In Proc. 35th Annual |EEE Symposium on Foundations of Computer Science, pages 714-721. IEEE Computer Society Press, 1994.

A New Efficient Radix Sort

Arne Andersson

Department of Computer Science
Lund University

Box 118, S-22100 Lund, Sweden
email: arne@dna.lth.se

Abstract

We present new improved algorithms for the sorting
problem. The algorithms are not only efficient but
also clear and simple. First, we introduce Forward
Radiz Sort which combines the advantages of tradi-
tional left-to-right and right-to-left radix sort in a sim-
ple manner. We argue that this algorithm will work
very well in practice. Adding a preprocessing step, we
obtain an algorithm with attractive theoretical prop-
erties. For example, n binary strings can be sorted in

@(nlog(Lm)

wTogn) time, where B is the minimum
number of bits that have to be inspected to distinguish
the strings. This is an improvement over the previ-
ously best known result by Paige and Tarjan. The
complexity may also be expressed in terms of H, the
entropy of the input: n strings from a stationary er-
godic process can be sorted in © (n log (% + l)) time,
an improvement over the result recently presented by

Chen and Reif.

Keywords: algorithms, sorting, radix sort, Forward
Radix Sort, entropy.

1 Background

A common idea in the design of efficient algorithms
is to take the distribution of the input into account.
Well known examples are interpolation search [9, 21,
22], trie structures [8, 10, 13], and bucketing algo-
rithms [6, 7]. When describing the complexity of such
algorithms, it is common to rely on the assumption
that the input elements are independently and ran-
domly drawn from a specific distribution, for instance
the uniform or normal distribution. A more general
approach is to assume no particular distribution, but
to express the complexity of the algorithm in terms of
certain properties of the input.

Stefan Nilsson

Department of Computer Science
Lund University

Box 118, 5-22100 Lund, Sweden
email: stefan@dna.lth.se

In this article, we study this more general approach
in the context of sorting. Specifically, we study the
problem of arranging binary strings in lexicographic
order. A new approach to this problem was recently
presented by Chen and Reif [4]. They introduced a
randomized sorting algorithm for binary strings from
a stationary ergodic process (see Section 3.2) with en-
tropy H, yielding an expected cost

] <nlog <lo}g}n + 2)) .

This was claimed to be the first algorithm to adapt to
an unknown input distribution.

We take a more general approach based on dis-
tinguishing prefizes. Let B denote the total length
of all distinguishing prefixes, i.e. the minimum num-
ber of bits that have to be examined in order to sort
the strings. Let B = B/n. For a stationary ergodic
process satisfying a certain mizing condition (see Sec-
tion 3.2) the following is true [17]:

E(B) 1

lim = —.

n—oo logn H
Hence, for any algorithm where the cost can be ex-
pressed in terms of B, the cost can also be expressed
in terms of H. However, the reverse implication is
not true. Therefore, stating the complexity of an al-
gorithm in terms of B, making no assumptions about
how the input is generated, is more general than using
the entropy of a stationary ergodic process.

Distribution-sensitive algorithms that are analyzed

in terms of B, and which therefore adapt to unknown
distributions, have been presented before. One exam-
ple is the sorting algorithm based on partition refine-
ment by Paige and Tarjan [16]. For this algorithm,
the cost for sorting n binary strings is

(e 1))

2 Results

We present improved algorithms for the sorting prob-
lem that are both simple and efficient. The basic algo-
rithm, Forward Radiz Sort, combines the advantages
of traditional left-to-right and right-to-left radix sort.
We also give an extended algorithm that consists of a
preprocessing step and an integer sorting step.

The analysis is made in terms of B, the average
number of bits in a distinguishing prefix, and w, the
number of bits in a machine word. We also show how
to apply the results to input from a stationary ergodic
process.

The basic algorithm has attractive features from a
practical point of view.

e It is simple.

e Under the assumptions about real world input
made by Chen and Reif [4], the basic algorithm
runs in ©(n) time, while their rather complicated
algorithm runs in O(nloglogn) time.

e Experimental investigations further indicate the
favorable behavior.

The extended algorithm has favorable properties
from a theoretical point of view. In particular, it is
always possible to sort n strings in time proportional
to the time to read the distinguishing prefixes plus
the time to sort n integers of length w. In effect, the
string sorting problem has been reduced to an integer
sorting problem. Reading the distinguishing prefixes
cannot be avoided, since these prefixes must be read
to verify that the strings are sorted. However, there
is a trade-off between the preprocessing step and the
integer sorting step and it is often worthwhile to spend
more time on the preprocessing to get a simpler inte-
ger sorting problem.

Applying different integer sorting algorithms as
subroutines and choosing an optimal trade-off between
preprocessing and sorting, we get the following results:

e In the simplest case, when bucketing is used as
a subroutine, the complexity is the same as that
achieved by Paige and Tarjan [16],

© (” <lo§n * 1)) |

e Using the sorting algorithm by Kirkpatrick and
Reisch [12] we get two cases. Assuming that w =

Q(B), the cost is

] <nlog <%+2>> .

For input from a stationary ergodic process, the
complexity is

(o3 +1)

In general, making no assumption on the size of w,
the cost is

O(n<§+1+log v >>
w logn

These costs improve over both the result by Paige
and Tarjan [16], and that of Chen and Reif [4].

e Using the integer sorting algorithm by Albers and
Hagerup [1], the cost is

o (n /B lognloglogn) ;
w
floglogn

Comparing this with the algorithm above, we see
that this algorithm has a better asymptotic time
complexity if

w— O (B lognloglogn) .

2 B
1Og logn

or

In particular, the algorithm runs in linear time if

w = Q(Blognloglogn).

3 Preliminaries

3.1 Notation and model of computa-
tion

We follow the notation of Mehlhorn [15]. Let ¥ =
{1,2,...,m} be an alphabet, with the standard arith-
metic linear order. We consider strings z!,... 2"
over ¥. Denote the length of 2! by I; and write
et = xixh .. x?l A lexicographic ordering is defined
in the usual way. Let x = x1---xp and y = y1 - - y1.
Then z is smaller than y in the lexicographic order-
ing if there is an 7, 0 < ¢ < k, such that z; = y;
for 1 < j <7 andeither: =k <lori <k, <1
and Tit1 < Yit1-

Consider the distinguishing prefixes of the strings,
i.e. the shortest prefixes of z',... 2" that are pair-
wise different. The distinguishing prefix of a string ’
that is a prefix of one of the other strings is defined

to be the entire string z°. Denote the length of the
distinguishing prefix of 2’ by s;. The number s; can
also be characterized as the depth of z’ in the m-
ary trie formed by the strings. Let S = Y I | s; and
let S = S/n. S is the total number of characters that
must be inspected in order to arrange the strings in
lexicographic order, and S is the average length of a
distinguishing prefix.

In particular, we will study binary strings. In this
case it is natural to use an alphabet of size 2%, since
most machines can extract and manipulate short bit
strings efficiently. To be more precise, we will con-
sider a unit cost random access machine, RAM, with
word length w. We assume that b = O(w), so that
operations can be performed in constant time on bi-
nary strings of length b. Furthermore, we assume
that n < 2%, since otherwise n will be larger than
the available address space of the machine. Since we
need to simultaneously discuss both the number of
distinguishing bits and the number of distinguishing
characters in an alphabet of size 2%, it is convenient
to introduce the special notation B and B to denote
the total and average number of distinguishing bits,
respectively, while S and S denote the number of dis-
tinguishing b-bit characters.

3.2 Statistical model and entropy

How the average number of distinguishing bits B de-
pends on the distribution of the input data is a well
studied topic. In fact, B equals the average depth of
a leaf in the binary trie formed by the strings, and
the statistical behavior of trie structures is very well
understood. We consider input from stochastic pro-
cesses {X;} with values from an alphabet . In par-
ticular, we study stationary ergodic processes [2], the
traditional statistical model used in information the-
ory. For such a process, one can define the entropy

1
H = lim —gE(logP{Xi =z;1<i<nz; €X}).

n—oo

Informally, H can be viewed as a measure of dis-
order. If the strings have a high degree of disorder
and hence high entropy, we can expect to be able to
differentiate between two strings by only looking at
a small number of characters. On the other hand, if
the entropy is low the strings will have a large number
of characters in common and hence it will take more
computational power to tell them apart. This idea has
been formalized by Pittel [17]. To state the theorem
of Pittel we need to introduce a mixing condition:

Denote F? the o-field generated by
Xa,.. 0, Xy, 1 < a < b; there exist two

positive constants ¢; < e¢2 and an integer

bg > 0 such that for all 1 <a <a+4by <b,
1 P(A)P(B) < P(AB) < ¢a P(A)P(B)
whenever A € I, B € Fé’_}_bo.

For independent binary strings from a stationary er-
godic process obeying this condition,

lim ZB) _ L (1)
n—co logn H

4 Forward Radix Sort

Traditionally, radix sort algorithms fall into two ma-
jor categories, those who process the strings forward,
from left to right, and those who process the strings
backward, from right to left. The forward scan-
ning algorithm has been referred to as radix-exchange
sort [14, 19], top-down radix sort [10], and MSD radix
sort [11, 13]. Similarly, the backward scanning algo-
rithm is called straight radix sort, bottom-up radix
sort, LSD radix sort, or just radix sort. These al-
gorithms are well known and we merely give a short
description in order to point out the major differences.

forward scan Split the strings into groups according
to their first character and arrange the groups
in sorted order. Apply the algorithm recursively
on each group separately, with the first character
removed. Groups containing only one string need
not be processed further. After the ith step of
the algorithm, the input strings will be properly
sorted according to their first ¢ characters.

backward scan Split the strings into groups accord-
ing to their last character and arrange the groups
in sorted order. Apply the algorithm recursively
on all strings, with the last character removed.
After the ith step of the algorithm, the input
strings will be properly sorted according to their
last ¢ characters.

These algorithms differ in two major aspects. First, in
the forward algorithm, we only need to scan the dis-
tinguishing prefixes, while the entire strings must be
scanned in the backward algorithm. Second, the re-
cursive application of the forward algorithm is made
on the groups separately, while the strings are kept
together in the backward algorithm. The first fact
gives an advantage to the forward algorithm while the
second fact gives an advantage to the backward algo-
rithm.

Here we present a version of radix sort that com-
bines the advantages of forward and backward scan-
ning. The algorithm maintains the invariant that after
the ith pass, the strings are sorted according to the
first ¢ characters. The sorting is performed by sep-
arating the strings into groups. Initially, all strings
are contained in the same group, denoted group 1.
This group will be split into smaller groups, and after
the ¢th pass all strings with the same first ¢ characters
will belong to the same group. The groups are kept
in sorted order according to the prefixes seen so far.
Each group is associated with a number that indicates
the rank in the sorted set of the smallest string in the
group. We also distinguish between finished and unfin-
ished groups. A group will be finished in the ith pass
if it contains only one string or if all the strings in the
group are equal and not longer than ¢. The ith step
of the algorithm is performed in the following way:

1. Traverse the unfinished groups in sorted order
and insert each string z, tagged by its current
group number, into bucket number z; (recall that
x; is the ith character in z).

2. Traverse the buckets in sorted order and put the
strings back into their respective groups in the
order as they occur within the buckets.

3. Traverse the groups separately. If the kth string
in group g differs from its predecessor in the ith
character, split the group at this string. The new
group is numbered g + k£ — 1.

Observe that when moving strings, we do not move the
strings themselves but pointers to them. In this way,
each string movement is guaranteed to take constant
time. One can also observe that Step 1 and 2 may be
replaced by another sorting algorithm. (This will be
done in Section 5.1.3.)

The algorithm can be implemented in many ways.
The buckets can be implemented as an array of m
linked lists. To keep track of the groups we can use an
array of size n, where each entry contains one string.
The groups are stored consecutively and in sorted or-
der in this array. Also, two pointers are associated
with each group. One pointer indicates the start of the
next unfinished group. The other pointer is used to
indicate the point of insertion in the group during col-
lection of strings in Step 2. Using this data structure,
we can split a group in constant time. Also, the un-
finished groups can be traversed in time proportional
to the total number of strings in these groups.

To see that the algorithm is correct, we observe that
after Step 2, the strings within a group will be sorted

according to their ¢th character. Since the groups are
sorted according to their first ¢ — 1 characters, the
strings will be sorted according to their first ¢ charac-
ters.

4.1 Discussion

Forward Radix Sort runs in ©(S 4+ n 4+ m - Spmax) time,
where smax is the length of the longest distinguish-
ing prefix. The last term comes from the fact that
the algorithm runs in spmax passes, and in each pass m
buckets are visited. In the later passes, the number of
remaining strings can be considerably smaller than m
and the cost of visiting empty buckets may be signifi-
cant. A simple way to decrease the cost is to switch to
a standard comparison based sorting algorithm when
the number of strings that remains to be sorted is
small.

As an example, consider the following method for
sorting a set of binary strings. Let a character con-

sist of b = Po—gﬂw bits. Then m = O(y/n) and
S =0 (% —|—n). Run the basic algorithm, us-
ing this alphabet size, but stop when the number
of strings remaining in the unfinished groups is less
than /n. The remaining strings are sorted with a
standard comparison-based algorithm. During each
pass, the number of characters examined is at least
/n and therefore the cost of traversing the buckets
does not affect the asymptotic cost. The total number

of characters examined will be O (% + n) Hence,

the total time complexity of this sorting method

is O (logn + n + cost of sorting /n elements). Un-

der the reasonable assumption that the cost of sorting
the /n remaining elements is small compared to the
first part of the algorithm, the cost will be the same as
for the algorithm by Paige and Tarjan [16]. However,
our algorithm is much simpler.

In practice, this algorithm compares favorably with
that of Chen and Reif [4]. They point out that in
real world applications, the value of 1/H will be a
small constant. Furthermore, their analysis requires
that a subset of v strings can be sorted in O(v logv)
time. Based upon these assumptions, they claim that
their algorithm runs in @(nloglogn) time in practice.
However, under these assumptions, the complexity of
the algorithm sketched above is O(n).

The favorable properties of Forward Radix Sort are
further emphasized by experimental results. Chen and
Reif [4] made experiments using input with a compres-
sion rate between 2 and 4. Extrapolating from these
results, they claimed that their algorithm would beat

the UNIX system quicksort routine when the number
of elements exceeds 32,000,000. We have performed
experiments on data with an even larger variation in
compression rate, from 1 (no compression possible)
to 5. A relatively simple implementation of Forward
Radix Sort turned out to be considerably faster than
highly tuned versions of quicksort in almost all cases.
In fact, the break-even point was below 1000.

5 Extended algorithm

In the basic algorithm, we must visit all buckets, even
the empty ones, in each pass. This may be avoided
by a preprocessing step. During the preprocessing we
create a list P of pairs. A pair (7,¢) indicates that
character ¢ will split a group in pass number 7. Using
this idea we get an extended algorithm that consists
of three steps.

I. Create P.
II. Sort P.

ITI. Run the basic algorithm using P to avoid looking
at empty buckets.

Step I The strings are processed from left to right
in passes, dividing them into groups. This time,
however, the groups will not occur in sorted or-
der. We only maintain a weaker invariant: after
the ¢th pass the strings in an unfinished group will
have the same first ¢ characters. In detail, the fol-
lowing actions are performed in the ith pass.

1. Traverse the unfinished groups and insert
each remaining string z, tagged by its cur-
rent group number, into bucket number z;.
Also, maintain a list of nonempty buckets;
when a string is added to an empty bucket,
the bucket is added to this list.

2. Traverse the list of nonempty buckets and
put the strings back into their respective
groups in the order as they occur within the
buckets.

3. Traverse the groups separately. If the kth
string in group g differs from its predecessor
in the 7th character, split the group at this
string. The new group is numbered g+k—1.
Also, every character ¢ that participates in
the splitting of a group is added to P as a

pair (4, c).

Observe that we store a pair (4, ¢) only if the char-
acter ¢ is used to split a group in pass i. As a
result P contains at most 2n — 2 elements.

Step IT We observe that the pairs are already sorted
according to their first coordinate, the pass num-
ber, since the elements were collected in this or-
der. To sort the pairs we need therefore only to
sort according to the second coordinate and then
collect the strings into groups as indicated by the
first coordinate.

This simple approach will always work, but will
be inefficient if the first coordinate attains large
values. However, 1t 1s always possible to collect
efficiently. Instead of using the number of the
pass, 7, we assign a number ¢ to the pairs in such
a way that pairs with the same first coordinate
are assigned the same number:

o= i

y e
g ¥4 1fzk_.zk_1
k it,_1+1 otherwise

Using these numbers, collection can be done in
linear time and space, since each i’ is less than n.

Step III Run the basic algorithm, using the infor-
mation in P. This time we do not need to visit
empty buckets and hence the running time of this

step will be ©(S + n).

5.1 Discussion

The extended algorithm sorts n strings in O(S + n +
cost of sorting n characters) time. For binary strings,
treating b bits as a character, we have an alphabet
of size 2°. Recall that we assume that b = O(w), so
that operations can be performed in constant time on
binary strings of length b. The number of significant
characters S = ©(B/b) and hence the extended algo-

rithm runs in time
B b
S —b+n+T(n,2,w) , (2)

where T(n,2% w) is the time to sort n integers in
the range [0,2° — 1] on a unit cost RAM with word
length w. The amount of extra space required is O(n+
2%). This can be reduced to O(n) using universal hash-
ing [3, 5], yielding a randomized algorithm with the
same expected asymptotic time complexity.

There is a trivial lower bound: since the entire dis-
tinguishing prefixes must be read at least once and

each element must be processed at least once, the min-

Imum cost 1s
Q <§ + n) . (3)
w

In particular, choosing b = w in Expression 2, we ob-
serve that the running time equals the lower bound
plus the cost of sorting n integers of length w. In ef-
fect, the string sorting problem has been reduced to
an integer sorting problem.

In the next three sections we investigate how the
choice of alphabet size and integer sorting algorithm
affects the behavior of the extended algorithm.

5.1.1 Applying bucket sort

As a very straightforward application, we note that
an algorithm with behavior similar to the sorting al-
gorithm by Paige and Tarjan [16] can be obtained by
using plain bucket sort. Choosing b = [logn], we may
sort the list of pairs by distributing them among 2° =
O(n) buckets. In this case, T(n,2" w) = O(n) and

the total time complexity is

b))

For input from a stationary ergodic process we get the

bound n
o (3)- (5)

According to the trivial lower bound above, this algo-
rithm is optimal if the word length is ©(logn).

5.1.2 Applying the algorithm by Kirkpatrick
and Reisch

Under the assumption that b < w, the sorting algo-
rithm by Kirkpatrick and Reisch [12] sorts n integers
in the range [0,2° — 1] in © (nlog(b/logn + 2)) time.
The algorithm uses ©(2%/?) extra space, but this can
be reduced to O(n) with universal hashing [3, 5]. Us-
ing this sorting algorithm as a subroutine we get the
time complexity

o(n(Zetrin(12))). o

It is not hard to see that the minimum of this expres-
sion is ©(nlog(B/logn + 2)). However, it is not a
priori clear how to choose b to achieve this minimum,
since B cannot be expected to be known in advance.
Below we show how to get around this problem.
Start by choosing b = [logn] and run Step T of
the extended algorithm until either all strings have

been separated or the number of b-bit characters pro-
cessed during the step exceeds 2n. If not all strings
have been separated in this first step, start over again
but this time choose b = 2[logn]. Continue dou-
bling b until Step I terminates after having processed
less than 2n characters. If this process stops after
one step, B = O(n) and the algorithm will run in
linear time. If more than one step is needed, bn <
B < 2bn and hence b = O(B). If w = Q(B) each of
these preprocessing steps will take O(n) time. Thus,
the total time for this doubling procedure will be
O©(nlog(B/logn + 2)). Next, we run Step II using
the value of b for which step I was completed. This
requires O(nlog(B/logn + 2)) time as well. Hence,
the cost of the doubling can be included in the sorting
cost without affecting the asymptotic complexity. In
total, for word length w = Q(B), we obtain the time
complexity

@<nlog <%+2>>, (7)

an improvement over the bucketing algorithm.

The time bound above is valid only for w = Q(B).
But even if w = o(B) the algorithm of Kirkpatrick and
Reisch can be used. We add one more condition to the
doubling step: the doubling is terminated when b > w
and we run the rest of the algorithm with b = w. This
yields the following time complexity:

@(n <g+1+log10:n>>. (8)

Relating this to the lower bound in Expression 3 we
see that the algorithm is optimal if

B =Q(w(l +log

)

w
logn

In order to compare the result with the bucket-
ing algorithm, we make the additional assumption
that logn = o(w), since otherwise the bucketing al-
gorithm is optimal (see Section 5.1.1). Now, it is
easy to see that Expression 8 is less than Expres-
sion 4: B/w = o(B/logn) since logn = o(w), and
log(w/logn) = o(B/logn) since w = o(B). In fact,
as soon as the bucket algorithm is suboptimal this al-
gorithm is better.

Combining Expression 7 and Expression 1 we see
that for input from an ergodic process with entropy H,
the complexity becomes

o (nios(1 +2)). o

This is a clear improvement over the

o (n log (105” + 2>> (10)

expected time achieved by Chen and Reif [4]. The
two results can be directly compared since they em-
ploy the same statistical model. (In their article, the
mixing condition from Section 3.2 is not mentioned,
but it is implicitly assumed since their proof depends
on an application of a theorem by Szpankowski [20]
that requires this very same condition.)

The assumption that w = Q(B) is needed in the
analysis made by Chen and Reif. Although they claim
to handle input strings of arbitrary length, their re-
sult relies on the assumption that each distinguish-
ing prefix fits into a constant number of machine
words [18]. For example, they assume that element
comparisons can be made in constant time. Further-
more, if w = o(B) it is not always possible to achieve
the time bound in Expression 10, as can be seen by
the following simple computation. Consider the case
where 1/H = O(logn) and w = O(logn). ;From
Equation 1 it follows that w = o(B). But Equation 1
and Expression 3 gives a lower bound of Q(nlogn),
contradicting the upper bound O(nloglogn) of Ex-
pression 10.

5.1.3 Applying the algorithm by Albers and
Hagerup

The sorting algorithm by Albers and Hagerup [1]
sorts n integers in the range [0,2° — 1] in ©(n) time
on a random access machine with word length w =
Q(blognloglogn). Let ¢ = O(w/(lognloglogn)),
then we can sort n integers containing ¢ bits in ©(n)
time. For our purpose we need an algorithm that can
handle longer integers and therefore we make an ex-
tension of their algorithm.

To sort n integers of length b = Q(¢), we run For-
ward Radix Sort with the following modifications. We
use c-bit characters and in Step 1, instead of insert-
ing the strings into n buckets, we sort them in ©(n)
time using the algorithm by Albers and Hagerup. In
Step 2, instead of traversing the buckets, we traverse
the sorted list. Sorting n b-bit integers in this way
takes O(n(l + b/c)) time. (A version of traditional
right-to-left radix sort modified in a similar way could
also have been used.)

Using this modified algorithm as a subroutine, the
cost of the extended algorithm becomes

o(+(5+2))

We minimize this expression by choosing b = {'\/ CBW .
This choice of b yields the time complexity

o ({2 <o /5B

Once again, we use the doubling technique from Sec-
tion 5.1.2 to choose b. Start with b = ¢ bits and
continue doubling b until Step I can be finished af-
ter inspecting at most 2n characters. The cost of this
procedure is smaller than the total cost, since

nlog%:O(%)

For input from a stationary ergodic process with en-
tropy H, we obtain a cost of

loglogn
logny/ ———— | . 12
O] (n ogn T) (12)

Comparing Expression 11 with Expression 7, we
see that this algorithm has a better asymptotic time
complexity if

w:Q(Blognlogl_ogn). (13)

2 _B
log logn

In particular, the algorithm runs in linear time if w =

Q(Blognloglogn).

Acknowledgements

We would like to thank Kerstin Andersson, Ola Pe-
tersson, and Kurt Swanson for valuable comments.

References

[1] S. Albers and T. Hagerup. Improved parallel in-
teger sorting without concurrent writing. In Proc.

9rd ACM-SIAM SODA, pages 463-472, 1992.

[2] P. Billingsley. Ergodic theory and information.
John Wiley & Sons, 1965.

[3] J. L. Carter and M. N. Wegman. Universal classes
of hash functions. Journal of Computer and Sys-
tem Sciences, 18:143-154, 1979.

[4] S. Chen and J. H. Reif. Using difficulty of predic-
tion to decrease computation: Fast sort, priority
queue and convex hull on entropy bounded in-
puts. In Proc. 34th IEEE FOCS, pages 104-112,
1993.

[5] Th. H. Cormen, Ch. E. Leiserson, and R. L.
Rivest. Introduction to algorithms. McGraw-Hill,
1990.

[6] L. Devroye. Lecture Notes on Bucket Algorithms.
Birkhauser, 1985. ISBN 0-8176-3328-6.

[7] W. Dobosiewicz. Sorting by distributive par-
titioning. Information Processing Letters, 7(1),

1978.

[8] E. H. Fredkin. Trie memory. Communications of

the ACM, 3:490-500, 1960.

[9] G. H. Gonnet. Interpolation and Interpolation-
Hash Searching. Ph.D. Thesis, University of Wa-
terloo, Canada, 1977.

[10] G. H. Gonnet and R. Baeza-Yates. Handbook of
Algorithms and Data Structures. Addison-Wesley,
1991.

[11] J. H. Kingston. Algorithms and data structures:
Addison-Wesley,

design, correctness, analysis.

1990. ISBN 0-201-41705-7.

[12] D. Kirkpatrick and S. Reisch. Upper bounds for
sorting integers on random access machines. The-
oretical Computer Science, 28:263-276, 1984.

[13] D. E. Knuth. The Art of Computer Programming,
Volume 3: Sorting and Searching. Addison-
Wesley, Reading, Massachusetts, 1973.

[14] U. Manber. Introduction to Algorithms. Addison-
Wesley, 1989. ISBN 0-201-12037-2.

[15] K. Mehlhorn. Data Structures and Algorithms
1: Sorting and Searching. Springer-Verlag, 1984.
ISBN 3-540-13302-X.

[16] R. Paige and R. E. Tarjan. Three partition refine-
ment algorithms. STAM Journal on Computing,
16(6):973-989, 1987.

[17] B. Pittel. Asymptotical growth of a class of ran-
dom trees. The Annals of Probability, 13(2):414-
497, 1985.

[18] J. H. Reif, 1994. Personal communication.

[19] R. Sedgewick. Algorithms.
Reading, Massachusetts, 1988.
06673-4.

Addison-Wesley,
ISBN 0-201-

[20] W. Szpankowski. (Un)expected behavior of typ-
ical suffix trees. In Proc. of 3rd SODA, pages
422-431, 1992.

[21] D. E. Willard. Searching unindexed and nonuni-
formly generated files in loglog n time. STAM
Journal on Computing, 14(4), 1985.

[22] A. C.-C. Yao and F. F. Yao. The complexity
of searching an ordered random table. In Proc.
IEEE FOCS, 1976.

