Fusion trees can be implemented with AC? instructions
only
(note)

Arne Andersson Peter Bro Miltersen*
Lund University BRICS! University of Aarhus
arne@dna.lth.se bromille@daimi.aau.dk

Mikkel Thorup
University of Copenhagen
mthorup@diku.dk

Abstract

Addressing a problem of Fredman and Willard, we implement fusion trees in determin-
istic linear space using AC? instructions only. More precisely, we show that a subset of
{0,...,2% —1} of size n can be maintained using linear space under insertion, deletion,
predecessor, and successor queries, with O(logn/loglogn) amortized time per opera-
tion on a RAM with word size w, where the only computational instructions allowed
on the RAM are functions in AC?. The AC? instructions used are not all available on
today’s computers.

1 Introduction

Fredman and Willard [FW93], based on earlier ideas of Ajtai, Fredman, and Komlos [AFK84],
introduced the fusion tree. A fusion tree is a data structure maintaining a subset S of
U ={0,1,...,2* 1} under insertions, deletions, predecessor and successor queries (i.e. for
any element z of U, we can find the predecessor and successor of x in S). The model of
computation for the fusion tree is a random access machine whose registers contain w-bit
words (i.e. members of U), and with an instruction set which includes unit-cost addition,
subtraction, multiplication, comparison, and bit-wise Boolean AND. The fusion tree maintains
a set of size n using O(n) space and amortized time O(logn/loglogn) per operation. An
immediate corollary to the existence of the fusion tree is that n w-bit keys can be sorted in
time O(nlogn/loglogn) and space O(n) on a RAM with word size w.
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Fredman and Willard point out that multiplication is not an AC? instruction, that is,
there are no circuits for multiplication of constant depth and of size (number of gates)
polynomial in the word length. Here, the gates are negations, and A- and V-gates with
unbounded fan-in. They pose as an open question if the fusion tree can be implemented
using AC? instructions only. One motivation for this question is that ACY is the class
of functions which can be computed in constant time in a certain, reasonable, model of
hardware. In this model, it is therefore the class of functions for which we can reasonably
assume unit cost evaluation.

In this paper, we solve this problem by showing that, given a small set of non-standard
AC"Y instructions in addition to the more standard ones available in programming languages
such as C (e.g. addition, comparison, bitwise Boolean operations, and shifts), the fusion tree
can be implemented, with the same asymptotic space and time bounds as in [FW93|.

Our presentation can also be seen as an alternative explanation of the basic mechanisms
in fusion trees. We believe that our use of special-purpose instructions in place of the
ingenious use of multiplication in [FW93] may make our presentation easier to understand
for the casual reader. Thus, we argue that not only the use of non-AC® operations, but
also much of the technical complexity of fusion trees, are artifacts of the particular choice of
instructions in current hard-ware.

It should be noted that the transformation to AC°® operations presented in this paper,
can be applied similarly to the atomic heaps and ¢-heaps in Fredman and Willard’s later
paper [FW94].

2 Model of computation and notation

We use a RAM with word size w and we consider n w-bit keys that can be treated as binary
strings or (unsigned) integers. Note that since n is the size of a subset of {0,...,2¥ — 1}, we
have that w > logn. We shall also assume that /w is a power of two.

A w-bit word will sometimes be viewed as a concatenation of \/w fields. Each field is of
length \/w — 1; to the left of each field is the test bit of the field. By a bit pointer we mean a
(log w)-bit key; such a key can be used to specify a bit-position within a word. Without loss
of generality, we assume that logw < y/w — 1 and hence a bit pointer fits in a field. As an
example, if w = 64 a word contains 8 fields of length 7, one test bit is stored with each field.

We will use upper-case characters to denote words and lower-case characters to denote
fields. For any bit-string «, we use || to denote its length, and for i = 1,..., |a|, a[i] is the
ith bit in . In particular, a[1] is the leftmost, and «f|«|] is the rightmost bit of a. Also,
for 1 <i<j<|al, afi.j] = afi] - - - «[j]. Finally, int(a) is number represented by «, i.e.
int(a) = Y% " 2¢af|a| — i]. Note that our indexing of words is slightly non-standard; it
is more common to index words from right to left, starting with 0. However, in the main
technical part of this paper it is most convenient to think of words as strings, and these are
usually indexed from left to right starting with index 1.

Apart from the standard AC? instructions (comparison, addition, bitwise Boolean oper-
ations and shift), we use the following ones:

LeftmostOne(X): returns a bit pointer to the leftmost 1 in X. A simple depth 2 circuit of



quadratic size is indicated by:

Vi < w:int(LeftmostOne(X)) =i <— (1/_\1 —z[j]) A x[d].

In fact, LeftmostOne(X) can be implemented using a constant number of instructions
available on present day chips and in programming languages such as C: we just need
to convert X to floating point representation and afterwards, return the exponent.

Duplicate(z,d): Returns a word containing copies of the field z in the d rightmost fields.

Select(X, K): The first /w — 1 fields in K are viewed as bit pointers; a field is returned,
containing the selected bits in X. Not all fields of K need to be used. The test bit of
a used field is 1. A depth 3 circuit of size O(w?®?) is indicated by:

Vi <b:Select(X,K)[i+1] =

K[ —1)(b+1)+1]A \w/ (j=int(K[(i — 1)(b+1) +2..i(b+ 1)]) A X[5])

i=1

Furthermore, we assume that the constants b = /w — 1 and k = log/w are known, b is the
length of a field.

3 The ACY fusion tree

Lemma 1 Let d be an integer, smaller than, or equal to /w. LetY be a word where the d
rightmost fields contain one b-bit key each. Furthermore, assume that the d keys are sorted
right-to-left, the d rightmost test bits are 0, and that all bits to the left of the d used fields
(and their test bits) are 1. Then, given a b-bit key x, we can compute the rank of x among
the keys in 'Y in constant time.

Proof: The crucial observation is due to Paul and Simon [PS80]; they observed that one
subtraction can be used to perform comparisons in parallel.

Let M be a word where the d rightmost test bits are 1 and all other bits are 0. In order to
compute the rank of x among the keys in Y, we place d copies of z in the d rightmost fields of
a word X. We let the test bits of those fields be 1. By the assignment R < (X —Y) AND M
the ith test bit from the right in R will be 1 if and only if z > y;. All other test bits (as
well as all other bits) in R will be 0. Hence, from the position of the leftmost 1 in R we can
compute the rank of z.

We implement this in the function PackedRank below. First, we compute d, the number
of keys contained in Y. This is the same number as the number of set test bits in NOT Y,
which can be determined using the function LeftField below. Next, we create the word X
and the mask M. Finally, we make the subtraction and extract the rank.

For clarity, we introduce two simple AC? functions.



FillTestBits(d): returns a word where the d rightmost test bits are set and all other bits
are zeroes. Can be implemented with shift, bitwise logical operations, and Duplicate.

LeftField(Y): If the leftmost 1 in Y is a test bit, and if all test bits to the right of this
test bit are set, the number of set test bits is returned. This can be computed as
b+ 1 — (LeftmostOne(Y) —1)/(b+ 1). We don’t have a division operation, but since
b+ 1 = 2%, we can implement the division by a right shift by k.

Algorithm A: PackedRank (Y, x)
Al. d< LeftField(NOT Y).
A2. M < FillTestBits(d).
A.3. X < Duplicate(z,d) OR M.
Ad. R+ (X —Y) AND M.

A.5. return LeftField(R).

PackedRank clearly runs in constant time. ]

Lemma 2 Given a wordY and a key x as in Lemma 1, with d strictly less than \/w we can
generate a new word where x is properly inserted among the keys in'Y in constant time.

Proof: We need a function InsertField(Y,z,7) which inserts z as the (i + 1)’st field from

the right in Y, pushing fields to the right of the (i + 1)’st field one field to the right, and sets

z’s test bit to 0. This can easily be implemented with shift and bitwise Boolean operations.
The function InsertKey below implements the lemma.

Algorithm B: InsertKey (Y, z)
B.1. return InsertField(Y,x,PackedRank(Y,x)).

4 Fusion tree nodes

In this section we give our version of the main building block of fusion trees.

Proposition 3 Given d sorted w-bit keys, d < \/w, we can construct, in O(d) time, a static
data structure using O(d) space, so that predecessor and successor queries can be supported
in O(1) worst case time.

We use such a data structure to represent each node of the fusion tree. Our construction
emulates the construction used by Fredman and Willard very closely. However, since we
want our presentation to be self-contained, we devote this section to give all the details of
the construction.

The main idea is to make use of significant bit positions. View the set of w-bit sorted
keys Yi,...,Y, as stored in a binary trie. Each key is represented as a path down the trie,
a left edge denotes a 0 and a right edge denotes a 1. We get the significant bit positions
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by selecting the levels in the trie where there is at least one binary (that is, non-unary)
node. These bit positions can be computed by taking the position of the first differing bit
between all pairs of adjacent keys in Y7, ..., Y;. By extracting the significant bits from each
key we create a set of compressed keys yi,...,%q4. Since the trie has exactly d leaves, it
contains exactly d — 1 binary nodes. Therefore, the number of significant bit positions, and
the length of a compressed key, is at most d — 1. Since d — 1 < \/w — 1 = b, we can pack
these compressed keys in linear time by repeated calls to InsertKey in Lemma 2.

We need the following AC? functions, which can be implemented in a straightforward
way:

DiffPtr(X,Y): returns a bit pointer to the leftmost differing bit between X and Y. (Can
be implemented as LeftmostOne(X XOR Y).)

Fill(X,p): X is a word and p is a bit pointer. Returns a copy of X where all bits to
the right of position p have the same value as the bit in position p. If p = w + 1,
Fill(X,p) = X. (Can be implemented by shifting, addition, and bitwise Boolean
operations.)

The procedure Construct takes as input a set of sorted keys Y7, ..., Y; and computes the
set, of significant bit positions; pointers to these positions are concatenated in sorted order
in the word K. Next, a set of compressed keys is created by selecting the bits specified in
K from Y7, ..., Y;. These compressed keys are packed in the word Y.

Algorithm C: Construct (Y7,...,Y})

C.1l. K« 0.
C.2. Fori<+ 1tod—1, K < InsertKey(K,DiffPtr(Y;, Yii1)).
C3. Y 0.

C.4. Fori<+ 1tod, Y « InsertKey(Y,Select(Y;, K)).

When implemented as above, the same bit-pointer may be packed several times in K.
This makes no difference.

We can now compute the rank of a query key X in constant time. Let z = Select(X, K)
and let px denote the longest common prefix of X and any key in Y, ..., Y;. Let y; denote
the compressed version of Y;. Let ¢ < ¢ < --- < g4—1 be the significant bit positions and
let g4 = w+ 1. Then z[j] = X[g;| and y;[j] = Y;[g;]. Note that if y;, [1..j] = vi,[1..5], then
Yél [1q]+1 — 1] = }/;2[1..(13'4_1 — 1]

Lemma 4 If x has rank v in yi,...,yq, then either Y; or Y; 1 start by px.

Proof: Let 7 be such that Yy has the prefix px. Let j be the maximal index such that
¢; < |px|. Then yy[1..5] = z[1..5]. However, since ¢ is the rank of x, we either have z =y, or
Y; < < y;11. This means that for i equal to either ¢ or i + 1, we have yu[1..5] = y[1..5].
Hence Yn[1..g;41 — 1] = Yy[1..gj41 — 1], but g;41 — 1 > |px|, so Y;» must share the prefix px
with Y. [



Lemma 5 Consider a key Z that starts by px and where all remaining bits in Z have
the same value as X'’s first distinguishing bit, i.e. the bit of X following px. Set z =
Select(Z, K). Let 2° be the result of setting the last bit of z to 0, and let z' be the result of
setting it to 1. Then z € {2°, 2}, and then the rank of X among Y1,...,Yy is either that of
2% or that of 2* among y1, ..., Y4

Proof: Clearly Z has the same rank as X among Y7,...,Y;. Let i be the rank of z among
Y1,---,Ya- If y; # 2z, then 7 is the correct rank of X. The same holds if Y; = Z = X. However,
suppose that y; = z and Y; # Z. Suppose that the first distinguishing bit X[|px| + 1] of X
is 0. Then there is some j > |px|, 7 & {q1,-.-,94-1}, such that Y;[j] = 1. Hence Y; > Z.
Since yy = y; implies Yy = Y;, we conclude that the rank of Z among Y7, ..., Yy is the rank

of z! among y1, ..., Y4
If X[|px|+ 1] = 1, symmetrically we have that the rank of Z among Yj,...,Y; is the
rank of 2° among yi, ..., ya. [ ]

We can use Lemma 4 to compute the length of px and hence the position of X'’s first
distinguishing bit. Once this position is known, we can apply Lemma 5 to find the proper
rank of X.

We encode this in the function Rank below. The variable p is used to store the position
of X’s first distinguishing bit. This is the only place in this section where we, for convenience,
deviate slightly from Fredman and Willard’s original method: Instead of filling the query
keys with 1s (or Os) and making a second packed searching, they use a lookup table of size
©(d?) in a node of degree d.

Algorithm D: Rank(X)

D.1. i« PackedRank(Y,Select(X, K)).

D.2. If i =0, p « DiffPtr(X,Y));

D.3. else p < max(DiffPtr(X,Y;),DiffPtr(X, Y, 1))
D.4. Z ¢ Fill(X,p).

D.5. z < Select(Z, K).

D.6. i < PackedRank(Y, z).

D.7. ItY; < Z <Yy, return 4;

D.8. else z[b] - —z[b]; return PackedRank(Y z).

Now to find the predecessor of a value in the set, we find the rank of the value, and the
predecessor can now be found by a table lookup in the sorted table of the set. This completes
the proof of Proposition 3.

5 The fusion tree

Having dealt with fusion nodes, the proof of our main theorem is virtually the same as that
of Fredman and Willard. Note that we can allow the B-tree nodes to have higher degree
than in the original fusion tree: y/w compared to w'/,
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Theorem 6 A set of word sized integers can be maintained using linear space under inser-
tion, deletion, predecessor, and successor queries, with O(logn/loglogn) amortized time per
operation on an AC° RAM.

Proof: The proof proceeds as in [FW93]:

Proposition 3 allows us to implement a B-tree [BM72] node of degree d < \/w. Searching
in such a node takes constant time while splitting, merging, and adding/removing keys take
O(d) time. By keeping traditional, comparison-based, weight-balanced trees of size ©(d)
at the bottom of the B-tree, we can ensure that at most every ©(d)’th update causes any
change in a B-tree node.

The number of B-tree levels is O(logn/logd) and the height of a weight-balanced tree
is O(logd). Since w > logn, we can choose d = O(y/logn) and the theorem follows. u

As a final remark, we note that applying a result of Dietz [D89], we can also support
rank-operations within the O(logn/loglogn) time bound. Dietz showed that a list of atoms
can be maintained under the operations insert, which inserts a new atom after a specified
position in the list, delete, which deletes an atom from the list, and position, which, given
an atom, returns its position in the list, in time O(logn/loglogn) per operation. Dietz’ list
maintenance structure uses only a very basic, AC?, instruction set. Using the predecessor
query of a fusion tree maintaining a set, we can make Dietz’ structure maintain a sorted list
of the elements of the set. Then, to find the rank in the set of a new value, we just need to
find the position in the list of its predecessor in the set. Hence, rank-queries are supported
in time O(logn/loglogn) in addition to the other operations. This matches a lower bound
by Fredman and Saks [FS89] which holds without any assumptions on the instruction set.
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