In Proc. 31st Hawaiian International Conference on System Sciences, VOL VII - Software Technology Track, pages4 - 13, |EEE Computer Society, 1998.

Winner of the best paper award of the Software Technology Track

Managing Large Scale Computational Markets

Arne Andersson
Department of Computer Science
Lund University
221 00 Lund, Sweden
Arne.Andersson@dna.lth.se

Fredrik Ygge
EnerSearch and
IDE at University of Ronneby
372 25 Ronneby, Sweden
Fredrik.Ygge@enersearch.se

http://www.dna.lth.se/home/Arne_Andersson/ http://www.enersearch.se/” ygge

Abstract

General equilibrium theory has been proposed for re-
source allocation in computational markets. The basic
procedure s that agents submit bids and that a resource
(re)allocation is performed when a set of prices (one for
each commodity) is found such that supply meets demand
for each commodity. For successful implementation of
large markets based on general equilibrium theory, effi-
cient algorithms for finding the equilibrium are required.

We discuss some drawbacks of current algorithms for
large scale equilibrium markets and present a novel dis-
tributed algorithm, COTREE, which deals with the most
important problems. COTREE is communication sparse,
fast in adapting to preference changes of a few agents,
have minimal requirements on local data, and is easy to
implement.

1 Introduction

In our human society, resource (re)allocations are in
most cases performed through markets. This occurs on
many different levels and in many different scales, from
our daily grocery shopping to large trades between big
companies and/or nations. The market approach to re-
source allocation in the human society has inspired the
Multi-Agent Systems (MAS) community to construct
similar concepts for MAS, where the trade is performed
between computational agents on computational mar-
kets. Wellman [Wellman, 1993] refers to this as market
oriented programming.

In computational markets, a common approach is
to use a mechanism that obtains general equilibrium,
as done by Cheng and Wellman [Cheng and Wellman,
1997]. This is also the market approach investigated
here. General equilibrium is obtained when a set of
prices (one price for each commodity) is found such that
supply meets demand for each commodity and where
the agents optimize their use of resource at the current
price level [Mas-Colell et al., 1995; Varian, 1996]. In this

paper we only describe pure exchange markets, but all
concepts here are also well suited for the incorporation
of production.

For making market-oriented programming successful,
it is of vital importance to incorporate available knowl-
edge from economic theory. At the same time it is im-
portant to study efficient implementations. In previous
work [Ygge and Akkermans, 1996] we showed how nu-
merical analysis and mathematical optimization could
be utilized to implement efficient markets with a rea-
sonable number of agents (up to 1000), but scaling up
to huge systems in highly distributed environments in-
troduced some unanticipated difficulties. In this paper
we discuss the difficulties of scaling up to large mar-
kets. We then introduce a novel algorithm, COTREE,
which deals with the most important problems. Our re-
search aims at implementing the application power load
management [Ygge and Akkermans, 1996] as a compu-
tational market, but all results in this paper are general
and application independent.

The paper is arranged as follows. In Section 2 we dis-
cuss some basic economic concepts and important char-
acteristics of two general approaches to finding the equi-
librium. The drawbacks of current methods in the con-
text of large-scale distributed multi-agent systems are
discussed in Section 3; in particular problems caused
by too much communication. Then, in Section 4 we
present our new method that aims at overcome these
problems. We then demonstrate the dynamics of the
method once an initial equilibrium has been found (Sec-
tion 5). Some experimental data is given in Section 6.
The multi-commodity case is discussed in Section 7, and,
finally, Section 8 concludes.

2 Context and Problem
2.1 Basic Micro-Economic Concepts

We analyze a market with two commodities. (See Sec-
tion 7 for a discussion on how our results can be extended
for situations with more than two commodities.)

An agent’s net demand describes how much it is will-
ing to buy at a specific price in terms of the other com-
modity. We denote the net demand of agent ¢ for com-
modity one by z;(p), where p is the price for commodity
one in terms of commodity two. The aggregate excess
demand, z(p), is defined as the sum of the net demands
of all agents, i.e.

n

2(p) = _ zi(p), (1)
i=1
where n is the number of agents.
Then market equilibrium is given by

z(p) = 0. (2)

Instead of asking an agent how much it is willing to
buy or sell at a specific price, one might ask it how much
it is willing to pay for an infinitesimal amount of the
commodity at the current allocation (a price). That is,
each agent, i, can be viewed as holding a price function
pi(z;), rather than a demand function z;(p). If the net
demand is monotone and continuous, there is a bijective
mapping between p;(z;) and z;(p), i.e. p;(z;) tells what
price would lead to a certain demand. Then Eq. (2)
corresponds to

l

pi(zi) <p, 2z =2z
pi(zi) > p, 2z =2z}

where n is the number of agents and 2! and z¥ are agent
i’s lower and upper limit of the net demand.

2.2 The Computational Problem

In this paper we investigate the standard case were the
net demand is continuous and monotonically decreas-
ing with price. If we can solve a market problem with
such a demand, we can solve a separable resource allo-
cation problem with concave objective functions [Ygge
and Akkermans, 1997].

The computational problem investigated is to solve
Eq. (2) in a multi-agent setting, i.e. in a setting where
the information about the net demand (and/or price) is
computed from local information by local agents.

For a (re)allocation to be performed the system must
1) compute the equilibrium solution and 2) notify the
agents about their new allocation. Depending on the
setting, the difficulty of the second step will vary sig-
nificantly. In this paper we deal only with step one, as
step two is too application dependent to be discussed in
general terms. In some settings, the task of reallocating
commodities can be completely manual, i.e. no comput-
erized communication will take place after the equilib-
rium has been found. In another setting, it might be

enough to announce the equilibrium price and let every
agent autonomously give and take resources as declared
by their bids. In yet another situation the agents may
exchange digital cash for an encrypted piece of informa-
tion.

2.3 Two General Approaches for Finding
Equilibrium
When implementing a market mechanism for achieving
general equilibrium there are basically two alternatives:
either the price is used as the free parameter, and p is
updated until Eq. (2) holds, or the resource is used as the
free parameter and different transfers of resource from
one agent to another are evaluated until Eq. (3) holds.
This classification leads to the notion of price- vs.
resource-oriented approaches. The conditions in Eq. (2)
and Eq. (3), together with the corresponding market
mechanism, are different ways of saying the same thing.
In the first case the method itself guarantees that the
price of each commodity is equal for every agent, and
in the second case the allocation is always feasible, since
resource is only transferred between agents.

2.4 Characteristics of the Different
Approaches

Above, we argued that the equilibrium conditions for
the price-oriented approach and the resource oriented ap-
proach, Eq. (2) and Eq. (3), are equivalent. This is true if
the conditions are ezactly fulfilled. However, in practice,
for the algorithms to converge in reasonable time, termi-
nation conditions for the algorithms will be |z;(p)| < €
and |p;;(2;) — pmj(@m)| < € respectively, where € is a
small positive constant. In the resource-oriented case,
this means that the allocation is not perfectly fair, i.e.
some agents will pay slightly less than they would have
done on a perfect market, while others will pay slightly
more. In the price-oriented case, on the other hand, the
allocation is not perfectly feasible. This is an important
difference; in the latter case it can be impossible to al-
locate the computed amount to the involved agents, due
to physical constraints. In practice this need not be a
problem, but if € is chosen to be relatively large, e.g. for
performance reasons, and if many consecutive trades are
performed, this should be considered.

Another important difference is the input to the two
approaches. In the price-oriented case the input is the
demand function and in the resource-oriented case the
input is the price function. The price function is more
closely related to the utility function (it is merely the first
derivatives of the utility function with respect to the first
commodity divided by the first derivatives of the utility
function with respect to the second commodity) which is
the primary property in micro-economics (e.g., [Varian,

1996]) while the demand has to be derived from function
inversion.

3 Drawbacks of Current Algorithms

Even though some of the available algorithms scales
nicely with the number of agents when run on a sin-
gle host, managing a huge number of agents and run-
ning them in highly distributed environments introduces
problems. We showed that managing 1000 agents on a
single host causes no problems [Ygge and Akkermans,
1996], but scaling up to, say, a million distributed agents
is not easily managed.

In our application area, power load management [Ygge
and Akkermans, 1996), the local area networks normally
have low communication costs, while the wide area net-
works have rather high communication costs. We be-
lieve that this situation with highly interconnected sub-
groups, and somewhat looser connections between the
sub-groups is very common for other application areas
as well.

We recognize some important problems with tradi-
tional algorithms. These problems are relevant not only
for our application but for distributed markets in gen-
eral.

e As the number of agents grows, the number of mes-
sages received and sent out by the global auction-
eer will be very large for each iteration. The work
needed to process these messages at a single site will
create a bottleneck.

This suggests that the task of sending, receiv-
ing, and processing messages should be distributed
among more than one auctioneer.

e Even if multiple auctioneers are used, if data is com-
municated at each step in an iterative algorithm,
the system will have to wait for the slowest agent
to communicate. This is likely to cause significant
waiting time in practice, since

— some agents might have rather slow communi-
cation, like in our application area where some
of them are communicating via cellular tele-
phones or over the electric power line.

— even for devices that have fast communication
according to today’s standard, there is a sub-
stantial variation in response time, and when
communicating with many agents it is likely
that the maximum delay time will be large.

This suggests that the number of iterations that re-
quires communication to reach equilibrium should
be kept small.

e Within a fairly large range, the cost for sending a
message is more or less independent of the size of

the message. Furthermore, the cost for processing
the sent/received message is normally considerably
smaller than the waiting time. Thus, instead of
sending a message containing just one number — as
suggested in, e.g., [Kurose and Simha, 1989] and
[Ygge and Akkermans, 1996] — one can send a set
of, say, 25 or even a few hundred numbers at essen-
tially the same cost.

This suggests that one should trade message size for
iterations, even if the total amount of communicated
information grows. Furthermore, the fact that the
size of message headers and footers can be consid-
erable compared to the net data when the messages
are small, may cause the actual amount of data sent
on the network to be smaller when few iterations
are needed even if the amount of net data commu-
nicated increases. (See also [Cheng and Wellman,
1997].)

e If only the preferences of a few agents change, search
for the new equilibrium from scratch should not be
required.

This suggests that information from previous com-
putations should be stored and reused.

We would also like the algorithm to put minimum re-
quirements on local data, i.e. not be dependent on prop-
erties such as the derivative of net demands and prices.
Furthermore, it is important that the algorithm is nu-
merically stable, i.e. be guaranteed to find the equilib-
rium as long as the requirements (e.g. that z is continu-
ous and decreasing) are fulfilled, while at the same time
being computationally efficient.

Such an algorithm is presented in the next section.

4 The COTREE Algorithm

The COTREE algorithm (Combinatoric TREE) is a hi-
erarchical approach to computing the equilibrium. Its
principles and properties are described in this section.

4.1 Basic Principles

We let the hosts in the system form a logical tree.! An
example of such a tree is shown in Figure 1. The basic
idea is that at each level in the tree, a compound de-
mand function (if a price-oriented approach is used) or
price function (if a resource-oriented approach is used)
is constructed. The compound function is a sampled
function with k& samples and it is used as the input to
the computation on the next higher level in the tree.

'The hosts need not be physically coupled in a tree struc-
ture, though this is an advantage. For our application of
power load management, they will physically form a tree.

Each host receives one message from each of its n chil-
dren and produces a sample of k samples.? Thus, the
required data is communicated in one signle round and
the number of messages required is proportional to the
number of hosts.

/’\

T\ /T\

‘t‘ﬁ “}“ “l‘ k.8

Figure 1: A logical tree of hosts.

The basic operation in COTREE for the computation
of the compound function is the pair-wise aggregation
of preferences, see Figure 2. Consequently, each host
holds a binary tree where each leaf represent the pref-
erences of each of its children in the host tree and the
root node represents the compound function for all of
its children. When the compound function of one host
is send to the next level, it will be represented by a leaf
at that level. Thus, the entire system can be viewed as
a binary tree with all consumers and producers as leafs.
We refer to the non-leaf nodes as auctioneers. The root
auctioneer will hold the aggregate preferences for the
entire system. Each auctioneer holds three vectors with
information about its children: one compound demand
or price function and two allocation vectors telling how
much was assigned to each of the two children at each of
the samples in the compound function.

mmmmm

Figure 2: The basic operation of COTREE: pair-wise
aggregation.

4.2 The Resource-Oriented Case

In the resource-oriented case the compound function is
a price function which is computed as follows. Say that

%In this paper we (though this is not necessary) only dis-
cuss the use of one k everywhere in the system.

we are to compute the aggregated price, p(3), that we
in the previous iteration computed p(2), and that the
allocation to the left and right child at a total alloca-
tion of 2 was 1.5 and 0.5. Now since we know that the
prices are monotonically decreasing with demand (since
we had that the demand is continuous and decreasing
with price as a precondition), we know that the only pos-
sible allocations for the left child is from 1.5 to 2.5 and,
for the right child, 0.5 to 1.5. With COTREE we first
try (1.5,0.5) and then (2.5,1.5). If none of these were
the equilibrium solution we interpolate from these end
points. This results in a constant number of operations
for each slot of the compound vector. The computation
has to be repeated for each auctioneer on the host. If all
leafs are managed by one host the complexity is O(nk),
where k is the number of slots and n is the number of
leafs. If each host only manages two children, the com-
plexity is O(klogn). Further details are given in the
Appendix.

4.3 The Price-Oriented Case

COTREE, as presented above, is a resource-oriented
scheme, but a similar price-oriented approach is also con-
ceivable. This would mean that every auctioneer, instead
of holding a price vector telling how much its children
are willing to pay for an infenitecimal amount of resource
at certain allocations, would hold a net demand vector,
telling how much its children would change their alloca-
tion at different prices.

The advantage of such an approach is that the net de-
mand vector of an auctioneer is simply the sum of the net
demand vectors of its children. The complexity of this is
O(nk), i.e. the same scaling with accuracy and number
of children as with the resource-oriented approach. How-
ever, the computations here are simpler, and hereby the
price-oriented approach would be faster. This assumes
that the preferences of the consumers and producers are
given as demand functions.

The disadvantage is that it results in an allocation
which is not perfectly feasible. For cases where this is
not acceptable, one could think of ways to assure that
exactly the resource that is allocated to one auctioneer is
allocated to its children. Then some computations would
be required when computing the allocations rather than
when computing the equilibrium (as was done in the
resource-oriented case). For our application area, the
computation time required for computing the equilib-
rium (as will be described in Section 6) is totally ne-
glectable compared to the communication time. We be-
lieve this to be true for most other applications areas as
well. Thus, whether a resource-oriented or price-oriented
approach is chosen is of minor importance.

5 The Dynamic Situation

As discussed in the previous section, COTREE has the
advantage of being communication sparse during the ini-
tial equilibrium computations. However, the major ad-
vantages of COTREE occur in the dynamic situations
where an equilibrium has been computed once and then
some agents change their preferences. This section dis-
cuss those issues. The discussion is relevant both for the
resource- and price-oriented approaches.

5.1 The Change of an Agent’s Preferences

If the preferences of only one agent change and every-
thing else remains unchanged, the computations only
have to be performed along the path from this agent
to the root to compute the new equilibrium allocation.
Let d and n denote the number of children per host,
and the number of leaves respectively. The tree of

hosts has height O (%g—g). As an example, assume that

d =100 and n = 1000000. Then the height of the three
is 3. If the preferences of one agent changes, only 3
messages are required to compute the new equilibrium.
This is in bright contrast to methods in which the aggre-
gate functions are not cashed where one million messages
would have to be sent if the agents submit entire func-
tions and one million times the number of iterations if
the agents only submit single information items. (Specif-
ically, if single information items are used, such as the
demand and its derivative at a certain price, it is im-
possible to cash data so that only three messages are
required.)

We also note that if we have a large consumer or pro-
ducer whose preferences change frequently, it is wise to
put this agent close to the root, in order to minimize
communication. In particular, if the agent representing
such a consumer or producer resides on the same host as
the root auctioneer, no inter-host communication is re-
quired for obtaining the new equilibrium. We note that
here the computation of the new equilibrium is close to
instant, while the traditional methods typically require
recomputation from scratch.

5.2 When to Perform a Recomputation

For some applications it might be the case that the re-
computations are performed periodically regardless of
whether or not really needed. In other applications, re-
computations might be performed when needed. We in-
vestigate the latter case here, and it turns out to be a
delicate issue.

If the preferences change only for one agent, it is possi-
ble that the reallocation resulting from a total recompu-
tation of the equilibrium is so small that it is not worth
the efforts, even if the preference change seems quite

large from the local perspective. At the same time, it is
possible that there is a quite small change of every agen-
t’s preferences, which would lead to significant realloca-
tions for the group as a whole. Thus, it is not possible to
tell from the local perspective whether or not a recom-
putation is needed. The same holds at the global level;
we can not tell if a recomputation is required without
asking many local agents.

In an approximation scheme, we expect the equilib-
rium to be close to the true equilibrium without neces-
sarily being exactly correct. Hence, after a small change
of a few agent’s prefernces it may not be necessary to
change the (global) price/allocation at all. In this case,
we would like the recomputation of price/allocation to
”fade out” after very little communication as it is prop-
agating upwards in the tree.

One way to implement this is to assign a permitted
deviation at each level in the tree. Assume that we have
a resource-oriented COTREE where we allow the values
in the global price vector to deviate from the correct
values with a maximum value of 4. We can then spread
this tolerance out on the auctioneer in the tree. Each
auctioneer i is assigned a tolerance d;, such that the total
tolerance sums to d. Exactly how the tolerances should
be spread is an intriguing topic that requires a number
of assumptions on the sizes and update frequencies in
the individual agents’ preferences. Once the tolerances
have been assigned, each auctioneer keeps track of the
difference between its current price vector and the price
vector that was last sent to the parent. As long as this
difference is less than (or equal to) §;, no message is sent
to the parent. In this way, small local changes will not
propagate up to the root.

It should be noted that if the changes in preferences
can be seen as random, the changes are likely to even
out as they propagate upwards in the tree.

In all, this is a non-trivial question and more research
is needed here in order to obtain a good method. This
problem is general and not unique to COTREE. We do
however think, as indicated above, that one can benefit
from using a tree structure when attacking this problem.

6 An Experimental Case Study

Above we argued that the COTREE algorithm is in most
cases superior to available algorithms from a communica-
tion point of view. We also argued that the algorithm has
good asymptotic behavior with respect to internal com-
putation. However, in practice, constant factors may be
as important as asymptotic behavior. Therefore, we give
some performance measures of COTREE and compare
them to corresponding figures for a Newton algorithm.
In our application area, one host can have at most

Method Improvement Initial computation Update

Time (s) | # Messages | Time (s) | # Messages
Newton, eps = 0.001 32.7004 0.22 9838 0.11 4935
Newton, eps = 0.01 32.7004 0.19 8851 0.085 3948
Newton, eps = 0.1 32.7001 0.17 6885 0.065 2961
Newton, eps = 0.2 32.6975 0.13 5906 0.065 2961
Newton, eps = 0.3 32.6034 0.11 4919 0.044 1974
COTREE, 200 int 32.7004 2.58 1000 0.050 1
COTREE, 100 int 32.6992 1.54 1000 0.030 1
COTREE, 50 int 32.6963 0.99 1000 0.019 1
COTREE, 25 int 32.6647 0.77 1000 0.015 1
COTREE, 10 int 31.7043 0.66 1000 0.013 1

Table 1: Simulation results with 1000 children. COTREE requires significantly less communication than the Newton

algorithm, in particular for updates.

something like 1000 children to manage, and we inves-
tigate a computation of this size. (Thus, for our appli-
cation we get an upper limit of the total computation
time from multiplying the computation time of one host
with 1000 children by the height of the host tree.) For
the experiments we let the agents hold simple exponen-
tial utility functions and act competitive®. We compare
the performance of the resource-oriented COTREE algo-
rithm as described in Section 4.2 with the performance
of a resource-oriented Newton scheme using a RELAX ap-
proach [Ibaraki and Katoh, 1988] for managing bound-
aries as described in [Ygge and Akkermans, 1996]. In
the Newton scheme the agents submit bids consisting of
their current price and its derivative (for details refer to
[Ygge and Akkermans, 1996]). The result of the compar-
ison is presented in Table 1. The improvement column
is a measure of how good the result is. Since we know,
for this case, that the market equilibrium maximizes the
total utility of the system [Ygge and Akkermans, 1997,
we can measure how close to the equilibrium the solu-
tion is by observing the total utility. The improvement
is simply the difference between the total utility after
the first reallocation and the initial total utility. The
next column tells how long the execution time* was for
computing the equilibrium from the initial endowments,
and the column after that describes how many messages
were required. Note that the number of messages is not
necessarily a multiple of 1000 because of how the RELAX

3The utility functions are u(x) = ae™%®! 4 1y, with
randomly generated endowments and parameters a, and b.
Hence, the price function for each agent will be pi(z1) =
—abe®*1%e1) | where e, is the endowment (i.e. initial alloca-
tion) of commodity 1. Further, we let 0 < z1 < 3 and 2 be
without boundaries.

4The algorithms were implemented in C++ and run on a
Pentium Pro 200MHz PC.

algorithm works. If an agent is outside its boundary after
one iteration it will not be a part of the next iteration.

Then we also illustrate the discussion given in Sec-
tion 5.1; the rightmost columns show the computation
time and the number of messages required when the pref-
erences of one agent changes. For this situation we have
assumed that the change does appear in one of the leaves
of COTREE. As discussed in Section 5.1, if we have prior
knowledge about the frequency with which the prefer-
ences change for different agents and how much this af-
fects the market, we can design the topology of COTREE
to take advantage of this. The results presented in this
experiment thus represent the upper limit of the compu-
tation time of an update.

From Table 1 we see that when using 25 intervals with
COTREE the ratio of execution time between COTREE
and a Newton scheme with a corresponding accuracy is
somewhere around six. This is a positive result since it
means that COTREE is not that much slower than the
Newton scheme. The result of a corresponding compar-
ison for the case where only one agent changes its pref-
erences, once the initial equilibrium has been computed,
is that COTREE is now approximately four times faster.

Our experiments strongly indicate that COTREE per-
forms well compared to a resource-oriented Newton
scheme. At the same time it should be emphasized that
the computation time when being of the magnitude de-
scribed above is normally completely neglectable. For
example, in our application area, power load manage-
ment, the time for computing the allocation with 1000
children and 25 intervals (0.77s) is in the same order of
magnitude as the time required for sending one message
on the electrical power line with today’s communication
systems. Therefore, we argue that when the computa-
tion time is of this order of magnitude, it is really the

number of messages that is the interesting performance
measure, and from this perspective COTREE (and any
other method that saves entire preference functions from
previous rounds) has considerable advantages.

Another important remark is that COTREE is not de-
pendent of the derivative of the price and hereby useful
for a wider class of problems. Furthermore, the exe-
cution time of COTREE is virtually independent of the
shape of demand functions, as long as z is monotonically
decreasing and continuous, while the convergence speed
of the Newton scheme is heavily dependent on those
shapes. Therefore it is likely that COTREE is preferable
to the Newton scheme in many situations, even when
every agent is run on a single host, and no inter-host
communication is present.

7 Managing the Multi-Commodity
Case

So far we have only demonstrated the search for equilib-
rium in a market with two commodities. Even though
this setting is useful for some realistic problems, e.g.
[Kurose and Simha, 1989; Ygge and Akkermans, 1996;
1997], it is of interest to investigate how COTREE can
be used for the multi-commodity case.

The two-commodity case can be extended to the
multi-commodity case in a variety of ways. One way to
perform such an extension is to compute the equilibrium
for one market (one market per commodity) at a time.
This procedure is repeated until every market is in equi-
librium. Note that during this process the equilibrium
for one market may have to be computed several times,
since there normally are interdependencies between the
markets and a change of the price in one market will
effect the price on another. For a detailed discussion
on the convergence of this scheme refer to [Cheng and
Wellman, 1997]. We note that if the different markets
are loosely coupled, in the sense that just a few agents
act on several markets, COTREE will perform very good
compared to the alternatives. In this case only the pref-
erences of a few agents change in each market, and we
will benefit from the advantages of COTREE as described
in Section 5.1.

On the other hand, if the markets are not loosely
coupled, the approach of treating every market sepa-
rately will not lead to very high performance (neither
with COTREE nor with any other algorithm for find-
ing the equilibrium of each market). Even though the
separation in terms of markets allows for some distri-
bution of the search for equilibrium, the auctioneers of
the separate markets must come to consensus regard-
ing whether or not the general equilibrium has been
reached. Then it is not clear that the gain of decentral-

izing the computation is that large after all. It might
be the case that the markets for the different commodi-
ties are inherently distributed, but then it does seem
more reasonable that the resource is reallocated every
time a partial equilibrium is reached, i.e. we would
have repeated tatonnement processes in each market,
but a non-tatonnement search for the general equilib-
rium. Furthermore, Flecther [Fletcher, 1987, p. 18-19]
argues that decomposing this kind of search into sep-
arate searches for each variable is ”usually very inef-
fective” and that these ”... early ad hoc approaches
are gradually falling out of use”. Examples of alter-
native algorithms are multi-variable Newton algorithms
with variable step size, were the search for the equilib-
rium prices is performed in parallel [Press et al., 1994;
Fletcher, 1987]. However, the drawbacks of current al-
gorithms, as were described in Section 3, hold for the
multi-commodity case as well.

As part of current work we are expanding COTREE in
new ways for the multi-commodity case. It is a delicate
task and it seems hard to find a general approach such
as the one described here for the two-commodity case.
Rather we believe that for certain applications one can
find efficient algorithms if heuristics about, e.g., the rela-
tions between the demands of the different commodities,
are utilized. (For example, in our own area of power
load management, if the consumption for the current
and future time slots are treated as the different com-
modities, the coupling between adjacent slots is much
stronger than the coupling between slots far apart.)

8 Conclusions

In this paper we reported difficulties with using available
algorithms in distributed computational markets. We
introduced a novel algorithm COTREE which:

e requires minimum information for computing the
equilibrium (i.e. certain derivatives as used with
Newton methods are not required). It performs well
regardless of if input is demand or price functions.

e is communication effective.

e performs excellent when responding to changes of
e.g. single agent’s preferences.

e scales up nicely, also to huge markets. When run
in a totally distributed environment the execution
time is O(klogn), where k is the number of samples
in the price or demand function and n is the num-
ber of consumers/producers. Even more important,
the longest communication chain is O(logn), the
number of messages is for a total recomputation is
O(n), and the size of each message is ©(k). If only

the preferences of one agent changes, the required
number of messages is O(logn).

e has a number of advantages over Newton algorithms
even when run on a single host.

As shown in this paper COTREE can be seen as an
algorithmic framework, rather than a specific algorithm.
There are still issues to be further investigated. In our
opinion, one of the most interesting is how one should
choose the number of samples (denoted k£ throughout
the paper) on different levels in the system, depending
on the computational power at those levels as well as
heuristics of the price/demand functions.

We have also implemented a variant of the COTREE
algorithm which is well suited for standard resource al-
location, even with non-concave objective functions. A
publication describing this will soon be made available.

References

[Cheng and Wellman, 1997] J. Cheng and M. Wellman.
The WALRAS algorithm — a convergent distributed
implementation of general equilibrium outcomes. In
Computational Economics, 1997. To appear. (Avail-
able from http://ai.eecs.umich.edu/people/wellman).

[Fletcher, 1987] R. Fletcher. Practical Methods of Opti-
mization. John Wiley & Sons, 1987. Second Edition.

[Ibaraki and Katoh, 1988] T. Ibaraki and N. Katoh. Re-
source Allocation Problems — Algorithmic Approaches.
The MIT Press, 1988.

[Kurose and Simha, 1989] J. F. Kurose and R. Simha.
A microeconomic approach to optimal resource allo-
cation in distributed computer systems. IEEE Trans-
actions on Computers, 38(5):705-717, 1989.

[Mas-Colell et al., 1995] Andreu Mas-Colell, Michael
Whinston, and Jerry R. Green. Microeconomic The-
ory. Oxford University Press, 1995.

[Press et al., 1994] W. Press, S. Teukolsky, W. Vetter-
ling, and B. Flannery. Numerical Recipies in C. Cam-
bridge University Press, 1994. Second Edition.

[Varian, 1996] H. Varian. Intermediate Microeconomics
— A Modern Approach. W.W. Norton and Company,
New York, 1996. Fourth Edition.

[Wellman, 1993] M. P. Wellman. A market-oriented pro-
gramming
environment and its application to distributed mul-
ticommodity flow problems. Journal of Artificial In-
telligence Research (hitp://www.jair.org/), 1(1):1-23,
1993.

[Ygge and Akkermans, 1996] F. Ygge and J.M. Akker-
mans. Power load management as a computational

market. In M. Tokoro, editor, Proceedings of the
Second International Conference on Multi-Agent Sys-
tems ICMAS’96, pages 393-400. AAAI Press, Menlo
Park, CA, December 9-14 1996. (Available from
http://www.enersearch.se/ ygge).

[Ygge and Akkermans, 1997] F. Ygge and J.M. Akker-
mans. Making a case for multi-agent systems. In
M. Boman and W. Van de Velde, editors, Proceedings
of MAAMAW °97, pages 156-176. Springer Verlag,
Berlin, May 13-16 1997. ISBN-3-540-63077-5, (Avail-
able from http://www.enersearch.se/ ygge).

Appendix: Details of the CoTree
Algorithm for the Resource-Oriented
Case

Structure and Communication

Each auctioneer keeps an approximation of the com-
pound price function of its descendant nodes, as well
as information on how to distribute resources between
its children. This is visualized in Figure 3.

Compound Price

price 4 3 2 1.143.. 0.25
leftAlloc -1 -1 -0.5 0.0714... 1
rightAlloc 0 1 15 1.928.. 2
Corresponding resource: 1 0 1 2 3

Figure 3: The structure of an auctioneer.

The price vector holds k values, each value being the
marginal price that the auctioneers children have at that
change in resource, z. Thus, price gives the price at
sampled points from the situation where the auction-
eers children sells as much of the resource as possible to
the situation where they buy as much as possible®. As
an example we see that for z = 1 (the third slot), we
have that p = 2. The leftAlloc and rightAlloc vectors
are also holding k values corresponding to the respective
equilibrium demands. For example, if the auctioneer is
assigned z = 1 (i.e. will buy 1 unit of commodity one)

5For applications where there is no limit to how much an
agent can buy, good guesses of a possible interval can be used.
If the allocation should end up at the border of this interval,
new limits can be set and only a small part of the equilibrium
computations will have to be redone.

after the equilibrium computation, it gets directly from
the left Alloc and right Alloc vectors that 0.5 will be sold
by the left child and that 1.5 will be bought by the right
child. If the auctioneer is assigned z = 0.5 it interpo-
lates between adjacent values, and in this case it would
mean that the left child would sell 0.75 and the right
child would buy 1.25.

COTREE is implemented on a set of hosts intercon-
nected in a tree structure. The height of this tree will
vary from zero (when all auctioneers, consumer and pro-
ducers reside on the same host) to the height of a binary
tree when every auctioneer, consumer and producer re-
sides on a separate host. We introduce a degree, d;, de-
fined as the number of children of host i. The choice of
d; for each host will depend on the communication and
computation capacity of the employed hardware. If we
assume that all hosts have the same degree d (which is
not necessary) and the tree is well balanced, the height of

the tree is O (ll—gg—g). Another important design param-
eter is k, the number of elements in the price, le ft Alloc
and rightAlloc vectors. The choice of k will depend on
the tolerance on the quality of the result (¢f. the dis-
cussion in Section 2.4) as well as the computer system’s
communication and computation capacity. Throughout
the paper we assume k to be equal for every consumer,
producer and auctioneer, although this is not necessary.
We now take a look at two extreme cases of d.

As one extreme, we chose d = n, where n, as above, is
the number of leaves in the tree, i.e. the number of con-
sumer and producer agents on the market. This results
in a host tree of height 1 where there are no internal
hosts, only a set of n leaves and the root. We let each
agent deliver all its k£ sample values to the root. The
global auctioneer then computes an aggregated function.
This requires that the global auctioneer receives n mes-
sages, each of size Q(k).

A host tree of height 1 works well as long as the num-
ber of agents is not too large. For a large number of
agents, the communication to the root may become a
bottleneck and the computational burden of the host
holding the root node may become too high (see further
the Appendix).

As the other extreme case we choose d = 2 which gives
a binary host tree, and let each host hold only one con-
sumer, producer or auctioneer. The computation is now
distributed among the hosts so that the root—as well as
each internal host—only need to process two messages
of size (k). This minimizes the cost for communication
(and computation) at each single host at the expense
of more messages (2n — 2 compared to n)® and slightly
longer communication chains; the height of the tree will

5The number of messages is equal to the number of edges

be O(logn).

The Computations of an Auctioneer

The basic structure of the algorithm is given below. The
algorithm is explained in some detail after the pseudo-
code.

if the node only has one child then
copy the vectors of that child
else
assign the highest p of the two children
to slot O in price and assign the
minimum values of the respective children
to the first slots in leftAlloc and rightAlloc
for i:= 1 to k-1 {
//This loop is run k-1 times
assign as much as possible to
the right child
if the price of the right child is larger
or equal to that of the left child then {
if the right child is at its boundary then
assign the value of the left child to slot i

in price
else
assign the value of the right child to slot i
in price

assign the current allocations to leftAlloc
and rightAlloc

continue with the next iteration
} //end if
assign as much as possible to the

left child
if the price of the left child is larger

or equal to that of the right child then {

if the left child is at its boundary then

assign the value of the right child to slot i

in price
else
assign the value of the left child to slot i
in price

assign the current allocations to leftAlloc
and rightAlloc

continue with the next iteration

} //end if

interpolate to the point where the
prices are expected to be equal

assign price, leftAlloc and
rightAlloc as described below

} //end for

If the node only has one child, the obvious solution is
simply to copy its vectors. Otherwise we have to calcu-
late the k values for the three vectors as described below.

The algorithm is most easily explained through an ex-
ample. Assume that the price vectors sent by the chil-
dren to the auctioneer are as in Figure 4. (The numbers
in Figure 3 are from the computation with these price

in the host tree. If we assume a balanced host tree with no
unary nodes, the number of edges in a binary tree with n
leaves is 2n — 2.

samples.) Note that —1 < 2jers < 1 and 0 < 2zpignt < 2,
and hence —1 < z < 3 for the auctioneer.

left price 3 2 1 0.5 0.25
Corresponding resource: -1 -05 0 0.5 1
right price 4 35 3 2 1

Corresponding resource: 0 05 1 15 2

Figure 4: The prices of two children.

We start by assigning the highest value of slot 0 of
the price vectors of the two children to slot 0 of price
of the auctioneer. This is because the child with the
highest price will start to buy at the auctioneers minimal
z. Hence, 4 is filled in at slot 0, since p = 3 for the left
child and p = 4 for the right child. The minimum values
of the left and right children are filled in at slot 0 of
leftAlloc and rightAlloc respectively.

Then we enter the for loop. Foreachi=0... k-1,
we test the allocation z = min + kfl (maz —min). First
assign as much of z as possible to the right child. As-
signing as much as possible to the right node means that
the maximum value for that child can not be exceeded
and that the value assigned to the left child can not be
smaller than the value assigned to it in the previous iter-
ation. In the first iteration this means that we start by
assigning 1 to the right child and —1 to the left child. In
this case p = 3 for both children and hence the condition
(that the price of the right child is higher than or equal
to the price of the left child) is true and 3 will be as-
signed to slot 1 in price, —1 will be assigned to slot 1 of
leftAlloc, and 1 will be assigned to slot 1 of rightAlloc.
Then we continue with the next iteration.

In the next iteration we start by assigning 2 to the
right child and —1 to the left child. This time the con-
dition (that the price of the right child is higher than
or equal to the price of the left child) is false and we
continue with assigning 1 to the right child and 0 to the
left. As the price of the left child is smaller than the one
of the right child, we continue to the interpolation. By
now we have computed that prigns(2) = 1, prignt(1) = 3,
Prest(—1) = 3, and pres:(0) = 1. We now do a linear in-
terpolation to estimate where the prices are equal. Thus,
we set up the equation

Pright (1) + Azpigny x Prigne W =Prign (@) _

Plest(—1) + (1 — Azpigng) * Bttt Priaght ol i)l e e (0)

Solving the equation gives Azpigns = 3 L and the resulting

price (prignt(1) + 3 * w = 2) is assigned to
slot 2 in price, —0 5 is as51gned to slot 2 in le ft Alloc and
1.5 is assigned to slot 2 of rightAlloc. Correspondingly
is done for 7 = 3.

For the last iteration (i = 4) we have that the first if

statement is true and that the right child is at its bound-
ary, thus we assign 0.25 to price, 1 to leftAlloc and 2
to rightAlloc. The rationale behind selecting the price
of the other node when one of them is at its boundary
is that once the boundary has been reached, this child
can not buy anything more, and it will not sell before
the price is above the price of the other child.

In this simple example the price exactly matched
prices the resources requested for. In general this is not
the case. Rather the price must be interpolated from
adjacent values.

As seen from the pseudo-code above, for each of the
possible allocations, the worst case is that both the if-
statements return false and we have to perform the in-
terpolation which is done in constant time. Hence, the
computation time grows with the number of samples as
O(k).

Looking at the total computation time of COTREE we
again investigate the cases of d = n and d = 2. When
d = n (all auctioneers reside on one host) the compu-
tation time is the computation time of each auctioneer
times the number of auctioneers, i.e. O(nk). When
d = 2 and we let each host hold only one auctioneer,
the computation time is the computation time of each
auctioneer times the height of the tree, i.e. O(klogn).
It is important to remember though that the commu-
nication, rather than the computation is the important
performance measure here. (See further Sections 6.)

