PREPRINT. In Proc. 27th ACM Symposium on Theory of Computing, pages 417-426. ACM Press, 1995.

A tight lower bound for searching a sorted array

Arne Andersson*

Abstract
We show that given a k-character query string and an ar-

ray of n strings arranged in alphabetical order, finding a
matching string or report that no such string exists requires

(kloglogn

loglog (4 + %gg]—ig—")

+k+logn)

character comparisons in the worst case, which is tight.

1 Introduction

The problem of searching a sorted set of strings is indeed
fundamental. We assume that the strings are given in (lex-
icographically) sorted order in an array and that no extra
information is available. In general, one cannot assume that
two strings can be compared in constant time, but must
consider the number of characters, or machine words, that
need to be inspected.

Given its significance, the problem has received surpris-
ingly little attention. A first non-trivial upper bound of
O(klogn/logk) was mentioned by Hirschberg [3]. Next,
Kosaraju [4] gave an upper bound of O(k+/logn + logn),
and recently, Andersson et al. [1] presented an upper bound
of the same complexity as the lower bound claimed in the
abstract. This subsumes both previous results.

Hirschberg [3] pointed out a trivial lower bound of Q(k +
logn): if & = 1 any algorithm makes (logn) compar-
isons; moreover, it has to inspect all characters of the query
string. The only non-trivial lower bound deals with con-
stant factors: Kosaraju [4] showed a lower bound of roughly
logn + $+v/klogn = O(k + log n) characters comparisons.

In this article, we show the following lower bound.

Theorem 1.1 Given a k-character query string and an ar-

ray of n strings arranged in alphabetical order, to find some
matching string or report that no such string exists requires

kloglogn

loglog (4 + Heioer,)

+k+logn

character comparisons in the worst case.

*Department of Computer Science, Lund University, Box 118,
22100 Lund, Sweden. {arne,ola}@dna.lth.se

TDepartment of Computer Science, Royal Institute of Technology,
10044 Stockholm, Sweden. johanh@nada.kth.se. Part of the work
was done while visiting MIT.

iDepartrnent of Mathematics, Statistics, and Computer Science,
Viaxjo University, 35195 Viaxjé, Sweden. The work was done while
visiting Columbia University.

Johan Hastad'

Ola Petersson™*

As this bound matches the recently shown upper bound [1],
we close the problem, at least regarding its asymptotic com-
plexity.

2 Preliminaries

For the purpose of proving a lower bound, we study the fol-
lowing, somewhat restricted, problem: The input is stored
in a matrix of width n and height k, in which the columns
are numbered from left to right and the rows from top to
bottom. The strings contain only 0’s and 1’s, no string con-
tains more than one 0, and they are stored in (lexicograph-
ically) sorted order in the columns of the matrix. The task
is to determine the column of the leftmost string consist-
ing of k 1’s, and we charge an algorithm according to how
many matrix entries it examines. Lemma 8.1 elaborates on
the relation between this seemingly simpler problem and the
original one.

To simplify matters further, we concentrate on a certain
class of algorithms, called fence algorithms. The concept of
a fence algorithm was defined in the paper which described
the upper bound [1], and it was shown that for any algo-
rithm there exists a corresponding fence algorithm of the
same asymptotic complexity. We provide a brief sketch of
this proof below. First, we recall what constitutes a fence
algorithm.

A fence is a contiguous portion, starting at the top row,
which is known to contain only 1’s, of a column of the ma-
trix. The height of a fence F' is denoted by |F| and defined as
the number of rows spanned by the fence. The way we have
stated the problem implies that all entries on the |F| top
rows to the right of F' (inclusive) contain 1’s.

To illustrate some important concepts, suppose an algo-
rithm starts by probing the middle position of the top row.
If it finds a 1 then it has erected a fence of height one, and
it can conclude that all entries on the top row to the right
of the fence are also 1’s. Suppose the algorithm next probes
and finds a 1 in the middle entry of the second row, i.e.,
the entry immediately below the just probed one. Suppose
the next probe is made one quarter from the left end on the
first row, and that it results in a 1. Our algorithm has then
erected a second fence. The algorithm might then decide to
probe at the first fence again, extending it to height three,
etc. It is not difficult to see how the algorithm can create
several fences in this way.

A fence algorithm is an algorithm which only makes two
different kinds of probes: extension of an existing fence, or
creation of a new leftmost fence.

If a fence algorithm encounters a 0 when attempting to
extend a fence Fj, it can conclude that all columns to the
left of the 0 (inclusive) need no longer be considered, and the
algorithm can thus reject them. The algorithm can further
conclude that all rows above the 0 (exclusive) can be omitted
from consideration. This follows from that the |F;| top rows
to the right of the fence F; contain only 1’s. The problem

can thus be reduced by ezcluding these rows. In our termi-
nology, the following four events occur: (1) the rightmost 0
moves to the right; (2) we get a new top row; (3) fences of
height at most |F;| disappear completely (which makes sense
because they no longer contribute any useful information of
the whereabouts of the sought column); (4) the heights of
all remaining fences are reduced accordingly.

Let Fi and F> be two fences such that F; resides to the
left of F> and |Fi| < |Fy|. If F; is extended to the same
height as F> then F> ceases to exist. The justification for
this is that the information that can be concluded about the
matrix from F is strictly less than what can be concluded
from Fi. We say that F} and F> merge.

The fences are numbered in descending order from right
to left, starting with fence F}, where t is a parameter to be
specified below. Thus, from right to left, at any point in
time we have fences F;, Fi_1,... When two fences F; and
F;+1 merge, F;41 disappears, and all fences to its left are
renumbered such that the indices of two neighboring fences
differ by exactly one at any time. It follows that any fence
is shorter than its right neighbor. For technical reasons we
also have a virtual fence in column n + 1, which is denoted
by Fit1, and which is of height k.

A fence algorithm also allows an adversary to make fence
probes at any moment. These probes will cost nothing to
the algorithm but have the same effect in terms of creating
fences, excluding rows etc.

As already mentioned, in a previous paper [1], the fol-
lowing lemma was proven:

Lemma 2.1 If the restricted searching problem can be solved
using at most T probes, it can be solved by a fence algorithm
using at most 21" probes.

Sketch of proof. The lemma is proven by showing that,
given an arbitrary algorithm A and an input matrix I, there
exists a fence algorithm Ay and a matrix I’ such that the
cost of running Ay on I is at most twice as high as that of
running A on I'; and the outcome of A on I' is exactly the
same as the outcome of A on I. Ay and I’ are defined on-
line as A runs. At any time, the two algorithms maintain
the same set of fences. Ay performs essentially the same
probes as A, though not always in the same order.

If A makes a ‘fence probe’ at entry p, then Ay probes
entry p of I, and its outcome is copied to I'. If A makes a
probe which does not extend a fence or create a new leftmost
fence, there are two possibilities. First, A may probe an
entry whose contents is known, or an entry in an excluded
column. In this case, the probed entry in I’ is set to 1, and
no probe is made by Ay.

Second, A may probe an entry p somewhere in the unex-
plored area below the fences. p does not extend any fence,
but might become part of a fence later on. In this case, p is
set to 1 in I'. If entry p in I contains a 0, this is compen-
sated for later on by placing a 0 in I'. This happens when
A makes a ‘connecting’ probe at entry ¢ in I’ that—if an-
swered by 1—makes p part of a ‘matching prefix.” Then q is
set to 0; we also reveal a 0 in the topmost unknown entry in
p’s column. In this way, the invariant that both algorithms
maintain the same fences is preserved.

Ay does not execute the probe at p immediately, but
postpones it until a fence in p’s column, or in a column to
its left, reaches the row immediately above p. Note that this
happens when A makes a connecting probe. If the ‘arriving’

fence is in the same column as p, then Ay performs the
probe. Otherwise, instead of probing p, Af extends the
arriving fence by probing on the same row as p. If it finds
a 1, p must also contain a 1. Otherwise, the probed row
becomes the top row, and Ay can execute the original probe
as a fence probe. In the last case, two fence probes simulate
the probe at p. a

‘We show:

Lemma 2.2 Successful searches in the restricted searching
problem require

kloglogn

log log (4 + £5E2E2)

+k+logn

probes in the worst case.

In Theorem 1.1 we claim that this lower bound applies
to a somewhat different problem, in that we include unsuc-
cessful searches as well as only require a successful search to
report some matching string. Observe that in the restricted
problem, there is a trivial ©(k)-time query algorithm for the
problem addressed in Theorem 1.1, which simply inspects
the rightmost string. If it contains only 1’s the search is suc-
cessful; if it contains a 0 the search is unsuccessful. Thus,
Theorem 1.1 does not follow immediately from Lemma 2.2.
‘We return to this issue in Section 8, where we show that it
does indeed follow from our lower bound proof.

3 Intuition

Let us try to give an intuitive explanation of some important
parameters, used to prove the lower bound. Recall that
fence algorithms maintain an ordered collection of fences,
F. Important properties are the number of fences in F, the
distances between fences, and their heights. Suppose there
is a fence algorithm which makes at most tk probes, for some
value of t. Below, we make three observations that relate
the parameters of an algorithm to .

We stress that we do not claim to prove anything in this
section; we merely give the intuition behind the choice of
parameters. The arguments given are sometimes imprecise
and sloppy.

1. Assume that a new fence F; is created by probing the
middle entry of the unknown part of the top row, that
is, one step of a binary search for locating the right-
most 0 is made. (This, significantly simplifying, as-
sumption is only made in this section for the sake of
intuition.) Suppose more such probes are made which
all find 1’s. In effect, F; moves leftwards. An intuitive
way to quantify the ‘horizontal investment’ in F; is to
count the number of binary search probes invested in
it. Denote this quantity by A;.

2. If x fences exist at the moment when a row is excluded,
the algorithm has spent at least x probes on that row.
If the algorithm want to ensure the cost per row to
be at most ¢, the cardinality of F should not exceed ¢
at any time. This suggests that the algorithm should
spread the fences wisely.

3. Let us briefly describe a natural accounting scheme.
When a fence is created or extended by one probe the

vertical investment in the fence increases by one, and
when two fences merge, the new fence gets the sum of
the vertical investments of the participating fences plus
the number of actual probes performed to accomplish
the merge. Then, the algorithm must ensure that the
vertical investment in a fence during its lifetime must
not be too large, unless it is tall enough. To see why,
suppose more than t|F| probes have been invested in
fence F. Then, a failure to extend F' results in that
|F'| rows get excluded at a cost of more than ¢ per row.
Hence, a fence must be kept sufficiently tall so that a
failure to extend it is not too costly for the algorithm.

‘We proceed by combining the above observations to de-
rive some ideas on how the algorithm should chose its pa-
rameters.

The second observation states that we should have at
most ¢t fences. A natural way to spread them is at exponen-
tially increasing distances, where the distance is measured
according to the first observation. This means that distances
of neighboring fences should increase by a factor of ¢, where

log 1
¢ =logn = logc:w, (1)
since the maximum distance between any two fences is at

most logn.

To apply the third observation, consider what happens
when an extension of a fence F; fails. The number of rows
gained must compensate for the loss of both horizontal and
vertical investments. The algorithm should thus attempt to
keep F; higher than some lower bound, which is a function
of the total investment in F;. Denote this function by T'. To
determine the function T we have a number of relations to
consider.

Consider first the loss in horizontal investment. It must
hold that

T(A) > A/t 2)

since otherwise a failure to extend F; would result in the
exclusion of |F;| < A;/t rows, which would cost the algo-
rithm more than ¢ probes per row. Hence, the horizontal
investment in F; puts one restriction on 7'.

Next, the vertical investment in F; should be at most th;,
since otherwise the loss of this investment cannot be com-
pensated for by the number of rows excluded. The vertical
investment in a fence depends heavily on how much it has
been merged. In order to understand how it grows, note that
when merging two fences F;_; and F;, the A-value for the
resulting fence F; (recall that renumbering occurs after the
merge) becomes the sum of the previous A;_; and A;. Due
to the distance ratio ¢ described above, a merge increases
the A-value by a factor (1 + 1/¢), that is,

A;:Ai71+Ai=(1+1/C)Ai, (3)

where Al is the distance after the merge has taken place.
Suppose that, prior to the merge, F;_; and F; are of heights
T(A;—1) and T(A;), respectively, and that tT(A;—1) and
t T(A;) probes, respectively, have been invested in them.
Then, the vertical investment in the (new) fence F; after
the merge is

HT(Aim1) + T(A:)] + T(A]) — T(Ai-1).

If we disregard the last term (which turns out to be insignif-
icant) and observe that T grows at least linearly, by Equa-
tion (2), this expression is at least (¢ + 1)[T'(A;—1) +T(A)].

As the vertical investment in the new F; should be at most
t T(AY), we get the relation:

(t+ 1)[T(Aim1) + T(A)] < tT(A]).
Using Equation (3) and disregarding T'(A;_1) gives:
(t+1)T(A;) <tT((1+1/c)As),

which has a solution of the form T'(A;) > a - Af/t, for some
constant a. Setting

A}-‘,—c/t
T(A) = S5

satisfies this requirement as well as Equation (2).

Finally, the fact that the tallest possible fence (which
might have A-value of logn) should span about all rows
gives a relation to the the number of rows, k, namely
)1+c/t

logn —k

T(logn) = (
which implies clogc = log(tk/logn). Together with Equa-
tion (1) this gives the values of ¢ and ¢.

Essentially, the algorithm of Andersson et al. [1], which
achieves the optimal upper bound, can be derived from the
above discussion by defining everything precisely and ad-
justing a few constants.

The lower bound is proven by means of an adversary for
fence algorithms. This adversary keeps track of the invest-
ments made by an algorithm, and whenever the algorithm
has not protected its investments by erecting tall enough
fences, it reveals information that makes the algorithm lose
its investment at too high cost. The adversary’s actions ba-
sically forces the algorithm to behave as described above, or
it will do worse.

One detail which makes the lower bound proof quite in-
volved is that we need to take special care of probes on the
first row since we cannot assume that the algorithm always
makes its probes in the middle. Dealing with this is nontriv-
ial. It is not intuitively clear that biased probes do not help.
Interestingly, the algorithm that achieves the optimal upper
bound does not make biased probes [1]. However, an algo-
rithm using biased probes might achieve an improvement in
constant factors.

4 Two proofs

For small k’s, kK = O(log n/loglog n), and for large k’s, k =
Q(Z(l"g ")5), for any constant € > 0, the bound claimed in
Lemma, 2.2 reduces to the trivial lower bound of Q(k+log n).
It thus suffices to provide a proof for intermediate values
of k.

The proof is divided into two similar, but different proofs
handling two ranges of k’s. The proof for small £’s takes care
of logn/loglogn < k < logn, and the proof for large k’s

assumes that logn < k < 2U°8 % The two proofs share
the same structure; however, the calculations are somewhat
different. Due to lack of space, this extended abstract only
contains a complete version of the proof for large k’s, which
is also the easier of the two. In Section 7 we outline the
proof for large k’s. Until then we can thus assume that

logn <k < gUogm)™/*

5 The adversary

Before specifying the adversary, we introduce some param-
eters and notation. Define

2
c = log (k(loglogn))

logn
; loglog n
10logec
B = max{10clogec,1 +log k}.

Our aim is to prove an Q(kt) lower bound on the num-
ber of probes required. This yields the desired lower bound
when k& > logn. Observe that if ¢t = O(1) the aimed bound
reduces to the trivial lower bound, and so we can assume
that ¢ is greater than some sufficiently large constant. The
same applies to ¢, which is super-constant for k¥ > log n; and
then also to B. Finally, note that the upper bound on k&
implies that B = O(\/logn).

For any fence F;, h; denotes the height of F;, that is,
h; = h(F;) = |F;|. Let Fy be the leftmost fence. Define

mq_1 = m = log(column of Fy—column of the rightmost 0).

This reflects the uncertainty on the top row, in that by mak-
ing m ‘binary search’ probes on the row an algorithm will
know its entire contents. For any other fence F;, define

m; = m(F;) =
log(column of F;41 — column in which F; was created),

which approximates the new value of m if F; finds a 0. Fi-
nally, for any fence F;, define

m; —Mm;—1

A= AF) =

This quantifies the ‘distance’ between F; and Fiy1.

Note that hi, m;, and A; are attributes of fence F;—
not of index +—so if F; changes index then its h-value, m-
value, and A-value remain the same (unless their underlying
parameters change). We use the shorter forms for the sake
of brevity.

5.1 A game

Our adversary plays a game against a fence algorithm. Each
probe made by the algorithm is answered by the adversary,
which also sometimes reveals the contents of other entries
at no cost to the algorithm.

The adversary will reveal information which is unfavor-
able to the algorithm. Suppose the algorithm has erected
a fence F; of height h; and that it has performed Q(h;t)
probes on the top h; rows. Then the adversary might reveal
a 0 immediately below fence F;. We call this putting a 0
on F;. This results in the exclusion of the columns to the
left of F; (inclusive) and the top h; rows. The adversary
does not always put a 0 on a fence once the above condition
holds; however, whenever it does then the condition holds.

It is not obvious why this would be unfavorable to the
algorithm. After all, it learns everything it needs to know
about the top h; rows, and thus need not invest any more
probes on these rows. The underlying motivation for the
adversary’s behavior is that the distance from the leftmost
fence to the rightmost 0 increases; a drawback for the algo-
rithm.

For each excluded row, the algorithm has thus made
Q(t) probes. Since we aim to prove a lower bound of Q(kt)
it is natural to declare the adversary a winner of the game if
it manages to exclude all rows. (Formally, excluding the kth
row would require putting a 0 on row k + 1. However, there
is no need to explicitly place this last 0, just the fact that
the adversary can allow itself to do so is enough to conclude
that the algorithm has used Q(kt) probes.)

On the other hand, if the adversary is not able to exclude
the remaining rows when the algorithm has terminated the
algorithm wins the game. (The adversary is thus allowed
one more move after the algorithm has terminated.) The
search can terminate in two ways: the algorithm successfully
finds the leftmost column containing only ones, or it finds
a 0 in the rightmost column, in which case the search was
unsuccessful.

5.2 Accounting

In order to be able to carry out its strategy, the adversary
keeps track of the probes performed by the algorithm by
attributing them to the fences and to a horizontal (probe)
counter, as follows:

o If a probe extends an existing fence F;, attribute eight
probes to F;.

o Let F; be the leftmost fence. If a probe is made on
the top row, erecting F;_;, then eight probes are at-
tributed to F;_1, three probes are attributed to F;, and
four probes are attributed to the horizontal counter.

o When F; and F;_; merge then the new F; is attributed
the sum of the attributions to the two old fences.

o Whenever a 0 is put on F;, then delete

— h; attributed probes from each remaining fence;

- E;: 4 A; attributed probes from the horizontal
counter; and

— all probes attributed to F; and the fences to its
left.

Lemmas 6.6 and 6.7 below ensure that there will al-
ways be enough probes to delete.

Following these rules, each probe made by the algorithm
yields at most 15 attributed probes. Hence, the total num-
ber of probes getting attributed is at most linear in the ac-
tual number of probes made. It is thus sufficient to derive a
lower bound on the former quantity.

In the following, A; = A(F;) and C denote the number
of probes attributed to fence F; and the horizontal counter,
respectively.

5.3 The adversary’s strategy

In order to understand how the adversary acts, first note
that, intuitively, the goal of any fence algorithm can be
thought of as constructing a fence ‘far’ to the left. Basi-
cally, there are three different ways for the algorithm to
pursue this goal, and for each of those there is a counteract-
ing adversary rule. Before presenting the precise rules we
give some intuition.

First, when creating a new fence, the algorithm may try
to place it far to the left of the leftmost existing fence. This

is prevented by rule A, which simply answers 0 if a probe
is made too far to the left on the top row. Second, it may
try to advance leftwards by erecting many fences. This is
handled by rule B, which puts an absolute restriction on the
number of fences that an algorithm is allowed to maintain
simultaneously. Third, to be allowed to erect a new fence
further to the left, the algorithm might start by reducing
the number of fences by merging two existing fences F;_;
and F;. This strategy has two consequences: the horizontal
distance from the new F; (that results from the merge) to
its right neighbor, F;i,, increases; and, by the accounting
scheme following a merge, the number of probes attributed
to F; increases. Adversary rule C ensures that fences are
not too far apart, and rule D puts a restriction on how many
probes can be attributed to a fence.

The first of the rules specifies how probes on the top row
are answered.

Rule A: Let F; be the leftmost fence, and suppose that
the rightmost 0 is in column 7, that is, F; resides in
column r + 2™. A probe in column r + a2™, where
0 < a <1, on the top row is answered as follows:

1. If a < 1/2B%! a 0 is answered. The adversary
also reveals a 1 in column r 4 2™~ 5.

2. If a > 1/25%!) a 1 is answered. If a > 1/2% the
adversary also reveals a 1 in column 7 4+ 2™~ 5.

Thus, one new fence F;_1 is always created between
columns 7+ 2™ B~! and r 4 2™ B,

Any probe that attempts to extend an existing fence is
answered by 1. However, after any probe made by the al-
gorithm the adversary checks if any of the following rules
apply. If it does, it is executed; otherwise, the algorithm is
allowed to make another probe. If several rules are enabled,
they are executed in the order in which they are given.

Rule B: Whenever Fj exists, put a 0 on it.
Rule C: If A; > h;t, put a 0 on F;.
Rule D: If A; > h;t, put a 0 on F;.

6 Analysis

In Section 6.1 we state and prove a number of lemmas which
explain the immediate effect on the A-values caused by the
various actions by the adversary and the algorithm. Then,
in Section 6.2 we provide the main argument of the proof,
and in Section 6.3 we prove the main lemma used in the
main argument.

In the sequel, for any variable X, let X’ denote the new
value of the variable after some type of change has taken
place.

6.1 Basic lemmas

The proofs of the lemmas below require no nontrivial obser-
vations and are purely algebraic. During the first reading
the impatient reader might therefore want to skip them in
order to reach the ‘action’ in the next subsection.

The first two lemma investigate how a probe on the top
row affects the A-values:

Lemma 6.1 Let F; be the leftmost fence. Then, after a
probe on the top row we have

1. m; =m;, for any j > i;
2. m+log(1 —1/2%) <mji_y <m+log(1 —1/25%1);
3. m—B—lSm,Sm_B.

Proof. Recall the definition of m;. The first claim is ob-
vious. Consider the second claim. 27™i-1 is the distance
(number of columns) between the new fence and F;. This
is maximized (minimized) if F;_; is erected as close to (far
away from) the rightmost 0 as possible. Hence,

mi_; >log (2™ — 27 F) = m +log(1 — 1/27)

and

mi_; <log (2™ — 2™~ 571) =m +log(1 — 1/27F).

2™ is the distance from the rightmost 0 to F;_1, and so
m’ is maximized (minimized) if F;_; is erected as far away
from (close to) the rightmost 0 as possible. Hence,

m Bl <! <log2™ P =m - B.

m— B —1=1log2
O

The next lemma follows from plugging in the upper and
lower bounds on m}_;, m}, and m’, provided by the above
lemma, in the definition of A;.

Lemma 6.2 Let F; be the leftmost fence. Then, after a
probe on the top row we have

1. Ay <AL <A +1/25;
2. 1/2<Aj_; <2.

Proof. By definition and Lemma 6.1, we have

7 ! 7
Al = m; —m;_1 _ Mi —M;_4
v B B

The first claim then follows by replacing m;_, by the upper
and lower bounds provided by the above lemma:

m; — (m + log(1 — 1/25))
B
_ log(1—1/2%)

A <

= A; <A +1/27,

for sufficiently large B, and

m; — (m + log(1 — 1/251))
B
log(1 — 1/23+1)
— = T > A;.
B >

A >

Similarly, since Ai_; = (m}_; — m')/B, we have

m+log(1 —1/28%Y) — (m — B —1)
B
B+1 _
log(2 1)<B+1<2’
B - B -

!
Aia

because B > 1; and

m +log(1 —1/28) — (m — B)
B
log2® —1) _ B—1

> >1/2.
B _B_/

Ay >

O

We also show that a A-value never declines below its
initial value:

Lemma 6.3 For any fence Fi, A; > 1/2.

Proof. The claim holds initially, by Lemma 6.2. As long as
F; exists, the only parameter in the definition of A; that can
change during the course of the search is m;_1. However, its
initial value is an absolute upper bound on its future value.
The lemma follows. |

The next lemma shows that putting a 0 on a fence never
increases the A-value of the new leftmost fence:

Lemma 6.4 If a 0 is put on Fi_1, then A, < A;.

Proof. Note that m,_; = m' and m, = m;. If F;,_; has
not merged with its left neighbor since it was created then
m' = m;_1, in which case A; remains the same. Otherwise,
F;_1 has merged to the left, in which case m’ > m,_1, and
so A; decreases (slightly). O

The next lemma shows how a merge affects the A-values.

Lemma 6.5 If F; and F;_1 merge then

A’. — Aj_l JSZ—l,
T Ar+ A j=

Proof. Recall that as a result of the merge, the former F;
disappears, and due to the renumbering, after the merge,
fence F! resides in the same column as F;_; did before the
merge. Also, the indices of all fences to the left of F] are
incremented by one. For the new F, we have

! !
m; —MmM;_1

! mi; —mi—2
Ai = =
B B
. Mmy —Mmi—1 + mi;—1 — M;—2
B B

= A;+Ai1.
For any fence F, j < i — 1, to the left of the merge,

! !
p_ My —Mj_y Mj-1—Mj—2
Al = B = 5 =Aj_1.

6.2 Main argument

We first prove that if the adversary wins, i.e., excludes all
rows, then the algorithm has indeed made Q(kt) probes
(Lemma 6.8). We then show that the algorithm cannot
win (Lemma 6.11). If combined, these two lemmas lead
to Lemma 2.2.

Lemma 6.6 For any fence F;, A; > h;.

Proof. This is easily proven by induction. Whenever h;
increases by one, A; increases by eight; and whenever h;
decreases by one, A; decreases by one. m|

Lemma 6.7 C > qu Aj.

Proof. The proof is by induction on the probes. Initially
the claim holds trivially. When a new fence F;_; is erected,
the sum increases by

(Al —A)+ A <1/2° +2<3,

by Lemma 6.2, and so the four probes added to C pay for
the increase.

If F; and F;_; merge then, by Lemma 6.5, the sum is
not affected.

When a 0 is put on F; then, by Lemma 6.4, the sum
decreases by

ZAj + (Aig1 — Alyq) > ZA]‘,

< j<i

while C' decreases by exactly E]. <i Ay m|

Lemma 6.8 If the adversary wins then Q(kt) probes have
been made.

Proof. When the adversary puts a 0 on fence F;, h; rows
get excluded, and by the accounting scheme, a number of
attributed probes get deleted. We show that this quantity
is at least h;t. We distinguish three cases depending on
which one of the rules B, C, and D triggered at F;:

B. In this case h; = 1 and one attributed probe per fence
gets deleted, giving a total of ¢ + 1 deleted probes.
Lemma 6.6 guarantees that no fence will ever run out
of attributed probes, but can always pay one.

C. The horizontal counter decreases by Z;: JA > A
which is at least h;t, by rule C. Lemma 6.7 guarantees
that the horizontal counter can be charged.

D. In this case A; > h;t, so the (at least) h;t attributed
probes deleted from F; suffice.

Hence, for each excluded row, at least ¢ attributed probes,
and thus at least /15 = Q(t) actual probes, get deleted. If
all rows get excluded, the algorithm must therefore have
spent Q(kt) probes altogether. m|

To accomplish our second goal, that the algorithm never
wins, requires two additional lemmas.

Lemma 6.9 No fence is ever erected within distance n/2
from fence Fyiq.

Proof. Consider the location of fence F; during the course
of the game. According to rule A, the first time F; is created
it resides to the left of column n/22, and as long as it exists
the (at least) n(1 — 1/2%) columns to its right cannot be
excluded. The second time F} is created it resides to the
left of column n(1 —1/27)/2% and as long as it exists the
(at least) n(1 — 1/2%)? columns to its right remain. Each

creation of F; is preceded by the exclusion of at least one
row, and at most k rows can be excluded. Therefore, the
number of columns that remain to the right of F; after the
search is at least

1* 1 k 1*_n
n(1-55) 2n(1-gmmr) =n(-5) 25

for k > 1. O

The next lemma says that if F; is ‘far’ from Fj;1, it must
have many probes attributed to it:

Lemma 6.10 For any fence F;,

c/t
A A
Az hit ((2c+1)z)

Lemma, 6.10 is the core of the entire proof, and its proof is
postponed till the next subsection.

Lemma 6.11 The algorithm never wins.

Proof. Recall that the adversary never places a 0 to the
right of F;. Consequently, by Lemma 6.9, a search cannot
be unsuccessful. The other possibility for the algorithm to
win is by erecting a fence which reaches the bottom row in
the leftmost non-rejected column. Note that this fence has
no other fence to its right since it spans all rows, and so it
must be F;. We show that then A, is large, and therefore,
by Lemma 6.10, F}; must have many probes attributed to it.
In fact, we show that A; is so large that rule D will apply,
so the adversary can put a 0 on F; and exclude all rows and
win the game.

At the end of the search, m:—1 = m = 0, so A; >
log(n/2)/B, by Lemma 6.9. Since B = O(+/logn), this is
Q(v/log n).

Now,
At _ At
(20+ 1)t T 9tlog(2c+1)
> 210g Ay —2tloge
[by def. of ﬂ — zlogAtf(loglogn)/5

[for suff. large n] > 9(log log n)/4,

where the last inequality holds since A: = Q(y/Togn).
By Lemma 6.10,

log(n/2) [A\
Ay >
Bt (2¢+1)t
log n (loglog n)/4-c/t
> 2 oglogn c
— 2Bt
_ logn (loglogn)/4-c-10logc/ loglogn
[by def. of t] = Bt 2
(5clogc)/2
[by def. of B and #] > 2 logn 10logc
2(10clog c + 1 + log k) log log n
23c+1 1
[for suff. large ¢] > _£ oen
clogk loglogn
> 2t logn 2°
— loglogn logk
2 2
by def. of = 2k(log logn)“logn k(loglogmn)
log n loglogn logn log k
[since k >logn] > 2kloglogn
[by def. of t] > 2kt.

As h: < k it follows that A; > 2h:k, so rule D triggers at Fy,
and the adversary puts a 0 on F; and wins the game. a

6.3 Proof of Lemma 6.10

Coupled with rule D, Lemma 6.10 immediately leads to the
following lemma, which is very useful in the inductive proof
of Lemma 6.10:

A, A c/t
Lemma 6.12 For any fence F;, h; > t—; (m) .

Proof of Lemma 6.10. For brevity, let K = 2c+ 1. We
may assume that K > 6.
The proof is by induction on the probes. Initially, when
F; is created C; = 8, h; = 1, and A; < 2 (by Lemma 6.2).
Hence
Ay

hi+T(

A; c/t) 9 c/t
Ki) s+ (K) <2
because K > 2 and ¢t > 2.

Inductively assume that the lemma, and consequently
also Lemma 6.12, holds at any fence F; prior to a certain
probe made by the algorithm. We show show that then it
holds at fence F; after the probe. We have five cases to
consider depending on how the next probe affects the values
of i, h;, A;, and A;. In each case we need to show that
A; increases by at least as much as the claimed lower bound.
For each case, we provide a brief sketch of how it is handled;
details are given after the enumeration.

1. F; is extended but does not merge with F;1;. This
case is straightforward.

2. F} is extended and merges with Fj1, for some j > i.
Then the new F; is the former F;_;, and so A} = A;_;.
As the claimed bound is decreasing on ¢, the lemma
follows by induction.

3. The adversary puts a 0 on fence Fj}, for some j <i—1.
According to Lemma 6.4, A; does not increase in this
case, and both A; and h; decrease by |F}|. Hence, the
bound decreases by at least as much as does A;.

4. F;_, appears. In this case, A; increases by at most
1/22, by Lemma 6.2. The claim then follows from the
mean value theorem and the fact that the derivative
of our bound with respect to A; is at most 2Z.

5. F;_1 is extended and merges with F;. The new F;
gets attributed A, = A; + A;_1 probes while A, =
A; + A;_1, by Lemma 6.5. We need to prove that the
additional A;_1 probes compensates for the increase in
A;. This is accomplished by applying the inductive as-
sumption to the two contributing fences, and requires
a little bit of elementary calculus.

Case 1 is easy: A; increases by eight, and since A; does
not change, the bound increases by one.

In case 2, F; and all fences to its left change index by
one, so the new F; is the former F;_;. By induction,

Ai=A;1 > hioi+

JAVERY (Ai—1)C/t
t \Ki1

Al

AI c/t
t (K—L—l)

c/t
AL [AL
! 2 1
B+ (K) ,
as desired.

Consider now case 3. If F;_; disappears then, accord-
ing to Lemma 6.4, A; decreases; otherwise it remains un-
changed. Thus, in either case, A} < A,. Exclusion of h
rows decreases both A; and h; by h. Hence, by induction

Ai (A AL (AN
f=A—he o S (RE) T —hzme ()
Ai=Ai—h2hi+— (5 h2hi+ =\

v

In case 4, F; gets attributed three probes, that is, A} =
A; + 3. We show that the right side of the claimed bound
increases by less than three. When F; gets a new left neigh-
bor, A; increases; however, the increase is at most 1/ 25 by
Lemma 6.2.

‘We show that the derivative of our bound with respect
to A; in the point A; 4+ 1/27 is bounded by 22. Since the
bound is a convex function on A;, it follows from the mean
value theorem that it increases by at most one.

First note that A; + 1/2B < 2A;, by Lemma 6.3. The
derivative of the bound with respect to A; in the point 2A;
is

2A;\ c\ 1 20\ c
(=) (+9)7 = () (+3)
(ZA.;e)”/t
< (7
[since Ki >6] < A/
< (logn)”*
[by def. of f] = 2'0¢lo8°
[by def. of B] < 2°.

In case 5 the new F; gets attributed A, = A; + A;_1
probes. By induction, all we have to prove is

Ai (At Aix (Aig\!
h1+_(Ki) thioit = (Ki—l)

t
c/t
A% [A
! 7 2
it (K)

or equivalently, since A, = A; + A;_; and b}, = h; = h;_1,
A (AN Ay A\
w3 (5) 5 (7)
A+ A (A¢+Ai71)c/t
t K+

By induction, the lemma held at F; before the merge, and
so, by Lemma 6.12,

Ai Az c/t
P> — - .
m> 5 (%)
Replacing h; and putting A;—1 = aA;, we thus need to
establish

A; (Ai)c/t+ A; (Ai)c/t+ al\; (aAi)“/t
t2 \K' t K t Ki-1

(1+a)A; ((1+q)m>6” o

>0

-)

> 0.

t K

Canceling the common factor (A;/t)(A;/K?)*/t yields
1
E+1+a1+c/th/t_(1+a)1+c/t ZO- (4)

Differentiating the left side with respect to a we obtain

(1 + %) ((aK)C/t -1+ a)c/t) ,

and thus we have a minimum at ap = 1/(K —1) = 1/2¢c. We
show that for a = ao the negative contribution in inequal-
ity (4) is smaller than the positive:

1+ a0)1+c/t 1+ ao)c/t +ao(l + ao)c/t

K c/t
< agc/t ()
s e ta(g g
= el Kc/ta(1)+c/t
1 C
< 1+ + K tag ™,
since we can assume t > 1, and we are done. O

7 Proof for small &’s

The structure of the proof of Lemma 2.2 for small £’s is
exactly the same as that for large k’s, and most of the lem-
mas do indeed mirror the previous ones; however, there are
some subtle differences. In particular, the difference between
Lemmas 6.10 and 7.11 should be noted.

In the next subsection we describe the required changes
in parameters and adversary strategy. We then proceed in
the same way as in Section 6, first stating some basic lemmas
and then providing the main argument.

Recall that we can assume that logn/loglogn < k <
log n.

7.1 Changes in parameters and adversary

)

where D is some large constant. We can thus assume that

c is larger than some sufficiently large constant. ¢ is defined

as above. Since k < logn we have ¢ = O(logloglogn), and

so t = Q(loglogn/loglogloglogn). Hence, also ¢ can be

assumed to be larger than some sufficiently large constant.
For any fence F;, define

Let

d; = |Fi+1|, when F; is created.

We stress that, when F; is created, d; = h;41; while later on
we can have either d; > h;41 or d; < h;y+1. The definition
of A; is altered:

A, =m; —mi—q1 — logdi.

The only change needed in the described adversary’s is
in rule A, which is modified slightly: Replace 221! by 8h; =
8d;—1.

The accounting scheme is also changed slightly in that
when two fences F;_; and F; merge, the new fence does
not get all the attributed probes, but logd;_1 probes are
transferred to the horizontal counter. (This stems from the
new definition of Aj;.)

7.2 Basic lemmas

The first five lemmas mirror Lemmas 6.1-6.5.

Lemma 7.1 Let F; be the leftmost fence. Then, after a
probe on the top row we have

1. m} =mj, for any j > i;
2. m+log(l—1/4d;—1) < m)_; <m+log(l—1/8d;—1);
3. m+log(1/8d;—1) < m' < m +log(1/4d;—1).

Proof. Replace 2B+1 by 8d;—1 in the proof of Lemma 6.1.
O

Lemma 7.2 Let F; be the leftmost fence. Then, after a
probe on the top row we have

1. A <A <A +1/dioq;

2.1<Al_; <3

Proof. Plug in the bounds on m)_,, m};, and m’ from the
preceding lemma into the definition of A;. a

Lemma 7.3 For any fence F; € F, A; > 1.
Proof. Identical to the proof of Lemma 6.3. O
Lemma 7.4 If a 0 is put on Fi_1, then A} < A,;.

Proof. Identical to the proof of Lemma 6.4. O

When two fences merge, the situation is a little bit more
complicated than before due to the revised definition of A;:

Lemma 7.5 If F; and F;_1 merge then

A= At j<i—1,
77T Ai4+ A1 +logdir j=i.

Proof. Almost identical to the proof of Lemma 6.5. O

When two fences merge we thus have to transfer some
probes to the horizontal counter. For subsequent use we
need to bound this quantity in terms of the increase incurred
by the merge. Let H; = H(F;) be the total number of times
that F; has been extended (during its lifetime).

Lemma 7.6 When F;_1 and F; merge then H;—_1 > d;—1.

Proof. Omitted. O

7.3 Main argument

‘We proceed along the same lines as in Section 6.2

Lemma 7.7 For any fence F; € F, A; > h; + 7TH;.

Sketch of proof. Similar to the proof of Lemma 6.6. The
main difference is that, when two fences merge, we need to
transfer some probes to the horizontal counter. This quan-
tity is bounded from above using Lemma 7.6. a

Lemma 7.8 C >3 . _ A;.

Sketch of proof. Again, the only difference from the cor-
responding lemma for large k’s (Lemma 6.7) is the transfer
of probes to the horizontal counter, following a merge. 0O

Lemma 7.9 If the adversary wins then Q(kt) probes have
been made.

Proof. Identical to the proof of Lemma 6.8. O

Lemma 7.10 No fence is ever erected within distance n/k
from fence Fyqq.

Proof. Consider the location of fence F; during the course
of the game. According to rule A, the first time F} is created
it resides to the left of column n/4k, and as long as it exists
the (at least) n(1 — 1/4k) columns to its right cannot be
rejected. In general, the ith time F} is created, there are
at most kK + 1 — ¢ rows left. Hence, the second time F; is
created, the number of columns to its right is at least

1 1 k-1 4(k—1)—1
"(“E) (1_4(k—1)>‘" &k Ak—-1)

Suppose F; is created £ times altogether. Then the number
of columns remaining when the algorithm is finished is at
least

LS4k =1 d(k—1) -1 4(k-2-1

Ak — (£—1)) —1

i Ak-1) 4k-2) Ak—((-1)
A(k—1) A(k=2) Ak=3) _ 4(k—0)
2 ak A(k—1) a(k—2) ak-(-1)
_ n4(k—€)
4k
> %

Lemma 7.11 For any fence F; € F,

c/t
A A A
Ai>hi+Hi+ 25 (=) log | i 41
2 hit Hit ((20+1)1> Og<(2c+1)z+)

As in the proof for large k’s in Section 6.2, this lemma is
the core of the argument, and its proof is omitted in this
extended abstract. The proof has the same structure as
that of Lemma 6.10; however, it is much more technically
involved.

Lemma 7.12 The algorithm never wins.

Proof. By the same token as in the proof of Lemma 6.11,
it suffices to consider the number of probes attributed to
fence F; at the end of the game.

If the search terminates successfully, we have m;_1 =
m = 0, and so by Lemma 7.10,

A > log (%) —logk =log (%) > logn

for sufficiently large n, because k = O(logn).
Now, the same argument as in the proof of Lemma 6.11
shows that

e/t clogc
Ay Ay 2°°°8¢loglogn
=t =t >2 B T6R
((2c+1)t> log ((2c+ 1) +1) = 4

Hence, by Lemma 7.11,

logn 2°¢'°8<loglogn

Az 4
by def. of f] = logn 10loge 2°'°%°loglogn
2loglogn 4
> 2°MECloep
[for suff. large ¢] > 2°T'logn
[by def. of cand t] > 2kt,

Hence, rule D triggers at F%, so the adversary will eliminate
it and win the game.]

8 Extending the lower bound

Suppose we are only interested in finding some matching
string, and that, if no matching string exists, then we do
not care what the answer to the query is. Recall the trivial
O(k)-time query algorithm in Section 2. To neutralize this
simplistic strategy, a slight modification of the restricted
problem is required.

‘We have not found an immediate reduction from success-
ful searches in the restricted problem to that in Theorem 1.1,
but we have to modify the original proof of Lemma 2.2
slightly. Thus, this proof relies on the specified adversaries;
the lemma would not necessarily hold if we used different
adversaries.

Lemma 8.1 The lower bound in Lemma 2.2 applies to the
problem in Theorem 1.1.

Proof. We create a new problem of n strings of length k+ 1
by appending a 0 to the leftmost string of 1’s and a 1 to all
other strings. We then search for the string of k£ 1’s followed
by a 0. This string is unique, and moreover it coincides
with the leftmost string of k 1’s in the restricted problem.
It follows that any lower bound for successful searches in
the restricted problem applies to successful searches in the
original problem as well. Furthermore, as the outcome of a
search, that is, whether it is going to be successful or not, is
not determined until the last probe is made, it follows that
the same lower bound applies to unsuccessful searches.
Unfortunately, the above modification gives rise to a sub-
tle complication. Suppose an algorithm probes the last row.

If a 1 is found the corresponding string can be excluded as
a candidate. Thus, it might make perfect sense for an algo-
rithm to make probes that are not allowed by the definition
of fence algorithms. Note that according to Lemma 2.1, this
is not the case in the restricted problem. In the spirit of
Lemma 2.1, we show how to modify our adversaries such
that for any non-fence probe there is a fence probe which
is at least as profitable. Consequently, we can still assume
fence algorithms, and so the lower bound in Lemma 2.2 ap-
plies to the modified problem as well.

The adversary answers any probe on the last row by 1.
The probed entry is ignored by the adversary until the algo-
rithm has erected a fence which spans all rows immediately
to its right. (Note that this fence has to be F;.) When this
occurs, the adversary reveals 1’s in the entire column above
the probe. In effect, F; gets moved one step to the left. If
the algorithm had probed also the next entry on the last
row, F; gets moved two steps to the left, and so on.

The key observation is that instead of moving F; one step
to the left, the adversary can move the rightmost 0 one step
to the right. This follows since this is equivalent of moving
all fences one step to the left, and the adversary is free to
give the help of also moving the other fences.

Now, if an algorithm probes the entry immediately to the
right of the rightmost 0 on the top row, either one of our two
original adversaries will answer 0. Hence, instead of probing
the last row, the algorithm is always better off probing the
entry immediately to the right of the rightmost 0 on the top
row. The lemma follows. O

9 Comments

We have given a tight lower bound on a fundamental search-
ing problem. The problem is natural and easy to formulate,
yet the solution—the achieved bound as well as the proof—is
surprisingly complicated.

It should be noted that we make no other restrictions
in the computational model; the algorithm is allowed to use
extra memory during the search, create hash tables etc. Our
proof only relies on the fact that the content of an entry can
be determined in only two ways: either by the contents of
neighboring entries or by an explicit probe at that entry.

Acknowledgements

We would like to thank Torben Hagerup for several helpful
comments and suggestions.

References

[1] A. Andersson, T. Hagerup, J. Héastad, and O. Petersson.
The complexity of searching a sorted array of strings. In
Proc. 26th Ann. ACM Symp. on Theory of Computing, pp.
317-325, 1994.

[2] D.S. Hirschberg. A lower worst-case complexity for searching
a dictionary. In Proc. 16th Ann. Allerton Conf. on Commu-
nication, Control, and Computing, pp. 50-53, 1978.

[3] D. S. Hirschberg. On the complexity of searching a set of
vectors. SIAM J. Comput. 9:126-129, 1980.

[4] S. R. Kosaraju. On a multidimensional search problem. In
Proc. 11th Ann. ACM Symp. on Theory of Computing, pp.
67-73, 1979.

