PREPRINT. In Proceedings of the 4th Workshop on Algorithms Data Structures, volume 955, pages 473-481. Springer Verlag, 1995.

On the Difficulty of Range Searching

Arne Andersson* Kurt Swanson™

Dept. of Computer Science, Lund University,
Box 118, S-221 00 LUND, Sweden

Abstract. The problem of range searching is fundamental and well
studied, and a large number of solutions have been suggested in the lit-
erature. The only existing non-trivial lower bound that closely matches
known upper bounds with respect to time/space tradeoff is given for the
pointer machine model. However, the pointer machine prohibits a num-
ber of possible and natural operations, such as the use of arrays and bit
manipulation. In particular, such operations have proven useful in some
special cases such as one-dimensional and rectilinear queries.

In this article, we consider the general problem of (2-dimensional) range
reporting allowing arbitrarily convex queries. We show that using a tra-
ditional approach, even when incorporating techniques like those used in
fusion trees, a (poly-) logarithmic query time can not be achieved unless
more than linear space is used. Our arguments are based on a new non-
trivial lower bound in a model of computation which, in contrast to the
pointer machine model, allows for the use of arrays and bit manipulation.
The crucial property of our model, Layered Partitions, is that it can be
used to describe all known algorithms for processing range queries, as
well as many other data structures used to represent multi-dimensional
data.

Tog T'(n)
O(T(n) + k) time, where k is the number of reported elements, for any
growing function T'(n). In some special cases, as for rectilinear queries,
these partitions may be stored in compressed form, which has been ex-
ploited by the M-structure of Chazelle. However, so far there has been no
indication that such compression would be feasible in the general case,
in which case any algorithm based on our model, and supporting range
searching in O(log® n + k) time requires f2 (lzglffg"n) space. (Note that
it may be possible to obtain a better upper bound with an algorithm
not adhering to the model of layered partitions.) Hence, we show that
removing the restrictions of the pointer machine model does not help in
obtaining a significantly improved time/space tradeoff — any solution
based on traditional representations of point sets cannot combine linear
space and polylogarithmic time.

‘We show that 2 (ﬁ"—) partitions must be used to allow queries in

* email: {arne, kurt}@dna.lth.se

1 Introduction

1.1 Discrepancy between upper and lower bound

The complexity of range searching has been a long standing open question.
The problem is fundamental and easy to formulate: given a set of points in a
multidimensional space, create a data structure that facilitates reporting of all
points inside a given query region. This formulation is frequently called range
reporting. Although many attempts have been made, the time-space tradeoff for
this problem is still unclear.

Taking a general approach, we note the following trivial lower bounds: Let
F(n) be the time required to find one point in the query region—or to discover
that the region is empty—in a set of n points. Then, an immediate lower bound
on time complexity is f2(F(n) + k), where k is the number of points to be
reported. The same lower bound applies when F'(n) is the cost of counting the
number of points in the region or computing the weighted sum of a set of weighted
points. As an example, by a modification of the proof by Miltersen [13], a lower
bound of F(n) = 2(log"* °® n) can be obtained [12]. (The original bound
given in that article is expressed in terms of the size of the universe. This is also
the case for similar lower bounds on existential range searching, which reports
whether or not a given region is empty, given by Miltersen et al [14].) In the same
way, the arithmetic lower bound by Chazelle [7] for the problem of dominance
searching (where the sum of weights of all points dominated by a given point
is computed), applies to our problem. However, these bounds are far from tight
with respect to the time/space complexity of range reporting.

The only existing non-trivial lower bound that closely matches known upper
bounds with respect to time/space tradeoff is given for the pointer machine
model, where F(n) = 2(logn) even in the one-dimensional case. In this model,
it has been shown [6] that ©(n log n/loglogn) space is necessary and sufficient in
order to achieve optimal query time complexity. In fact, not even polylogarithmic
time can be achieved with less space.

However, the restrictions of the pointer machine model are not realistic. This
weakness is particularly evident for range reporting since it has been explicitly
demonstrated that the use of arrays and bit manipulation can help. In such a
more general, and more realistic, model we can expect faster searching than
2(logn) [9]. As another possible improvement, we may reduce space require-
ments by packing information about more than one point into one machine
word. This option of storing point sets in compressed form has been utilized
by Chazelle [5] in the special case of rectilinear range queries; a query cost
of O(log* n + k) can be achieved using only O(n) space, and a query cost of
O(logn + k) can be achieved using O(nlogn) space on the RAM model. But
what about the general problem?

1.2 A lower bound in a relevant model

We concentrate on two dimensional range reporting with convex query regions.
It should be noted that our lower bound only holds for a (relevant) class of

algorithms to solve range searching, and not the problem itself.

In examining the large set of known data structures, one finds that they all
have one property in common: they may all be viewed as representing one or
more partitions of the plane, where each partition divides the plane into ©(n)
convex areas. When a query is made, the answer is given by intersecting the
query region with a selected subset of these partitions.

Based on this observation, we define the model of Layered Partitions, which
can be used to emulate all known solutions to the range searching problem,
as well as many other data structures used in computational geometry. Our
lower bound on the time-space tradeoff is given in terms of the number of par-
titions needed in order to achieve a certain query cost. We show that, in order
to support queries in time O(T'(n) + k), 2(logn/logT(n)) partitions must be
represented. Hence, if each partition does require ©(n) space (and there is no
evidence pointing to the contrary for the general case of convex query regions),
then any algorithm based on layered partitions, which supports range reporting

in O(log®n + k), ¢ = O(1), time requires 2 (lgg‘l’fg"n) space.

Our model of computation is general in the sense that it allows all kinds of
bit-manipulation techniques, such as fusion trees [9], to be used in order to speed
up queries, thus avoiding inherent weaknesses in the pointer machine model.

2 Computational model

Our computational model is based on a data structure paradigm which can be
used to describe all data structures for the range reporting problem found in
the literature, as well as many other data structures used to represent multi-
dimensional data.

A central part of our model is the partition. Given a set of points in the
plane, we define the “universe” as the smallest enclosing rectangle containing all
points in the set. A partition divides the universe in ©(n) convex regions, each
region contains at most one point.

A data structure in the model represents a set of partitions Py, Ps, ... in the
plane. Range queries are processed in the following way:

1. Split the query region into m subregions Ry, ..., R.,.

2. Associate each R; with a partition P(R;).

3. Examine all regions in P(R;) that intersect R; and report which points are
contained in R;.

The cost of processing the query is defined as:

Z number of regions in P(R;) that intersect R;
=1

Note that we only consider the time required to access information in parti-
tions, and not the time needed to determine how to divide the query region into

subregions, nor the time to determine which partitions to use, nor time spent
searching in any ancillary data. Thus differences between the RAM and decision
tree models are negated.

We claim that this model covers the classical data structures used to solve
this, and similar, problems. Among others, the following data structures can be
described as layered partitions: k-d-Tree [15], Multistage direct access (multilevel
k-ranges) [2], Filtering search [3], Range Trees [1] (see also [16] and [10]), Quad
trees [8], Priority search trees [11], Voronoi diagrams, and M-structures [5] (see
also [4]).

As an example, we indicate how to describe, in terms of layered partitions,
priority search trees as well as the data structure used in filtering search. In
Figure 1, we illustrate how to view a priority search tree as a layered partition
(a single layer). In a priority search tree, the point with highest y-coordinate is
stored in the root. The rest of the points are divided between the two subtrees
according to a split value which is also stored in the root. All points whose x-
coordinate is less than the split value are stored in the left subtree, the other
points are stored in the right subtree. A priority search tree supports range
queries where the query region is a rectangle for which the topmost edge in the
rectangle is located above all stored points.

In the figure, the universe covers ([0; 20], [0; 10]) and the query region (shaded)
is ([8;18],[6; 10]). In each tree node, the upper values are split values (not needed
for the leaves) and the lower values are point coordinates. The partition created
by the tree is illustrated below the tree; each node corresponds to one region.
Vertical segments represent split values, and horizontal segments separate each
node’s point from those of its subtree. The horizontal segments are somewhat
arbitrarily drawn, but conform to the nature of priority search trees as well
as layered partitions. This particular query rectangle contains five regions, the
corresponding nodes are shaded.

In filtering search, the data structure is organized in ©(log n/ loglogn) layers,
each layer may be described as consisting of three partitions. At the ith layer,
we have the following three partitions:

— The first partition divides the universe into @(logi n) vertical segments, each
segment containing @(n/log’ n) points. Each segment is in turn divided into
horizontal segments, each segment containing one point.

— The second partition divides the universe into the same ©(log’ n) vertical seg-
ments. This time, however, each segment is represented as a priority search
tree, based on the left edge of the segment. A priority search tree may in
turn be described as a partition as previously shown.

— The third partition is similar to the second one, with the difference that the
priority search trees are based on the right edge of their segments.

3 Lower bound

Our lower bound is based upon a specific example. We describe a simple layout
pattern for points in the plane, and prove that, according to the above described

10

13

[19]
4 16.5
[12,8] [19,8]
- 15
(25 [5.1] E[EE]{ [17,7]
[14,1] [16,2]
19
28] 198
177
€8
[15.’3]
[1921'
[531] [lli, 1]

Fig. 1. Searching in a priority search tree

20

model of computation, any algorithm that solves range searching in O(T'(n) + k)

logn
log T'(n)

For the sake of simplicity, we shall describe this layout in terms of rectangular
queries. However, our lower bound construction can easily be extended to a set
of convex non-rectangular queries. We indicate how to perform this extension
below.

We arrange the point set to create classes of empty rectangles R;, Ra, R, ...
We denote the entire set of rectangles as R = R; U Ry U R3 U ... The class R; is
constructed recursively in the following way (see Figure 2):

time, must represent (2 () partitions.

1. Initially ¢ = 1 and R = R; which contains one rectangle.

2. Seti =14+ 1.

3. Make T3(n) copies of the entire set of rectangles R and place them on a
horizontal line. This implies that the number of rectangles of class R;, (Vj |
1 < j < i) increase by a factor of T3(n).

4. Add a class of rectangles R; as T%(~1)(n) long rectangles, evenly spaced
over the universe from top to bottom, each one intersecting all copies made
in the previous step (as shown in Figure 2).

5. Make the holes (rectangular regions between intersecting rectangles) small
enough so that their total area is negligible. One point is placed in each hole.

6. If there are points left, go to 2.

We assume, without loss of generality, that the number of points, n, exactly fills
the last class, without any remaining points. (We note that this provides for an
infinite number of constructions).

We now indicate how this construction can be rephrased for a set of convex
and non-rectangular queries. To do this, we observe that we have left small gaps
between all rectangles. Hence, instead of placing our points on strict lines, we
may arrange them in a slightly more irregular pattern, creating convex, but not
necessarily rectangular, empty query regions.

Lemmal. The number of classes of rectangles that can be created by the above

described process is {2 (bg’%), given n points.

Proof. Let S(4) equal the number of points required to create i classes of rectan-
gles. When creating the ith class, we create T°(n) copies of everything that we
had before, the number of points needed for this purpose is S(i — 1)T%(n). Next,
we add T3¢~V (n) rectangles. Each of these rectangles crosses T°(n) rectangles
in R; 1, creating (T3¢~ (n) — 1)(T%(n) — 1) new holes for level R;, and we add
one point in each hole, which gives us:

(i) = S(i =)T*(n) + (T*C"V(n) = 1)(T3(n) - 1) 1)

We first prove that S(i) < T*(n) by induction. As S(1) = 0, then S(2) =
(T3 (n) —1)(T3(n) — 1) < T*%(n). By induction assume S(i — 1) < T*(=1(n),
then, for T'(n) > 1 and 7 > 2:

R=RiUR>:

T3(n) copies of R :

R:Rll

RiURyUR3:

R =

Ri U R», and 176

R1 U Ry U Rs. (The 25 rectangles in Rs are shown as lines. Only

= 5, yielding 16 holes for R

Fig. 2. The growth of R, for T3(n)

total holes for R

points in Ry are drawn.)

(i) < TV ()T (n) + (T (n) = 1)(T3(n) - 1)

< T4 Yn) + T3 (n) — T30V (n) = T3(n) + 1 < T*(n)

= S(¢) and solve for i:

We now set n

n = S(i) < T*(n)

logn < 4ilogT(n)

Next, we study how many partitions must be maintained in order to perform
range queries efficiently. Intuitively, our goal is to show that there must be at
least as many partitions as there are classes of empty rectangles.

We say that a rectangle used in a layered partition is ¢-sized if both its height
and width is at least 1/T'(n) times the height and width of a rectangle in R,.

Lemma2. A q-sized rectangle used in a layered partition data structure is not
s-sized if ¢ # s.

Proof. The proof follows from the way our R,’s are constructed and the fact
that no rectangle used in a partition may contain more than one point.

Without loss of generality, assume ¢ < s. The height of a ¢-sized rectangle
is greater than 1/T(n) times the height of a rectangle in Ry, by definition. The
height of a ¢-sized rectangle is greater than T%(n) times the height of a rectangle
in Rs due to the recursive construction of R, and R;.

Assume a ¢-sized rectangle used in a layered partition is at least 1/T'(n) times
the width of a rectangle in R,. Then the ¢-sized rectangle must cross over at least
T?(n) rectangles in R,_;. By construction, there are 2(T3(n)) points between
two rectangles in R,. Therefore, due to its height, the g-sized rectangle must
enclose at least T2 (n) points in between each pair of rectangles it crosses in R, 1.
Thus the g-sized rectangle contains at least T%(n)(T?(n) — 1) = T*(n) — T?(n)
points. It can thereby not be used in a layered partition. This contradicts the
assumption on its width, and thus, by definition, it cannot be s-sized.

Lemma 3. For any solution to the range query problem, the following must hold:
for each g, all but at most 1/T (n)-th of the universe must be covered by q-sized
rectangles represented by the solution.

Proof. Assume that we chose to use an arbitrary rectangle in R, as a query
region. Then, in order to perform our query in time T'(n) our data structure
must contain rectangles such that any rectangle in R, can be covered by at most
T'(n) rectangles.

By the construction of the example, all but a negligible part of the universe
is covered by each set R,. It thus suffices to show that for each rectangle in
R,, only 1/T(n)-th of the rectangle may not be covered by g¢-sized rectangles
in the solution. From Lemma 2 and the definition of ¢-sized, it follows that any
s-sized rectangle, (s # q), covers less than T+(n) of the rectangle. Thus, @(T'(n))

non-g-sized rectangles cover O(T+(n)) of the rectangle. Therefore, the remainder

of the rectangle must be covered by g-sized rectangles. If not, the cost of a query
would exceed O(T'(n)).

Theorem 4. In order to search in O(T(n) + k) time, where k is the number of

elements in the query region, (2 (%) partitions are required.

Proof. Tt follows from lemma 3 that we need to store at least one partition
for each separate class of rectangles in the construction, yielding 2 (101;%)

partitions.

The theorem yields the following corollary.

Corollary 5. If each partition requires O(n) space, any algorithm based on lay-
ered partitions and supporting range reporting in O(logn + k), ¢ = O(1), time

. nlogn
requires p) (log Tog n) space.

4 Conclusion

We feel that our new lower bound provides new insight on the difficulty of range
searching. Our model of computation, layered partitions, captures the inherent
properties of a large class of data structures. In this model, we have shown
that it is not possible to perform range queries in O(log®n + k) time and linear
space, unless partitions can be stored in compressed form. However, it seems
infeasible to be able to apply the bit-encoding technique of M-structures [5] to
other than orthogonal rectilinear queries, since the compression heavily exploits
the fact that the queries are rectangular. When compression is not feasible,
any algorithm based on layered partitions and supporting range reporting in

O(log®n + k), ¢ = O(1), time requires 2 (lfgl‘ffg"n) space. Thus we show that

no superior upper bound can be achieved using traditional methods and data
structures for range searching in the general case.

One might also imagine that a possible way to achieve a better tradeoff
between space and time would be to combine some classical data structure, such
as range trees, with some sophisticated search method, such as the one used
in fusion trees [9]. The number of possibilities seems to be very large and we
believe that many researchers have tried methods like this. In this article, we
have shown that such an approach would not be fruitful.

Acknowledgments

We would like to thank the referees and Dr. Ola Petersson for many insightful
comments.

References

1. J. L. Bentley. Decomposable searching problems. Inform. Process. Lett., 8:244—
251, 1979.

2. J. L. Bentley and H. A. Maurer. Efficient worst-case data structures for range
searching. Acta Inform., 13:155-168, 1980.

3. B. Chazelle. Filtering search: a new approach to query-answering. In Proc. 24"
Annu. IEEE Sympos. Found. Comput. Sci., pages 122-132, 1983.

4. B. Chazelle. Slimming down search structures: A functional approach to algorithm
design. In Proc. 26" Annu. IEEE Sympos. Found. Comput. Sci., pages 165-174,
1985.

10.
11.
12.
13.

14.

15.

16.

. B. Chazelle. A functional approach to data structures and its use in multidimen-
sional searching. SIAM J. Comput., 17:427-462, 1988.

B. Chazelle. Lower bounds for orthogonal range searching, I: the reporting case.
J. ACM, 37:200-212, 1990.

B. Chazelle. Lower bounds for orthogonal range searching: II. the arithmetic
model. Journal of the ACM, 37(3):439-463, July 1990.

R. A. Finkel and J. L. Bentley. Quad trees: a data structure for retrieval on com-
posite keys. Acta Inform., 4:1-9, 1974.

M. L. Fredman and D. E. Willard. Blasting through the information theoretic
barrier with fusion trees. In Proc. 22"¢ Annu. ACM Sympos. Theory Comput.,
pages 1-7, 1990.

G. S. Lueker. A data structure for orthogonal range queries. In Proc. 19°* Annu.
IEEE Sympos. Found. Comput. Sci., pages 28-34, 1978.

E. M. McCreight. Priority search trees. SIAM J. Comput., 14:257-276, 1985.

P. B. Miltersen. Personal communication.

P. B. Miltersen. Lower bounds for union-split-find related problems on random
access machines. In Proc. 26" Ann. ACM STOC, pages 625634, 1994.

P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson. On data structures and
asymmetric communication complexity. In Proc. 27" Annu. ACM Sympos. Theory
Comput., 1995. To appear.

J. B. Saxe and J. L. Bentley. Transforming static data structures to dynamic
structures. In Proc. 20" Annu. IEEE Sympos. Found. Comput. Sci., pages 148-
168, 1979.

D. E. Willard. A new time complexity for orthogonal range queries. In Proc. 20"
Allerton Conf. Commun. Control Comput., pages 462-471, 1982.

This article was processed using the IXTgX macro package with LLNCS style

