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Abstract

We present a solution to the dictionary problem
where each subset of size n of an ordered universe
is represented by a unique structure, containing a
(unique) binary search tree. The structure permits
the execution of search, insert and delete operations
in O(n'/3) time in the worst case. We also give a
general lower bound, stating that for any unique rep-
resentation of a set in a graph of bounded outdegree,
one of the operations search or update must require a
cost of Q(n'/3). Therefore, our result sheds new light
on previously claimed lower bounds for unique binary
search tree representations.

1 Introduction

A dictionary is a set of items on which search, in-
sert or delete operations can be performed. The dic-
tionary problem asks for a family of data structures
to store the sets of items and for algorithms to carry
out the dictionary operations efficiently. We consider
a data structure as a graph consisting of nodes linked
together by pointers, which stores the set in its nodes,
one item per node. The nodes represent the storage
locations. Pointer paths correspond to access paths
for the stored items.

We call a dictionary set-uniquely represented, if
each set of items is represented by a unique data struc-
ture. In other words: For each set of items there is
only one possible graph that represents the set. We
call a dictionary size-uniquely represented if each set
of the same size is represented by the same structure.
Note that each size-unique representation is also set-
unique. We also state that the values stored in the
nodes are constrained by a fixed (for any graph) total
order, that is, the representation is order-unique.
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The unique representation problem for dictionaries
asks for efficient algorithms for maintaining a set- or
size-unique representation of dictionaries. This prob-
lem has been studied first by Snyder [3]. He consid-
ers unique representations by ”tree-like” structures of
bounded degree and allows pointer changes in com-
bination with the creation and abolition of nodes as
primitives. He shows that ©(y/n) is both necessary
and sufficient to carry out an insert, delete or search
operation on dictionaries of size n. Recently Sundar
and Tarjan [4] have studied the problem in a different
context. They use the nondestructive CONS operation
as the only primitive for creating and changing trees
and they show that ©(y/n) CONs operations are nec-
essary and sufficient to maintain unique binary search
trees.

In this abstract we present a new size- and order-
unique representation that allows to perform the dic-
tionary operations in O(n'/3) time in the worst case.
As primitives for creating and changing structures we
allow pointer changes and to create and dispose nodes
as Snyder [3] did. Similar to the structures of Snyder,
Sundar and Tarjan, our structures are not “pure” tree
structures but can be viewed as trees embedded in a
graph. We also give a matching lower bound stating
that Q(n'/3) time is necessary per operation when a
dictionary is size- and order-uniquely represented in a
graph of bounded outdegree.

2 Model of Computation

We consider size- and order-unique representations
of dictionaries by graphs of bounded outdegree (< k)
and assume that for a given n there is only one graph
of n nodes. Furthermore, we assume that for each
graph the nodes are constrained by a fixed total order.
The elements of a given set of size n are stored in the
nodes of the graph in such a way that the i-th element



is stored in the i-th node, for each 1.

Each search starts at one specified node, called the
root, and follows a number of edges until the searched
element is found or the search ends unsuccessfully, be-
cause some termination condition has become true.
All elements must be reachable from the root, and
hence each node (except the root) has to have at least
one incoming edge. The cost of a search equals the
number of traversed edges plus one.

When performing an update a graph may be
changed by one of the following operations:

e create/remove a node;

e change/add/remove one outgoing edge from a
node (pointer change);

e Exchange elements between two nodes;

Each operation requires a cost of ©(1). After a cre-
ation the node contains an element and has no outgo-
ing edges. (Since the graph has its outdegree bounded
by a constant k, we may add k outgoing edges in con-
stant time.)

It should be pointed out that this cost somewhat
underestimates the “real” cost of pointer changes and
element exchanges, since we do not include the time
required to locate the node where a pointer change
or an exchange has to be performed. However, when
presenting our upper bound we will not “hide” any
costs by this simplification.

3 An Improved Upper Bound on

Unique Representation

The new data structure, the jump list, consists of a
graph in which a binary search tree is contained. As
we will show, both the structure and its maintenance
are quite simple.

3.1 Data Structure

A jump list of size n consists of n nodes 1, ...,
n. These nodes are linked together by three types of
pointers:

1st level: The nodes 1, ..., n are linked together in
sorted order in a doubly-linked list;

2nd level: For each i, 1 < i < n — |n'/3], there is a
pointer from node i to node i + [i/3];

3rd level: The nodes 13,23,33, ... |n'/3]3 are linked
together by backward pointers, that is, there is a

pointer from node 43 to node (i — 1)? for each i,
1<i< [n'/3)3

The above specification gives a size- and order-unique
representation of dictionaries. It is not hard to see
that the structure may be viewed as a binary search
tree with some additional pointers. The nodes linked
together on the 3rd level make up a left path with the
first one of them (from the right) as the root. From
each node on this path there is a right path of 2nd
level pointers. Finally, from each node on a right path
there is a left path of 1st level pointers.

More detailed: The length of the 3rd level path,
that is the total number of 3rd level pointers, is
|n'/3—1]. The right subtree of the node at position i*
contains the elements between this node and its parent
(at position (i + 1)®). The number of elements in this
interval (including position %) is 3i2 4+ 3i + 1 and each
2nd level pointer in the interval points ¢ positions for-
ward. Thus, starting from position 43 there is a path
of right pointers consisting of 3¢+ 3 2nd level pointers,
ending at position (i +1)3—1. Finally, from each node
on the right path there is a left path of length i — 1,
consisting of 1st level pointers.

The elements at positions [n'/%]% +1...n make up
the right subtree of the root. Following a chain of 2nd
level pointers from the root, we may not end up at
the very last node of the doubly-linked list. Thus, the
rightmost path in the tree may contain a tail of up to
[n1/3] nodes.

We call this tree an embedded binary search tree.
Note the similarity between this structure and a
threaded binary search tree [2]. In both cases the un-
used pointers at the bottom of the tree point to nodes
instead of being nil pointers. An example of a jump
list and its embedded binary search tree is given in
Figure 1.

The jump list as described here requires 4 pointers
per node. It is possible to use them either by speci-
fying which pointers to use on each level, or by spec-
ifying which pointers to use as left and right pointers
in the embedded tree. If desired, with some effort the
number of pointers per node may be decreased to 3.

Lemma 1 A search in a jump list (using the embed-
ded binary search tree) requires O(n'/®) time in the
worst case.

Proof: Each root-to-leaf path down the embedded
binary search tree is composed of three parts, corre-
sponding to the three levels of the pointer structure.
Each part has a length of O(n'/3). From this the
lemma follows. O
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Figure 1: A jump list containing 74 elements and the embedded
binary search tree.

3.2 Maintenance Algorithms

When inserting/deleting an element, we follow a
search path down the embedded binary search tree in
order to find the update position. Then, the element
is added to/removed from the 1st level list. The rest of
the structure is adjusted by changing some 2nd level
pointers in the neighbourhood of the update position
and reconstructing a part (maybe all) of the 3rd level
list.

In detail, during an insertion the data structure is
modified in the following way:

1. The new element is inserted into the 1st level list
(at position p);

2. A 2nd level pointer outgoing from p is created and
each 2nd level pointer outgoing from a node to the
left of p and ending to the right of p is shifted one
position to the left, that is, it points now to the
left neighbor of its previous target node.

3. The 3rd level list is reconstructed such that each
node in this list to the right of p is replaced by its
predecessor. That is, the 3rd level pointer jump-
ing over the insertion position has to be “short-

ened” by one and as a result of this all other 3rd
level pointers to the right have to be shifted by
one position to the left. If the tail becomes too
long, eventually one new 3rd level pointer has to
be created also. At each position where the 3rd
level list is shifted we also have to change the 2nd
level pointer.

The deletion algorithm works analogously by per-
forming an insertion “backwards”.

Example: If we insert a new element between posi-
tion 40 and 41 into the structure in Figure 1, we have
to change the pointers that are marked by bold lines
in Figure 2. The new pointers that occur are drawn
downwards. m|

Lemma 2 The cost of an update is O(n'/3) in the
worst case.

Proof: From the description of the maintenance al-
gorithms it follows that after locating the update po-
sition, O(1) pointer changes are made on the first level
and O(n'/3) are made on the other two levels. Each
pointer change requires O(1) time, except when the
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Figure 2: Performing an insertion at position 41 in the data struc-

ture of Figure 1.

length of the 3rd level path is increased. In that case
a search is required to locate the last node. The total
cost of this is O(n'/3), which completes the proof. O

Altogether we have

Theorem 1 Jump lists are a representation of dictio-
naries with the following properties:

o they are size- and order-unique;
e q dictionary of size n requires O(n) space;

o the cost to perform a search, insert or delete op-
eration in o jump list which stores a dictionary of
size n is O(n'/3).

Note that the operation of exchanging elements be-
tween nodes has not been used in our upper bound
construction. We only use creation or deletion of
nodes and pointer changes. Neither are there any
“hidden” costs required to locate nodes where pointer
changes should be made. All these locations can be
found within the time bound of O(n'/3).

4 A Lower Bound on Unique Repre-
sentation

Below we give a lower bound on maintaining size-
and order-unique representations of dictionaries. Re-

call that we presuppose graphs with bounded outde-
gree (= k) only. We assume the size of the graph to be
constant and as an update we regard the operation of
deleting one element and inserting another. That is,
after an update the same graph must occur, only the
stored elements may change. Recall also that there
is a one-to-one mapping between nodes and elements.
Thus, when arguing about the graph we may argue
about elements connected by edges instead of nodes.

We say that element y is a parent of element z if
there is an edge from y to z. The set of all z’s parents
is called the parent-set of x.

By the rank of an element z, denoted rank(z),
we mean the rank of z in the stored set. Let =z,
y, and z be three elements such that rank(z) <
rank(y) < rank(z). An edge from z to z has a length
of rank(z) — rank(z) and covers the element y. An
edge from z to z has a negative length (and does also
cover y). The incoming pattern of an element is given
by the lengths of its incoming edges. Since the graph
is unique, the incoming pattern of an element z is ex-
actly determined by the rank of x. Thus, each rank is
associated with a specific incoming pattern. We say
that a rank r is critical if the pattern associated with r
differs from the pattern associated with r + 1. An ele-
ment that has a critical rank must change its incoming
pattern when an update causes its rank to increase by
one.
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Figure 3: A graph.

Note the difference between parent-sets and incom-
ing pattern. The parent-set of z tells which elements
are the parents of x, while the incoming pattern of x
deals with differences in ranks between x and its par-
ents.

In a graph G, the longest distance from the root to
an element is denoted D¢, the largest number of nodes
covering one node is denoted Cg, and the number of
critical ranks is denoted Pg.

Example: In figure 3 is shown a graph G with k = 3.
The nodes are labeled with the ranks of the contained
elements. The root is 2. The parent-set of element 3
is the set of elements 1 and 4. Elements 3 and 4 have
the same incoming pattern (edges of lengths 2 and -1).
This implies that the rank 3 is not critical, while all
other ranks (except the last rank) are critical. All ele-
ments can be reached from the root by traversing two
edges, thus Dg = 2. The element 3 is covered by four
edges, (15, 2—4, 2—5, and 4—2). However, two of
the edges lead to the same element, so the number of
elements covering 3 is three (2, 4, and 5). This is the
maximum number of covering elements, thus Cg = 3.
O

We start by showing some properties of a unique
graph representation in Lemmas 3 and 4. Next, in
Lemma 5 we compute the cost of structural changes.
In Lemmas 6 - 9 we show that “bad” updates will
enforce a high restructuring cost. Finally, the lower
bound is given in Theorem 2.

Lemma 3 If 0 # 3DgCs < n, then in each set
of 3DgCqg consecutive elements not containing the
root there is at least one element with a critical rank.

Proof: If there is no critical rank all elements must
have the same incoming pattern. We prove the lemma
by showing that this may not occur.

First, assume that to each element there is an edge
of length L, L. > Cg. Then, the first element in the set
is covered by at least Cg+1 elements. In a similar way,
if to each element there is an edge of length L, L <
—Cg, the last element in the set is covered by at least
Cg + 1 elements. In both cases we get a contradiction
with the definition of Cg.

Second, assume that to each element there is no
edge longer than Cg. Let p be the element with the
median rank in the set. In order to reach p from out-
side the set we must pass a distance of 1.5D5Cg. Do-
ing this by following edges of length at most Cg, we
would have to follow more than % > D¢ edges.
We get a contradiction with the definition of Dg.

Thus, our assumption that all elements have the
same incoming pattern leads to a contradiction. This
completes the proof. O

Lemma 4 The following is true for a graph G con-
taining n elements:

DG - CG - PG = Q(n) (1)

Proof: If Cg = 0 the graph G must be a linked list
with Dg = Q(n). Hence, w. 1. 0. g. we may assume
that Cg > 0. From Lemma 3 we know that all (but
one) sets of 3DgC¢ consecutive elements contain one
element with a critical rank. This gives that
n
Pe>-——"
G = 3DaCq
From this the proof follows immediately. O

1 2)

Lemma 5 To change the parent-sets of m elements
requires a cost of Q(m).

Proof: We prove the lemma by showing that
each restructuring operation changes the parent-set of
O(k) = O(1) elements. From the model of computa-
tion we have the following possible operations:

e create a node. This operation does not affect the
parent-set of any element. (If we allow the new
node to have k outgoing edges, the number of
changed parent-sets would be k).

e remove a node. This operation affects the parent-
set of at most k + 1 elements: the element that
was in the node and the elements reached from
that node.

e change/add/remove one outgoing edge from a
node (pointer change). This operation changes
the parent-set of at most 2 elements: one looses
a parent and one gets a new one.



e exchange elements between two nodes. This op-
eration changes the parent-set of at most 2k + 2
elements: the two exchanged elements and their
parents.

Thus, each operation changes the parent-set of O(1)
elements, which completes the proof. O

Lemma 6 Let © be an element with critical rank.
Then, after the following update

1. delete the largest element
2. insert a new smallest element
x can not have the same parent-set as before.

Proof: Let X denote the set of n — 1 (consecutive)
elements that is stored in the graph both before and
after the update.

Assume that the parent-set of x is the same be-
fore and after the update. This implies that neither
the deleted element nor the inserted element can be
a parent of z. Thus, the parent-set only consists of
elements in X. (Note that x also belongs to X.)

The update described in the lemma will cause the
rank of each element in X to increase by 1, and hence
the difference in rank between any two elements in X
will be the same after the update as before the update.
Thus, if  has the same parent-set before and after the
update, each incoming edge will have the same length,
and thus the incoming pattern of x will be the same.
We get a contradiction with the definition of a critical
rank, which completes the proof. O

Lemma 7 There is an update which requires a cost
of Q(Pe).

Proof: In order to prove the lemma we delete the
largest element and insert a new smallest element.
This implies that the rank of each element (except the
first one) will increase by one. Thus, from Lemma 6
follows that each element that had a critical rank be-
fore the update must change its parent-set. This to-
gether with Lemma 5 completes the proof. O

Lemma 8 Let x and y be two elements, rank(z) <
rank(y), such that © is y’s smallest parent. Then, after
the following update

1. delete the smallest element

2. insert a new element between x and y (or any-
where if x was the smallest element)

the parent-set of y must be different than before the
update.

Proof: The lemma is trivially true if z was the small-
est element, and therefore deleted.

Otherwise, we prove the lemma by showing that
after the described update, there can not be an edge
from z to y.

After the described update, the rank of y is un-
changed, and thus y has the same incoming pattern.
This implies that the difference in rank between y and
its smallest parent (i. e. the length of y’s longest in-
coming edge) must be the same as before the update.
However, after the update the rank of = is decreased
by one. Thus, if there would be an edge from x to y
after the update, the length of the longest incoming
edge of y would change. We get a contradiction, which
completes the proof. O

Note that there is a symmetric version of Lemma 8
concerning y’s largest parent (with a larger rank). Be-
cause of the w.l.0.g.-assumption below, this symmetric
lemma is not needed.

Lemma 9 There is an update which requires a cost
of UCq).

Proof: W.1 o. g. we assume that there is an ele-
ment p which is covered by ©(Cg) elements ¢, g2, - - -
with larger ranks. In order to prove the lemma we
delete the smallest element and insert a new element
immediately to the right of p. This will have the effect
that the situation described in Lemma 8 will occur for
each element ¢;. This fact together with Lemma 5
completes the proof. O

Theorem 2 For any size- and order-unique graph
representation of a dictionary there is a dictionary op-
eration which requires Q(n'/3) time.

Proof: From Lemma 4 follows that at least one
of the three Dg, Cg, and Pg has to be Q(n'/3).
Since the search cost is Q(D¢g) and the update cost
is Q(Max(Cg, Pg)), either a search or an update has
to require Q(n'/?) time. O

Note that if an update involves a search for the up-
date position, then the update requires Q(n'/3) time.

Note also that our lower bound for size-uniqueness
may be transformed to be valid for set-uniqueness by
using Ramsey’s theorem [1] in the same way as Sundar
and Tarjan [4] did.



5 Comments

In the presense of the claimed lower bounds for
unique representations given in [3, 4], stating that
O(y/n) time is required per dictionary operation, the
new upper bound presented above might seem surpris-
ing. We might say that the given lower bounds in the
referred papers are true in some special cases, while
the claimed general implications are not.

The lower bound given by Snyder [3] is based on
the implicit assumption that changing the status of
an element from being stored in a unary node to be-
ing stored in a binary node (or vice versa) requires
(1) time. As we have shown, this change can be
achieved without explicitly performing any operation
at the node. Therefore, Snyder‘s assumption seems to
be too restrictive.

The lower bound by Sundar and Tarjan, stating
that ©(y/n) CONS operations are required per up-
date, is based on the following argument: By chosing
a “bad” sequence of updates in a uniquely represented
binary search tree we can at each update enforce the
occurrence of (y/n) new subtrees, which have never
existed before. From the assumption that each occur-
ring subtree has to be constructed at some moment,
and that the construction requires Q(1) time, a lower
bound of Q(y/n) time per update follows.

The first argument, that Q(y/n) new trees may oc-
cur per update, is true for all uniquely represented
binary search trees, also for the tree presented here.
However, all new subtrees may not need to be explic-
itly constructed. Therefore, the assumption that (1)
cost per new subtree is needed seems also be too re-
strictive in general (though reasonable if CONS is the
only primitive to manipulate trees).

It is possible to extend the jump list used in our
upper bound construction to h-level jump lists for ar-
bitrary h. There is a uniform way to evolve all these
structures, which is illustrated in Figure 4.

(a) The jelly-fish structure by Snyder. Each “tenta-
cle” consists of a circular list.

(b) The same structure with the tree-shaped “body”
replaced by a list.

(c) The edges connecting the top and bottom of each
tentacle is replaced by a forward-link. We achieve
a 2-level jump list.

(d) The 2nd level links are added and we have the
3-level jump list.

(e) Using 6(1"%") levels we get a structure simi-

lar to the one described by Sundar and Tarjan

with a search cost of O(logn) and an update cost
of O(y/n) (details are left as an exercise). The
root is marked by a double circle.
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