In Proc. 26th ACM Symposium on Theory of Computing, pages 317--325. ACM Press, 1994.

The complexity of searching a sorted array of strings

Arne Andersson*

Abstract

We present an algorithm for finding a given k-character
string in an array of n strings, arranged in alphabetical or-
der, using

kloglogn
+k+logn
<log log (4 4 *loglosn hfogk; ) ¢ )
character comparisons. This improves significantly upon
previous bounds.

1 Introduction

Given n strings arranged in alphabetical order, how many
characters must we probe to determine whether a k-charac-
ter query string is present? If k is a constant, we can solve
the problem with ©(logn) probes by means of binary search,
and this is optimal, but what happens for larger values of k7

The question is a fundamental one; we are simply ask-
ing for the complexity of searching a dictionary for a string,
where the common assumption that entire strings can be
compared in constant time is replaced by the more conser-
vative assumption that only single characters can be com-
pared in constant time. For sufficiently long strings, the
latter assumption seems more realistic.

At first glance the problem may appear easy — some
kind of generalized binary search should do the trick. How-
ever, closer acquaintance with the problem reveals a surpris-
ing intricacy.

Being slightly more precise, we consider finite strings
of characters drawn from an arbitrary, ordered alphabet.

*Department of Computer Science, Lund University, Box 118,
22100 Lund, Sweden. arne@dna.lth.se

fMax-Planck-Institut fiir Informatik, Im Stadtwald, D-66123
Saarbriicken, Germany. Supported by the ESPRIT Basic Research
Actions Program of the EU under contract No. 7141 (project AL-
COM 1II). torben@mpi-sb.mpg.de

IDepartrnent of Computer Science, Royal Institute of Technology,
100 44 Stockholm, Sweden. johanh@nada.kth.se

§Department of Computer Science, Lund University, Box 118,
22100 Lund, Sweden; and Department of Mathematics, Statistics,
and Computer Science, V&xjo University, 35195 Vi&xjo, Sweden.
ola@dna.lth.se

Torben Hagerup'

§

Johan Hastad? Ola Petersson

Strings are ordered linearly by the induced lexicographical
ordering, and we study the following string searching prob-
lem: Given a sorted array A of n strings of k characters
each and a query string X of k characters, determine the
rank of X in A, i.e., the number of strings in A no larger
than X.

The string searching problem was introduced by Hirsch-
berg [2], who indicated a lower bound of Q(k + logn) and
upper bounds of O(klogn) and O(k + n), all of which are
straightforward. A later publication by the same author [1]
mentions a first nontrivial upper bound of O(klog n/log k).
Kosaraju [3] gave an algorithm with a running time of
O(k+/logn + logn) and a lower bound of roughly logn +
1Vklogn = O(k + log n).

In this paper we establish a new upper bound of

( kloglogn

+k+logn
loglog (4+ k]us]usn) g

logn

In view of the lower bound of Q(k + logn), this is op-
timal for small and for large values of k; specifically, for
k = O(logn/loglogn) and for k = Q (2(1"5")6), for any
€ > 0. Furthermore, the running time of our algorithm
never exceeds the known lower bound by more than a factor
of ©(loglogn). Ongoing work, reported briefly in Section 5,
aims at proving that our algorithm in fact is optimal for all
combinations of n and k.

By way of comparison, Kosaraju’s algorithm is optimal
for & = O(v/logn), and Hirschberg’s algorithm is optimal
for k = Q(n®), for any ¢ > 0. We further note that for k
asymptotically larger than logn, our bound contradicts the
claim that log n + kloglog n is not achievable [3].

2 The one-sided problem

Consider the following one-sided version of our problem: A
contains only 0’s and 1’s and the query string X consists of
k — 1 1’s followed by one 0. We will view A as a matrix in
which we seek the position of the leftmost column containing
only 1’s. At first, this problem might seem easier than the
one that we really want to solve; however, its solution will
essentially be sufficient to solve the original problem.

We start by describing a search algorithm for the one-
sided problem in generic terms. To find X the algorithm
explores A; during the process the knowledge gained divides
the matrix A into three disjoint areas: columns to the left
of the rightmost column (inclusive) in which a 0 has been
encountered belong to the rejected area; the part of A defined
by the set of known matching prefixes outside of the rejected



area make up the matching area; the remaining part of A is
called the uncertainty area.

Figure 1(a) illustrates the above notions: the rejected
area consists of empty squares and is separated from the
rest by double vertical lines; the matching area is filled with
1’s; and the uncertainty area is filled with black squares.

Initially the uncertainty area constitutes the entire ma-
trix and the search terminates when it is empty. The algo-
rithm to be described only probes entries of the uncertainty
area. Furthermore, the entries probed are on the first row
of A or located immediately below the matching area. This
implies that whenever a 1 is encountered, the entry probed
and all entries to the right of it must also be 1’s, and become
part of the matching area. If a 0 is found, all columns to
its left (inclusive) belong to the rejected area. Hence, go-
ing from left to right, every row in A consists of three parts
(each of which can be empty): a rejected part; an uncer-
tainty part; and a matching part. Rows with no uncertainty
part are ezcluded from the search. In Figure 1(a) excluded
rows are separated from the rest by double horizontal lines.

The search makes two different kinds of probes, both
aiming to decrease the uncertainty part of some row:

Horizontal probe: Probe at the middle of the uncertainty
part of the top row (i.e., the topmost row which has not
been excluded). More precisely, if the uncertainty part
of the top row contains [ entries, probe the [{/2]th of
these, counting from the left. Regardless of whether we
find 0 or 1, the uncertainty part of the row will shrink
by a factor of at least 2; if we find 0 the uncertainty
parts of all other rows will also shrink. The two cases
are illustrated in Figure 1(b) and (c).

Vertical probe: Consider two adjacent rows where the up-
per one has a smaller uncertainty part. Try to make
the two parts the same width by probing immediately
below the leftmost entry of the upper row’s matching
part. If we find a 1 we succeed. If we find a 0, the
areas will change differently; the column in which the
probe was made will be rejected, the uncertainty parts
of all rows above the 0 encountered will disappear,
and hence those rows are excluded. (See Figure 1(d)
and (e).)

We now describe how an algorithm for the one-sided
problem can be applied to the original problem. In every
algorithm that we consider, a character probed in A will
only be compared with the character of X in the same po-
sition. Therefore, the only relevant property of a character
in A is whether it is less than, equal to, or greater than the
corresponding character in X. Hence, we may assume that
A contains only 0’s, 1’s, and 2’s and that X contains only
Vs.

The problem will be solved by making two one-sided
searches, St and Sg, in an alternating fashion, to be made
more precise below. Basically, the searches will work their
way towards X from opposite directions. St rejects columns
smaller than X and Sg rejects columns larger than X. We

concentrate on one of the searches, say Sr. Sr will regard
some columns as passive; namely, those containing strings
that are known to be larger than X. That is, the leftmost
column outside of the rejected area in which a 2 has been
found and all columns to its right. Any probe made in a
passive column is interpreted as a 1 by Sr. With this mod-
ification all horizontal probes and the vertical probes that
give 1’s have the same effect as in the one-sided case.

The only situation in which interaction with Sg is re-
quired is when we find a 0 at some row p in A at a vertical
probe. Then we aim to exclude all rows above the entry
probed. We note that, in order to exclude a row, neither St
nor Sg may have an uncertainty part on that row. To ensure
this, Sy, is interrupted; we say that it is waiting at row p.
Observe that when Sy is waiting at row p, its uncertainty
parts on all rows above the p’th are empty. This is the only
occasion when a search is interrupted. At this point Sp will
be waiting at some row g. (Both searches will wait at row 0
at the beginning of the search.) Hence, both searches are
waiting and we have to decide which one to restart. If p < ¢
we restart Sr; otherwise we restart Sg. W.l.o.g. we can
assume that p < ¢q. Then, since Sgr is waiting below row p,
we know that Sg has no uncertainty part at row p. Hence,
St can exclude all rows above row p, and then continue.

In this way, the two searches will be run as coroutines,
waiting for each other to catch up. Ties are easily broken,
and so no deadlock occurs. The search is completed as soon
as either one of S; and Sg terminates.

The informal discussion in this section is summarized in
the following lemma, stated without proof.

Lemma 2.1 Given any algorithm for solving the one-sided
problem using at most T probes, there is a corresponding
algorithm that solves the string searching problem using at
most 21" probes.

3 The algorithm

This section describes an algorithm that solves the one-sided
problem. Without loss of generality we assume that n > 4.
The algorithm centers around the notion of a fence. A fence
resides in a certain column and consists of the part of the
column which is contained in the matching area. (From the
description in the previous section it follows that every fence
occupies a contiguous upper portion of its column.) A fence
is extended by one or more vertical probes. An extension is
successful if all probes return 1’s; otherwise it fails. Every
fence F' has a height, |F|, defined as the number of rows
spanned by F'; excluded rows are not counted. A fence is
ezcluded if, as a result of row exclusions, its height is reduced
to zero.

The algorithm maintains an ordered collection
F = {F},F;_1,...} of fences in selected columns, where ¢
is a parameter to be fixed later. For i =¢,¢t —1,..., we de-
note by pos(F;) the index of the column containing F;. We
will always have pos(F;) > pos(Fy_1) > ---, i.e., the fences
in F are numbered consecutively from left to right, starting



at an index that varies during the execution of the algorithm
as a function of the number of fences in F. Besides these
fences, there is an imaginary fence Fi41 of infinite height at
position n + 1.

The uncertainty part of the top row will play an impor-
tant role, and we let m denote the logarithm of its width;
this expresses how many more horizontal probes are suffi-
cient to reduce it to zero. That is, m is the logarithm of the
distance from the rightmost known 0 on the top row to the
leftmost fence of F. (Henceforth, unless stated otherwise,
the term ‘rightmost 0’ refers to the rightmost known 0 on
the topmost nonexcluded row.) If we ever fail to extend a
fence, the rejected area will expand to the right, and so the
rightmost 0 will ‘move’ to the right. We thus get a new
leftmost fence, which might cause m to change. Therefore,
with each fence F; € F we keep a number m;, which should
be thought of as the new value of m if an extension of F;
were to fail. A natural choice for m; would be

m: = log(pos(Fis1) — pos (F).

However, during the course of the algorithm F; will move to
the left a number of times, and this would cause a number
of increases in m;. Thus, for technical reasons we choose to
define

m; = log(pos(Fit1) —

the position of the rightmost 0 when F; is created).

Since F; will never move left of the rightmost 0 this definition
will always give a larger number than the former one. Every
fence F; will be created by a horizontal probe, that is, in
the middle between F;yi and the rightmost 0. Moreover,
a fence will only move left, and consequently, the current
definition of m; is always within an additive 1 of the more
intuitive definition. The advantage of our definition is that
m; will not change during the lifetime of F;. This follows
since whenever F;; moves in the algorithm, F; is deleted.

The number of probes performed by the algorithm will
depend on the number of fences. To control this quantity
the algorithm maintains an invariant that puts a restriction
on how close neighboring fences are allowed to be. First, for
all F; € F, define

A =m; —mi_a,

where if F; is the leftmost fence, m;—1 = m. A; captures
how much closer F; is to the rightmost 0 than is F;1;. Next,

define
o= \/max{lﬁ,log (M)} -
logn

The invariant says that, going from left to right, the A;’s
increase exponentially with ratio at least c:

Invariant 1 A;y1 > cA; for all F; € F — {F;}.

As demonstrated in Lemma 4.1 below, Invariant 1 en-
sures that the number of fences is at most ¢ + 1.

The height of a fence is determined by a function H,
defined as
x1+ec/t-‘

H(m):’r 7

where e is the basis of the natural logarithm and

= loglogn
| loge |°
Define the target height of a fence F; to be H(A;). The
algorithm will ensure that fences attain their target height:

Invariant 2 |F;| = H(A;) for oall F; € F.

One consequence of the two invariants, which could be
kept in mind when studying the algorithm, is that as H is
superlinear and since the A;’s increase exponentially, the
heights of the fences will increase exponentially, going from
left to right. (See Lemma 4.3.)

Initially, we only have the imaginary fence Fi4+1 and m =
logn. The algorithm repeatedly executes a round, which
consists of a sequence of three steps, the last two of which
are repeated as long as necessary: (1) Make a horizontal
probe; (2) Restore Invariant 2; (3) Restore Invariant 1.

In order to avoid unnecessary repetition when describing
the three steps in more detail, let us first clarify a few things.
If the leftmost fence Fy is extended to the same height as its
neighbor Fy 1 then Fy is removed from F, and the position
of Fyy1 is changed to that of F;. We say that Fy41 has
moved to (the position of) Fy.

If we encounter a 0 when extending a fence F; of height h
then the top h rows are excluded, and as a result of this F;
and all fences to its left are excluded and removed from F.

We are now ready for a detailed description of a round:

(1) Make a horizontal probe: If we find a 1, this results in
either a new leftmost fence (if there was no fence of
height one), which is put in F; or (if there already was
a fence of height one) the moving of the leftmost fence
to the left.

Step (1) might cause either or both of the invariants to be
violated, and the remainder of the round reestablishes these
(this is not immediate, but will be proved below). We re-
peatedly execute Steps (2) and (3) until the precondition of
neither step holds. Whenever a 0 is encountered, Step (2)
is restarted.

(2) Restore Invariant 2: If Invariant 2 is violated at any
fence then for each fence F; € F, in the order of ap-
pearance from right to left, attempt to extend F; to
its target height.

(3) Restore Invariant 1: If Invariant 1 is violated at the
leftmost fence Fy then attempt to move Fy41 to Fjy.

Some special cases have not been taken into account in
the general description. If a probe executed during some
round ends the search, of course, the rest of that round



is aborted. Furthermore, the description may specify the
extension of a fence that already spans all rows. In this
case, although in actual fact the probe is skipped, we will
pretend that it takes place, extending the fence into fictitious
rows below the real rows; we assume that fictitious positions
contain 1’s only.

The analysis of the algorithm will of course rely upon the
invariants, and we need to verify that they are maintained.
As for Invariant 2 this follows trivially from Step (2). To
see that Invariant 1 is satisfied is not that obvious: We only
restore it at the leftmost fence—is it always satisfied at all
remaining fences? We next show that this is indeed the case.
(For the purpose of subsequent use, the following lemma is
stronger than needed at this point.)

Lemma 3.1 Consider a fence F; at some point during a
round. Let A} denote its A-value before the round started,
and let A; denote its current A-value. Furthermore let Fy
be the leftmost fence at the start of the round. If F; is the
leftmost fence, then

ALSA <1+ A

i=d

otherwise, A; = Aj. Here A} should be interpreted as zero
if F; did not ezist at the beginning of the round.

Proof. Similarly as in the statement of the lemma, in the
following m denotes the current uncertainty on the first row
and m’ denotes its value at the start of the round. The same
convention applies to m; and mj.

Consider first how Step (1) affects the A-values. Since
a horizontal probe is made in the middle of the uncertainty
part of the top row, after the probe m = m’ — 1, indepen-
dently of the outcome.

First, suppose we find a 0 or a 1 that does not give rise
to a new leftmost fence. Then, at the leftmost fence we have

Ag=mg—m=my—(m —1)= AL +1,
and at any fence F; with ¢ > d 4+ 1 we have
A =m; —mi_1 =mh —mh_, = AL

If we find a 1 that gives a new leftmost fence Fy_1, at
this fence

Ag1=ma_1—m=m'—m=1,
while at any fence F; with ¢ > d we have
A-; = m; —M;—1 = mi —m'i_l = A;

We conclude that after Step (1) the A-value of the left-
most fence has increased by one, and the A-values of all
remaining fences are unaltered.

Inductively assume that the lemma is true when Step (2)
is started. Aslong as Step (2) is successful extending fences,
no A-values change. Whenever we encounter a 0, we get a

new leftmost fence F;, the A-value of which, prior to finding
the 0, was equal to its original value, that is, Al. After
finding the 0, we have

A,—:mi—m:m'i—mgm'i—(mg_l—1):A2—|—1.

To verify the inequality note that the m expresses the dis-
tance between the two fences before we found the 0. We
know that F;_; was created in the middle between F; and
the, at that time, rightmost 0, so at this time we have equal-
ity. Since then F; cannot have moved at all (because if it
did it would have become the leftmost fence), which leaves
the right-hand side of the inequality unchanged; and F;_;
can only have moved left, which increases m and decreases
the left-hand side. We conclude that the lemma holds after
Step (2) by induction.

Consider now Step (3). If we ever encounter a 0, the same
argument as in Step (2) applies. Suppose that we succeed
in moving F; to the leftmost fence F;_1. By induction, the
A-value of F;_; just before the move was at most

i—1 i—1
1+ZA;~ =1+Z(m§-—m§-_1)
Jj=d j=d

i 7 !
=1l4+4mi_;—m =14+m;—1 —m,

where the first equality is by definition, and the third follows
since F; cannot have moved up to now (because when a fence
moves it becomes the leftmost fence). On the other hand,
the exact A-value of F;_1 just before the move is m;—1 —m.
Hence,

mi—1—m<1+m;_1 — m',

which implies that —m < 1 — m/. After the move we thus
have

A = mi—m=m,—m<1l+m;—m
1+Z(m;—m;_1)=1+ZA;,
i=d j=d

which completes the induction.m

We note that the invariants are satisfied initially, and so,
by the above lemma and the discussion preceding it, they
hold after and thus prior to any round.

4 Analysis

For the purpose of the analysis, the probes performed during
a round are divided into three different classes, analyzed in
three subsections.

Horizontal probes: All probes of Step (1).

Repairing probes: All vertical probes of Step (2) that ex-
tend fences which existed prior to this round to the
heights they had prior to this round.



Constructing probes: All probes of Step (3) plus those
probes of Step (2) that are not repairing, that is, those
that extend new fences and existing fences beyond the
heights they had prior to this round.

Throughout the following three subsections, we assume
that fences can attain the heights obtained by dropping the
rounding in the definition of H. That is, we assume that

xl-l—ec/t
t

In Section 4.4 we justify this assumption.

H(z) =

4.1 Repairing probes

The key observation when bounding the number of repair-
ing probes is that we only make such probes after excluding
a number of rows, and the number of probes performed re-
pairing a fence to the height it had before the round started
equals the number of rows excluded in the round. Hence,
the maximum number of repairing probes is given by k times
the maximum number of fences that can coexist, that is, the
maximum cardinality of F at the beginning of a round.

Lemma 4.1 After each round, |F| <t +1.

Proof. Let Fj be the leftmost fence in F after a round.
Then A, exists and is at least one. By Invariant 1, we have
A; > ¢A;_1, and thus by iteration, A, > c!~¢A,. Taking
logarithms yields

log(A¢/Aq)

t—d<
log c

<t
where the second inequality follows from the inequalities
A; < logn and Ag > 1, coupled with the definition of ¢.

Hence, d > 0, and the lemma follows.m
Corollary 4.2 The number of repairing probes is O(tk).

4.2 Constructing probes

The number of constructing probes will be bounded in terms
of the sum of the heights of the fences present in F plus the
sum of the heights of all fences that have been excluded,
for which we count the height as the one they had upon
exclusion. We denote this quantity by 7. Note that the
only fences which do not contribute to H are those that are
deleted as a result of successful moves.

Our first goal is to show that H = O(k +1log n/loglog n).
We start our development by proving that the heights of the
fences in F decrease exponentially from right to left:

Lemma 4.3 At any moment, |Fi+1| > 4|F;| for all F; €
F — {Fi, Fs}, where Fy is the leftmost fence in F.

Proof. Before each round we have, by Invariant 1 and
Invariant 2,

_ AT (eagttet | anprelt
|Fip| = —— 2 , > —

where the last inequality follows by the choice of c.

Step (1) does not affect the height of any existing fence
but can introduce a new leftmost fence, which might be too
high compared to its right neighbor. Since the inequality
held everywhere before the step it holds everywhere except
possibly at the new leftmost fence afterwards.

Assume inductively that the claim holds whenever Step
(2) is started. As long as Step (2) is successful extending
fences the claim will continue to hold, by the order in which
the fences are processed. If we encounter a 0 the claim will
also hold since the ratio of the heights between any two
fences Fiy1 and F; that are not excluded increases if both
fences lose the same number of rows.

If the extension in Step (3) is successful the leftmost
(possibly violating) fence is deleted from F, and so the in-
equality holds everywhere. If we find a 0 it also continues
to hold by the same argument as that used for Step (2).m

Corollary 4.4 For any F; € F, >
{i<ilF,eF}

|Fj| < 3|Fy|.

Proof. Let F; be the leftmost fence in F and assume that
i > d + 3, since otherwise the claim is obvious. In the light
of Lemma 4.3, we have

SIEI<I|Fl+ Y |Fi| < |F|+2|Fi| =3|Fil.
j=d j=d+1

Lemma 4.5 H = O(k +logn/loglogn).

Proof. We bound each of the two sets of fences that con-
tribute to #, starting by fences present in F. Consider the
tallest fence F;. As A; <logmn,
)1+ec/t

(log n IOg n 9ec log c

t ~ loglogmn

|Fy| < H(A:) < log c,
by the definition of ¢t. Consider now the definition of ¢ in
terms of k. If ¢ > 4, then k = 2° logn/loglogn, in which
case |F;| = o(k). If ¢ = 4, then |Fi| = O(log n/loglogn).
Hence, |F;| = O(k+log n/loglogn). Applying Corollary 4.4
gives that the sum of the heights of all fences in F is O(k +
logn/loglogn).

The sum of the heights of excluded fences increases only
when rows are excluded. If in some step of the algorithm we
find a 0 when extending fence F; then |F;| rows are excluded,
and the sum of the heights of the excluded fences is O(|Fj|)
by Corollary 4.4. Hence the increase in H is linear in the
number of excluded rows. We conclude that the contribution
to H by excluded fences is proportional to the number of
excluded rows, which is O(k).m

Lemma 4.6 The number of constructing probes is O(tk +
logn).



Proof. Note first that each 0 found by a constructing probe
results in the exclusion of at least one row. Consequently,
there can be at most k such probes, and we can thus restrict
ourselves to bounding the number of constructing probes
that return 1’s. We prove the lemma by attributing all such
probes to fences that contribute to # in such a way that a
fence of height h gets O(th) probes. The lemma then follows
from Lemma 4.5 and the choice of ¢.

We now describe how the constructing probes are at-
tributed to fences. When extended to its target height for
the first time, a fence of height h gets h probes. When a
fence F;+1 is moved to F; the probes so far attributed to F;+1
are gradually transferred to F; as follows. Suppose F;41 has
been attributed a|Fiy:1| probes. Then before starting the
move we transfer a|F;| probes from F;; to F;. For each sub-
sequent successful vertical probe made at F;, we attribute
that probe to F; and transfer another a probes from F;i;.
We note that at any time during the move, the number of
remaining probes attributed to Fiy1 is a(|Fiy1| — |Fi]).

We claim that, during the course of the algorithm, a fence
is never attributed more constructing probes than ¢ times its
target height, and, moreover, no more than (12/5)¢ times its
actual height. These claims are certainly true initially, and
we inductively assume that they hold prior to any probe.

Consider first how a horizontal probe affects the claims.
The probe itself is not attributed to any fence, since it is not
a constructing probe. By the description of the algorithm,
all fences are of target height at this point. A horizontal
probe can only increase target heights, and does not change
the actual heights, of remaining fences. Hence, by induc-
tion, after a horizontal probe no fence is attributed more
constructing probes than ¢ times its actual height, which
proves both claims.

‘We next turn to vertical probes. Suppose we make a
vertical probe at a fence F; of height h. We distinguish
between two main cases depending on the outcome of the
probe.

We find a 0: By induction, our claims hold for all fences
that are excluded. Finding a 0 does not decrease the target
height of any remaining fence, so by the inductive assump-
tion no such fence will have more probes attributed to it
than ¢ times its target height. To prove the second claim,
concerning the actual heights, we consider two subcases de-
pending on the step in which the algorithm found the 0.

Case (1): The 0 was found when extending F; to its
target height in Step (2). We establish an upper bound
on the decrease in actual heights of all remaining fences by
bounding h from above, which in turn is accomplished by
bounding the target height of F; from above. Consider the
A-value of F;, A;, just before we hit the 0. In the following,
A%, m) and m' refer to the values prior to the round in
which we encounter the 0. Further, let F; be the leftmost
fence at the start of the round. By Lemma 3.1,

Ai < 14 A;<T+4eAlf(c—1)
j=d

< 1+44A%/3,

where the second inequality follows from Invariant 1 being
satisfied at all fences when the round started, and the last
inequality follows from the choice of c. The target height of
F; when we find the 0 is thus

H(A;)) < H(1+4A]/3) < H(TA}/3)
< H(7A311/12) < TH(Ai4)/12,

where the third inequality again follows by Invariant 1, and
the last inequality follows from the superlinearity of H.
Hence, h < 7H(A},)/12.

Using Lemma 3.1 again, before we find the 0, A;; =
A%, and so the target height of Fiy1 is H(A],;) at this
moment. By the description of the algorithm, all fences
that remain to the right of F;, and in particular Fiy;, were
of target height at the time we hit the 0. Consequently,
Fi11 and thus any other remaining fence loses at most 7/12
of its height. By induction, for these fences the ratios of
the number of probes attributed to the height were at most
t before the 0 was found, so they will be at most (12/5)¢
afterwards.

Case (2): The 0 was found when moving F;i1 to F;
in Step (3). (Then, during the move the height of F; ex-
ceeds its target height, which is why we need to handle
this case separately). Again, by induction, the number of
probes attributed to Fjyi before starting the move was at
most t times its height. Given how the probes previously
attributed to F;41 are transferred to F; during a move, it
follows that the number of probes attributed to the remain-
der of Fj1; is at most ¢t < (12/5)t times its height. It remains
to consider fences to the right of Fi 1. The same argument
as above yields that when we find the 0, the target heights
of Fi11 and F;yp are H(A},,) and H(A},,), respectively.
Moreover,

H(Aip) < H(Aj/4) < H(Ai) /4.

Hence, since F;+1 is not excluded, F;4+2 and any other fence
to its right loses at most one fourth of its height. The claim
thus follows by induction in this case as well.

We find a 1: We distinguish between three subcases de-
pending on the nature of the probe: (1) it aimed to move
Fi+1 to F; or to extend the already moved F;1; to its target
height; (2) it was a repairing probe; (3) it aimed to extend
F; to its target height for the first time.

We start with the last two subcases, which are straight-
forward. A repairing probe does not change the number of
probes attributed to any fence but only increases the height
of some fence by one, so in case (2) the claims hold by in-
duction. In case (3) the number of probes attributed to F;
equals its height, and so again both bounds hold trivially,
by induction.

Case (1): By induction, the number of probes attributed
to the extended fence is at most

(12/5)th +t +1 < (12/5)t(h + 1),



where the additive t reflects the fact that, while moving
Fi41, in addition to the probe made we might transfer up
to t probes from Fjyi. It remains to verify that the number
of probes attributed to the fence being extended is at most
t times its target height. Let A denote the A-value of Fj4
after the move. The target height of F;yi is thus H(A),
and, by induction, F; i gets attributed at most

t(H(Aiy1) + H(Ad)) + H(A) — H(As)
<t(H(Ai1) + H(A:)) + H(A)

probes. Let m; denote the value when the move starts.
Then

A=mip1—mi—1 = (Mig1—ms)+(msi—mi—1) = A1+ A

Therefore, by the superlinearity of H, the number of at-
tributed probes is bounded from above by

(t+1)(H(Ais1) + H(AY)).
It thus suffices to show that
EH(A) > (t+1)(H(Ap) + H(A)),
or, equivalently, that
vt (14 2) (Al Al
We know that
A=Aur+A; > (1 n %) Aisr > e Ay,

where the first inequality expresses that Invariant 1 is vi-
olated (otherwise we would not have moved F;i1i in the
first place), and the second inequality follows from the mean
value theorem. Hence,

A1+ec/t 2 (el/ec X Ai+1)ec/tA — el/tA;zi/ltA
1 ec
> (14 7) AL Qi +A)

1 ec ec
<1+ ;) (A}j{l It AN /t)

v

and we are done.m

4.3 Horizontal probes

Lemma 4.7 The number of horizontal probes is O(tk +
log n).

Proof. At the beginning of the search, we have m = logn
and at the end we have m > 0. Each horizontal probe
decreases m by one. Whenever we find a 0 when trying
to extend a fence, m increases; however, we will show that
the total increase in m over the entire search is O(tk). We
do this by demonstrating that the increase in each round is
linear in ¢ times the number of excluded rows, after which
the lemma follows by summing over all rounds.

Let Fy be the leftmost fence when our round starts. We
consider two different cases depending on the outcome of
Step (1). In what follows the A}’s and m;’s refer to the
values prior to this round.

Suppose that Step (1) of our round encounters a 0, or
a 1 which does not add any new fence. Let F; be the fence
at which we find the last 0 during this round. Then this
round increases m’' to at most m;, which is m}, because
F, ;1 cannot have moved. The increase in m’ is thus at most

i

m; —m' = Z(m; —m}_;) = ZA; < 4A]/3

j=d j=d

where the last inequality follows from Invariant 1 and the
choice of c.

Since F; existed (and was of target height) before this
round, the number of rows excluded during the round must
be at least H(A}) > A’/t. (The number of rows will exceed
H(A)) if F; was repaired during the round.) In this case
the increase in m’ over the round is thus at most linear in ¢
times the number of excluded rows.

Suppose now that Step (1) of our round adds a new fence
Fy_1 to F, and pick i as above. Then, if F; existed pre-
viously, the same argument as above applies. Otherwise,
i =d —1 and F; is the new leftmost fence. But then the
leftmost fence after the round will be Fy, which is the same
as when the round started. Fy cannot have moved during
the round since then F; would have been deleted. Thus, m’
decreases by one over the round in this case.m

4.4 Main theorem

Before summing up let us return to the rounding issue. To
simplify the analysis we have this far assumed that fences
can attain noninteger heights. This is of course not possible
in reality, but all heights are rounded upwards, as stated in
the definition of H. Hence, the algorithm performs more
probes than accounted for in the analysis. We claim, how-
ever, that the actual number of probes is at most twice
that indicated by the idealized analysis. To see this, note
that fences of ideal height at most 1 are already paid for by
the horizontal probes, while the actual height of each larger
fence is at most twice its ideal height.

If we add the contributions by the different kinds of
probes; bounds on which are given in Corollary 4.2 and Lem-
mas 4.6 and 4.7, and apply Lemma 2.1, we can conclude:

Theorem 4.8 The string searching problem can be solved
with

( kloglogn

loglog (4 + “RE2E™)

+k+logn>

probes.

5 The lower bound

In this section we outline a proof of a lower bound for the
string searching problem that matches our upper bound for



many combinations of n and k. More precisely, we study a
lower bound on the number of probes needed to solve the
string searching problem, restricted in the following way:
The input alphabet is {0, 1}, no input string contains more
than one occurrence of 0, and the task is to determine the
position of the leftmost string consisting of k& 1’s.

We start by showing that we can restrict ourselves to
algorithms that build fences. After that, we give a brief
sketch of an adversary that forces any such algorithm to
spend many probes.

5.1 Restricting attention to fence algorithms

A position in the input matrix is ezposed if all positions
above it are contained in the matching area; otherwise it is
buried. A probe at an exposed position is called a surface
probe, while a probe at a buried position is called a buried
probe.

A fence probe is a probe either in the topmost row or
immediately below the leftmost position in the matching
part of some row; clearly, every fence probe is a surface
probe. A fence algorithm is an algorithm that only makes
fence probes. Our goal in this subsection is to show that
fence algorithms are as good as general algorithms in the
context of the restricted searching problem.

Lemma 5.1 If the restricted searching problem can be
solved using at most T probes, it can be solved using at most
T probes by an algorithm that only makes surface probes.

Proof. Let A" be an algorithm that solves the restricted
problem in no more than T’ probes. We show how to use AT
to solve the restricted problem in no more than T probes
using surface probes only.

In order to determine which probes to make, we run A*
on an imaginary input, created on-line. Let I be the real
input and I the imaginary input.

The contents of I is fixed on-line, depending on the
outcome of the probes made in I. By placing a 0 in some
column we mean that we fix the topmost unfixed position in
the column to 0 and the rest of the column to 1’'s. We use
AT in the following way:

If AT probes an already fixed position in IT we just
return the value fixed for that position; no probe is made
in I.

If AT makes a buried probe, we fix this position to con-
tain 1. No probe is made in I, but the probe is saved and
will be carried out later (as soon as it can be executed as a
surface probe).

If A* makes a surface probe, a number of saved probes
may become connected to the surface. Before fixing the
contents of AT’s probe, we perform these saved probes as
surface probes, i.e., from top to bottom (other buried probes
may remain in the same or other columns), until they are
all done or we find a 0. In the first case, when only 1’s are
found, we fix A™’s probe to 1; all positions in I that become
part of the matching area are fixed in I, filled by 1’s.

In the second case, one of the saved probes return a 0,
say in column p. We then fix a part of I by placing a 0
in column p and all columns to its left. In this way, the
position where A1 made its probe will contain a 0.

It is obvious that the number of probes made in I does
not exceed the number of probes made in It. It can further
be verified in a relatively straightforward manner that I and
I™ contain 0’s in the same columns, and that the columns
in It are lexicographically sorted. Hence, we do indeed find
the correct rank.m

Lemma 5.2 If the restricted searching problem can be
solved using at most T probes, it can be solved by a fence
algorithm using at most 2T probes.

Proof. By the preceding lemma, it suffices to show that
every surface probe can be simulated by at most two fence
probes.

Suppose that we aim to make a surface probe in row
r > 2. Instead, we begin by carrying out the unique fence
probe in row 7. If this yields a 1, we know that the probe
that we aimed to perform also yields a 1. If it yields a 0,
on the other hand, row r becomes the topmost row, and we
can execute the original probe as a fence probe.m

5.2 Lower bounds for fence algorithms

In the light of Lemma 5.2, we can discuss our lower bounds
using basically the same terminology as for the upper bound.
That is, we can phrase the discussion in terms of the number
of fences, the heights of fences, vertical probes, etc.

In our upper bound, the parameter ¢ plays an important
role, in that the term kt in the complexity can intuitively be
thought of as if we spend, on average, O(t) probes per row.
The adversary designed to achieve a lower bound will use a
constant ¢ in essentially the same way, that is, it will force
the algorithm to use at least ¢ probes per row. Below, we
sketch some of the rules according to which the adversary
acts. (Number the fences in the same way as in the algo-
rithm, that is, from left to right, where F; is the rightmost
one.)

Suppose that at some time Fp exists. Then the algorithm
has made at least ¢ probes on each of the |Fy| topmost rows
(one probe per fence and row). Knowing this, the adversary
can safely put a 0 immediately below Fp, which results in
the exclusion of |Fy| rows, each one of which has costed the
algorithm at least ¢t probes. This adversary rule thus puts a
restriction on how many fences there can be.

We will also attribute probes to fences in a way that is al-
most the same as in the proof of Lemma 4.6. Upon creation
and when not being moved a fence is attributed the number
of probes made at it. When a fence F;i; is moved to Fj,
the probes attributed to the moved fence will be the sum of
the probes attributed to F;+1 and F; before the move plus
the actual number of probes performed. Suppose now that a
fence F; is attributed at least t|F;| probes. Then, again, the



adversary can put a 0 immediately below F;, which results
in the exclusion of |F;| rows, each one of which has costed
the algorithm at least ¢ probes. This second rule of the ad-
versary says that the algorithm will not be allowed to move
a fence to the left ‘too many’ times.

The third main rule of the adversary is concerned with
how to handle probes on the first row, and is slightly more
technical. Basically, what it says is that unless the probe
made is too far to the left (relative to the actual width of
the uncertainty part of the top row), return a 1; otherwise,
return a 0.

All vertical probes not covered by the rules above are
answered 1 by the adversary.

In order to understand how the above rules interact, first
note that, intuitively, the goal of any fence algorithm can be
thought of as either constructing a tall fence ‘far’ to the left
or gaining rows ‘cheaply.’ In one way or another, all three
rules guiding the adversary prevents the algorithm from ad-
vancing to the left too easily. The first rule makes it im-
possible to repeatedly erect new fences in order to move to
the left; the second rule prevents the algorithm from repeat-
edly moving the leftmost fence to the left; and the third rule
ensures that any new leftmost fence does not advance the
position of the leftmost fence by too much.

Using the adversary described above, we believe that we
can prove:

Conjecture 5.3 The string searching problem requires

kloglogn
Q ——=—+1 k
(loglogk +logn+ )

probes.

Recently, we have extended the adversary by two addi-
tional rules, very similar to the invariants maintained by our
algorithm. Using the extended adversary we hope to prove
a lower bound matching the upper bound presented in this

paper:

Conjecture 5.4 The string searching problem requires

kloglogn
+ k+logn
log log (4 + Eloslos) &
probes.
References

[1] D.S. Hirschberg. A lower worst-case complexity for searching
a dictionary. In Proc. 16th Ann. Allerton Conf. on Commu-
nication, Control, and Computing, pp. 50-53, 1978.

[2] D. S. Hirschberg. On the complexity of searching a set of
vectors. SIAM J. Comput. 9:126-129, 1980.

[3] S. R. Kosaraju. On a multidimensional search problem. In
Proc. 11th Ann. ACM Symp. on Theory of Computing, pp-
67-73, 1979.

TJr1[1[1J1]1]1
T[T [T [1[1[1[1]1
m(m[(m[1[1[1[1]1
mm (w1111
JDODDDDRE
Em s nnnn
(a)
T[1[1[1[1J1]1]1
L[ttt
m 111111
W m (w1111
DD
Em s nnnn
(b)
T[r[1[1]1]1
L1111
MWttt [1]1
W[ 1111
mm (w11
e m(nmm
()
T[r[i[1[1[1]1]1
L1t
m(m[(m[1[1[1[1]1
mm (w1111
L HRERE
Em s (nnnn
(d)
T[1]1]1
L1 11
L1111
HRERE
O[m w11
L
(e)

Figure 1: The one-sided problem.



