, the extra comparison being made when testing the value pointed to by

candidate. The resulting algorithm is illustrated in Figure 3. O

The search algorithm can also be implemented recursively and it can be used in insert

and delete procedures. As an example we give a recursive deletion algorithm in Figure 4.
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PROCEDURE Delete (x: Data; VAR T: NodePtr);
VAR temp: NodePtr;
BEGIN
IF T # NIL THEN
IF x < Tt.key THEN
IF T4.left # NIL THEN
Delete (x, T1.left)
ELSIF (candidate # NIL) & (candidatef.key = x) THEN
candidatet.key := T1.key;
temp := T;
T := T1.right;
DISPOSE (temp);
END
ELSIF T1.right # NIL THEN
candidate := T;
Delete (x, T1.right);
ELSIF x = Tt.key THEN

temp := T,
T = T1.left;
DISPOSE (temp);
END
END
END Delete;

Figure 4: Recursive deletion with two-way comparisons. The global pointer candidate s
assumed to be initialized to NIL.

Usually deletion is implemented as two procedures, one to find the node to be deleted
and one to find an external node that can replace the deleted one. When using two-way
comparisons we only need one procedure. This is because the search will always continue
down to the bottom of the tree. The node to be deleted is pointed to by the global pointer

and the last visited node during the search is the one to replace it with.

Experimental Results

In order to illustrate the speedup that may be achieved by the described algorithm, some

experimental results are given. The procedures in Figures 1, 2, and 3 were run on a



Sun 3/180 using the Sun Modula-2 2.2 compiler with maximum optimization. The same
(corresponding) procedures were also run on a VAX/780 with the Digital Ada-compiler
and on a IBM PS/2 55X (with math co-processor) with Turbo Pascal 5.5.

To measure the cost of successful search the following experiment was made:

1. A tree containing 5000 elements (of type REAL when running MODULA-2, DOU-
BLE in Turbo-Pascal, and DIGITS(18) in Ada) is constructed and the elements in

the tree are copied into an array.
2. The timer is started.

3. 100 000 calls of the search procedure are made; all elements in the array are searched

for the same number of times.
4. The timer is stopped.

5. Step 1 to 4 are repeated five times and the average and standard deviation of the

measured CPU-times are computed.

To measure the cost of unsuccessful search the same procedure was followed, except that
the ith element in the array is chosen as the average between the ith and (i+ 1)th element
in the tree, and the last element in the array is made larger than all elements in the tree.

The measured CPU-times are given in Table 1. All standard deviations were less than
5 percent for random trees and less than 1 percent for perfectly balanced trees.

As can be seen in the table, our experiments indicate a significant speedup (26 -
44 percent) by the use of two-way comparisons. As a matter of fact, using the new search
algorithm helps more (on average) than balancing the tree! Note also that the use of a
sentinel does not seem to give any particular speedup.

The experiment above was also made for other sizes of the trees, resulting in the same

speedup.



tree generated from random insertions

compiler successful search unsuccessful search
standard sentinel two-way | standard sentinel two-way
Sun Modula-2 180 169 122 202 185 117
Digital Ada 4646 4826 2886 5125 5442 2882
Turbo-Pascal 518 510 364 572 LY 365
perfectly balanced tree
compiler successful search unsuccessful search
standard sentinel two-way | standard sentinel two-way
Sun Modula-2 136 130 98 158 146 93
Digital Ada 3504 3666 2307 3962 4263 2312
Turbo-Pascal 400 397 295 454 464 295

Table 1: Awverage search time (in microseconds) for searching in a tree containing 5000
elements.

Comments

The algorithm presented here allows us to code efficient search procedures in programming
languages where only two-way comparisons are available.

The search algorithm may easily be generalized to work also for multidimensional
In that case we need as many candidate pointers as the

search trees, or k-d-trees [2].

number of dimensions.

Acknowledgements

I would like to thank Dr. Svante Carlsson, Dr. Ola Peterson, Christian Collberg, and the

referees for valuable comments on this paper.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms.

Addison-Wesley, Reading, Massachusetts, 1983.



[2] J. L. Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9):509-517, 1975.

[3] G.H. Gonnet. Handbook of Algorithms and Data Structures. Addison-Wesley, Reading,
Massachusetts, 1983. ISBN 0-201-0023-7.

[4] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley, Reading, Massachusetts, 1973. ISBN 0-201-03803-X.

[5] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms: Theory and
Practice. Prentice-Hall, Englewood Cliffs, New Jersey, 1977. ISBN 0-13-152447-X.

[6] R. Sedgewick. Algorithms. Addison-Wesley, Reading, Massachusetts, 1988. ISBN
0-201-06673-4.

[7] N. Wirth. Algorithms and Data Structures. Prentice-Hall, Englewood Cliffs, New
Jersey, 1986. ISBN 0-13-022005-1.



