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Abstract
The concept of measure functions for generalization performance is suggested. This

concept provides an alternative way of selecting and evaluating learned classifiers,
and it allows us to define the learning problem as a computational problem.
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1 Introduction

In this work, we suggest a new approach to evaluation of classification perfor-
mance. Today, most methods for evaluating the quality of a learned classifier
are based on some kind of cross-validation (Kohavi, 1995). However, we argue
that it is possible to make evaluations that take into account other important
aspects of the classifier than just classification accuracy on a few instances.

It has been known for a long time, see for example the “no free lunch” theorems
(cf. (Schaffer, 1994, Wolpert, 1995)), that the task of computing a good clas-
sifier from a data set is not easily defined as a simple computational problem.
One purpose of the concept of measure functions is to remedy this situation.
As a consequence, we get an explicit distinction between problem formulation,
i.e., specifying the measure function, and problem solving, i.e., finding a clas-
sifier maximizing the measure function. By making this distinction, we can
isolate the meta-knowledge necessary for classifier selection from the details
of the learning algorithms.
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In the next section we introduce the concept of measure functions for general-
ization performance. This is followed by a discussion of the relation between
commonly used heuristics and measure functions. Next, we present a case
study where a simple measure function is used for evaluating the classifiers
learned by some popular learning algorithms. Finally, we illustrate that mea-
sure functions are helpful when designing new algorithms, by presenting a
simple algorithm that optimizes a given measure function. Such an algorithm
allows much flexibility as well as clear specification of used biases.

2 Measure functions for generalization

For each possible combination of a data set and a classifier, a measure func-
tion assigns a value describing how good the classifier is at generalizing from
the data set. Measure-like criteria have been successfully used for understand-
ing and solving other problems in several scientific areas. One example is
model-order selection in linear prediction, where the order or dimension of
the predictor, i.e., the number of previous values used to estimate the next
value, is often chosen according to a measure-like criterion, such as Akaike’s
information-theoretic criteria (Akaike, 1974), and Parzen’s criterion autore-
gressive transfer (Parzen, 1977).

For simplicity and to ease comparison with previous work, we assume the
universe to be a finite set of instances and categories. However, the idea of a
measure function is not dependent on a finite universe.

Let U be the set of all possible instances, « a set of instances (« C U), and
co a set of pairs such that each instance in « is labeled with a category. A
generalization task, 7, is defined by a pair (U, ¢, ). In what follows we will by 7’
refer to the set of all possible generalization tasks (given U and the categories
present, K).

A generalization algorithm is an algorithm that, given a generalization task,
produces a classification of the entire universe, cy, i.e., a generalization (clas-
sifier). Let C' be the set of possible generalizations, C' = U x K. Thus, a
generalization algorithm computes a function G : T" — C.

Definition 1 A measure function for generalization performance, f, is a func-

tion that to each (T, cy) assigns a value describing how good the generalization
s, t.e., f: T xC —R.

Definition 2 The generalization performance on a particular generalization
task T for a generalization algorithm G is defined by f(r,G(1)).



With these definitions, we may describe generalization as a computational
problem: Given a generalization task 7, and a measure function f, produce a
generalization that maximizes f.

One feature of our notion of measure functions is that it helps in simpli-
fying and clarifying the discussion on when generalization is meaningful (cf.
(Schaffer, 1994, Wolpert, 1995,Rao, Gordon, Spears, 1995)). In short, it can be
proved that once a non-trivial measure function is defined, some algorithms
are better than others (see (Andersson, Davidsson, Lindén, 1998)). By a triv-
ial measure function we mean one that gives constant output regardless of
input.

3 Analyzing heuristics in terms of measures

Armed with the concept of measure functions, we are in a better position to
analyze and compare existing learning algorithms in a way that goes beyond
purely representational issues. For example, characterizing algorithms in terms
of which measure function they maximize seems to be a plausible way to
identify their strengths and weaknesses, as well as the regions of expertise for
different biases (Gordon, des Jardins, 1995).

If we try to describe the implicit measure functions optimized by the most
popular algorithms used today, we see that they basically are composed of
some, or all, of the following three well-known heuristics:

Subset-fit — known instances should be classified correctly
Stmilarity — similar instances should be classified similarly
Simplicity — the partitioning of the universe should be as simple as possible.

As these heuristics typically counteract, a measure function must balance a
trade-off between them. However, we begin with discussing them in isolation.

Subset-fit is the currently most used method to evaluate learning algorithms.
We simply take a number of instances where the correct classification is as-
sumed to be known and let the algorithm try to classify these.

The most popular scheme for measuring subset-fit is the cross-validation (CV)
method. CV performs a sequence of subset-fit evaluations and then computes
the average of these. A disadvantage with subset-fit measure functions, is that
they often are of little help in designing an algorithm. On the other hand, they
help in tuning or choosing algorithms.

An intuitive property of good generalization is that “similar” instances should
be classified similarly. A problem with similarity is that there is no objective



way of measuring it. An often used heuristic is that, given two (or more)
clusters of instances of different categories, the decision border(s) should be
centered between the clusters rather than being placed closer to one of the
clusters. As a result, a query instance that resides in the area between the
clusters will be classified as belonging to the category whose instances it is
most similar to.

An important reason for using simplicity as a heuristic is to reduce over-fitting
to the training set. A problem with simplicity, just as with similarity, is that
there is no objective method to measure it. Often it is measured with respect
to a particular representation scheme, e.g., the size of a decision tree. (Note
that this also holds for Kolmogorov complexity, which uses Turing machines
as its representation scheme.) A measure function, on the other hand, should
be independent of the hypothesis language of learning algorithms to be useful.

4 A case study

We now illustrate how a simple algorithm-independent measure function can
be used for selecting which of a number of popular algorithms to use for a
particular application. The measure function we use does not correspond to
any known algorithm, rather it is an attempt to capture in an algorithm-
independent way how we want an algorithm to behave in this application.
Three common classes of algorithms will be compared, but first let us briefly
analyze what heuristics they use.

Decision tree induction algorithms Subset-fit and simplicity: As an algo-
rithm-specific measure of simplicity it is common to use the size of the decision
tree, i.e., the number of nodes. Different decision tree algorithms balance the
trade-off between subset-fit on the training set and simplicity differently: 1D3
(Quinlan, 1986) gives priority to subset-fit (i.e., it tries to create the simplest
possible tree consistent with the training examples) whereas pruning algo-
rithms such as C4.5 (Quinlan, 1993) trades accuracy for simplicity.

Stmilarity: When dealing with numeric features, a similarity criterion is typi-
cally taken into consideration by choosing cut-points that lie centered between
training instances of different categories.

The backpropagation algorithm Subset-fit: Roughly speaking, the back-
propagation algorithm (Rumelhart, Hinton, Williams, 1986) tries to optimize
the subset-fit measure function defined by the training set. The generalization
is created incrementally in small steps by an attempt to minimize an error
function.



Sitmplicity: A problem with the plain backpropagation algorithm is that the
error function does not provide any penalty for over-fitting. Therefore, it needs
to be combined with other strategies such as decreasing the number of neurons
or stopping the training early.

Similarity: The sigmoid functions used in the neurons have a tendency to place
neurons in the middle between clusters of different categories.

Nearest neighbor algorithms This class of algorithms (Dasarathy, 1990) is
clearly based on similarity. A method to avoid over-fitting is to look at more
than one nearest neighbor, this has a tendency to generate simpler decision
borders.

4.1 An abstract measure function

Let us first suggest a very general measure function. We use the same notation
as before, i.e., ¢, denotes the training set and ¢y denotes the classifier produced
by the algorithm. A general measure function can be defined as follows:

lca N eyl

el + aysimi(cq, cy) + agsimp(cy) (1)
o

Qo

The first term corresponds to subset-fit on the training set, the function sims
specifies the similarity aspect, and simp computes simplicity given the parti-
tioning of the instance space. These functions have problem-specific definitions
and the trade-off between the three components can be balanced by problem-
specific constants (ag, a1, and as).

By choosing different functions (simi and simp) and constants, we are able
to approximate the measures corresponding to the algorithms discussed in the
last section (and many other learning algorithms). Take ID3 (with numerical
features) for example, simi should be a function that favors decision border
segments that are centered between the closest training instances on each side
of the border segment, and simp should favor partitionings that have few and
rectilinear plane segments.

4.2 An example measure function

Let us now make the measure function (1) more concrete by specifying the
functions sims and stmp. We consider domains with numerical features where
it is possible to view measure functions geometrically. We would like to stress



that this is just an example; we do not claim that our measure is the best
choice.

We choose to express similarity in terms of distances between training in-
stances and decision borders. We take on the heuristics that correctly classified
instances should preferably reside at “safe” distances from decision borders.
For misclassified instances, the reverse should hold; instances should be close
to the border of a region containing its own class. Let d; be the distance be-
tween instance z; and its closest decision border. Assume that we measure
distance in such a way that d; is positive if z; is correctly classified and neg-
ative otherwise. The chosen heuristics can then be expressed by letting x;’s
contribution to simi be an increasing function of d;. Furthermore, it seems
reasonable that the area in the close neighborhood of a border is the most
critical area; this can be captured by letting the function’s derivative be steep
near zero. Instances very far from a border should hardly be affected if the
border is slightly adjusted; this is captured by letting the function be asymp-
totically constant for large negative and positive values. Hence, a plausible
choice would be to use a sigmoid function. However, in some cases where
much classification noise is expected, we may want the similarity measure to
pay less attention to the misclassified instances. For this reason, we split simi
in two parts that can be weighted differently. If x; is correctly classified, we
use 1 — 1/2%% and if x; is misclassified, we use 1/2%% — 1; the constant b is
a parameter to tune distance-dependency. Let R denote the set of correctly
classified training instances (i.e., ¢, N ¢y). The total simi function will then
be

ZV:ciER(l - QTldi) ZVwiE(ca\R)(Ql}—di - 1)
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Then, if we wish to pay less attention to misclassified instances, we can choose
ky < k1. We denote the two parts simi(r) and simi,\g)-

Next, we turn to the function simp. Assuming numeric features, we can mea-
sure simplicity by measuring the total size of the decision borders, normalized
in some suitable way. (For example, if the universe is 3-dimensional we use
the total area of the decision borders.)

As the simplicity measure, we use —L, where L denotes the total size of the
decision borders. We can now define a measure function as follows:
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Fig. 1. Left: Decision tree. The upper version is a tree induced by
the ID3 algorithm and the lower version is a pruned tree, taken from
(Michie, Spiegelhalter, Taylor, 1994, p. 10). Middle: Backpropagation. The upper
version use 30 hidden nodes and 26 500 training epochs; the lower use 2 hidden
nodes and 20 000 epochs. Right: Nearest neighbor. The upper version is 1-nearest
neighbor. The lower version use 10 neighbors.

4.8  Classifier evaluation and selection

We have used the well-known Iris data base (Anderson, 1935). For the sake
of presentation, we only used two of the four dimensions (petal length and
width).

We have made the following choices: (i) We normalize each dimension so that
all features in the training set have a value between 0 and 1. (ii) The nor-
malization constant b for the simi function is chosen as v/150. The intuition
behind this is that there are 150 training instances and if these instances were
spread out evenly on a grid, the distance between two instances would be
1/4/150. Using this distance as a unit distance gives a reasonable sigmoid-like
behavior of the simi function. (iii) The total length of the decision borders is
measured in a window containing the bounding box of the training set and a
surrounding 10% margin.

We apply our measure to the three classes of algorithms discussed above. For
each class we have two versions: one that tends to over-fit the training set, and
one that includes a non-over-fitting criterion. The induced generalizations are
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lcal SITMi(R) | SIMi(c,\R) L measure
ID3 1.000 | 0.586 0 3.406 1.208
pruned tree 0.980 | 0.682 0.005 2.325 1.260

backprop, 30 nodes | 0.987 | 0.599 0.002 2.802 1.215
backprop, 2 nodes 0.960 | 0.703 0.008 2.516 1.245

1-nearest neighbor | 1.000 | 0.679 0 3.330 | 1.256
10-nearest neighbor | 0.967 | 0.740 0.009 2.697 1.265

Table 1
Subset-fit, similarity (in two parts), and simplicity, as well as the resulting measure
for our choice of parameters.

depicted in Figure 1.

As our measure is parameterized, the choice of parameters will govern which
classifier is “best”. We only give one example, where the parameters are set
so that each of the three components has approximately the same influence
on the measure. We chose a9 = 1, a; = 1, k; = ky = 0.5 and ay, = 0.025.
The motivation is as follows: (i) We set ap = 1. (ii) A reasonable choice is to
give the same weight to similarity and subset-fit. The similarity measure lies
somewhere between -1 and 1. Thus, if we set ag = 1, we should choose half the
weight for the two components of the simi function, i.e. a; = 1, k; = ko = 0.5.
(iii) In order to find a suitable value of ay, we compare a reasonable tolerance
in subset-fit with a reasonable variation in length. In this application, the
variance in the subset-fit measure should be expected to be small, say that a
reasonable algorithm should have a subset-fit measure between 0.95 and 1. To
determine a reasonable variation in length, we note that the total length of
two vertical lines separating the three classes would be 2.4. The major part of
the decision borders passes through “uninteresting areas”. The length of the
borders in these areas dominates the simplicity measure, this indicates that
we should be quite tolerant to long borders; say that we expect a reasonable
algorithm to have border length between 2 and 4. Hence, a variance of 0.05 for
subset-fit should match a variance of 2 for simplicity. This gives ay = 0.025.
Although we here try to argue that the values of ag-ay are reasonable, we
do not claim to prove this. Ideally, the values should be determined through
careful analysis of the characteristics of the application at hand. In Table 1,
we give the three terms subset-fit, similarity, and simplicity, as well as the
resulting measure for our choice of parameters.



4.4 Observations from the experiment

Our measure is algorithm-independent, yet the table indicates that it captures
quite well the properties that algorithm designers strive for when applying
heuristics to find a proper trade-off between learning the training set and
over-fitting. In this particular case, the 10-nearest neighbor algorithm gave
the highest score. From this, however, we cannot draw the conclusion that it
is the best algorithm. But given the computational problem defined by the
measure function and the training set, it provides the best solution of the six
algorithms. For other applications, corresponding to other measure functions
(and training sets), we expect different results. The main point here is that by
using measure functions rather than just cross-validation, we are able to make
more sophisticated evaluations, taking into account other important aspects
than just classification accuracy.

Also, the experiment indicates that although the three types of algorithms
tested come from different traditions, the difference between their generaliza-
tions is smaller than the difference between the generalizations computed by
different versions of the same algorithm. This provides a good illustration of
the fact that it is at least as important to spend computational power on tun-
ing one algorithm as it is to spend the power on choosing between different
types of algorithms.

In the example we used a two-dimensional feature space for the sake of pre-
sentation. However, most practical applications deal with feature spaces with
higher dimensionality. The complexity of computing simplicity and similarity
grows with the number of dimensions, therefore we need appropriate approx-
imations of these components in order to keep the approach tractable. To
estimate simplicity, we may, for example, use the average number of decision
borders crossed by random lines through feature space. The similarity com-
ponent may also be approximated—for each instance, find the closest border
by searching along each dimensional axis separately, or search along lines con-
necting examples of different categories.

5 Measure-based algorithms

The concept of measure functions immediately suggests new classes of general-
ization algorithms. As an example, consider the following approach: Start with
some initial decision space and make incremental changes, using the measure
function as an evaluation criterion. In this way, we can implement an opti-
mization strategy, such as hill climbing. A major advantage with this kind
of algorithms is that by choosing an appropriate measure function we can



Fig. 2. The generalization produced by a simple measure-based algorithm.

explicitly specify the generalization behavior we are striving for.

To illustrate this, we have implemented a very simple measure-based algorithm
that, given a data set and a measure function, searches for a good partitioning
of the instance space in essentially the following way:

(1) Let the entire universe be classified as one of the categories.

(2) Pick at random some geometrical object which is placed in the space and
“painted” by a randomly chosen category. This gives a new generalization.

(3) Compute the measure for the new generalization. If the measure was
improved over the previous one, keep the new generalization, otherwise
retain the previous one.

(4) Go back to 2. Stop when no improvement has been made during several
iterations.

In our example implementation, we let the randomly chosen geometrical ob-
jects be just rectangles of varying size, either axis-parallel or rotated 45 de-
grees.

Although the employed measure (i.e., the one discussed above) is quite unso-
phisticated and the method for generating candidate generalizations is very
rough, this algorithm finds a reasonable generalization for the Iris data set (see
Figure 2). With respect to the measure, it also gives a “better” generaliza-
tion than the algorithms evaluated above. The one shown in Figure 2 gets the
value 1.288 (the four terms are 0.973, 0.731, 0.007, and 1.891). There is much
more to be said about measure-based algorithms, we have just illustrated the
possibility with this example.
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6 Concluding remarks

6.1 Measure functions vs. cross-validation

Measures functions and statistical methods, such as CV, are complementary.
They can be used separately or in combination.

When using CV, an algorithm is assumed to give high accuracy on the entire
universe if it shows good statistical behavior on available data. In this way, CV
performs a quantitative analysis. The result of such analysis is often sound, but
it is easy to generate counter-examples where CV will fail. Hence, CV in itself
gives no guarantee that the output of the chosen algorithm is “sound”. On
the other hand, using a measure function we can guarantee certain qualitative
properties of the produced generalization(s). Therefore, we have a mechanism
to ensure that the outcome of an algorithm will never be disastrous.

CV and measure functions can be combined in several ways. For example, in
algorithm selection we can apply both methods and pick the algorithm which
shows the best combined quality.

6.2 Final comments

The application and selection of classification algorithms is often guided by
rules of thumb, educated guesses, and hearsay. At best, the problem to be
solved is analyzed and if necessary a problem-specific algorithm is constructed.
However, the most common approach is to compare a number of algorithms,
e.g., by means of cross-validation and select the best one for the task. Although
the latter approaches are on the right track, we believe that there is a strong
need for more robust methods for telling what classifier should be applied
to which problem. We propose solving a problem by establishing a measure
function suitable for the problem at hand and then choosing an algorithm that
aims to implement this measure. The difference between choosing a suitable
algorithm and choosing a suitable measure may seem subtle, but we believe it
is important—an abstraction from ‘ad hoc’ solutions to thoroughly motivated
applications of suitable classifiers.

As we have seen, the concept of measure functions suggests new classes of gen-
eralization algorithms. One such class consists of algorithms that incrementally
searches the space of generalizations in order to find one that maximizes the
measure function. We expect that future work along this line will be very
fruitful. Another future line of research is to investigate the possibilities of au-
tomatically determining an appropriate measure function given the available
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data set, for instance, by computing appropriate values for the parameters of
a given measure function.
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