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Abstract

Some new classes of balanced trees, defined by very simple balance
criteria, are introduced. Those trees can be maintained by partial
rebuilding at lower update cost than previously used weight-balanced
trees. The used balance criteria also allow us to maintain a balanced
tree without any balance information stored in the nodes.

1 Introduction

Partial rebuilding is a general method to maintain balanced tree structures
introduced by Overmars and van Leeuwen [9, 10]. The idea is brutal but
powerful; each time a given balance criterion is violated at a node v we
rebuild the subtree rooted at v to perfect balance. The simplicity of this
method makes it useful in applications where other balancing methods do
not work. The worst case cost for updates is high since rebuilding of a large
subtree is expensive. However, Overmars and van Leeuwen showed that
weight-balanced trees can be maintained at low amortized cost, O(logn)
per update. This is due to the fact that in a weight-balanced tree a large
number of updates is required to make an initially well-balanced subtree
become unbalanced.

In this paper we improve the method of partial rebuilding by presenting
some new classes of balanced trees which can be maintained at lower cost
than weight-balanced trees. In Section 2 we show how to replace the weight-
balancing criterion by height-balancing. The new balance criterion gives a
lower average cost for updates and also allow us to give a a better upper
bound on the amortized cost than for weight-balancing. In section 3 we



present general balanced trees. For this class of trees the only requirement is
that the height is logarithmic. Those trees can be represented without any
balance information stored in the nodes.

In addition to the improvements obtained in time and space requirement
the presented trees are interesting due to their simple and natural definitions.

We use T to denote an extended binary tree and v to denote a node in
that tree. The number of leaves in the tree T', also called the size of T, is
denoted |T’| or n. The size of the subtree rooted at v, or the size of v, is
denoted |v|. The node difference of v, diff(v), is the difference in size between
v’s two children, and height(v) denotes the number of edges on the longest
path from v down to a leaf. The number of updates made below v since the
last time v was involved in a rebuilding are denoted upd(v). In the analysis
below we assume that a rebuilding of a subtree takes linear time, R|v| where
v is the root of the subtree. Partial rebuilding is also applyable in cases when
a rebuilding at v takes longer time, for example when maintaining quad trees
[4]. The improvements we make are also valid in those cases.

1.1 Weight-Balancing

The idea of weight-balancing is to control the height of a tree by limiting
the quotient between the sizes of the two subtrees of each node. Trees
maintained in this way is called trees of bounded balance or BB(«)-trees
and was first presented by Nievergelt and Reingold [7]. The maintenance of
BB(«)-trees by partial rebuilding is briefly analyzed in [9] We give a short
analysis here. An alternative definition is also given (equation (3) below).
Associated with the tree is a constant o, 0 < @ < 1/2. Each node v has

to fulfill
|v’s smallest subtree]
>

(1)

From the balance criterion we can compute the maximum height of a BB(«)-
tree.

[l

1
height(T) < —o= 2)
log =

As shown in [7] the balance criterion (1) is meaningless for 1/3 < a < 1/2.
This problem can be avoided by using the following slightly different balance

criterion:
|v’s smallest subtree| + 1

lv| +1 -

(3)



The criterion (3) allows us to let a take any value between 1/2 and 1. The

differences in the two balance criteria are of low significance and will result

in a slightly higher tree. It is not hard to show that the criterion (3) gives
logn

height(7") < — +1 (4)
08 T—a

Given a constant u, u > 1 a maximum height of ulog |v| + 1 for each node
v is achieved by setting
a=1-2"1/" (5)

Using the fact that
|v| — diff(v) = 2|v’s smallest subtree] (6)
the balance criterion (3) can be rewritten as
diff(v) + 1 < (1 — 2a(jv| + 1) (7)

Combining (5) and (7) gives that when a node v becomes unbalanced the
following is true

diff(v) > (1 —2(1 —27Y")(jv| +1) — 1

= (@) fo] + 21 ®)

The subtree rooted at v is perfectly balanced immediately after a rebuilding
at v and thus diff(v) is 0 or 1. To simplify the analysis we assume that
diff(v) = 0. From this follows that

upd(v) > diff(v) (9)

Since a partial rebuilding at v requires R|v| time the amortized cost for

rebuilding at v is ?T}hq per update below v. This gives an amortized cost
of ﬁ(height(T) — 1) per update. Since height(7T") < ulogn + 1 we get
an amortized cost of

Rulogn

21-1/u _1q (10)

where u is an arbitrary constant larger than 1.



2 Trees of Bounded Height

In the previous section we saw that a maximum height of u log |v|+1 for each
node v can be achieved for a BB(«a)-tree by choosing a to be 2'71/% —1. As
we will show in this section, we can remove the weight-balancing and use the
more natural ”heuristic” balance criterion that height(v) < ulog |v|+1. The
obtained class of balanced trees, called trees of bounded height, is defined
below.

Definition 1 A binary tree is of bounded height if
height(v) < ulog|v| + 1 (11)
for each node v where u is a constant, u > 1.

The constant 1 in the definition is added to allow u to take any value greater
than one. The algorithms to maintain a BH(u)-tree are the same as for
BB(a)-trees; when the balance criterion is violated at a node we make a
rebuilding. To decide when a node needs to be rebuilt we store two integers
in each node telling its size and height.

In Lemma 1 below we show that when a node v needs rebalancing diff(v)
will be at least the same as when a rebalancing is required in a BB(«)-tree
with the same maximum height.

Lemma 1 Given a tree of bounded height where the node v has become

unbalanced. Then
diff(v) > (21 Y* — 1)) (12)

Proof: Since v is unbalanced we have
height(v) > ulog|v| + 1 (13)
Let v be v’s highest child. We have
height(v) = height(vy) + 1 (14)
Combining equations (13) and (14) with the fact that vy satisfies the defi-

nition (11) gives
ulog |vi| +1 > ulog|v|

2'/%oy| > Jol



lor| > 2714 o) (15)

This implies that
diff(v) > |v1| — (Jv] — |v1])

= 2|v1] —[v]
= (27" — 1)o| (16)
which completes the proof. |

Comparing the result of Lemma 1 with equation (8) we see that when a
node gets too high it will also be out of weight-balance. Thus both average
and amortized cost will be at least as good as for trees of bounded balance.
In fact, we can prove a better average behaviour. This is based on Lemma,
2 below.

Lemma 2 Given a weight-balanced tree with a =1 — 27'/% where the node
v has become unbalanced Then it is possible that

height(v) < ulog|v| + 1 (17)

Proof: We give a counterexample. Clearly it is possible to construct a
subtree v where both subtrees are perfectly balanced but v is out of weight-
balance. The height of such a tree is < wlog|v| + 2 which is less than
ulog |v| + 1, small trees excepted. O

Theorem 1 The average cost for rebuilding is less in a BH(u)-tree than in
a BB(a)-tree with o = 2'=1/% — 1.

Proof: From Lemma 1 we know that when a node in a BH(u)-tree re-
quires rebalanciong a rebalancing is required in the corresponding BB(«)-
tree. From Lemma 2 we know that the opposite is not true. Thus rebuilding
is required less often in BH(u)-trees, which completes the proof. |

Trees of bounded height do not only offer a better average case behaviour
than trees of bounded balance. It is also possible to give a better upper
bound on the amortized cost per update than what is given for trees of
bounded balance. This improvement is based on the fact that when a node
becomes unbalanced there has to be a certain unbalance at the lower levels of
the tree. This unbalance can be expressed as the sum of all node differences
in the subtree v, denoted totaldiff(v).



Lemma 3 Given a tree of bounded height where the node v has become

unbalanced. Then
- 2 —2t/u
tOta]dl (’U) > m(‘?]' — ].) (18)

Proof: Let vg be a node on one of v’s longest paths such that
height(v) = height(vg) + d (19)

Combining equations (13) and (19) with the fact that vy satisfies the defi-
nition (11) gives
ulog |vg| +d > ulog |v]
2% vg| > Jo|
|vg] > 279" (20)

Assume that each node vy have its smallest possible size. From (20) we get
that

diff(vg) = [vat1| — (Jval — [vat1]) = 2[vas1] — [vdl
> (2 . 2—(d+1)/u o 2—d/u)|,u| — (21—1/u o 1)2—d/u|v‘ (21)

In this case, summing the node differences on v's longest path we get a total
sum of

ulog |v|+1
totaldiff(v) >= (21—1/u —1) Z 2—d/U|,U|
d=0

]_ — 2_(UIOg|UD/u 1 _ ]./|'U|
= (21 _(gt-1u _ 1= 1/10
= (2 1) o1/ lv| = (2 1) i |

2 — 21/u
= ot7a —7 1= 1) (22)

Of course, the nodes vy do not necessary have minimal size, but there is no
other configuration where totaldiff(v) is lower than what is given in (22).
To see this we show that no modification of the subtree rooted at v results
in a lower value of totaldiff(v). Assume that we try to change the tree to
decrease the potential at a node vg. Since its largest subtree (vgy1) has
minimal size we can only decrease the potential at vy by adding nodes to
its smallest subtree. Those nodes can not be taken from v4’s largest subtree
and thus we have to take nodes from the smaller subtree of one of v;’s an-
cestors (but not above v since |v| then will change). This will result in an
increase of that ancestor’s node potential and the sum of the potential of



the two nodes will be constant. Furthermore, at each node between v, and
the affected ancestor the potential will increase. Thus the total sum of node
potentials below v will not decrease by any possible modification of the tree.
From this follows that the sum of node differences is at least the one given
in equation (22) which completes the proof. O

Theorem 2 A BH(u)-tree can be maintained at an amortized cost of

2t/u —1

per update.

Proof: To prove the amortized cost for updates we define a potential
function ®(7T") which depends on the shape of the tree 7. The potential
function is chosen in such a way that the decrease of potential caused by
a rebuilding covers the cost for the rebuilding. The amortized cost for an
update equals the increase in potential caused by the update. We choose
the following potential function:

2l/u _q
= R - totaldiff(T") + R(upd(T") — reb(T)) (24)

®(T) = 2 _92l/u

where reb(7T’) denotes the total number of rebuildings made in 7T since the
last total rebuilding of 7. Clearly, upd(7') > reb(7T), which implies that
®(T) is always nonnegative. During an update the value of totaldiff(T") can
be changed by at most the number of ancestors to the inserted/deleted node
The number of ancestors is < ulogn which gives the cost for an update

Ad 2/ 1 1 2

Combining (24) with the result of Lemma 3 gives that a rebuilding at the
node v results in a decrease of T”’s potential such that

1/u _
AD(T) > 2 L

- mR - tOtaldlﬁ(U) + R

ol/u _ 1 9 _9l/u
> R-
2 —9l/u”" 9l/u 1

(lv]| = 1) + R = R|v| (26)



The decrease in potential covers the cost for rebalancing and the proof is
completed. O

If we compare the given costs for height-balancing with the cost for weight-
balancing we get

ol/u_q ol/u_q
57 Rulogn + R el RV
~ =1-2 <z (27)
Rulogn 1 2
91—1/u_q 21-1/u_1

Thus the upper bound on the rebuilding cost for partial rebuilding has been
reduced by a factor of 2. Note that although we give a better upper bound
we do not prove that the amortized cost actually is lower.

The simplicity of the balance criterion makes trees of bounded height a
natural class which contains most other classes of balanced trees. This is the
case for AVL-trees [1], BB(«a)-trees [7], SBB-trees [3], and aBB-trees [8]. For
all those classes there exist a constant u such that height(v) < ulog |v| + 1
for each node v in the tree.

3 General Balanced Trees

Allthough the BH(u)-trees are a general class of trees this class does not
contain all balanced trees, for example not the k-neighbour trees [6]. The
simpliest possible balance criterion we can have is to allow the tree to take
any shape as long as its height is O(logn). Such a balance criterion results
in a ”superclass” containing all other classes of balanced trees. (Note that
the splay tree [11] is not balanced in this sense, since its worst case height is
O(n).) In this section we show that such a superclass may be maintained by
partial rebuilding. This class also has the advantage of requiring no balance
information to be stored in the nodes. We call the structure a general
balanced tree or GB(u)-tree.

Definition 2 Given a constant u, u > 1, a tree T is a GB(u)-tree if
height(T) < ulog|T| + 1 (28)

The maintenance algorithms for GB(u)-trees differ from the algorithms for
BB(«)-trees and BH(u)-trees. Since there is no local balance criterion to be
fulfilled in each node the balance criterion is checked only at the root. As
shown by Baer and Schwab [2], if we rebalance the entire tree each time it



becomes too high the amortized cost will be O(n) per updating operation.
To achieve a better result we make the following observation:

Lemma 4 Let T be a binary tree in which there is a path longer than
ulog |T| + 1 and let v be the lowest node on this path such that

height(v) > ulog|v| + 1 (29)
Then
) 9 _ 21/u

Proof: First, it is clear that on each long path there exist a node which
satisfies (29), since at least the root satisfies this criterion. Since v is the
lowest node satisfying the criterion we know that each node v4 on v’s longest
path satisfies height(vg) < ulog|vg| + 1. The rest of the proof is similar to
the proof of Lemma 3. O

The result of Lemma 4 allows us to design efficient algorithms for the main-
tenance of general balanced trees. As soon as the tree becomes too high
we make rebuildings at each path which is too long. On each path the re-
building is made at the lowest node v satisfying condition (29). In order to
locate the paths and nodes where to make rebuilding we use the same data
structure as for trees of bounded height, that is, in each node we store the
height and size.

The amortized cost for general balanced tree is practically the same as for
trees of bounded height. The only extra cost we have is the cost to locate the
nodes where to make rebuilding. The location of a node requires logarithmic
time. Since at least one update has been made below a node which is to be
rebalanced the amortized cost per update for locating this node is O(logn).
If we omit this extra cost, which anyway is small compared to the rebuilding
cost, we can use the same analysis as for BH(u)-trees. Therefore, we have

Theorem 3 The class of general balanced trees can be maintained with an

amortized rebuilding cost of %Ru logn + R per update.
Proof: The proof follows from the discussion above. O



3.1 Removal of the Balance Information

The balance information stored in the nodes of a general balanced tree is
used to find nodes where rebuilding can be made at low amortized cost.
However, when an insertion is made only one path — the path down to the
inserted node — may become too long. Thus during insertion we do not
need any stored information to find the path where rebuilding is required.
The only thing we have to do is to find the lowest node v on the path which
satisfies condition (29). This location can also be made without using any
stored information, which is shown below. The skewness caused by dele-
tions can be dealt with by rebuilding the entire tree with periodic intervals.
Altogether we obtain a balanced tree with no balance information stored
in the nodes. The only balance information we need is two global integers
containing the size of T and the number of deletions made since the last
rebuilding of the entire tree, here denoted del(T).

Theorem 4 There is a binary search tree which requires no stored balance
information, except two global integers, with the following costs:

search O(logn) worst case

update O(logn) amortized

Proof: We let the two global integers contain the values of |T'| and del(T').
Given a constant u > 1 we use the following updating algorithms:

Insertion: If the depth of the inserted leaf exceeds wlog|T| + 1 we back
up along the path making explicit examination of the subtrees of the
visited nodes until a node v, height(v) > wlog|v| + 1 is found. We
make a partial rebuilding at that node.

Deletion: If del(T') > |T'| we make a rebuilding of the entire tree.

Let |T'|;maz be the maximal value of |T'| since the latest rebuilding of 7. Since
we rebuild T when del(T') > |T'| we know that |T|mer < 2|T| = 2n. During
insertion we make a rebuilding when a path longer than ulogn + 1 is found.
This implies that the height of T' is never more than ulog |T|mqez + 1. Thus

height(T') < ulog|T|maz + 1 < ulog(2n) +1 =wulogn +u+1 (31)

which gives the logarithmic search time.
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Rebuildings are made on two occasions; when del(T) = |T'| and when
the tree gets too high during insertion. The amortized cost for the first type
of rebuilding is constant for a deletion. In the second case the rebuilding
algorithm contains two steps: location of the node v and a rebuilding at
v. To find the node v by explicit examination of its subtrees starting at a
leaf takes O(|v|) time. Thus the time for locating v can be included in the
restructuring cost without affecting the asymthotic bound. The rest of the
analysis is the same as for trees of bounded height, which gives a logarithmic
amortized cost per update. This completes the proof. O

The trees in the proof of Theorem 4 are not identical to GB-trees since their
maximum height is ulogn + u + 1 instead of ulogn + 1. This difference,
which is of low practical significanse, is due to the difference in the deletion
algorithm. To differ between these two variants of general balanced trees we
call the class without balance information GBg(u)-trees.

Example: Figure 1 shows a GBg(1.2)-tree where the node p has just
been inserted. The path to the inserted node is too long since height(7T") =
6 > 1.21log 15+ 1. We have to make a partial rebuilding at one of the nodes
on that path. By making explicit examination of the subtrees bottom-
up we find that the node v satisfies condition (29) since height(v) = 5 >
1.21og 10 4+ 1. A partial rebuilding is made at v and the insertion is com-
pleted. O

4 Conclusions

We have presented some new classes of balanced trees which may be effi-
ciently maintained by partial rebuilding. The balance criteria used are evi-
dent and the trees can be maintained at a lower cost than weight-balanced
trees. In this way we have improved the time performance of partial rebuild-
ing. In our analysis we assumed that a rebuilding of a subtree can be made
in linear time but our improvements are valid also in other cases.

The general balanced trees are particularly interesting since they contain
all other classes of balanced trees and can be maintained with no balance
information stored in the nodes. They also use a natural and attractive
maintenance strategy; we do not make any rebalancing until it is really
needed. In the literature some attempts have been made to have a global
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Figure 1: A GBy(1.2)-tree which requires rebuilding. Leaves are marked as
empty edges.

balance criterion and make restructurings only when this criterion is violated
[2]. The amortized cost for those methods are O(n) per operation. Here we
have shown that by choosing carefully where to make rebuilding we can
maintain a tree with only a global balance criterion at low amortized cost.

The pslay tree, presented by Sleator and Tarjan [11], does not require
any balance information stored in the nodes. However, this tree is not
balanced in the sense that the height is guaranteed to be O(logn). The
logarithmic cost for searching in a splay tree is amortized while we here
obtain logarithmic worst case bounds. As shown by Brown [5] the explicit
balance information may in some classes of balanced trees be eliminated by
coding the information by the location of empty pointers. However, in this
case we still store the information although it is stored implicitly.

Besides being generally applyable on various data structures the method
of partial rebuilding has the advantage of being simple to implement. This
together with the fact that the height of the tree can be kept arbitrary
close to optimal makes the method useful also for the dictionary problem,
especially when comparisons are expensive.
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