
Dynamic Ordered Sets with Exponential Search Trees∗

Arne Andersson
Computing Science Department

Information Technology, Uppsala University
Box 311, SE - 751 05 Uppsala, Sweden

arnea@csd.uu.se http://www.csd.uu.se/∼arnea
Mikkel Thorup

AT&T Labs–Research
Shannon Laboratory

180 Park Avenue, Florham Park
NJ 07932, USA

mthorup@research.att.com

Abstract

We introduce exponential search trees as a novel technique for converting static
polynomial space search structures for ordered sets into fully-dynamic linear space
data structures.

This leads to an optimal bound of O(
√

log n/ log log n) for searching and updating
a dynamic set X of n integer keys in linear space. Searching X for an integer y means
finding the maximum key in X which is smaller than or equal to y. This problem is
equivalent to the standard text book problem of maintaining an ordered set.

The best previous deterministic linear space bound was O(log n/ log log n) due to
Fredman and Willard from STOC 1990. No better deterministic search bound was
known using polynomial space.

We also get the following worst-case linear space trade-offs between the num-
ber n, the word length W , and the maximal key U < 2W : O(min{log log n +
log n/ log W, log log n · log log U

log log log U }). These trade-offs are, however, not likely to be
optimal.

Our results are generalized to finger searching and string searching, providing op-
timal results for both in terms of n.

∗This paper combines results presented by the authors at the 37th FOCS 1996 [2], the 32nd STOC 2000
[5], and the 12th SODA 2001 [6]

1

1 Introduction

1.1 The Textbook Problem

Maintaining a dynamic ordered set is a fundamental textbook problem (see, e.g., [13, Part
III]). Starting from an empty set X, the basic operations are:

Insert (X, x) Add x to X where x is a pointer to a key.

Delete (X, x) Remove x from X, here x is a pointer to a key in X.

Search (X, y) Returns a pointer to a key in X with the same value as y, or return a null
pointer if there is no such key in X.

Predecessor/Successor (X, x) Given that x points at a key in X, return a pointer to the
next smaller/larger key in X (or a null pointer if no such key exists).

Minimum/Maximum (X) Return a pointer to the smallest/largest key in X (or a null
pointer if X is empty).

For keys that can only be accessed via comparisons, all of the above operations can be
supported in O(log n) time1, which is best possible.

However, on computers, integers and floating point numbers are the most common or-
dered data types. For such data types, represented as lexicographically ordered, we can apply
classical non-comparison based techniques such as radix sort and hashing. Historically, radix
sort dates back at least to 1929 [12] and hashing dates back at least to 1956 [15], whereas
the focus on general comparison based methods only date back to 1959 [16].

In this paper, we consider the above basic data types of integers and floating point num-
bers. Our main result is that we can support all the above operations in O(

√
log n/ log log n)

worst-case time, and this common bound is best possible. We achieve this by introducing a
new kind of search trees, called exponential search trees, illustrated in Figure 1.1.

The lower bound follows from a result of Beame and Fich [7]. It shows that even if we
just want to support insert and predecessor operations in polynomial space, one of these two
operations have a worst-case bound of Ω(

√
log n/ log log n), matching our common upper

bound. We note that one can find better bounds and trade-offs for some of the individual
operations. Indeed, we will support min, max, predecessor, successor, and delete operations
in constant time, and only do insert and search in Θ(

√
log n/ log log n) time.

It is also worth noticing that if we just want to consider an incremental dictionary sup-
porting insert and search operations, then our O(

√
log n/ log log n) search time is the best

known with no(1) insert time.

1We use the convention that logarithms are base 2 unless otherwise stated. Also, n is the number of
stored keys

2

Figure 1.1: An exponential search tree. Shallow tree with degrees increasing doubly-
exponentially towards the root.

1.2 Extending the search operation

For an ordered set X, it is common to consider an extended version of searching:

Search (X, y) Returns a pointer to the largest key in X which is smaller than or equal to
y, or null if y is smaller than any key in X.

Thus, if the key is not there, we do not just return a null pointer. It is for this extended
search that we provide our O(

√
log n/ log log n) upper bound. It is also for this extended

search operation that Beame and Fich [7] proved their Ω(
√

log n/ log log n) lower bound.
Their lower bound holds even if the set X is static with an arbitrary representation in
polynomial space. To see that this implies a lower bound for insert or predecessor, we solve
the static predecessor problem as follows. First we insert all the keys of X to create a
representation of X. To search for y in X, we insert y and ask for its predecessor. The lower
bound of Beame and Fich implies that the insert and predecessor operation together takes
Ω(

√
log n/ log log n) time in the worst-case, hence that at least one of the operations has a

worst-case lower bound of Ω(
√

log n/ log log n).
In the rest of this paper, search refers to the extended version whereas the primitive

version, returning null if the key is not there, is referred to as a look-up.
We will always maintain a sorted doubly-linked list with the stored keys and a distin-

guished head and tail. With this list we support successor, predecessor, min, and max
operations in constant time. Then insertion subsumes a search identifying the key after
which the new key is to be inserted. Similarly, if we want to delete a key by value, rather
than by a pointer to a key, a search, or look-up, identifies the key to be deleted, if any.

1.3 Model of computation

Our algorithms run on a RAM that reflects what we can program in standard imperative
programming languages such as C [23]. The memory is divided into addressable words of
length W . Addresses are themselves contained in words, so W ≥ log n. Moreover, we have
a constant number of registers, each with capacity for one word. The basic instructions are:

3

conditional jumps, direct and indirect addressing for loading and storing words in registers.
Moreover we have some computational instructions, such as comparisons, addition, and
multiplication, for manipulating words in registers. We are only considering instructions
available in C [23], and refer to these as standard instructions. For contrast, on the low level,
different processors have quite different computational instructions. Our RAM algorithms
can be implemented in C-code which in turns can be compiled to run on all these processors.

The space complexity of our RAM algorithms is the maximal memory address used, and
the time complexity is the number of instructions performed. All keys are assumed to be
integers represented as binary strings, each fitting in one word (the extension to multi-word
keys is treated in section 7). One important feature of the RAM is that it can use keys to
compute addresses, as opposed to comparison-based models of computation. This feature is
commonly used in practice, for example in bucket or radix sort.

The restriction to integers is not as severe as it may seem. Floating point numbers,
for example, are ordered correctly, simply by perceiving their bit-string representation as
representing an integer. Another example of the power of integer ordering is fractions of
two one-word integers. Here we get the right ordering if we carry out the division with
floating point numbers with 2W bits of precision, and then just perceive the result as an
integer. These examples illustrate how integer ordering can capture many seemingly different
orderings.

1.4 History

At STOC’90, Fredman and Willard [18] surpassed the comparison-based lower bounds
for integer sorting and searching. Their key result was an O(log n/ log log n) amortized
bound for deterministic dynamic searching in linear space. They also showed that the
O(log n/ log log n) bound could be replaced by an O(

√
log n) bound if we allow random-

ization or space unbounded in terms of n. Here time bounds for dynamic searching include
both searching and updates. These fast dynamic search bounds gave corresponding o(n log n)
bounds for sorting. Fredman and Willard asked the fundamental question: how fast can we
search [integers on a RAM]?

In 1992, Willard [37, Lemma 3.3] showed that Fredman and Willard’s construction could
be de-amortized so as to get the same worst-case bounds for all operations.

In 1996, Andersson [2] introduced exponential search trees as a general amortized tech-
nique reducing the problem of searching a dynamic set in linear space to the problem of
creating a search structure for a static set in polynomial time and space. The search time
for the static set essentially becomes the amortized search time in the dynamic set. From
Fredman and Willard [18], he essentially got a static search structure with O(

√
log n) search

time, and thus he obtained an O(
√

log n) amortized time bound for dynamic searching in
linear space.

In 1999, Beame and Fich showed that Θ(
√

log n/ log log n) is the exact complexity of
searching a static set using polynomial space and preprocessing time [7]. Using the above
exponential search trees, they got an Θ(

√
log n/ log log n) amortized cost for dynamic search-

ing in linear space.

4

Finally, in 2000, Andersson and Thorup [5] developed a worst-case version of exponential
search trees, giving an optimal O(

√
log n/ log log n) worst-case time bound for dynamic

searching. This article is the combined journal version of [2, 5, 6]. In particular it describes
the above mentioned exponential search trees, both the simple amortized ones from [2] and
the worst-case ones from [5].

1.5 Bounds in terms of the word length and the maximal key

Besides the above mentioned bounds in terms of n, we get the following worst-case linear
space trade-offs between the number n, the word length W , and the maximal key U < 2W :
O(min{log log n + log n/ log W, log log n · log log U

log log log U
}). The last bound should be compared

with van Emde Boas’ bound of O(log log U) [34, 35] that requires randomization (hashing)
in order to achieve linear space [26].

1.6 AC0 operations

As an additional challenge, Fredman and Willard [18] asked how quickly we can search on a
RAM if all the computational instructions are AC0 operations. A computational instruction
is an AC0 operation if it is computable by an WO(1)-sized constant depth circuit with O(W)
input and output bits. In the circuit we may have negation, and-gates, and or-gates with
unbounded fan-in. Addition, shift, and bit-wise Boolean operations are all AC0 operations.
On the other hand, multiplication is not. Fredman and Willard’s own techniques [18] were
heavily based on multiplication, but, as shown in [4] they can be implemented with AC0

operations if we allow some non-standard operations that are not part of the usual instruction
set. However, as mentioned previously, here we only allow standard operations, defined as
RAM operations available in C [23].

Our O(
√

log n/ log log n) search structure is strongly based on multiplication. So far,
even if we allow amortization and randomization, no search structure using standard AC0

operations has been presented using polynomial space and o(log n) time, not even for the
static case. Without requirements of polynomial space, Andersson [1] has presented a de-
terministic worst-case bound of O(

√
log n). In this paper, we will present a linear space

worst-case time bound of O((log n)3/4+o(1)) using only standard AC0 operations, thus sur-
passing the O(log n) bound even in this restricted case.

1.7 Finger searching and finger updates

By finger search we mean that we can have a “finger” pointing at a stored key x when
searching for a key y. Here a finger is just a reference returned to the user when x is inserted
or searched for. The goal is to do better if the number q of stored keys between x and y is
small.

We also have finger updates. For a finger insertion, we are given a finger to the key after
which the new key is to be inserted. To implement a regular (non-finger) insertion of x, we

5

can first search x and then use the returned pointer as the finger. The finger delete is just
a regular delete as defined above, i.e. we are given a pointer to the key to be deleted.

In the comparison-based model of computation Dietz and Raman [14] have provided
optimal bounds, supporting finger searches in O(log q) time while supporting finger updates
in constant time. Brodal et al. [9] managed to match these results on a pointer machine.

In this paper we present optimal bounds on the RAM; namely O(
√

log q/ log log q) for
finger search with constant time finger updates. Also, we present the first finger search
bounds that are efficient in terms of the absolute distance |y − x| between x and y.

1.8 String searching

We will also consider the case of string searching where each key may be distributed over
multiple words. Strings are then ordered lexicographically. One may instead be interested in
variable length multiple-word integers where integers with more words are considered larger.
However, by prefixing each integer with its length, we reduce this case to lexicographic string
searching.

Generalizing search data structures for string searching is nontrivial even in the simpler
comparison-based setting. The first efficient solution was presented by Mehlhorn [25, §III].
While the classical method requires weight-balanced search structures, our approach contains
a direct reduction to any unweighted search structure. With inspiration from [2, 5, 7, 25] we
show that if the longest common prefix between a key y and the stored keys has ` words,
we can search y in O(` +

√
log n/ log log n) time, where n is the current number of keys.

Updates can be done within the same time bound. Assuming that we can address the stored
keys, our extra space bound is O(n).

The above search bound is optimal, for consider an instance of the 1-word dynamic
search problem, and give all keys a common prefix of ` words. To complete a search we
both need to check the prefix in O(`) time, and to perform the 1-word search, which takes
Ω(` +

√
log n/ log log n) [7].

Note that one may think of the strings as divided into characters much smaller than
words. However, if we only deal with one such character at the time, we are not exploiting
the full power of the computer at hand.

1.9 Techniques and main theorems

Our main technical contribution is to introduce exponential search trees providing a general
reduction from the problem of maintaining a worst-case dynamic linear spaced structure to
the simpler problem of constructing static search structure in polynomial time and space.
For example, the polynomial construction time allows us to construct a dictionary determin-
istically with look-ups in constant time. Thus we can avoid the use of randomized hashing
in, e.g., a van Emde Boas’ style data structure [34, 18, 26]. The reduction is captured by
the following theorem:

6

Theorem 1 Suppose a static search structure on d integer keys can be constructed in
O(dk−1), k ≥ 2, time and space so that it supports searches in S(d) time. We can then
construct a dynamic linear space search structure that with n integer keys supports insert,
delete, and searches in time T (n) where

T (n) ≤ T (n1−1/k) + O(S(n)). (1)

The reduction itself uses only standard AC0 operations.

We then prove the following result on static data structures:

Theorem 2 In polynomial time and space, we can construct a deterministic data structure
over d keys supporting searches in O(min{√log d, log log U, 1 + log d

log W
}) time where W is the

word length, and U < 2W is an upper bound on the largest key. If we restrict ourselves to
standard AC0 operations, we can support searches in O((log d)3/4+o(1)) worst-case time per
operation.

The
√

log d and log log U bounds above have been further improved by Beame and Fich:

Theorem 3 (Beame and Fich [7]) In polynomial time and space, we can
construct a deterministic data structure over d keys supporting searches in
O(min{

√
log d/ log log d, log log U

log log log U
}) time.

Applying the recursion from Theorem 1, substituting S(d) with (i) the two bounds in Theo-
rem 3, (ii) the last bound in the min-expression in Theorem 2, and (iii) the AC0 bound from
Theorem 2, we immediately get the following four bounds:

Corollary 4 There is a fully-dynamic deterministic linear space search structure supporting
insert, delete, and searches in worst-case time

O


min





√
log n/ log log n

log log n · log log U
log log log U

log log n + log n
log W






 (2)

where W is the word length, and U < 2W is an upper bound on the largest key. If we restrict
ourselves to standard AC0 operations, we can support all operations in O((log n)3/4+o(1))
worst-case time per operation.

It follows from the lower bound by Beame and Fich [7] that our O(
√

log n/ log log n) bound
is optimal.

1.9.1 Finger search

A finger search version of Theorem 1 leads us to the following finger search version of Corol-
lary 4:

7

Theorem 5 There is a fully-dynamic deterministic linear space search structure that sup-
ports finger updates in constant time, and given a finger to a stored key x, searches a key
y > x in time

O


min





√
log q/ log log q

log log q · log log(y−x)
log log log(y−x)

log log q + log q
log W








where q is the number of stored keys between x and y. If we restrict ourselves to AC0

operations, we still get a bound of O((log q)3/4+o(1)).

1.9.2 String searching

We give a general reduction from string searching to 1-word searching:

Theorem 6 For the dynamic string searching problem, if the longest common prefix between
a key x and the other stored keys has ` words, we can insert, delete, and search x in O(` +√

log n/ log log n) time, where n is the current number of keys. In addition to the stored keys
themselves, our space bound is O(n).

1.10 Contents

First, in Section 2, we present a simple amortized version of exponential search trees; the
main purpose is to make the reader understand the basic mechanisms. Then, in Section 3
we give the worst-case efficient version, which require much more elaborate constructions. In
Section 4 we construct the static search structures to be used in the exponential search tree.
In Section 5 we reduce the update time to a constant in order to support finger updates. In
Section 6, we describe the data structure for finger searching. In Section 7, we describe the
data structure for string searching. In Section 8 we give examples of how the techniques of
this paper have been applied in other work. Finally, in Section 9, we finish with an open
problem.

2 The main ideas and concepts in an amortized setting

Before presenting our worst-case exponential search trees, we here present a simpler amor-
tized version from [2], converting static data structures into fully-dynamic amortized search
structures. The basic definitions and concepts of the amortized construction will be assumed
for the more technical worst-case construction. As this version of exponential search trees
is much simpler to describe than the worst-case version, it should be of high value for the
interested reader as it hopefully will provide a good understanding of the main ideas.

8

2.1 Exponential search trees

An exponential search tree is a leaf-oriented multiway search tree where the degrees of the
nodes decrease doubly-exponentially down the tree. By leaf-oriented, we mean that all
keys are stored in the leaves of the tree. Moreover, with each node, we store a splitter for
navigation: if a key arrives at a node, searching locally among the splitters of the children
determines which child it belongs under. Thus, if a child v has splitter s and its successor
has splitter s′, a key y belongs under v if y ∈ [s, s′). We require that the splitter of an
internal node equals the splitter of its leftmost child.

We also maintain a doubly-linked list over the stored keys, providing successor and pre-
decessor pointers as well as maximum and minimum. A search in an exponential search tree
may bring us to the successor of the desired key, but if the found key is too large, we just
return its predecessor.

In our exponential search trees, the local search at each internal node is performed using
a static local search structure, called an S-structure. We assume that an S-structure over d
keys can be built in O(dk−1) time and space and that it supports searches in S(d) time. We
define an exponential search tree over n keys recursively:

• The root has degree Θ(n1/k).

• The splitters of the children of the root are stored in a local S-structure with the
properties stated above.

• The subtrees are exponential search trees over Θ(n1−1/k) keys.

It immediately follows that searches are supported in time

T (n) = O
(
S

(
O(n1/k)

))
+ T

(
O(n1−1/k)

)

= O
(
S

(
O(n1/k)

))
+ O

(
S

(
O(n(1−1/k)/k)

))
+ T

(
O(n(1−1/k)2)

)

= O (S (n)) + T
(
n1−1/k

)
.

Above, the first equation follows by applying the recurrence formula to itself. For the second
equation, we use that k > 1. Then for n = ω(1), we have n ≥ O(n1/k) ≥ O(n(1−1/k)/k) and
n1−1/k ≥ O(n(1−1/k)2). For n = O(1), we trivially have T (n) = O(1) = O (S (n)).

Next we argue that the space of an exponential search tree is linear. Let n be the
total number of keys, and let ni be the number of keys in the ith subtree of the root.
Then ni = Θ(n1−1/k) and

∑
i ni = n. The root has degree d = Θ(n1/k) and it uses space

O
(
dk−1

)
= O

(
n1−1/k

)
. Hence the total space C(n) satisfies the recurrence:

C(n) = O(n1−1/k) +
∑

i

C(ni) where
∑

i

ni = n and ∀i : ni = O(n1−1/k)

⇒ C(n) = O(n).

Since O(dk−1) bounds not only the space but also the construction time for the S-structure
at a degree d node, the same argument gives that we can construct an exponential search
tree over n keys in linear time.

9

2.2 Updates

Recall that an update is implemented as a search, as described above, followed by a finger
update. A finger delete essentially just removes a leaf. However, if the leaf was the first child
of its parent, its splitter has to be transferred to the new first child. For a finger insert of a
key y, we get a reference (finger) to the key x after which y is to be inserted. We then also
have to consider the successor z of x. Let s be the splitter of z. If y < s, we place y after x
under the parent of x, and let y be its own splitter. If y ≥ s, we place y before z under the
parent of z, and give y splitter s and make z its own splitter.

The method for maintaining splitters is illustrated in Figure 2.2. In (a) we see a leaf-
oriented tree-like structure with splitters. Each internal node has the same splitter as its
leftmost child. In (b) we see the tree after deleting leaf 30; we transform the splitter 30 to the
right neighbor. Note that the splitter 30 remains in the tree although the key 30 has been
deleted. Finally (c), when inserting 35, we will be given a reference to the nearest smaller
keys, that is 20. Since 35 is larger than the splitter of the successor, we place 35 under the
successor’s parent and adjust the splitters accordingly.

Balance is maintained in a standard fashion by global and partial rebuilding. By the
weight, |t|, of a (sub-)tree t we mean the number of leaves in t. By the weight, |v|, of a node
v, we mean the weight of the tree rooted at v. When a subtree gets too heavy, by a factor of
2, we split it in two, and if it gets too light, by a factor of 2, we join it with its neighbor. By
the analysis above, constructing a new subtree rooted at the node v takes O(|v|) time. In
addition, we need to update the S-structure at v’s parent u, in order to reflect the adding or
removing of a key in u’s list of child splitters. Since u has Θ(|u|1/k) children, the construction
time for u’s S-structure is O((|u|1/k)k−1) = O(|u|1−1/k). By definition, this time is O(|v|).
We conclude that we can reconstruct the subtrees and update the parent’s S-structure in
time linear in the weight of the subtrees.

Exceeding the weight constraints requires that a constant fraction of the keys in a subtree
have been inserted and deleted since the subtree was constructed with proper weight. Thus,
the reconstruction cost is an amortized constant per key inserted or deleted from a tree.
Since the depth of an exponential search tree is O(log log n), the update cost, excluding the
search cost for finding out were to update, is O(log log n) amortized. This completes our
sketchy description of amortized exponential search trees.

3 Worst-case exponential search trees

The goal of this section is to prove the statement of Theorem 1:

Suppose a static search structure on d integer keys can be constructed in O(dk−1),
k ≥ 2, time and space so that it supports searches in S(d) time. We can then
construct a dynamic linear space search structure that with n integer keys supports
insert, delete, and searches in time T (n) where T (n) ≤ T (n1−1/k)+O(S(n)). The
reduction itself uses only standard AC0 operations.

10

Figure 2.2: Maintaining splitters

11

In order to get from the amortized bounds above to worst-case bounds, we need a new type
of data structure. Instead of a data structure where we occasionally rebuild entire subtrees,
we need a multiway tree which is something more in the style of a standard B-tree, where
balance is maintained by locally joining and splitting nodes. By locally we mean that the
joining and splitting is done just by joining and splitting the children sequences. This type
of data structure is for example used by Willard [37] to obtain a worst-case version of fusion
trees.

One problem with the previous definition of exponential search trees is that the criteria
for when subtrees are too large or too small depend on their parents. If two subtrees are
joined, the resulting subtree is larger, and according to our recursive definition, this may
imply that all of the children simultaneously become too small, so they have to be joined,
etc. To avoid such cascading effects of joins and splits, we redefine the exponential search
tree as follows:

Definition 7 In an exponential search tree all leaves are on the same depth, and we define
the height or level of a node to be the unique distance from the node to the leaves descending
from it. For a non-root node v at height i > 0, the weight (number of descending leaves) is
|v| = Θ(ni) where ni = α(1+1/(k−1))i

and α = Θ(1). If the root has height h, its weight is
O(nh).

With the exception of the root, Definition 7 follows our previous definition of exponen-
tial search trees, that is, if v is a non-root node, it has Θ(|v|1/k) children, each of weight
Θ(|v|1−1/k).

In the following, we will use explicit constants
Our main challenge is now to rebuild S-structures in the background so that they remain

sufficiently updated as nodes get joined and split. In principle, this is a standard task
(see e.g. [38]). Yet it is a highly delicate puzzle which is typically either not done (e.g.
Fredman and Willard [18] only claimed amortized bounds for their original fusion trees),
or done with rather incomplete sketches (e.g. Willard [37] only presents a 2-page sketch of
his de-amortization of fusion trees). Furthermore, our exponential search trees pose a new
complication; namely that when we join or split, we have to rebuild not only the S-structures
of the nodes being joined or split, but also the S-structure of their parent. For contrast,
when Willard [37] de-amortizes fusion trees, he actually uses the “atomic heaps” from [19]
as S-structures, and these atomic heaps support insert and delete in constant time. Hence,
when nodes get joined or split, he can just delete or insert the splitter between them directly
in the S-structure of the parent, without having to rebuild it.

In this section, we will present a general quotable theorem about rebuilding, thus making
proper de-amortization much easier for future research.

3.1 Coping with interference between processes: the idea of com-
pensation

Consider a process A that traverses a list. When A begins, the length of the list is m and A
is given m steps to traverse the list, one element per step. Now, assume that between two

12

Figure 3.3: Compensation.

steps of A, another process B adds a new element to the list. Then, in order to ensure that
A will not need any extra step, we let B compensate A by progressing A by one step. This
type of compensation will be used frequently in our worst-case techniques to ensure proper
scheduling.

We illustrate this compensation technique in Figure 3.3. In (a) we see a small tree with
one root and five children, the five children are also linked together in a list. (b) shows
the initial step of splitting the root into two nodes; the three rightmost children should be
redirected to belong to the new node. We initialize a process A of traversing the list of these
three nodes in three steps, changing appropriate pointers. In (c) we have performed one
step of the redirection process, updating the node 30. (d) shows what happen when another
process B splits the child node 70 into two nodes, 70 and 80, while A is not yet finished.
Then, B compensates A by performing one of A’s step. Hence, A will still need only two
steps to finish (e).

3.2 Join and split with postprocessing

As mentioned, we are going to deal generally with multiway trees where joins and splits can-
not be completed in constant time. For the moment, our trees are only described structurally
with a children list for each non-leaf node. Then joins and splits can be done in constant
time. However, after each join or split, we want to allow for some unspecified postprocessing

13

before the involved nodes can participate in new joins and splits. This postprocessing time
will, for example, be used to update parent pointers and S-structures.

The key issue is to schedule the postprocessing, possibly involving reconstruction of static
data structures, so that we obtain good worst-case bounds. We do this by dividing each
postprocessing into local update steps and ensuring that each update only uses a few local
update steps at the same time as each postprocessing is given enough steps to complete. If a
data structure is changed by some other operation before the postprocessing is finished, the
postprocessing will be compensated, and therefore it will always finish within the number of
steps allocated.

To be more specific in our structural description of a tree, let u be the predecessor of v in
their parent’s children list C. A join of u and v means that we append the children list of v
to that of u so that u adopts all these children from v. Also, we delete v from C. Similarly,
a split of a node u at its child w means that we add a new node v after u in the children
list C of u’s parent, that we cut the children list of u just before w, and make the last part
the children list of v. Structural splits and joins both take constant time and are viewed
as atomic operations. In the postprocessing of a join, the resulting node is not allowed to
participate in any joins or splits. In the postprocessing of a split, the resulting nodes are
neither allowed to participate directly in a join or split, nor is the parent allowed to split
between them.

We are now in the position to present our general theorem on worst-case bounds for
joining and splitting with postprocessing (the relation between the constants below and
Definition 7 will be clarified in Lemma 11):

Theorem 8 Given a number series n1, n2, . . ., with n1 ≥ 84, ni+1 > 19ni, we can schedule
split and joins to maintain a multiway tree where each non-root node v on height i > 0 has
weight between ni/4 and ni. A root node on height h > 0 has weight at most nh and at least 2
children, so the root has weight at least nh−1/2. The schedule gives the following properties:

(i) When a leaf v is inserted or deleted, for each node u on the path from v to the root
the schedule uses one local update step contributing to the postprocessing of at most one join
or split involving either u or a neighbor of u. In addition to the local updates, the schedule
spends constant time on each level.

(ii) For each split or join at level i the schedule ensures that we have ni/84 local update
steps available for postprocessing, including one at the time of the split or join.

The above numbers ensure that a node which is neither root nor leaf has at least
(ni/4)/ni−1 = 19/4 > 4 children. If the root node is split, a new parent root is gener-
ated implicitly. Conversely, if the root’s children join to a single child, the root is deleted
and the single child becomes the new root. The proof of Theorem 8 is rather delicate, and
deferred till later. Below we show how to apply Theorem 8 in exponential search trees. As
a first simple application of the schedule, we show how to compute parents.

Lemma 9 Given Theorem 8, the following property can be added to the theorem: the parent
of any node can be computed in constant time.

14

Proof: With each node we maintain a parent pointer which points to the true parent, except
possibly during the postprocessing of a split or join. Split and joins are handled equivalently.
Consider the case of a join of u and v into u. During the postprocessing, we will redirect all
the parent pointers of the old children of v to point to u. Meanwhile, we will have a forward
pointer from v to u so that parent queries from any of these children can be answered in
constant time, even if the child still points to v.

Suppose that the join is on level i. Then v could not have more than ni children. Hence,
if we redirect 84 of their parent pointers in each local update step, we will be done by the end
of the postprocessing of Theorem 8. The redirections are done in a traversal of the children
list, starting from the old first child of v. One technical detail is, however, that we may have
join and split in the children sequence. Joins are not a problem, but each splitting will cause
the number of children below v to increase by one. Therefore, when a split occurs at one
of v’s children, that split process will compensate the process of redirecting pointers from v
by performing one step of the redirection; this compensation will be part of initializing the
split postprocessing.

For our exponential search trees, we will use the postprocessing for rebuilding S-structures.
We will still keep a high level of generality to facilitate other applications, such as, for
example, a worst-case version of the original fusion trees [18].

Corollary 10 Given a number series n0, n1, n2, . . ., with n0 = 1, n1 ≥ 84, ni+1 > 19ni, we
maintain a multiway tree where each node at height i which is neither the root nor a leaf
node has weight between ni/4 and ni. A root node on height h > 0 has weight at most nh

and at least 2 children, so the root has weight at least nh−1/2. Suppose an S-structure for a
node on height i can be built in O(ni−1ti) time. We can then maintain S-structures for the
whole tree supporting a finger update in O(h +

∑h
i=1 ti) time where h is the current height of

the tree.

Proof: In Section 2, we described how a finger update, in constant time, translates into the
insertion or deletion of a leaf. We can then apply Theorem 8.

Our basic idea is that we have an ongoing periodic rebuilding of the S-structure at each
node v. A period starts by scanning the splitter list of the children of v in O(ni/ni−1) time.
It then creates a new S-structure in O(ni−1ti) time, and finally, in constant time, it replaces
the old S-structure with the new S-structure. The whole rebuilding is divided into ni−1/160
steps, each taking O(ti) time.

Now, every time an update contributes to a join or split postprocessing on level i − 1,
we perform one step in the rebuilding of the S-structure of the parent p, which is on level i.
Then Theorem 8 ascertains that we perform ni−1/84 steps on S(p) during the postprocessing.
Hence, we have at least one complete rebuilding of S(p) without the splitter removed by the
join or, in case of a split, with the added splitter.

When two neighboring nodes u and v on level i− 1 join to u, the next rebuilding of S(u)
will automatically include the old children of v. The maintenance of the disappearing node
v, including rebuilding of S(v) when needed, is continued for all updates belonging under

15

the old v; this maintenance is ended when the creation of S(u) for the joined node u is
completed. Furthermore, each step of rebuilding S(v) for the old v will also compensate the
rebuilding of S(u), in this way we make sure that the children of v and u do not experience
any delay in the rebuilding of the S-structure of their parents. Note that S(u) is completely
rebuilt in ni−2/84 steps which is much less than the ni−1 steps we have available for the
postprocessing.

During the postprocessing of the join, we may, internally, have to forward keys between
u and v. More precisely, if a key arrives at v from the S-structure of the parent and S(u)
has been updated to take over S(v), the key is transferred to S(u). Conversely, S(v) is still
in use; if a key arriving at u is larger than or equal to the splitter of v it is transferred to
S(v).

The split is implemented using the same ideas: all updates for the two new neighboring
nodes u and v promote both S(u) and S(v). For S(u), we finish the current rebuilding over
all the children before doing a rebuild excluding the children going to v. By the end of the
latter rebuild, S(v) will also have been completed. If a key arrives at v and S(v) is not ready,
we transfer it to S(u). Conversely, if S(v) is ready and a key arriving at u is larger than or
equal to the splitter of v, the key is transferred to S(v).

Below we establish some simple technical lemmas verifying that Corollary 10 applies to the
exponential search trees from Definition 7. The first lemma shows that the number sequences
ni match.

Lemma 11 With α = max{84(k−1)/k, 19(k−1)2/k} and ni = α(1+1/(k−1))i
as in Definition 7,

then n1 ≥ 84 and ni+1/ni ≥ 19 for i ≥ 1.

Proof: n1 ≥ (84(k−1)/k)1+1/(k−1) = 84 and ni+1/ni = n
1/k
i+1 ≥ n

1/k
2 ≥ α(k/(k−1))2/k ≥ 19.

Next, we show that the S-structures are built fast enough.

Lemma 12 With Definition 7, creating an S-structure for a node u on level i takes O(ni−1)
time, and the total cost of a finger update is O(log log n).

Proof: Since u has degree at most Θ(n
1/k
i), the creation takes O((n

1/k
i)k−1) = O((n

1−1/k
i) =

O(ni−1) time. Thus, we get ti = O(1) in Corollary 10, corresponding to a finger update time
of O(log log n).

Since S(n) = Ω(1), any time bound derived from Theorem 1 is Ω(log log n), dominating our
cost of a finger update.

Next we give a formal proof that the recursion formula of Theorem 1 holds.

Lemma 13 Assuming that the cost for searching in a node of degree d is O(S(d)), the
search time for an n key exponential search tree from Definition 7 is bounded by T (n) ≤
T (n1−1/k) + O(S(n)) for n = ω(1).

16

Proof: Since ni−1 = n
1−1/k
i and since the degree of a level i node is at most 4n

1/k
i , the search

time starting just below the root at level h− 1 is bounded by T ′(nh−1) where nh−1 < n and
T ′(m) ≤ T ′(m1−1/k)+O(S(4m1/k)). Moreover, for m = ω(1), 4m1/k > m, so O(S(4m1/k)) =
O(S(m)).

The degree of the root is bounded by n, so the search time of the root is at most S(n).
Hence our total search time is bounded by S(n) + T ′(nh−1) = O(T (n)). Finally, the O in
O(T (n)) is superfluous because of the O in O(S(n)).

Finally, we prove that exponential search trees use linear space.

Lemma 14 The exponential search trees from Definition 7 use linear space.

Proof: Consider a node v at height i. The number of keys below v is at least ni/4. Since

v has degree at most 4n
1/k
i , the space of the S-structure by v is O((4n

1/k
i)k−1) = O(n

1−1/k
i).

Distributing this space on the keys descending from v, we get O(n
−1/k
i) space per key.

Conversely, for a given key, the space attributed to the key by its ancestors is
O(

∑h
i=0 n

−1/k
i) = O(1).

The above lemmas establish that Theorem 1 holds if we can prove Theorem 8.

3.3 Proving Theorem 8: A game of weight balancing

In order to prove Theorem 8, we consider a game on lists of weights. In relation to Theorem 8,
each list represents the weights of the children of a node on some fixed level. The purpose of
the game is to crystallize what is needed for balancing on each level. Later, in a bottom-up
induction, we will apply the game to all levels.

It is worth noticing that the weight balancing protocol used to prove Theorem 8 relies
on Lemma 9, which in turn relies on Theorem 8. How this is possible without a circular
proof is stated at the end of this section, when describing how to find a path from a leaf to
a root. (These dependencies between lemmas and theorems is the main reason for the order
in which they are presented.)

3.3.1 A Protocol for a Weight Balancing Game

First we define the game on a single list of non-negative integer weights. The players are us
against an adversary. Our goal is to maintain balance in the sense that for some parameter
b, called the latency, we want all weights to be of size Θ(b). More precisely, for some concrete
constants c1 < c2 < c3 < c4, the list is balanced if all weights are in the interval [c1b, c4b].
Initially, the list is neutral in the sense that all weights are in the smaller interval [c2b, c3b].

The goal of the adversary is to upset balance, pushing some weight outside [c1b, c4b]. The
adversary has the first turn, and when it is his turn, he can change the value of an arbitrary
weight by one. He has the restriction that he may not take the sum of all weights in the lists
down below c2b.

17

After the adversary has changed a weight, we get to work locally on balance. We may
join neighboring weights w1 and w2 into one w = w1 + w2, or split a weight w into w1 and
w2. The adversary decides on the values of w1 and w2, but he must fulfill that w1 + w2 = w
and that |w1 − w2| ≤ ∆b. Here ∆ is called the split error.

Each split or join is followed by a postprocessing requiring b steps during which the
involved weights may not participate in any other split or join. When it is our turn, we
get to perform one such step. Moreover, the step may only be performed locally in the
sense of being on a postprocessing involving the weight last changed by the adversary, or a
neighboring weight.

We will now extend the game to a family of lists. This gives the adversary some alter-
natives to the previous weight updates. He may add or remove a neutral list, that is, a list
with all weights in [c2b, c3b]. He may also cut or concatenate lists.

However, the adversary may not do the cuts arbitrarily. He may not cut between two
weights coming out of a split until the split postprocessing is completed. Moreover, we have
the power to tie some neighboring weights, and the adversary cannot cut ties. We ourselves
can only tie and untie the last weight updated by the adversary or one of its neighbors.

An uncuttable segment is a segment of weights that the adversary may not cut. Our
tying of weights is restricted in that for some constant c5 ≥ c4, we have to make sure that
the total weight of any uncuttable segment is at most c5b. In particular, this implies that
no uncuttable segment contains more than c5/c1 = O(1) weights.

A protocol for the balancing game is a winning strategy against any adversary. Also, to
be a protocol it should be efficient identifying its moves in constant time.

Proposition 15 For any latency b, split error ∆, and number µ, we have a protocol for the
balancing game with c1 = µb, c2 = (µ + 3)b + 1, c3 = (2µ + ∆ + 9)b− 1, c4 = (3µ + ∆ + 14)b,
and c5 = (5µ + ∆ + 20)b. In particular, for ∆ = 7 and µ = 21, we assume that neutral lists
have weights strictly between 24b and 58b, and that the total weight of any list is more than
24b. Then we guarantee that all weights stay between 21b and 84b and that the maximum
uncuttable segment is of size at most 132b.

The rest of this section is devoted to the proof of Proposition 15. First we will present a
protocol. Next we will prove that the protocol is the winning strategy of Proposition 15.

We say a weight is involved if it is involved in a split or join postprocessing; otherwise
it is free. Above we mentioned tying of weights preventing the adversary to cut between
them. Our protocol will use tying as follows. If a free weight v has an involved neighbor
w, the protocol may tie v to w. As long as v is free and tied to w, we will do a step of the
postprocessing of w whenever we get an update of v. Then v cannot change much before
the current postprocessing involving w is finished. When w is finished, it is free to join v, or
to start something with the neighbor on the other side.

Let s = 2µ + ∆ + 9 and m = µ + 3. Our protocol is defined by the following rules:

(a) If a free weight gets up to sb, we start splitting it.

(b) If a free weight v gets down to mb and has a free neighbor w, we join v and w, untying
w from any other neighbor.

18

(c) If a free weight v gets down to mb and has no free neighbors, we tie it to any one of
its neighbors. If v later gets back up above mb, it is untied again.

(d) When we finish a join postprocessing, if the resulting weight is ≥ sb, we immediately
start splitting it. If a neighbor was tied to the joined weight, the tie is transferred to
the nearest weight resulting from the split.

If the weight v resulting from the join is < sb and v is tied by a neighbor, we join with
the neighbor that tied v first.

(e) At the end of a split postprocessing, if any of the resulting weights are tied by a
neighbor, it joins with that neighbor. Note here that since resulting weights are not
tied to each other, there cannot be a conflict.

Note that our protocol is independent of legal cuts and concatenations by the adversary,
except in (c) which requires that a free weight getting down to (µ + 3)b has at least one
neighbor. This is, however, ensured by the condition from Proposition 15 that each list has
total weight strictly larger than (µ + 3)b.

Lemma 16

(i) Each free weight is between µb and sb = (2µ + ∆ + 9)b.

(ii) The weight in a join postprocessing is between (m + µ − 1)b = (2µ + 2)b > mb and
(s + m + 1)b = (3µ + ∆ + 13)b > sb.

(iii) In a split postprocessing, the total weight is at most (3µ + ∆ + 14))b and the split
weights are between ((s−∆)/2−1)b = (µ+3.5)b > mb and ((s+m+1+∆)/2+1)b =
(1.5µ + ∆ + 7.5)b < sb.

Proof: First we prove some simple claims.

Claim 16A If (i), (ii), and (iii) are true when a join postprocessing starts, then (ii) will
remain satisfied for that join postprocessing.

Proof: For the upper bound note that when the join is started, none of the involved
weights can be above sb, for then we would have split it. Also, a join has to be initiated
by a weight of size at most mb, so when we start the total weight is at most (s + m)b, and
during the postprocessing, it can increase by at most b.

For the lower bound, both weights have to be at least µb. Also, the join is either initiated
as in (b) by a weight of size mb, or by a tied weight coming out from a join or split, which
by (ii) and (iii) is of size at least mb, so we start with a total of at least (µ + m)b, and we
loose at most b in the postprocessing. 2

Claim 16B If (i), (ii), and (iii) are true when a split postprocessing starts, then (iii) will
remain satisfied for that split postprocessing.

19

Proof: For the lower bound, we know that a split is only initiated for a weight of size at
least sb. Also, during the postprocessing, we can loose at most b, and since the maximal
difference between the two weights is ∆b, the smaller is of size at least (s− 1−∆)/2b.

For the upper bound, the maximal weight we can start with is one coming out from a
join, which by (ii) is at most (s + m + 1)b. Hence the largest weight resulting from the split
is at most ((s + m + 1 + ∆)/2)b. Both of these numbers can grow by at most b during the
split postprocessing. 2

We will now complete the proof of Lemma 16 by showing that there cannot be a first
violation of (i) given that (ii) and (iii) have not already been violated. The only way we can
possibly get a weight above sb is one coming out from a join as in (ii), but then by (d) it is
immediately split, so it doesn’t become free.

To show by contradiction that we cannot get a weight below µb, let w the first weight
getting down below µb keys. When w was originally created by (ii) and (iii), it was of size
> mb, so to get down to µb, there must have been a last time where it got down to mb. It
then tied itself to an involved neighboring weight w′. If w′ is involved in a split, we know
that when w′ is done, the half nearest w will immediately start joining with w as in (e).
However, if w′ is involved in a join, when done, the resulting weight may start joining with
a weight w′′ on the other side. In that case, however, w is the first weight to tie to the new
join. Hence, when the new join is done, either w starts joining with the result, or the result
get split and then w will join with the nearest weight coming out from the split. In the worst
case, w will have to wait for two joins and one split to complete before it gets joined, and
hence it can loose at most 3b = (m− µ)b while waiting to get joined.

Proof of Proposition 15 By Lemma 16, all weights remain between µb and (3µ+∆+13)b.
Concerning the maximal size of an uncuttable segment, the maximal total weight involved
in split or join is (m + s + 2)b, and by (b) we can have a weight of size at most mb tied from
either side, adding up to a total of (3m + s + 2)b = (5µ + ∆ + 20)b. This completes the
proof of Proposition 15.

3.3.2 Applying the protocol

We now want to apply our protocol in order to prove Theorem 8:

Given a number series n1, n2, . . ., with n1 ≥ 84, ni+1 > 19ni, we can schedule
split and joins to maintain a multiway tree where each non-root node v on height
i > 0 has weight between ni/4 and ni. A root node on height h > 0 has weight
at most nh and at least 2 children, so the root has weight at least nh−1/2. The
schedule gives the following properties:

(i) When a leaf v is inserted or deleted, for each node u on the path from v to
the root the schedule uses one local update step contributing to the postprocessing
of at most one join or split involving either u or a neighbor of u. In addition to
the local updates, the schedule spends constant time on each level.

20

(ii) For each split or join at level i the schedule ensures that we have ni/84 local
update steps available for postprocessing, including one at the time of the split or
join.

For each level i < h, the nodes are partitioned into children lists of nodes on level i + 1. We
maintain these lists using the scheduling of Proposition 15, with latency bi = ni/84, split
error ∆ = 7, µ = 21. This gives weights between 21bi = ni/4 and 84bi = ni, as required.
We need to ensure that the children list of a node on level i can be cut so that the halves
differ by at most ∆bi. For i = 1, this is trivial, in that the children list is just a list of leaves
that can be cut anywhere, that is, we are OK even with ∆ = 1. For i > 1, inductively,
we may assume that we have the required difference of ∆bi−1 on level below, and then,
using Proposition 15, we can cut the list on level i with a difference of 132bi−1. However,
bi ≥ 19bi−1, so 132bi−1 ≤ 7bi, as required.

Having dealt with each individual level, three unresolved problems remain:

• To implement splits in constant time, how do we find a good place to cut the children
list?

• How does the protocol apply as the height of the tree changes?

• How do we actually find the nodes on the path from the leaf v to the root?

Splitting in constant time For each node v on level i, our goal is to maintain a good
cut child in the sense that when cutting at that child, the lists will not differ by more than
∆bi. We will always maintain the sum of the weights of the children preceding the cut child,
and comparing that with the weight of v tells us if it is at good balance. If an update makes
the preceding weight too large, we move to the next possible cut child to the right, and
conversely, if it gets too small, we move the cut child to the left. A possible cut is always at
most 4 children away, so the above shifts only take constant time. Similarly, if the cut child
stops being cutable, we move in the direction that gives us the best balance.

When a new list is created by a join or a split, we need to find a new good cut child. To
our advantage, we know that we have at least bi update steps before the cut child is needed.
We can therefore start by making the cut child the rightmost child, and every time we receive
an update step for the join, we move to the right, stopping when we are in balance. Since the
children list is of length O(ni/ni−1), we only need to move a constant number of children to
the right in each update step in order to ensure balance before the postprocessing is ended.

Changing the height A minimal tree has a root on height 1, possibly with 0 children.
If the root is on height h, we only apply the protocol when it has weight at least 21bh,
splitting it when the protocol tells us to do so. Note that there is no cascading effect, for
before the split, the root has weight at most 84bh, and this is the weight of the new root
at height h + 1. However bh ≤ bh+1/19, so it will take many updates before the new root
reaches the weight 21bi+1. The S-structure and pointers of the new root are created during
the postprocessing of the split of the old root. Conversely, we only loose a root at height

21

h + 1 when it has two children that get joined into one child. The cleaning up after the old
root, i.e. the removal of its S-structure and a constant number of pointers, is done in the
postprocessing of the join of its children. The new root starts with weight at least 21bh, so
it has at least 21bh/84bh−1 ≥ 19/4 > 4 children. Hence it will survive long enough to pay
for its construction.

Finding the nodes on the path from the leaf v to the root The obvious way to find
the nodes on the path from the leaf v to the root is to use parent pointers, which according
to Lemma 9 can be computed in constant time. Thus, we can prove Theorem 8 from Lemma
9. The only problem is that we used the schedule of Theorem 8 to prove Lemma 9. To break
the circle, consider the first time the statement of Theorem 8 or of Lemma 9 is violated. If
the first mistake is a mistaken parent computation, then we know that the scheduling and
weight balancing of Theorem 8 has not yet been violated, but then our proof of Lemma 9
based on Theorem 8 is valid, contradicting the mistaken parent computation. Conversely, if
the first mistake is in Theorem 8, we know that all parents computed so far were correct,
hence that our proof of Theorem 8 is correct. Thus there cannot be a first mistake, so we
conclude that both Theorem 8 and Lemma 9 are correct.

4 Static search structures

In this section, we will prove Theorem 2:

In polynomial time and space, we can construct a deterministic data structure
over d keys supporting searches in O(min{√log d, log log U, 1+ log d

log W
}) time where

W is the word length, and U < 2W is an upper bound on the largest key. If
we restrict ourselves to standard AC0 operations, we can support searches in
O((log d)3/4+o(1)) worst-case time per operation.

To get the final bounds in Corollary 4, we actually need to improve the first bound in the
min-expression to O(

√
log n/ log log n) and the second bound to O(log log U/ log log log U).

However, the improvement is by Beame and Fich [7]. We present our bounds here because
(i) they are simpler (ii) the improvement by Beame and Fich is based on our results.

4.1 An improvement of fusion trees

Using our terminology, the central part of the fusion tree is a static data structure with the
following properties:

Lemma 17 (Fredman and Willard) For any d, d = O
(
W 1/6

)
, A static data structure con-

taining d keys can be constructed in O (d4) time and space, such that it supports neighbor
queries in O(1) worst-case time.

22

Fredman and Willard used this static data structure to implement a B-tree where only
the upper levels in the tree contain B-tree nodes, all having the same degree (within a
constant factor). At the lower levels, traditional (i.e. comparison-based) weight-balanced
trees were used. The amortized cost of searches and updates is O(log n/ log d + log d) for
any d = O

(
W 1/6

)
. The first term corresponds to the number of B-tree levels and the second

term corresponds to the height of the weight-balanced trees.
Using an exponential search tree instead of the Fredman/Willard structure, we avoid the

need for weight-balanced trees at the bottom at the same time as we improve the complexity
for large word sizes.

Lemma 18 A static data structure containing d keys can be constructed in O (d4) time and

space, such that it supports neighbor queries in O
(

log d
log W

+ 1
)

worst-case time.

Proof: We just construct a static B-tree where each node has the largest possible degree
according to Lemma 17. That is, it has a degree of min

(
d,W 1/6

)
. This tree satisfies the

conditions of the lemma.

Corollary 19 There is a data structure occupying linear space for which the worst-case cost

of a search and update is O
(

log n
log W

+ log log n
)

Proof: Let T (n) be the worst-case cost. Combining Theorem 1 and Lemma 18 gives that

T (n) = O

(
log n

log W
+ 1 + T

(
n4/5

))
.

4.2 Tries and perfect hashing

In a binary trie, a node at depth i corresponds to an i-bit prefix of one (or more) of the
keys stored in the trie. Suppose we could access a node by its prefix in constant time by
means of a hash table, i.e. without traversing the path down to the node. Then, we could
find a key x, or x’s nearest neighbor, in O(log log U) time by a binary search for the node
corresponding to x’s longest matching prefix. Recall here that U is a bound on the largest
key so log U bounds the maximal key length which may be smaller than the word length W .
At each step of the binary search, we look in the hash table for the node corresponding to a
prefix of x; if the node is there we try with a longer prefix, otherwise we try with a shorter
one.

The idea of a binary search for a matching prefix is the basic principle of the van Emde
Boas tree [34, 35, 36]. However, a van Emde Boas tree is not just a plain binary trie
represented as above. One problem is the space requirements; a plain binary trie storing d
keys may contain as much as Θ(d log U) nodes. In a van Emde Boas tree, the number of
nodes is decreased to O(d) by careful optimization.

In our application Θ(d log U) nodes can be allowed. Therefore, to keep things simple, we
use a plain binary trie.

23

Lemma 20 A static data structure containing d keys and supporting neighbor queries
in O(log log U) worst-case time can be constructed in O (d4) time and space. The imple-
mentation can be done without division.

Proof: We study two cases.
Case 1: log U > d1/3. Since W ≥ log U , Lemma 18 gives constant query cost.
Case 2: log U ≤ d1/3. In O(d log U) = o(d2) time and space we construct a binary trie of

height log U containing all d keys. Each key is stored at the bottom of a path of length log U
and the keys are linked together. In order to support neighbor queries, each unary node
contains a neighbor pointer to the next (or previous) leaf according to the inorder traversal.

To allow fast access to an arbitrary node, we store all nodes in a perfect hash table such
that each node of depth i is represented by the i bits on the path down to the node. Since the
paths are of different length, we use log U hash tables, one for each path length. Each hash
table contains at most d nodes. The algorithm by Fredman, Komlos, and Szemeredi [17]
constructs a hash table of d keys in O(d3 log U) time. The algorithm uses division, this can
be avoided by simulating each division in O(log U) time. With this extra cost, and since
we use log U tables, the total construction time is O

(
d3 log3 U

)
= O(d4) while the space is

O(d log U) = o(d2).
With this data structure, we can search for a key x in O(log log U) time by a binary

search for the node corresponding to x’s longest matching prefix. This search either ends at
the bottom of the trie or at a unary node, from which we find the closest neighboring leaf
by following the node’s neighbor pointer.

During a search, evaluation of the hash function requires integer division. However, as
pointed out by Knuth [24], division with some precomputed constant p may essentially be
replaced by multiplication with 1/p. Having computed r = b2log U/pc once in O(log U) time,
we can compute x div p as bxr/2log Uc where the last division is just a right shift log U
positions. Since bx/pc − 1 < bxr/2log Uc ≤ bx/pc we can compute the correct value of
x div p by an additional test. Once we can compute div, we can also compute mod.

An alternative method for perfect hashing without division is the one developed by
Raman [30]. Not only does this algorithm avoid division, it is also asymptotically faster,
O(d2 log U).

Corollary 21 There is a data structure occupying linear space for which the worst-case cost
of a search and the amortized cost of an update is O (log log U log log n) .

Proof: Let T (n) be the worst-case search cost. Combining Lemmas 1 and 20 gives T (n) =
O (log log U) + T

(
n4/5

)
.

4.3 Finishing the proof of Theorem 2

If we combine Lemmas 18 and 20, we can in polynomial time construct a dictionary over d
keys supporting searches in time S(d), where

S(n) = O

(
min

(
1 +

log n

log W
, log log U

))
(3)

24

Furthermore, balancing the two parts of the min-expression gives

S(n) = O
(√

log n
)

.

To get AC0 bound in Theorem 2, we combine some known results. From Andersson’s packed
B-trees [1], it follows that if in polynomial time and space, we build a static AC0 dictionary
with membership queries in time t, then in polynomial time and space, we can build a static
search structure with operation time O(mini{it + log n/i}). In addition, Brodnik et.al. [10]
have shown that such a static dictionary, using only standard AC0 operations, can be built
with membership queries in time t = O((log n)1/2+o(1)). We get the desired static search
time by setting i = O((log n)1/4+o(1)). This completes the proof of Theorem 2, hence
of Corollary 4.

4.4 Two additional notes on searching

Firstly, we give the first deterministic polynomial-time (in n) algorithm for constructing a
linear space static dictionary with O(1) worst-case access cost (cf. perfect hashing).

As mentioned earlier, a linear space data structure that supports member queries (neigh-
bor queries are not supported) in constant time can be constructed at a worst-case cost
O (n2W) without division [30]. We show that the dependency of word size can be removed.

Proposition 22 A linear space static data structure supporting member queries at a worst
case cost of O(1) can be constructed in O (n2+ε) worst-case time. Both construction and
searching can be done without division.

Proof: W.l.o.g we assume that ε < 1/6.
Since Raman has shown that a perfect hash function can be constructed in O (n2W) time

without division) [30], we are done for n ≥ W 1/ε.
If, on the other hand, n < W 1/ε, we construct a static tree of fusion tree nodes with

degree O
(
n1/3

)
. This degree is possible since ε < 1/6. The height of this tree is O(1), the

cost of constructing a node is O
(
n4/3

)
and the total number of nodes is O

(
n2/3

)
. Thus, the

total construction cost for the tree is O (n2).
It remains to show that the space taken by the fusion tree nodes is O(n). According

to Fredman and Willard, a fusion tree node of degree d requires Θ (d2) space. This space
is occupied by a lookup table where each entry contains a rank between 0 and d. A space
of Θ (d2) is small enough for the original fusion tree as well as for our exponential search
tree. However, in order to prove this proposition, we need to reduce the space taken by a
fusion tree node from Θ (d2) to Θ (d). Fortunately, this reduction is straightforward. We
note that a number between 0 and d can be stored in log d bits. Thus, since d < W 1/6, the
total number of bits occupied by the lookup table is O (d2 log d) = O(W). This packing of
numbers is done cost efficiently by standard techniques.

We conclude that instead of Θ (d2), the space taken by the lookup table in a fusion tree
node is O(1) (O(d) would have been good enough). Therefore, the space occupied by a fusion

25

tree node can be made linear in its degree, which implies that the entire data structure uses
linear space.

Secondly, we show how to adapt our data structure according to a natural measure. An
indication of how “hard” it is to search for a key is how large part of it must be read in order
to distinguish it from the other keys. We say that this part is the key’s distinguishing prefix.
(In Section 4.2 we used the term longest matching prefix for essentially the same entity.) For
W -bit keys, the longest possible distinguishing prefix is of length W . Typically, if the input
is nicely distributed, the average length of the distinguishing prefixes is O(log n).

As stated in Proposition 23, we can search faster when a key has a short distinguishing
prefix.

Proposition 23 There exist a linear-space data structure for which the worst-case cost of
a search and the amortized cost of an update is O(log b log log n) where b ≤ W is the length
of the query key’s distinguishing prefix, i.e. the prefix that needs to be inspected in order to
distinguish it from each of the other stored keys.

Proof: We use exactly the same data structure as in Corollary 21, with the same restructur-
ing cost of O(log log n) per update. The only difference is that we change the search algorithm
from the proof of Lemma 20. Applying an idea of Chen and Reif [11], we replace the bi-
nary search for the longest matching (distinguishing) prefix by an exponential-and-binary
search. Then, at each node in the exponential search tree, the search cost will decrease from
O(log W) to O(log b) for a key with a distinguishing prefix of length b.

5 Constant time finger updates

In this section, we will generally show how to reduce the finger update time of O(log log n)
from Lemma 12 to a constant. The O(log log n) bound stems from the fact that when we
insert or delete a leaf, we use a local update step for each level above the leaf. Now, however,
we only want to use a constant number of local update steps in connection with each leaf
update. The price is that we have less local update steps available for the postprocessing of
joins and splits. More precisely, we will prove the following analogue to the general balancing
in Theorem 8:

Theorem 24 Given a number series n1, n2, . . ., with n1 ≥ 84, 23ni < ni+1 < n2
i for i ≥ 1,

we can schedule split and joins to maintain a multiway tree where each non-root node v on
height i > 0 has weight between ni/4 and ni. A root node on height h > 0 has weight at
most nh and at least 2 children, so the root has weight at least nh−1/2. The schedule gives
the following properties:

(i) When a leaf v is inserted or deleted, the schedule uses a constant number of local
update steps. The additional time used by the schedule is constant.

(ii) For each split or join at level i > 1 the schedule ensures that we have at least
√

ni

local update steps available for postprocessing, including one in connection with the split or
join itself. For level 1, we have n1 local update steps for the postprocessing.

26

As we shall see in Section 6, the
√

ni local update steps suffice for the maintenance of
S-structures.

It is important to note that the number series of Theorem 24 is more restrictive than
that of Theorem 8, hence that Theorem 8 works for any number series from Theorem 24.

We will use essentially the same schedule for join and splits as in the proof of Theorem 8.
The schedule of Theorem 8 ascertains that we during the postprocessing of a split or join on
level i have at least ni/84 leaf updates below the involved nodes or their neighbors.

Theorem 8 performs a local update step on the split or join postprocessing in connection
with each of these leaf updates. For Theorem 24, we need to be far more economical with
the local update steps. On the other hand, we only need to make

√
ni ¿ ni/84 local update

steps available for the postprocessing.
As for Theorem 8, we have

Lemma 25 Given Theorem 24, the following property can be added to the theorem: the
parent of any node can be computed in constant time.

Proof: We use exactly the same construction as for Lemma 9. The critical point is that
we for the postprocessing have a number of updates which is proportional to the number of
children of a node. This is trivially the case for level 1, and for higher levels i, the number
of children is at most ni/(ni−1/4) = O(

√
ni).

As in the proof of Theorem 8, we will actually use the parent computation of Lemma 25
in the proof of Theorem 24. As argued at the end of Section 3.3.2 this does not lead to a
circularity.

Level 1 is exceptional, in that we need n1 local update steps for the split and join post-
processing. This is trivially obtained if we with each leaf update make 84 local updates on
any postprocessing involving or tied to the parent. For any other level i > 1, we need

√
ni

local update steps, which is obtained below using a combination of techniques. We will use
a tabulation technique for the lower levels of the exponential search tree, and a scheduling
idea of Levcopoulos and Overmars [27] for the upper levels.

5.1 Constant update cost for small trees on the lower levels

In this subsection, we will consider small trees induced by lower levels of the multiway tree
from Theorem 24.

One possibility for obtaining constant update cost for search structures containing a few
keys would have been to use atomic heaps [19]. However, here we aim at a solution using
only AC0 operations. We will use tabulation. A tabulation technique for finger updates was
also used by Dietz and Raman [14]. They achieved constant finger update time and O(log q)
finger search time, for q intermediate keys, in the comparison based model of computation.
However, their approach has a lower bound of Ω(log q/ log log q) as it involves ranks [20], and
would prevent us from obtaining our O(

√
log q/ log log q) bound. Furthermore, our target

is the general schedule for multiway trees in Theorem 24 which is not restricted to search
applications.

27

Below we present a schedule satisfying the conditions of Theorem 24 except that we need
tables for an efficient implementation.

5.1.1 A system of marking and unmarking

Our basic goal is to do only a constant number of local update steps in connection with each
leaf update. More precisely, when we insert or delete a leaf u, we will do 600 local update
steps. The place for these local update steps is determined based on a system of marking and
unmarking nodes. To place a local update step from a leaf u, we find its nearest unmarked
ancestor v. We then unmark all nodes on the path from u to v and mark v. The local update
step will be used by any postprocessing involving v or a neighbor that v is tied to.

Lemma 26 Let v be a level i node. If there are m markings from leaves below v, then v gets
marked at least (m− 2ni)/2

i+1 times.

Proof: We use a potential function argument. The potential of a marked node is 0 while
the potential of an unmarked node on level i is 2i. The sub-potential of v is the sum of
the potential of all nodes descending from or equal to v. Then, if an update below v does
not unmark v, it decreases the sub-potential by 1. On the other hand, if we unmark v, we
also unmark all nodes on a path from a leaf to v, so we increase the potential by 2i+1 − 1.
When nodes are joined and split, the involved nodes are all marked so the potential is not
increased. The potential is always non-negative. Further, its maximum is achieved if all
nodes are unmarked. Since all nodes have degree at least 4, if all nodes are unmarked, the
leaves carry more than half of the potential. On the other hand, the number of leaves below v
is at most ni, so the maximum potential is less than 2ni. It follows that the number of times
v gets unmarked is more than (m− 2ni)/2

i+1. Hence v gets marked at least (m− 2ni)/2
i+1

times during m local updates from leaves below v.

5.1.2 A restricted weight balancing game

Lemma 26 is only useful if we have many markings below a single node. The markings stem
from leaf updates below that node. For the postprocessing of a split or join, the schedule from
the previous section guaranteed that we would have ni/84 leaf updates below the involved
nodes and their tied neighbors. However, the tied neighbors could change many times during
the postprocessing, and then we cannot guarantee many leaf updates below any single node.

To guarantee many leaf updates below a single node, we make a slight restriction of the
rules of the weight balancing game from Section 3.3.1. Currently, the b step postprocessing
of a join or split may result from any updates to the involved weights and their neighbors.
We now require that the b steps either all come from updates to the involved weights, or
all come from updates to a single tied neighbor. In particular this means that we do not
count steps from a tied neighbor if the neighbor gets untied before the postprocessing has
finished. The lemma below states that the this restriction does not affect the validity of
Proposition 15.

28

Lemma 27 Proposition 15 remains valid for the restricted weight balancing game where
the b postprocessing steps for a join or split have to be provided either from updates to the
involved weights or from updates to a single tied neighbor.

Proof: The protocol is identical to that of Proposition 15. The proof is also unchanged.
The argument that free weights do not change too much only used that if a free weight v
is tied to a weight involved in a postprocessing, then that postprocessing will finish after at
most b updates to v. The argument that weights involved in a postprocessing do not change
too much only used that the postprocessing finishes after at most b updates to the involved
weights. Both of these properties are preserved in the modified game.

Since Proposition 15 remains true, we can use this restricted weight balancing game for the
scheduling of join and splits in Theorem 8. This allows us to pin the ni/84 leaf updates
below a level i split or join postprocessing as follows.

Lemma 28 For each split or join at level i, our schedule ensures that we have at least ni/84
leaf updates either below the involved nodes, or below a single tied neighbor.

The next lemma concludes that our revised schedule satisfies Theorem 24 except that we
lack an efficient implementation.

Lemma 29 We get at least ni/2
i >

√
ni local update steps for a split or join postprocessing

on level i.

Proof: Consider a split or join postprocessing on level i. From Lemma 28 we known that
we have at least ni/84 leaf updates either below the involved nodes, or below a single tied
neighbor. Each leaf update results in 600 node markings, and each time we mark one of the
above nodes, we get a local update step for the postprocessing.

Consider first the simple case where we get ni/84 leaf updates below a single node v
which is either a merged node, or the single tied neighbor. We then get 600 ·ni/84 markings
from below v. By Lemma 26, this leads to (600 · ni/84− 2ni)/2

i+1 > ni/2
i markings of v.

Suppose instead that we get ni/84 leaf updates below two nodes v1 and v2 from a split. Let
m1 and m2 be the markings from below v1 and v2, respectively. Then m1 +m2 ≥ 600 ·ni/84.
By Lemma 26, the total number of markings of v1 and v2 is at least

(m1−2ni)/2
i+1 +(m2−2ni)/2

i+1 = (m1 +m2−4ni)/2
i+1 ≥ (600 ·ni/84−4ni)/2

i+1 > ni/2
i.

Since each of these markings leads to a local update step on the postprocessing, we get at
least ni/2

i local update steps for the postprocessing. Finally ni/2
i >

√
ni because ni > 23i,

as stated in Theorem 24.

29

5.1.3 A tabulation based implementation

The above schedule, with the marking and unmarking of nodes to determine the local update
steps, could easily be implemented in time proportional to the height of the tree, which
is O(log log n). However, to get down to constant time, we will use a special compact
representation of small trees with up to m nodes where m = O(

√
log n). Here we think of

n as a fixed capacity for the total number of stored keys. (While the number of actual keys
change by a factor of 2, we can build a data structure with new capacity in the background.)

Consider an exponential search tree E with at most m nodes, i.e. E is one of the small
trees at the bottom of the main tree. With every node, we associate a unique index below
m, which is given to the node when it is first created by a split. Indices are recycled when
nodes disappear in connection with joins. We will have a table of size m that maps indices
into the nodes in E. Conversely, with each node in E, we will store its index. In connection
with an update, tables will help us find the index to the node to be marked, and then the
table give us the corresponding node.

Together with the tree E, we store a bitstring τE representing the topology of E. More
precisely, τE represents the depth first search traversal of E where 1 means go down and
0 means go up. Hence, τE has length 2m − 2. Moreover, we have a table µE that maps
depth first search numbers of nodes into indices. Also, we have a table γE that for every
node tells if it is marked. We call αE = (τE, µE, γE) the signature of E. Note that we have
≤ 22m ×mm × 2m ×O(m) = mO(m) different signatures.

To facilitate updates in trees, we use one global transformation table. For each of the
signatures, we tabulate what to do in connection with each possible leaf update. More
precisely, for each possible leaf delete, the transformation table takes a signature of the tree
and the index of the leaf to be deleted and produces the signature of the tree without the
leaf. Thus when deleting a leaf, we first find its associated index so that we can use the table
to look up the new signature. Similarly, for a leaf insert, we know the index of a preceding
sibling, or the parent if the leaf is to be a first child. The transformation table produces
both the new signature and the index of the new leaf. This index is stored with the new
leaf. Also, the leaf is stored with the index in the table mapping indices to nodes.

For the local updates, the transformation table takes a signature and the index of a leaf
to do the local update from. The table produces the index of the node to be marked, hence
at which to do a local update. If a split or join is to be done, the table tells the indices of the
involved nodes. For a split, this includes the child at which to split the children sequence.
Also, it includes the index of the new node. Finally, the transformation table produces the
signature of the resulting tree.

The entire transformation table can easily be constructed in mO(m) = o(n) time and
space. Furthermore, each signature occupies O(log n) bits, so we can update the signature
of a tree in constant time.

In Figure 5.4 we give an illustration of the construction with small trees, represented
as signatures. The upper part shows the main parts of the entire data structure; a large
exponential search tree will small tress at the bottom, one transformation table taking care
of updates in all of the bottom trees. The lower part illustrates the structure of a signature.

30

Figure 5.4: Illustration of compact representation of small trees.

Let a be such that na ≤
√

log n < na+1 and set m = na. We may assume that a > 1, for
otherwise n is a constant, and then the whole problem is trivial. We are going to use the
above tabulation to deal with levels 0, ..., a of the multiway tree of Theorem 24. (Note that
if n1 >

√
log n, a = 0, and the construction with small trees is not needed.) With each of the

level a nodes, we store the signature of the descending subtree as well as the table mapping
indices to nodes. Also, with each leaf, we store an ancestor pointer to its level a ancestor.
Then, when a leaf is added, it copies the ancestor pointer of one of its siblings. Via these
ancestor pointers, we get the signature of the tree that is being updated.

A new issue that arises is when level a nodes u and v get joined into u. For this case, we
temporarily allow indices up to 2m− 1, and add m to the indices of nodes descending from
v. A table takes the signatures of the subtrees of u and v and produce the signature for the
joined tree with these new indices. Also, we place a forward pointer from v to u, so that

31

nodes below v can find their new ancestor in constant time. To get the index of a node, we
take its current ancestor pointer. If it points to a node with a forward pointer, we add m
to the stored index. Conversely, given an index, if it is not less than m, this tells us that we
should use the old table from v, though subtracting m from the index.

During the postprocessing of the join, we will traverse the subtree that descended from v.
We move each node w to u, redirecting the ancestor pointers to u and give w a new unique
index below m. Such an index exists because the total size of the tree after the join is at
most m. The indexing is done using a table that suggests the index and the resulting new
signature. The node is then inserted in the table at u mapping indices below m to nodes.
Since we use the same general schedule as that in Theorem 8, we know that we have na/84
updates below the join before the join needs to be completed. In that time, we can make
a post traversal of all the at most na descendants of the join, assigning new indices and
updating parent pointers. We only deal with a constant number of descendants at the time.
For the traversal, we can use a depth first traversal, implemented locally as follows. At each
point in time, we are at some node w, going up or down. We start going down at that first
child of v from when the join was made. If we are going down, we move w to its first child.
If we are going up and there is a sibling to the left, we go to that sibling, going down from
there. If we are going up and there is no sibling to the left, we go up to the parent. At each
node, we check if it has already been moved to u by checking if the ancestor pointer points
to u. If we are about to join or split the traversal node w, we first move w away a constant
number of steps in the above traversal. This takes constant time, and does not affect the
time bounds for join and split.

A level a split of u into u and v is essentially symmetric but simpler in that we do not
need to change the indices. In the traversal of the new subtree under v, we only need to
redirect the ancestor pointers to v and to build the table mapping indices to nodes in the
new subtree.

The traversals for level a join and split postprocessings take constant time for each
descending leaf update. In the next subsection, we are going to do corresponding traversals
for two other distinguished levels.

Including the new tables for index pairs, all tables are constructed in mO(m) = o(n) time
and space. With them, we implement the schedule of Theorem 24 for levels i = 0, .., a using
constant time and a constant number of local update steps per leaf update, yet providing at
least

√
ni local updates for the postprocessing of each join or split.

5.2 The upper levels

We are now going to implement the schedule of Theorem 24 on levels a+1 and above. Recall
that na+1 >

√
log n which we may assume is larger than any concrete constant.

5.2.1 A counter game with small increments and big decrements

To place local updates at levels a + 1 and above, we are going to use the following variant
of a lemma of Overmars and Levcopoulos [27]:

32

Lemma 30 Given p counters, all starting at zero, and an adversary incrementing these
counters arbitrarily. Every time the adversary has made q increments, the increments being
by one at the time, we subtract q from some largest counter, or set it to zero if it is below q.
Then the largest possible counter value is Θ(q log p).

In the original lemma from [27], instead of subtracting q from a largest counter, they split
it into two counters of equal size. That does not imply our case, so we need our own proof,
which also happens to be much shorter.

Proof: We want to show that the maximal number of counters larger than 2iq is at most
p/2i. The proof is by induction. Obviously, the statement is true for i = 0, so consider i > 0.
Consider a time t where the number of counters larger than p/2i is maximized, and let t−

be the last time before t at which the largest counter was (2i− 1)q.
We consider it one step to add 1 to q counters, and subtract q from a largest counter.

Obviously, at the end of the day, we can at most do q better in total.
The basic observation is that between t− and t, no change can increase the sum of the

counter excesses above (2i − 2)q, for whenever we subtract q it is from a counter which is
above (2i − 1)q. However, at time t−, by induction, we had only p/2i−1 counters above
(2i − 2)q, and each had an excess of at most q. To get to 2iq, a counter needs twice this
excess, and since the total excess can only go down, this can happen for at most half the
counters.

For the implementation of Lemma 30, we have

Lemma 31 Spending constant time per counter increment in Lemma 30, the largest counter
to be reduced can be found in constant time.

Proof: We simply maintain a doubly linked sorted list of counter values, and with each value
we have a bucket containing the counters with that value. When a counter c is increased
from x to x + 1, we check the value x′ after x in the value list. If x′ > x + 1, we insert x + 1
into the value list with an associated bucket. We now move c to the bucket of x+1, removing
x if its bucket gets empty. Decrements by one can be handled symmetrically. Thus, when
a largest counter a has been picked, during the next k increments, we can decrement a by
one.

5.2.2 Converting counter decrements to local updates

We are going to use the above counter game in two bands, one on levels a + 1, ..., b where b
is such that nb ≤ (log n)log log n < nb+1, and one levels b + 1 and up. First, we consider levels
a + 1, ..., b.

To describe the basic idea, for simplicity, we temporarily assume that there are no joins
or splits. Set q = b−a. For i = a+1, ..., b, during Ω(ni) leaf updates below a node v on level
i, we will get Ω(ni/q) local updates at v. Since ni+1 > 19ni, q < log19(nb/na) < (log log n)2.
On the other hand, ni ≥ na+1 >

√
log n, so q = o(

√
ni).

33

Each level a + 1 node v has a counter that is incremented every time we have a leaf
update below v. In the degenerate case where a = 0, we always make a local update at v so
as to get enough updates on level 1 as required by Theorem 24. We make an independent
schedule for the subtree descending from each level b node u. Once for every q updates below
u, we pick a descending level i node with the largest counter, do a local update at v, and
subtract q from the counter. During the next q− 1 leaf updates below u, we follow the path
up from v to u, doing a local update at each node on the way.

A largest counter below u is maintained as described in Lemma 31. The number of
counters below u is at most p = nb/(na/4), so by Lemma 30, the maximal counter value is
O(q log p) = O((log nb)

2) = O((log log n)4).
Now, for i = a + 1, ..., b, consider a level i node w. The maximal number of counters

below w is ni/(4na+1), so their total value is at most

O((ni/na+1)(log log n)4) = O((ni/
√

log n)(log log n)4) = o(ni).

Each update below w adds one to this number. Moreover, we do a local update at w every
time we subtract q from one of the descending counters, possibly excluding the very last
subtraction if we have not passed w on the path up to u. Consequently, during r = Ω(ni)
leaf updates below w, the number of local updates at w is at least

(r − o(ni)− q)/q = Ω(ni/q) = ω(
√

ni) >
√

ni.

5.2.3 Maintaining approximate weights

Next, we show how to maintain approximate weights. For the nodes v on level a + 1, we
assume we know the exact weight Wv. For nodes w on levels i = a + 1, ..., b, we have an
approximate weight Ŵw which is a multiple of q. When the counter of a level a + 1 node v
is picked, we change Ŵv by −q, or +q, or leave it unchanged, whatever brings us closest to
Wv. As we move up from v to u during the next q − 1 updates, at each node w, we change
Ŵv accordingly.

We will now argue that for any node w on level i = a + 1, ..., b, the absolute error in our
approximate weight Ŵw is o(ni). The error in Ŵw is at most the sum of the counters below
w plus q for each counter, and we have already seen above that this value is o(ni). It follows
that

Ww = (1± o(1))Ŵw.

This error is small enough that we can use the approximate weights for the scheduling of split
and joins. More precisely, in the analysis, we rounded at various points, and the rounding
left room for errors below a constant fraction.

Our approximate weights are multiples of q and change by at most q each time, so in our
weight balancing games, we can simply use the approximate weights divided by q.

One slight problem with the approximate weights is that our schedule only guarantees
that Ŵw ∈ [ni/4, ni], but we need Ww ∈ [ni/4, ni]. We solve this by a slight change in the
parameters of our balancing game from Proposition 15. We increase µ from 21 to 26 but

34

keep ∆ = 7. Then we get weights between µb = 26b and (3µ + ∆ + 14)b = 99b. Including
the division by q, we will use bi = ni/(100q) (for a moment ignoring a rounding error). Then

we end up with Ŵw ∈ [26
100

ni,
99
100

ni]. Since Ww = (1± o(1))Ŵw, this implies Ww ∈ [ni/4, ni]
even if we include the rounding error setting bi = bni/(100q)c.

The above change of parameters implies that we need a slightly larger growth in the
nis than we had before. That is why we in Theorem 24 require ni+1 > 23ni whereas we in
Theorem 8 only required ni+1 > 19ni. More precisely, we now get an uncuttable segment
of size (5µ + ∆ + 20)bi = 157bi. As described in Section 3.3.2, this has to be smaller than
the split error of the next level which is ∆bi+1 = 7bi+1 > 161bi, and this increased growth is
sufficient.

5.2.4 Implementation details

We are now ready to describe the details of the schedule as nodes get joined and split. From
the last subsection, we have ancestor pointers to level a, and via a table we can also get the
exact weight. From this, we can easily get ancestor pointers and exact weights on level a+1.
On level a + 1, we can then run the join and split schedule from Section 3.3.2.

For level i = a + 2, ..., b, we use the approximate weights both for the nodes and for
the children. When we get a local update at a node w, we know that Ŵw has just been
updated and that it equals the sum of the weights of the children, so we do have local
consistency in the approximate weights. We then use the new approximate weight in the
schedule of Proposition 15 to check if w is to be joined or split or tied to some other join
or split postprocessing. The local update step is applied to any join or split postprocessing
neighboring w.

Finally, we use the traversal technique from the last subsection to maintain ancestor
pointers to level b nodes. This means that we use constant time on level b in connection
with each leaf update. In connection with a join or split postprocessing on level b, this time
also suffice to join or split the priority queue over counters below the postprocessed nodes.
This completes our maintenance of levels a + 1,, b.

5.2.5 The top levels

For the levels above b, we use the same technique as we did for levels a + 1,, b. Direct
pointers from level a nodes to their level b ancestors are easily maintained. Then we can
access the level b ancestor of a leaf update in constant time, so we can maintain exact weights
for the level b nodes. One simplification is that we have only one tree induced by levels above
b. Consequently, we have only one priority queue over all counters on level b. The numbers,
however, are a bit different. This time, the number q′ of levels is log19(n/nb) < log n. For
i > b, ni > (log n)log log n, so q′ = o(

√
ni).

We have one priority queue over all counters on level b, of which there are at most p′ =
n/(nb+1/4), so by Lemma 30, the maximal counter value is O(q′ log p′) = O(log n(log log n)2).

Now, for i > b, consider a level i node w. The maximal number of counters below w is

35

ni/(4nb+1), so their total value is at most

O((ni/nb+1) log n(log log n)2) = O((ni/ log nlog log n) log n(log log n)2) = o(ni).

With the above changes in numbers, we use the same technique for levels above b as we used
for levels a + 1, ..., b. This completes the proof of Theorem 24

Corollary 32 Given a number series n0, n1, n2 <, . . ., with n0 = 1, n1 ≥ 84, n2
i > ni+1 >

23ni, we maintain a multiway tree where each node on height i which is neither the root nor
a leaf node has weight between ni/4 and ni. If an S-structure for a node on height i can
be built in O(

√
ni−1) time, or O(n1) time for level 1, we can maintain S-structures for the

whole tree in constant time per finger update.

Proof: We use the same proof as the one we used to prove Corollary 10 from Theorem 8.

6 Finger search

For finger searching we have a finger pointing at a key x while searching for another key
y, and let q be the number of keys between x and y. W.l.o.g. we assume y > x. In its
traditional formulation, the idea of finger search is that we should be able to find y quickly
if q is small. Here, we also consider another possibility: the search should be fast if y − x
is small. Compared with the data structure for plain searching, we need some modifications
to support finger search and updates efficiently. The overall goal of this section is to prove
the statement of Theorem 5:

There is a fully-dynamic deterministic linear space search structure that supports
finger updates in constant time, and given a finger to a stored key x, searches a
key y > x in time

O


min





√
log q/ log log q

log log q · log log(y−x)
log log log(y−x)

log log q + log q
log W








where q is the number of stored keys between x and y. If we restrict ourselves to
AC0 operations, we still get a bound of O((log q)3/4+o(1)).

In the previous section, we showed how to implement the finger updates in constant time.
It remains to make the finger searches fast. For simplicity, we will always assume that the
fingered key x is smaller than the key y sought for. The other case can be handled by a
“mirror” data structure where each key x is replaced by U−x, where U is the largest possible
key.

The following finger search analog of Theorem 1 is obtained using the same kind of
methods as for pointer based finger search structures, i.e. by the use of horizontal links.

36

Theorem 33 Suppose a static search structure on d integer keys can be constructed in
O(d(k−1)/2), k ≥ 2, time and space so given a finger to a stored key x, we can search
a key y > x in time S(d, y − x). We can then construct a dynamic linear space search
structure that with n integer keys supports finger updates in time constant time and fin-
ger searches in time T (q, y − x) where q is the number of stored keys between x and y and
T (n, y− x) ≤ T (n1−1/k, y− x) + O(S(n, y− x)). Here S is supposed to be non-decreasing in
both arguments. The reduction itself uses only standard AC0 operations.

Proof: We use an exponential search tree where on each level we have horizontal links
between neighboring nodes. It is trivial to modify join and split to leave horizontal pointers
between neighboring nodes on the same level.

A level i node has O(ni/ni−1) = O(n
1/k
i) children, so, by assumption, its S-structure is

built in time O(n
(k−1)/(2k)
i) = O(

√
ni−1). Hence we can apply Corollary 32, and maintain

S-structures at all nodes in constant time per finger update.
To search for y > x, given a finger to x, we first traverse the path up the tree from the

leaf containing x. At each level, we examine the current node and its right neighbor until a
node v is found that contains y. Here the right neighbor is found in constant time using the
horizontal links between neighbors. As we shall see later, the node v has the advantage that
its largest possible degree is closely related to q.

Let u be the child of v containing x and let x′ be the separator immediately to the right
of u. Then, x ≤ x′ ≤ y, and if we start our search from x′, we will find the child w where y
belongs in S(d, y − x′) ≤ S(d, y − x) time, where d is the degree of v.

We now search down from w for y. At each visited node, the left splitter x′ satisfies
x ≤ x′ ≤ y so we start our search from the left splitter.

We are now going to argue that the search time is T (q, y−x) ≤ T (q1−1/k,y−x)+O(S(q, y−
x)), as stated in the theorem. Let i be the level of the node v. Let u be the level i − 1
ancestor of the leaf containing x, and let u′ be the right neighbor of u. By definition of v,
y does not belong to u′, and hence all keys below u′ are between x and y. It follows that
q ≥ n(u′) ≥ ni−1/10. Now, the recursive search bound follows using the argument from the
proof of Lemma 13.

Note in the above theorem, that it does not matter whether the static search structure
supports efficient finger search in terms of the number d of intermediate keys. For example,
the static search bound of O(

√
log n/ log log n) from [7] immediately implies a dynamic

finger search bound of O(
√

log q/ log log q) where q is the number of stored keys between the
fingered key x and the sought key y. However, if we want efficiency in terms of y − x, we
need the following result.

Lemma 34 A data structure storing a set X of d keys from a universe of size U can be
constructed in dO(1) time and space such that given a finger to stored key x ∈ X, we search
a key y > x in time O(log log(y − x)/ log log log(y − x)).

Proof: Beame and Fich [7] have shown that a polynomial space search structure can be
constructed with search time O(min{

√
log n/ log log n, log log U/ log log U}), where n is the

37

number of keys and U = 2W is the size of the universe they are drawn from. As a start, we will
have one such structure over our d keys. This gives us a search time of O(

√
log d/ log log d).

Hence we are done if log log(y − x)/ log log log(y − x) = Ω(
√

log d/ log log d), and this is the
case if y − x ≥ 2d.

Now, for each key x ∈ X, and for i = 0, ..., log log d, we will have a search structure

Sx,i over the keys in the range [x, x + 222i

), with search time O(log log 222i

/ log log log 222i

) =

O(2i/i). Then to find y < x + 2d, we look in Sx,dlog log log(y−x)e. Now, 222dlog log log(y−x)e
< (y −

x)log(y−x), the search time is O(log log(y−x)log(y−x)/ log log log(y−x)log(y−x)) = O(log log(y−
x)/ log log log(y − x)).

It should be noted that it is not a problem to find the appropriate Sx,i. Even if for each

x, we store the Sx,i as a linked list together with the upper limit value of x + 222i

, we can

get to the appropriate Sx,i by starting at Sx,0 and moving to larger Sx,i until y < x + 222i

.
This takes O(log log log(y − x)) = o(log log(y − x)/ log log log(y − x)) steps.

Finally, concerning space and construction time, since we only have O(log log d) search
structures for each of the d elements in X, polynomiality follows from polynomiality of the
search structure of Beame and Fich.

Proof of Theorem 5: The result follows directly from the reduction of Theorem 33
together with the static search structures in Theorem 2, Theorem 3, and Lemma 34.

7 String searching

In this section, we prove Theorem 6:

For the dynamic string searching problem, if the longest common prefix between
a key x and the other stored keys has ` words, we can insert, delete, and search
x in O(` +

√
log n/ log log n) time, where n is the current number of keys. In

addition to the stored keys themselves, our space bound is O(n).

7.1 The standard trie solution

As a basic component, we use a standard trie over the strings where the characters are 1-word
integers [25, §III]. For now, we use space proportional to the total size of the strings. For
technical reasons, we assume that each string ends with a special character ⊥, hence that no
string is a prefix of any other string. A trie over a set S of strings is the rooted tree whose
nodes identify prefixes of strings in S. For a string α and a 1-word character a, the node αa
has parent α and is labeled a. The root is not labeled, so αa is the labels encountered on
the path from the root to the node αa. Our trie is ordered in the sense that the children of
a node are ordered according to their labels. We use standard path (Patricia) compression,
so paths of unary nodes are stored implicitly by pointers to the stored strings. Hence the
trie data structure is really concentrated on the O(n) branching nodes. At a branching node
α, the children have the same labels as in the explicit trie, but a label a brings us to a child

38

β with prefix αa. Here β is the shortest branching node with αa as a prefix. The technical
issues involved in the path compression are standard, and will mostly be ignored below.

By storing appropriate pointers, the problem of searching a string x among the stored
strings S reduces to (1) finding the longest common prefix α between x and the strings
in S, and (2) searching the next 1-word character of x among the labels of the children
of the trie node α. In a static implementation, we would use a dictionary in each node,
which would allow us to spend constant time at each visited node during step (1). Then, by
keeping a search structure from Corollary 4 at each branching node, we perform step (2) in
O(

√
log n/ log log n) time, which is fine.

However, in a dynamic setting we cannot use dictionaries in each node over all children
since we cannot update linear spaced dictionaries efficiently in the worst case. Instead, we
will sometimes allow step (1) to spend more than constant time in each visited node. This
is fine as long as the total time spent in step (1) does not exceed the total bound aimed at.

7.2 Efficient traversal down a trie

Consider a trie node α. Our new idea is to only use the constant time dictionaries for some
of the children of a node, called the dictionary children. The dictionary children will have
many leaf descendants so they are guaranteed to remain for a long time. We can therefore
afford to store them in a constant time dictionary which is rebuilt slowly in the background.
In addition, α will have a dynamic search structure from Corollary 4 over the labels of all its
children, including the dictionary children. Now suppose a search arrives at α and the next
character is a. Then we first consult the dictionary. If a is in the dictionary, we get to the
child labeled a in constant time, just as in the static step (1) above. We call this case (1a).
If a is not in the dictionary, we use the search structure at α. If the label a is found by the
search structure, it brings us to the child labeled a. We call this case (1b). Otherwise there
was no child of α labeled a. We call this case (2). In case (2) the search structure places the
query string between the children of α as in the static step (2) which marks the end of the
search.

If we ignore case (1b), searching a string down the trie takes O(` +
√

log n/ log log n)
total time, just as in the static case. The total time in case (1b) will be bounded exploiting
that it takes us to a non-dictionary child with much fewer leaf descendants, as defined more
precisely below.

We will use Proposition 22 to construct the dictionary over the dictionary children. This
dictionary uses linear space and is constructed in O(nk−1) time for any fixed k > 3.

For a node α with m descending leaves, we will guarantee that any child αb with more
than m1−1/k descending leaves is in the dictionary at α. When we search the next label a,
we first check the dictionary, and only if a is not found do we check the dynamic search
structure from Corollary 4. There are at most m labels in the dynamic search structure,
so the search for a takes O(

√
log m/ log log m) time. In case (1b) where a is found by the

search structure as a label of a child αa, we know that αa has at most m1−1/k descending

39

leaves. The total cost of case (1b) is therefore bounded by T (n), where

T (m) ≤ O(
√

log m/ log log m) + T (m1−1/k)

= O(
√

log m/ log log m).

This completes the proof that the total time spent on case (1b) is bounded by
O(

√
log n/ log log n), hence that the total time needed to search a string in the trie is

O(
√

log n/ log log n + `).

7.3 Trie updates

We will now show how to update the dictionaries and search structures in our trie. Our
target is to match the search time of O(

√
log n/ log log n+ `). The search path to an update

is the path from the root to the leaf inserted or to the leaf to be deleted. The search path
itself is found by the above search. The only search structure to be updated is the parent
of the leaf, and by Corollary 4, this update takes O(

√
log n/ log log n) time. To update the

dictionaries, we are going to spend constant time at each node in the search path. This is
equivalent to saying that each node α gets to spend constant time during each descending
leaf update. If we can satisfy this time constraint, the total update time is bounded by
O(

√
log n/ log log n + `), as desired.

Suppose the node α has m leaf descendants. Our challenge is to make sure that its
dictionary contains the label of any child β with more than m1−1/k leaf descendants. For
now we view m as fixed. Nevertheless, we maintain a counter m(α) for the exact number of
leaf descendants of α, and use this number to decide if α should be in the dictionary of its
parent. Similarly, we know the exact number m(β) of leaf descendants of each child β of α.
The period of α spans m1−1/k/4 leaf updates below α.

To keep track of the dictionary children of α, we maintain an unordered doubly-linked
“heavy” list of all children with more than m1−1/k/2 descending leaves. When a child passes
this threshold, it enters or leaves the heavy list in constant time. In a period, we first
scan the heavy list, and then build a dictionary over the labels of the scanned children.
When the new dictionary is completed, it replaces the previous one in constant time. A
scanned heavy child will continue to have at least m1−1/k/4 descending leaves, so we collect
at most m/(m1−1/k/4) = O(m1/k) children. Constructing a dictionary over the labels takes
O(m1/k·(k−1)) = O(m1−1/k) time. The whole scan and rebuild can thus be completed spending
only constant time during each of the m1−1/k/4 updates below α during a period. Then no
child can have more than m1−1/k descending leaves without having its label in the current
heavy dictionary; for to get m1−1/k descending leaves, it must have had m1−1/k/2 descending
leaves for at least m1−1/k/2 updates. This must include one full period where it got scanned
in the heavy list and placed in the new dictionary.

Complicating things a bit, we will now remove the assumption that the number m of
leaf descendants of α is constant. Let m(α) denote the exact number of leaf descendants,
as maintained by simple counters updated on the search path of an update. We are going
to shorten the above period length of α to m

1−1/k
0 /5 where m0 is the value of m(α) at the

40

beginning of different kind of period, called the “long” period, of length m0/10. We refer to
the old period as the short period. During a long period, we have m(α) = (1± 1/10)m0.

A child β will aim to be in the heavy list if m(β) > 2
5
m

1−1/k
0 . Whenever the search path

of an update passes β and m(β) changes, we compare it with m0, entering or withdrawing
β from α’s heavy list if appropriate. This would work if it was not for changes to m(α).
However, during the long period, we run through all the children β of α, and compare m(β)
with m0, updating the heavy list if needed. This work of the long period is done in constant
time per update below α.

The short period is unchanged in that we first scan the heavy list, and then build a
dictionary over the scanned children. However, this time the work is spread over m

1−1/k
0 /5

leaf updates below α. We know that a child β’s membership was checked at least in the last
period with some m′

0 ≥ m0/(1+1/10), and that it then had at least 2
5
m′1−1/k

0 > 2
5
m

1−1/k
0 /(1+

1/10) = 2
5
m

1−1/k
0 /(1 + 1/10) = 4

11
m

1−1/k
0 leaf descendants. During the short period, it

looses at most m
1−1/k
0 /5 descendants, so it has Ω(m

1−1/k
0) leaf descendants throughout the

short period. Hence we scan O(m
1/k
0) children for the new dictionary, which is built in

O(m
1/k·(k−1)
0) = O(m

1−1/k
0) time. As above we conclude the whole scan and rebuild can be

done spending constant time during each of the m
1−1/k
0 /5 updates below α spanned by a

short period.
Finally we have to verify that we honor our guarantee that any child β of α with m(β) >

m(α)1−1/k is in the current dictionary. We know that m(α) ≥ (1− 1/10)m0, so we want to
show that m(β) ≤ 9

10
m0. If β is not in the dictionary, it is because it was not in the heavy

list during the last scan of the short period. This means that we had m(β) ≤ 2
5
m

1−1/k
0 last

time we checked before that scan. Since a check is performed every time m(β) is changed,
only m0 can have changed since then; namely from the m′

0 of the previous period. Since

m0 ≤ 9
10

m′
0, we conclude that we had m(β) ≤ 2

5
(10

9
m0)

1−1/k ≤ 4
9
m

1−1/k
0 when the scan of the

last short period passed by. Since then, we had at most 2m
1−1/k
0 /5 updates below α, limiting

the increase of m(β). Hence the maximal value of m(β) is (4
9

+ 2
5
)m

1−1/k
0 < 9

10
m

1−1/k
0 ,

as desired. This completes the proof that we honor our guarantees for the dictionaries
spending only constant time per node on the search path, hence that our total update time
is O(

√
log n/ log log n + `).

7.4 Space

Since both the dictionaries from Proposition 22 and the dynamic search structures from
Corollary 4 use linear space, and since a path compressed trie only uses space at the branching
nodes, we conclude that our total space bound is O(n). This completes the proof of
Theorem 6.

41

8 Other applications of our techniques

In this section we discuss how the techniques presented in this paper have been applied in
other contexts.

Variants of exponential search trees have been instrumental in many of the previous
strongest results on deterministic linear integer space sorting and priority queues [2, 31, 5, 21].
Here a priority queue is a dynamic set for which we maintain the minimum element. When
first introduced by Andersson [2], they provided the then strongest time bounds of O(

√
log n)

for priority queues and O(n
√

log n) for sorting. As noted by Thorup in [31], we can surpass
the Ω(

√
log d/ log log d) lower bound for static polynomial space searching in a set of size d if

instead of processing one search at the time, we process a batch of d searches. Thorup got the
time per key in the batch down to O(log log d). In order to exploit this, Thorup developed
an exponential priority queue tree where the update time was bounded by (1), but with S(n)
being the per key cost of batched searching. Thus he got priority queues with an update time
of O((log log n)2) and hence sorting in O(n(log log n)2) time. Thorup’s original construction
was amortized, but a worst-case construction was later presented by Andersson and Thorup
[5]. More advanced static structures for batched searching where later developed by Han
[21] who also increased the batch size to d2. He then ended up with a priority queue update
time O((log log n)(log log log n)) and sorting in O(n(log log n)(log log log n)) time. However,
exponential search trees are not used in Han’s recent deterministic O(n log log n) time sorting
in linear space [22] or in Thorup’s [32] corresponding priority queue with O(log log n) update
time. Since (1) cannot give bounds below O(log log n) per key, it seems that the role of
exponential search trees is played out in the context of integer sorting and priority queues.

Bender, Cole, and Raman [8] have used the techniques to derive worst-case efficient
cache-oblivious algorithms for several data structure problem. This nicely highlights that
the exponential search trees themselves are not restricted to integer domains. It just happens
that our applications in this paper are for integers.

Patrascu [28] has very recently used exponential search trees to get the first sublogarith-
mic query time for planar point location.

Theorem 8 provides a general tool for maintaining balance in multiway trees. These
kind of techniques have been used before, but they have never been described in an such a
general independent quotable way. By using our theorems, many proofs of dynamization can
be simplified, and in particular, we can avoid the standard hand-waving, claiming without
proper proof that amortized constructions can be deamortized. The second author [32]
has recently used our Proposition 15 in a general reduction from priority queue to sorting,
providing a priority queue whose update cost is the per key cost of sorting. Also, he [33] has
recently used Theorem 8 in a space efficient solution to dynamic stabbing, i.e., the problem
of maintaining a dynamic set of intervals where the query is to find an interval containing a
given point. This codes problems like method look-up in object oriented programming and
IP classification for firewalls on the Internet. The solution has query time O(k), update time
O(n1/k), and uses linear space. Previous solutions used space O(n1+1/k). The solution does
not involve any search structure, so it is important that Theorem 8 has a general format not
specialized to search applications.

42

9 Concluding remarks

We have introduced exponential search trees and used them to obtain optimal bounds for
deterministic dynamic searching on the RAM, both for regular searching and for finger and
string searching. Some interesting open problems remain.

Bounds in terms of the universe What is the best linear space deterministic dynamic
search time measured in terms of the universe size U , that is, when all keys are in [U]?

The current O(
√

log n/ log log n) bound is only optimal in terms of the number n of keys.
From [29] we have a lower bound of Ω(log log U). Using randomized hashing, this lower bound
is matched by van Emde Boas’ data structure [26, 34, 35]. Can this be derandomized? In
Corollary 4, we provided a search time of O(log log n· log log U

log log log U
). This bound also holds when

n is the number of distinct values, so in terms of U , we get a upper bound of O((log log U)2

log log log U
).

This upper bound is almost the square of the lower bound.

AC0 RAM Another interesting open problem is to find the complexity for searching
with standard, or even non-standard, AC0 operations? Andersson et.al. [3], have shown
that even if we allow non-standard AC0 operations, the exact complexity of membership
queries is Θ(

√
log n/ log log n). This contrast the situation at the RAM, where we can get

down to constant time for membership queries. Interestingly, Θ(
√

log / log log n) is also the
RAM lower bound for searching, so the question is whether or not it is possible to do the
Θ(

√
log n/ log log n) searching using AC0 operations only.

Acknowledgments

We thank a referee from J. ACM for many good suggestions for improving the presentation
of this paper.

References

[1] A. Andersson. Sublogarithmic searching without multiplications. In Proc. 36th FOCS,
pages 655–663, 1995.

[2] A. Andersson. Faster deterministic sorting and searching in linear space. In Proc. 37th
FOCS, pages 135–141, 1996.

[3] A. Andersson, P.B. Miltersen, S. Riis, and M. Thorup. Static dictionaries on AC0 RAMs:
Query time Θ(

√
log n/ log log n) is necessary and sufficient. In Proc. 37th FOCS, pages

441–450, 1996.

[4] A. Andersson, P.B. Miltersen, and M. Thorup. Fusion trees can be implemented with
AC0 instructions only. Theoretical Computer Science, 215(1-2):337–344, 1999.

43

[5] A. Andersson and M. Thorup. Tight(er) worst-case bounds on dynamic searching and
priority queues. In Proc. 32th STOC, pages 335–342, 2000.

[6] A. Andersson and M. Thorup. Dynamic string searching. In Proc. 12th SODA, pages
307–308, 2001.

[7] P. Beame and F. Fich. Optimal bounds for the predecessor problem and related prob-
lems. J. Comput. System Sci., 65(1):38–72, 2002. Announced at STOC’99.

[8] M. Bender, R. Cole, and R. Raman. Exponential structures for cache-oblivious algo-
rithms. In Proc. 29th ICALP, pages 195–207, 2002.

[9] G. S. Brodal, G. Legogiannis, C. Makris, A. Tsakalidis, and K. Tsichlas. Optimal finger
search trees in the pointer machine. J. Comput. System Sci., 67(2):381–418, 2003.
Announced at STOC’02.

[10] A. Brodnik, P. B. Miltersen, and I. Munro. Trans-dichotomous algorithms without
multiplication - some upper and lower bounds. In Proc. 5th WADS, LNCS 1272, pages
426–439, 1997.

[11] S. Chen and J. H. Reif. Using difficulty of prediction to decrease computation: Fast
sort, priority queue and convex hull on entropy bounded inputs. In Proc. 34th FOCS,
pages 104–112, 1993.

[12] L. J. Comrie. The hollerith and powers tabulating machines. Trans. Office Machinary
Users’ Assoc., Ltd, pages 25–37, 1929-30.

[13] Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms.
MIT Press, McGraw-Hill, 2nd edition, 2001. ISBN 0-262-03293-7, 0-07-013151-1.

[14] P.F. Dietz and R. Raman. A constant update time finger search tree. Inform. Process.
Lett., 52:147–154, 1994.

[15] A. I. Dumey. Indexing for rapid random access memory systems. Computers and
Automation, 5(12):6–9, 1956.

[16] L. R. Ford and S. M. Johnson. A tournament problem. Amer. Math. Monthly, 66(5):387–
389, 1959.

[17] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst
case access time. J. ACM, 31(3):538–544, 1984.

[18] M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci., 47:424–436, 1993. Announced at STOC’90.

[19] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum spanning
trees and shortest paths. J. Comput. Syst. Sci., 48:533–551, 1994.

44

[20] M.L. Fredman and M.E. Saks. The cell probe complexity of dynamic data structures.
In Proc. 21st STOC, pages 345–354, 1989.

[21] Y. Han. Improved fast integer sorting in linear space. Inform. Comput., 170(8):81–94,
2001. Announced at STACS’00 and SODA’01.

[22] Y. Han. Deterministic sorting in O(n log log n) time and linear space. J. Alg., 50(1):96–
105, 2004. Announced at STOC’02.

[23] Brian Kernighan and Dennis Ritchie. The C Programming Language (2nd Ed.).
Prentice-Hall, 1988.

[24] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley, Reading, Massachusetts, 1973. ISBN 0-201-03803-X.

[25] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. Springer-
Verlag, 1984. ISBN 3-540-13302-X.

[26] K. Mehlhorn and S. Nähler. Bounded ordered dictionaries in O(log log n) time and O(n)
space. Inform. Process. Lett., 35(4):183–189, 1990.

[27] M. H. Overmars and C. Levcopoulos. A balanced search tree with O(1) worst-case
update time. Acta Inform., 26:269–277, 1988.

[28] M. Pǎtraşcu. Planar point location in sublogarithmic time. In Proc. 47th FOCS, pages
325–332, 2006.

[29] M. Pǎtraşcu and M. Thorup. Time-space trade-offs for predecessor search. In Proceed-
ings of the 38th STOC, pages 232–240, 2006.

[30] R. Raman. Priority queues: small, monotone and trans-dichotomous. In Proc. 4th ESA,
LNCS 1136, pages 121–137, 1996.

[31] M. Thorup. Faster deterministic sorting and priority queues in linear space. In Proc.
9th SODA, pages 550–555, 1998.

[32] M. Thorup. Equivalence between priority queues and sorting. In Proc. 43nd FOCS,
pages 125–134, 2002.

[33] M. Thorup. Space efficient dynamic stabbing with fast queries. In Proc. 35th STOC,
pages 649–658, 2003.

[34] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. Inform. Process. Lett., 6(3):80–82, 1977.

[35] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient
priority queue. Math. Syst. Theory, 10:99–127, 1977.

45

[36] D. E. Willard. Log-logarithmic worst-case range queries are possible in space θ(n). Inf.
Proc. Lett., 17:81–84, 1983.

[37] D. E. Willard. Examining computational geometry, van Emde Boas trees, and hashing
from the perspective of the fusion tree. SIAM J. Comput., 29(3):1030–1049, 2000.
Announced at SODA’92.

[38] D. E. Willard and G. S. Lueker. Adding range restriction capability to dynamic data
structures. J. ACM, 32(3):597–617, 1985.

46

