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Abstract. We presenta systemcalled HOMEBOTS for agent-basedenergy managementser-
vices,realizedbynetworked‘smart’ industrial andhouseholdequipmentcommunicatingoverthe
power line and other media. As a consequenceof the deregulation of the electricity marketsin
manycountries,energy utilities havestartedto pay high interestin offering value-addedenergy
customerservicesratherthanmerely sellingelectricity(kWh).Wediscussa numberof important
technicalandbusinessissuesin launchingsuch services,anddescribesomeadvancedsolutions.

First, we presenta new computationalmarkettheory, implementedin the HOMEBOTS system.
It showshow large numbersof electrical loads can be automaticallymanagedby autonomous
agents,that communicateandnegotiatein an electronicmulti-commoditymarketleadingto opti-
maluseof electricalpower. Theadvantagesof thisagent-basedapproach comparedto traditional
methodsfor powerload managementare described.Second,we demonstratethroughsimulated
businessscenariosthat significantenergy costsavingscanthusbeachieved.Third, our approach
hasbeentestedin a field experimentin an energy distributionarea in theSouth-Eastof Sweden.
Theperformedfield testsshowthat thereal-timerequirementsfor agentcommunicationoverthe
powerline in energy servicesarewell metin realisticapplicationsettings.

1 Agent-Based Energy Management

The electricity marketin many countrieshasrecentlybeenderegulatedor is currently
underderegulation. At the sametime we witnessa rapid technologicaldevelopment,
particularlyin theareaof accessbetweenglobalnetworks(suchasthe Internet)andin-
dividualhouseholds(e.g. throughcableTV or eventheelectricalpowergrid), andin the
areaof incorporationof microcomputersin homeappliances.Thus,animportantquestion
for powerutilities is how thisnew ability to communicatewith largenumbersof electrical
equipment(loads)canincreasethecompetitivenessof theutility.

Value-added services. An interestingobservationin thisnew settingis thatutilities can
offer new value-addedservices,suchasproviding a comfortableindoor temperaturein
a public building or providing waysto save costsby energy management.In theformer
case,theutility couldhave somecontractwith thecustomerwhich definestheeconomic
termsfor different levels of comfort (temperature).In the latter case,onecould have
contractsbetweenutilities andcustomerswith theaim to reducetheconsumptionat the
customersideat certain(peak)hours. Namely, energy demandvariesdependingon the
natureof thecustomerpremises,andit shows big andcostlyfluctuationsover time. One
possibility to increasetheefficiency of theenergy systemis thereforeto try andmanage
customerequipmentto reducethe temporalfluctuationsin demand. The fundamental
problemfor the utility for thesetwo examplesis thesame:Whenshouldthe respective
loadsbeatwhatconsumptionlevel (while consideringthecomfortconstraintsof thepub-
lic building andthetimeconstraintsgivenby thecontracts)suchthatcostsareminimized?



Conventional power load management. This is called power load management
[1, 2, 3]. The goal of load managementis to move demandfrom expensive hoursto
cheaperhours. This reducescosts,curtailsenergy systemover- or under-capacity, and
enhancestheutilization degreeof investmentsin existing energy networkassets.Energy
load managementis alreadyan old ideausedon a limited scalewith large customers.
Whenbig peaksoccur, utilities maybeallowedto shutdown certaincustomerprocesses
in returnfor a certainfinancialcompensationto thecustomer(direct loadmanagement).
Or, suchactionsmaybeundertakenby customersthemselves(indirectloadmanagement),
oftentriggeredby contractualpenaltiesif theenergy consumptionexceedsspecifiedceil-
ings. However, the currentapproachesto load managementare restrictedin scaleand
scope,asthey essentiallydependonone-wayhumandecisionmakingandcontrolregard-
ing a smallnumberof energy-consumingdevicesandprocesses.

Due to the expandingcapabilitiesof InformationandCommunicationTechnology, the
currentchallengeis to automaticallymanageextremelylargenumbersof loadssimulta-
neously. In particular, it shouldbecomepossibleto handleall electricalloadsbeyondthe
secondarysubstationson the230V low voltagegrid. In Europe,a typical ‘cell’ beyond
suchsubstationscovers about250 households,involving on the order of thousandsof
relevant loads.Similar numbershold for office andplantsites.This is several ordersof
magnitudelargerthanin currentformsof loadmanagement.

Giventhedifferentcharacteristicsof differentloads,differentcustomerpreferencesetc.,
andthehugenumberof differentloads,automaticloadmanagementcanbeviewedasa
complex andhighly distributedoptimizationproblem.

Agent-based advances: HomeBots. Agentsoftwaretechnology, combinedwith recent
advancesin telecommunication,offersinnovative waysto solve this problem.Electrical
devicescannowadayspossesscommunicationand information-processingcapabilities,
by supplyingthem with networkedmicroprocessors.This opensup new avenuesfor
energy andtelecomapplications.In everydaylanguage,it is now technologicallypossible
that software-equippedcommunicatingdevices ‘talk to’, ‘negotiate’, ‘make decisions’
and ‘cooperatewith’ oneanother, over the low-voltagegrid andother media. So, we
equipevery load in the systemwith a softwareagentthatactsasits representative. We
call thesesoftwareagentsHOMEBOTS — anameinspiredby smartequipmentasfeatured
in thetv seriesStarTrek andin IsaacAsimow’s robotstories.Thetaskof theseagentsis
to takecareof their electricaldevices,suchthatthey serve asa kind of personalassistant
to helprealizethecustomer’swishes.

We usethis conceptto achieve distributed load managementin a novel fashion: by a
cooperating‘society of intelligent devices’. It is the responsibilityof eachHOMEBOT

agentto makethebestuseof electricityat thelowestpossiblecost.This mayberealized
byapropertiming of electricityuse,byshiftingtheenergyconsumptionof therepresented
device to cheaperperiods. Of course,not many customerswould want their tv setor



microwave oven suddenlyshutoff for saving reasons,but therearemany electric loads
wheretime-of-useshiftsarewell possible.Examplesaredeviceswith rechargebatteries,
dishandlaundrywashers(for examplein their useovernight),andespeciallyspaceand
waterheating/coolingequipment,becausetheseinvolve relatively slow thermodynamic
processeswith reasonabletolerances. Importantly, the latter are responsiblefor most
(about80%in many cases)of theenergy consumptionin residencesandoffices.
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Figure1: A basicagent-basedenergy managementscenario,depictingthe agenttasks(boxes)
andtransactions(arrows)in an electronicmarketfor energy loadmanagement.

An importantobservation is that wheneachequipmentagentwould carry out time-of-
useshifts to cheaphoursin a completelyindividualistic fashion,a sub-optimalsituation
wouldresult:all agentswouldmovetowardsthesamecheapspots,creatingpeakdemands
thereinstead.Hence,HomeBotequipmentagentsmustcommunicatein orderto arrive
at the desiredoverall optimumload situation. This is achieved by their actingtogether
on anelectronicmarketfor reallocatingpower by buying andsellingpower for different
timeslots.Onepossible,basicscenariofor distributedloadmanagementbasedonagents
actingon anelectronicmarketis depictedin Figure1. It shows the taskscarriedout by
softwareagentsrepresentingtheutility andthecustomers,andthecommunicationlinks
(transactions)betweentheagenttasks.Thebid-assess-award taskclustercorrespondsto
theelectronicmarketprocess.

In this paper, we elaboratethis agent-basedmarketfor direct power load management.
We introducea novel multi-commoditycomputationalmarketdesignfor this problemin
Section2. A concreteexampleillustratingdistributedload managementis presentedin
Section3. Thesimulationsshow thatsignificantenergy costsavingscanbeachieved,thus
establishingthebusinesscasefor new energy servicessuchasagent-basedloadmanage-



ment. Our HOMEBOTS systemhasbeenimplementedon top of a power-line telecom-
municationinfrastructurein anelectricitydistribution areain theSouth-Eastof Sweden.
Aim wasto testthespeedandreliability of equipmentagentcommunication,with regard
to the real-timerequirementsimposedon large-scaleloadmanagementservices.These
testshave beenperformedin cooperationwith a numberof Europeanutilities andsystem
providers.In Section4 wereportonthesetupandtheresultsof thefield experiments.The
testsshow that the real-timerequirementscanbesuccessfullymetwith our agent-based
approach.In Section5 we summarizeour conclusions,andpoint at utureresearchtopics
to betackledin bringingnew energy servicesonthemarket;many gobeyondagentissues
anddealwith businessprocessandcustomerinterfaceaspects.

2 Multi-Commodity Electronic Market Design

Thissectiondescribesour electronicmarketdesignfor loadmanagement.Theimportant
designissuesarethedefinitionof thecommodities,theagents,andtheagentinteraction
protocol.Thedesigndealswith amulti-commoditymarket,anapproachthatrepresentsa
significantgeneralizationoverearliertwo-commodity(electricityandmoney) approaches
to loadmanagement(e.g.[4, 5]). It alsotakessomeinspirationfrom similar systemsfor
otherapplicationareas[6, 7,8, 9, 10]. Furthermore,morerealisticloadmodelshavebeen
introducedcomparedto, e.g.,[4].

2.1 Commodities

The power within different time slots representthe different commodities. A natural
choiceis to employtime slotsof onehour, but it is well possibleto employmorefine-
grainedandvariableintervals. For example,onecould considerusing 
�� minute time
slotsthefirst hour, 
�� minutetimeslotsthenext two hours, 
 hourslotsfor thefollowing
� hours,and � hourtimeslotsfor thefollowing ��� hours,i.e. amarketof ��
 commodities
over a total timeperiodof ��� hours.Of course,themorefine-grainedthetimescale(that
is, a largernumberof commodities),themoreaccuratetheoutcome,but alsotheheavier
thecomputationalburden.

For the pricesanddemandsof the next few periodsto be exactly correcta marketwith
an infinite numberof commodities,covering time infinitely into the future, would for-
mally berequired.Sincethis is impossiblein practice,we setup a reasonablenumberof
commodities,for example,the ��
 commoditiesdescribedabove, andlet theagentsbase
their decisionsfor thesetime periodson someroughestimatesof futurevalues.For the
examplehere,this comprisesroughestimatesof thepricesof the ��� th hourandbeyond.
In this paperwe will let the estimateof thosefuture pricesbe theprice of the last time
periodcoveredby themarket,althoughotheralternativesarecertainlyconceivable[11].



Auctions(describedbelow) canbeperformedregularlyor whenrequired.Typically, with
themarketsettingdefinedabove, a new auctionwould beperformedevery 
�� th minute.
Thereallocationof resourcesis performedasdescribedby thebidsof theupcomingtime
period.Thefuturepricesandallocationsareestablishedfor two reasons:1) thepriceand
demandfor theupcomingperiodcannot beestablishedwithout knowledgeaboutfuture
prices,and2) the estimatesof future pricesanddemandsis useful information for the
utility. Themarketoutcomeprovidestheutility with a controlstrategy for theupcoming
time period and useful predictionsaboutfuture pricesand demandsin a compactand
uniformmanner.

2.2 Agents

Every load in the systemis representedby a computationalagent,a HOMEBOT. The
responsibilityof a HOMEBOT is to useelectricity as efficiently as possible,given the
customerpreferences,the loadstate,consumptionpredictions,andthe loadmodel. The
customerpreferencesare representedby a customercontract. The indoor temperature
of a building, or the amountof water in a warm waterheaterareexamplesof the load
state. Theconsumptionpredictionsarepreprogrammedor learnedconsumptionpatterns.
Physicalload characteristics,suchas time constants,are containedin the load model.
This is illustratedin Figure2.

Customer 
preferences 
(contract)

Load state

Disturbance
predictions

Load model HOMEBOT

Bids

Figure2: Theinputsandtheoutputof a HOMEBOT agent.

A HOMEBOT is modeledasautility maximizingagent,whosepreferencesaregivenby a
quasi-linearutility function1 definedby

�����������! #"%$&�'�(�� *)!�!� (1)

where �+" , -/.0��-213�5454546�0-3738 is the resource(active power) of the different time intervals
( 
 454&459 ), $;:<�(�� representsthebenefitor cost(negativebenefit),associatedwith � . Thatis,

1A utility functionis essentiallya preferenceordering:a high utility for someallocationexpressesthat
thisallocationis preferredover anotherallocationwith a lowerutility .



it capturesthecustomerpreferences,theloadstate,consumptionpredictions,andtheload
model.Themoney, � , correspondsto amonetaryvaluein a realcurrency.

Thetaskof eachHOMEBOT is to maximizeits utility throughtradewith otheragents.In
suchtradetheHOMEBOTS areprogrammedto actcompetitively(equivalentto actingas
aprice-taker) [12, p. 20,p. 314]. So,they treatpricesasexogenous,ratherthanspeculate
abouttheeffectsof their own actionsonmarketprices(cf. [13]).

Also uncontrollableloadsare representedby HOMEBOTS. In this case,however, the
HOMEBOT is totally insensitive to prices.Sucha HOMEBOT canrepresentoneor anum-
ber of loads. A HOMEBOT representinganuncontrolledloadutilizesa suitablemethod
for prediction,seefor example[14, 15,16].

Agentsrepresentingproductionunits are modeledasprofit maximizing producers,i.e.
they solve themaximizationproblem:

=?>6@ACBED �GFIH6J3KML0������ N� (2)

where � is a producedamountof resource,and H6JOK<L0�P���� is producerQ ’s costassociated
with producing� . Also theproductionagentsareprogrammedto actcompetitively.

2.3 Market Interaction

Agent system architecture. Thestructureof the loadmanagementsystemis typically
asin Figure3. Thepowerdistributionsystemis inherentlyveryhierarchic,andthestruc-
tureof theloadmanagementsystemnormallyreflectsthis.

HOMEBOT

Auctioneer

Production

Agent

Distribution

Agent

Figure3: A typical architecture of a load managementsystem.TheHOMEBOTS are connected
to auctioneerswhich, in turn, areconnectedto otherauctioneersin a hierarchic manner.

Where the agentsare physically placed,dependson communicationand computation
characteristicsof thehardware.For example,if thecommunicationis very fastthrough-
out thesystemandif therearepowerful micro-computersateachload(e.g.‘smartrefrig-
erators’)thenit makessenseto placetheHOMEBOTS at theloadsfor modularityreasons.



On theotherhand,if thecommunicationbetweentheHOMEBOTS andthefirst auction-
eer(for exampleplacedin thesecondarysubstation)is relatively slow andtheprocessing
power at the loadsis very limited, thenall agentsbelongingto thesamesecondarysub-
stationareamight beplacedon thesamehostfor efficiency reasons.

The agentsinteractthroughauctions. In an auctionagentssubmitcompetitive bids and
anauctioneercomputesa generalequilibrium(i.e. a setof pricessuchthatsupplymeets
demandfor eachcommodity). In a distributedsettingtypically a numberof auctioneers
areusedin anhierarchicfashion,sothatthecomputationalburdenis distributedandparts
of thesystemcanfunctioneven whenfailuresarepresent,seefurther [17]. The market
dynamicsis depictedin Figure4.

[Reduction need? Yes]
/Announce & Kick-off

[Convergence? No]
/Next Round

[Interested? Yes]
  /Express Preferences

[Interested? No]
/Opt out
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/Bid & Submit
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Figure 4: The dynamicsof the energy auction, in the form of a UML statediagram. Boxes
indicatestates,arrowsstandfor statetransitions. Thearrow labels tell underwhat conditions
statetransitionsoccurandwhat(trans)actionsare thencarriedout by theHomeBotssystem.The
solid ball (upper left) denotesthe starting stateof the auction,and the encircled balls are end
states.

More formally, with a price-orientedapproach,eachagentcomputesits netdemand[18]
(the changein allocationit desiresat thegoing prices),denotedR �3:<� B  , for agent Q and
commodityS at thepricesB "T, UV.<�0U�13�54&4545�0U�7O8 , whereUW: is thepricefor commodityS . An
auctioneerfor aset, X , of agentsthencomputesapricevectorsuchthat YZS �/[;\ R �3:0� B  ]"� .
A typical marketalgorithm for finding this price is a standardmulti-variableNewton-
Raphsonschemewhich reads2:

B
:(^_. " B

: FIK DW`badc
. � B

:  D�a � B
:  <� (3)

where S ) 
 and S denoteiterations, K is a stepsize,and `ba � B  is the gradientmatrix
definedby ` R :feO� B  ?" g;hjilknm�og;pNq . The propervalueof K canbe determinedat run-timeby

2Thisis justanexampleof aprice-orientedalgorithm, but thereexist many others.An alternativefamily
of algorithmswhich is usefulfor finding theequilibriumareresource-orientedalgorithms[19].



a backtrackingalgorithm [20, pp. 384 – 385]. As the computationaltask of the auc-
tioneerincludessummationof the r demandfunctions,solving the 9sF 
 linear equa-
tion systemtheupdatescaleswith thenumberof agentsandnumberof commoditiesast � r 9 1&u vjwjx  [21]. This is, undersomesmoothnessconditions,a schemewith quadratic
convergence[20]. Hence,therequirednumberof iterationsis

t �zy|{�}~��F+yl{�}��< N , where �
is theerror. Schemesusedin many othercomputationalmarkets[6, 9] have only linear
convergence,scalingwith

t ��F+y|{�}��< .
Themany simulationswe have performedwith our marketschemeshave shown that the
HOMEBOTS approachis computationallyvery fastandefficient. A typical figure is that
marketconvergenceis achieved in just a few iterations[4, 5, 11]. The scalabilityalso
provesto behighly satisfactory:having even thousandsof equipmentagentssimultane-
ouslyinvolvedin anauctionpresentsnoproblemwhatsoever.

An importantissuewhenusinggeneralequilibrium asa marketmechanismis the exis-
tenceanduniquenessof the equilibrium. A sufficient condition for the equilibrium to
exist andbeuniqueis thatall demandsarecontinuous,thatthedemandfor a commodity
alwaysdecreaseswith the price of the commodity, and that eachagenthasgrosssub-
stitutability betweenthecommodities,cf. [22]. Without going into detail here,we note
thattheseconditionstypically arefulfilled (with high accuracy) in anenergy systemasa
whole[3, 11].

Market outcome. Whenmarketequilibriumhasbeenobtained,theresourcesareallo-
cated(the award taskin Figure1). It canbeproven [11, Theorem3.2] that this alloca-
tion is a globally optimal allocation,given the time division andavailableinformation.
Thus,no otherapproach,agent/market-basedor not, cando better, cf. [10]. Moreover,
any Pareto-efficient3 allocationwith thedescribedutility functionsis a globally optimal
allocation. Hence,any marketmechanismwhich generatesa Pareto-efficient allocation
canbeusedfor obtaininga global optimum. Our main reasonfor choosingthegeneral
equilibriumapproachis thecomputationalefficiency of suchanapproach.

Another salientfeatureof our market-basedapproachis that every agentcan estimate
the value of the contractit is holding, by comparinghow much money is spentwith
andwithout the contractandcomputethe difference.This implies that it is possibleto
performan on-line cost/benefitanalysisfor eachandevery contractin the system— a
featurehighly attractivefor energy utilities.

3An allocationis Pareto-efficient if andonly if theredoesnotexist anallocationwhichis betterfor some
agentwithout beingworsefor any otheragent.



3 A Load Management Example

We will now demonstrateandsimulatethemarketdesignfor aspecificexample.Theex-
ampleincludesoneproductionunit, ninewarmwaterheaters,onepublic building anda
numberof uncontrollableloadsasdepictedin Figure5. While we mainly aim at demon-
stratingthe generalprinciplesof the approachhere,most numericaldetailshave been
omittedfor readabilityandspacereasons,but canbefoundelsewhere[11].

Production

W ater 
H eaters

Publ i c  
B uil ding

U ncontroll able 
L oads

Figure5: A smallpart of an energysystem—a producerandits customers.

3.1 Load and Production Characteristics

We investigatea four-hourtime periodwhich canbethoughtof asmorninghourswhere
many peoplehave takenmorningshowersandhavegoneto work. Thus,no furtherwarm
wateris consumedthecomingfew hours.Thatis, theheaterswill atthispointstartto heat
wateruntil they arefully heated.Let ussupposethat theutility hasa contractwith each
customerallowing theutility to switchoff the loadsfor a certainamountof time during
thefour-hourperiod.Theinterestingparametersfor eachloadarehow muchit consumes
whenit is switchedon,how muchenergy it needsto befully heated,andfor how long it
canbedisconnected.

In additionto thewaterheaters,supposethereis a public building suppliedby the pro-
ducer. It is assumedthat the utility hasa contractwith the customermakingthe utility
responsiblefor maintaininga certainindoortemperatureof thebuilding for a certainan-
nualfee.If theutility causesadeviation in temperature,theutility mustpaythecustomer
a compensation.

Theheatingsystemconsistsof electricradiators.Thereis a lower constraint(of 
�� kW)
for theminimalpower thebuilding canbeassignedat theinvestigatedtimeperiods.(This
lower constraintis often includedin load managementcontractsin order to avoid un-
pleasantdraft from windows etc.) In additionto the controllableloads,therearesome



uncontrollableloadswith theexpectedconsumption
�� , ����� , 
6��� and ��� 9_� for eachof
thecomingnext four hours.Thus,thereis a significantpeakduringhourtwo. Thepro-
ductioncostis assumedto be 
�� c�� -

1: , where- : is theamountof producedpower at time
S .

3.2 The HOMEBOTS and the Production Agent

Weanalyzeamarketof four commodities,representingonehoureach.In thisexamplethe
HOMEBOTS representingthewarmwaterheaterswill haveautility functionasdescribed
by Eq.(1) with $ : �(�� ]" � whentheconsumptionis suchthatthecontracteddisconnection
time is not violated,and $ : �(�� �"�F�� , where � is a large constant,otherwise.That is,
aslong asthecontracteddisconnectiontime is not violated,thereis no costfor the load
management,but if thecontractis violated,thereis a relatively highcost.

TheHOMEBOT representingthepublic building hasa utility functionbasedon thechar-
acteristicsof thebuilding andtheservicecontractwith thecustomer. (For details,see[11,
pp. 165– 166].) Theuncontrollableloadsarerepresentedby a HOMEBOT with thede-
mands
6� , ����� , 
���� and ��� 9_� for therespective time intervals,independentlyof prices.

3.3 The Market Outcome

The above agentswereimplementedtogetherwith an auctioneerusinga price-oriented
Newtonscheme,seeEq.(3). In Figure6, theallocationsin presenceandabsenceof load
managementarecompared,andthe correspondingmarketpricesthatemergedfrom the
auctionareshown. We seethat the result is a shift of load from time periodtwo to the
otherperiods,andthatthemarketpriceof timeperiodtwo hasbeenreducedsignificantly.
For this example,aslittle resourceaspossibleis usedfor timeperiodtwo by all involved
controllableloads.However, it is still significantlyhigherthanthepricesof time period

 , 
 , and � , dueto thelargecontributionof uncontrollableloads,andit couldbeprofitable
to arrangeload managementcontractswith morecustomersin order to shift more load
from timeperiodtwo to periods 
 , 
 , and � .
In addition to the fact that the peakhour cost hasbeenreducedby approx. 
�
�� , the
total costsummedover time decreasesby about 
���� , asa consequenceof our electronic
market.4 Thus,thereis a significantbusinesscasefor agent-basedenergy management
services.

4Thepeakhourcostin theuncontrolledcaseis �M� �6�Z�n���j� , whereasin thecontrolledcaseit is ��� �6�Z��������� �
from productionplus ����� �;� ascompensationto thecustomer. Thetotal costduringthefour periodsin the
uncontrolledcaseis �O� �;�6���N�;�6�G�b�M� �;���N���j���?�O� ���N�6�;���?�O� �6�]�����6�����6�j� . In the controlledcasethe
correspondingfigureis �O� �;�P�z�6�6��� �*����� �6�6�'��������� �����O� �6�*���6�;�*����� ���d���;�6��� ��� �;�6� from productioncost
plus ��� �;�¡�¢�M� �6�£�s����� �;�¡�¤�O� �6���¥�j�O����� ascompensationto thecustomer, thatis �;�6� in total.
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Figure6: To theleft, theusedpowerin differenttimeperiodswith andwithout load control are
shown.Theresultof the load control is that load is movedfromperiod two to theotherperiods.
During periodtwo merely ¦¨§3© kWare usedin thecontrolledcase(¦¨©3© kWfromtheuncontrollable
loadsand §O© kWfromthe lower constraint of the resourceallocatedto thepublic building) com-
paredto ª3§3ª kWin theuncontrolledcase. To theright, themarketprices(themarginal production
cost)of the different timeperiodsare visualized.Themarketprice of time period two hasbeen
reducedsignificantly. Total costshavebeenreducedfrom «3«3¬ to ­3­3ª , i.e. byapprox. §3ªO® .

4 Field Tests

4.1 Power Line Communication

Digital communicationover thepower line is becominga promisingchannelfor energy
providers to implementnew services[23]. Typical applicationsinclude remotemeter
reading,remotecontrol tasks,loadmanagement,tariff-switchingetc. Smarthometech-
nology is oneof theareaswherepower-line communicationis a key technology. Meter
reading,tariff switchingetc.areexamplesof applicationswith ratherlow demandsonthe
communicationsystem.Despitethis factthereareseveralspecificpropertiesof thepower
line thathaveto beconsideredin thedesignof reliablesystemsinvolving powerline com-
munication.Themainreasonis thatthepower line wasnotdesignedfor communication
purposesandits propertiesasacommunicationchannelarestill not fully understood.The
power line is a noisymedium,andthe informationbit rateit allows is still limited. The
currentstateof theart thusposesconstraintsonthecommunicationspeedandbandwidth,
a factorto betakeninto accountin designingpracticalapplicationssuchasloadmanage-
ment,althoughtechnologicalprogressis rapid. An importantbusinessconsiderationfor
thecurrentstronginterestin power line communicationis, however, thatno new wiring
is required,a featureof primeimportancein local telecomaccesstechnology[23].



4.2 Field Test Architecture

In thetown of Ronneby(in Blekinge,acountyin theSouth-Eastof Sweden),EnerSearch
is conductingagent-basedload managementteststogetherwith a numberof European
energy utilities andsystemsuppliers,suchasABB, IBM, Iberdrola,PreussenElektraand
Sydkraft. Equipmentfor communicationover thepower line hasbeeninstalledin Villa
Wega,a largevilla usedasanoffice building for theuniversity, andin 70 householdsin
Ronneby. TheHOMEBOTS systemhasbeenconnectedto thevariouscomponentsof the
heatinginstallationof Villa Wega,consistingof 28electricalradiators.

Radiator

IBM MFN
Communication
Device

Measurements

Consumption
Data

Load
Control

ABB/CEWE
Electrical
Meter In total: 28 controllable radiators

Communication Host

Power line communication (LonTalk)

TCP/IP Control and
monitoring host

Radiator

IBM MFN
Communication
Device

Measurements

Consumption
Data

Load
Control

ABB/CEWE
Electrical
Meter

Figure7: Thearchitectureof theVilla Wega field tests.

Eachindividual radiatoris separatelymeteredandableto communicatewith theHOME-
BOTS systemover thepower line throughtheLonTalk protocol.This telecommunication
includesthecapabilitiesto readthecurrentloadstateof any individualradiator, to change
this stateby giving on/off switchinginstructionsover thepower line, andto obtainreal-
timedataconcerningtheaccumulatedenergy consumptionfor eachdevice. Theinstalled
hardwareallowsall agentsto run ona secondarysubstationcomputer(essentiallya stan-
dardIBM compatiblePC).To thisend,oneachradiatoranIBM ‘Multi FunctionalNode’
(MFN) is installed.EachMFN receivesinstructionsfrom theHOMEBOTS systemandis
able to switch a radiatoron andoff. It is alsocapableof countingso called K � pulses.
Thesepulsesaregeneratedby an ABB energy meterthat is alsoattachedto eachsepa-
rateradiator. Thismetergeneratesa fixednumberof pulsesperkwH, thusindicatingthe
amountof energy consumedby theradiator. TheMFN returnstheseconsumptionvalues
to theHOMEBOTS system.Thehardwareandtelecommunicationarchitectureof thefield
experimentsin Villa Wegais presentedin Figure7.



4.3 Experimental Program

Performedexperimentsinvestigatedthesuitability of power-line communicationfor load
managementasdescribedin this paper. All testsoutlinedbelow werecarriedout with
theconfigurationin Villa Wegaof Figure7 andashave beendoneseveral times,during
low, normalandhighdisturbanceperiods(night,workinghours).Threesetsof tests,each
aimedat testinga differentaspectof thesystem,have beencarriedout.

Tests on communication speed and reliability. A ReadLoad Statemessage(i.e. a
requestfor an indicationof whethertheradiatoris switchedon or off) wassentto every
MFN, for approximately1000timesin total. Thefollowing datawerecollected:
– Success/typeof failure;
– Delaytime;
– Loadstatevalue.

Similar testshave beenperformedfor other typesof messages:the AccumulatedCon-
sumptionMessage,indicating the energy consumption,and the Write Load statemes-
sage,a requestto switchon or off theradiator. Also sendingcombinationsof messages
wastested.This first testsethasprovided extensive informationon functioning,speed
andreliability of IBM’ s IDAM installationfor power line communication.

Tests on the load scheduling methods. An important post-marketprocessis the
schedulingof loads,in orderto implementloadmanagementin accordancewith theout-
comesof themarket. This schedulingagenttask(seeFigure1) doesrequirepower line
communicationwith all individual loads. After theauctionhasbeencompleted,its out-
comesmustbescheduledin accordancewith theawardedpoweroversomeagreedperiod,
say, the next hour. This is implementedthroughappropriateon/off switchingof the in-
volvedloadsover thepower line. Theawardedpowermustbescheduledover time,such
that(i) theagreedamountof power is deliveredaveragedover time,while (ii) at thesame
time fluctuationsandon/off switchingcostsareminimized. Computationally, this is a
matterof satisfyinganumberof simultaneousconstraints.Also thisprocessis carriedout
automatically, andspecialalgorithmshave beendevelopedfor this schedulingof power
delivery. Theaverageon/off switchinginterval cantherebybechosenasafreeparameter.
Also thisagentprocesshasbeentestedin ourfield experiments.

As theinitial allocation,arandomlygeneratedoneis taken.Testsaimedto studywhether
theschedulingalgorithmworkedproperlyin schedulingthevariousloads.Thefollowing
datawerecollected:
– theallocatedresource(perloadandin total);
– per time slot, the currentconsumptionfor every load, plus the sumtotal. The total
numberof time slots is a few dozens,while a single time slot is on the order of one
minute.



The sametesthasbeenperformedbut now with a numberof (simulated)reallocations
during theprocess,roughlyevery few minutes.For every reallocation,theallocatedre-
sourceswere collected. The sametest hasbeenperformedagainwith different,more
severe,hardconstraintson thetotal resource.

Resource allocation plus scheduling full tests. Thesetestsrepresentanintegratedtest
of our whole loadmanagementscheme.Again theschedulingalgorithmwastested,but
now with theresourceallocationcomputedfrom theutility functionsandtheassociated
market. The scenariois basedon reduction(or increase)by a predefinedamountof re-
sources.Thefollowing datawerecollected:
– theallocatedpower resources(perloadandin total,at every reallocation);
– pertimeslot, thecurrentconsumptionfor every load,plusthesumtotal;
– thetemperaturefor every timeslot;
– theutility function.
Thesametesthasalsobeenperformed,basedona scenariowherea differentcompensa-
tion priceis offeredfor buyingbackpower.

4.4 Results

Table1 shows sometypical resultsfor the measuredtotal communicationtimesof the
experimentsdescribedin theprevious section. Thesecommunicationtimesaredefined
asacknowledgedmessagesto andfrom our Javaapplicationcodeto theprocessorsat the
loads.Foravastmajority(over90%)of themessages,theresponsetimeslie in theinterval
between0.54and0.99s,sothatthemedianis significantlybelow 1second.Averagedelay
is 1.29s andthestandarddeviation is 2.11s. Theclusteringof communicationtimesis
relatedto re-sendtimer parameters.Thesuccessratewasover98%.

Delay(s) Frequency

©3¯�ª<¦±°³²�´�©3¯n¬3¬ §3§3¬3µO¬
©3¯�¬3¬¶°³²�´�§3¯·¦¨¸ ¦¨«3¸
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§3¸3¯�©O­¶°�²�´�§O¸3¯�¬3ª µ3ª3«

Table 1: Sometypical experimentaldata from the HOMEBOTS field testsin an office
building, for a total of 
6
����V
 messages.

The messageshave typical lengthsof 10–160bits, including additionaldata(like CRC
info) requiredby the LonTalk protocol. Hence,althoughthe maximumpossiblebitrate



of power line telecommunicationis ratherlimited with currently available commercial
equipment,thetestresultsshow that it is adequatefor power loadmanagementapplica-
tions.

Thus,thevariouscommunicationtestsclearlyshow thattherelatively non-intensivecom-
municationrequiredbetweeneachagentandits respective loadcanbesuccessfullyper-
formedover theelectricalpower line. Inter-agentcommunicationin thesecondarysub-
stationareais thenefficiently managedby a singlehost,andinteragentcommunication
betweenlarger groupsof agentscanbe performedin a hierarchicmanneron fasternet-
works(cf. Figure3 and[17]). In sum,themainconclusionof theperformedfield testsis
thatagent-andmarket-basedloadmanagementis technologicallyfeasiblein many realis-
tic customersettings:responsetimesaresufficiently shortandthereliability is acceptable.

5 Conclusions and Future Work

In thispaperweintroducedanovel multi-commoditymarketdesignfor loadmanagement.
This approachto load managementhasa numberof advantagescomparedto existing
methods(suchas[2, 24,3]):

1. It providesan integratedstrategy for many differenttypesof loadsandcontracts.
They mayvary from low level contractsallowing theutility to switchoff loadsfor
certainamountsof time to high level services,like indoortemperaturecontrol.

2. The outcomeis of very high quality, typically a very closeapproximationof the
theoreticaloptimumis obtained.

3. It enablesnaturaldecomposition,both from a softwareengineeringperspective as
well as from a computationalperspective. All local characteristicsare encapsu-
latedby agents,communicatingonly throughpricesanddemandswhile doinglocal
optimizationcomputations.

4. It canbe efficiently implemented(for the two commoditycase,see,e.g.,[4, 17],
andfor themulti-commoditycase,see,e.g.,[25, 19,11]).

5. The main abstractionsused,price anddemand,areprobablythemostnaturalab-
stractionsto usefor a utility.

6. Theutility is providedwith a compactanduniform estimateof theenergy system
characteristics(presentandfuture)in termsof pricesanddemands.

7. A local estimateof the valueof the load managementcontractis obtained. This
enablestheutility to docontinuouson-linecost/benefitanalysisof every loadman-
agementcontractin theentiresystem.



Clearly, it can be argued that theremight be competingapproaches(from, e.g., (dis-
tributed)mathematicaloptimizationor resourceallocation)that canbe appliedto load
managementfulfilling items(1), (2), (3), and(4). Theproblemdoesnotnecessarilyhave
to bemodeledasamarketin orderto setuputility functionsandperformoptimizationin a
distributedfashion.We donotdisagreewith suchaposition,but arguethattheintegrated
view of all typesof loadsandcontracts,thehighquality outcome,thecomputationaland
conceptualdecompositionof theglobal probleminto small piecesof locally optimizing
software,andtheefficientalgorithms,togetherform anattractive approachto loadman-
agement.Thisholdsregardlessof if ourapproachis describedwith classicalmathematical
optimizationandresourceallocationconceptsor if it is treatedwith marketabstractions.

Our mainargumentsfor a marketview of thesystemareitems(5), (6), and(7). Rather
thanthe computationalaspects,we believe the naturalnessof the approachto be of vi-
tal importance.The successfulintegrationof a load managementsysteminto the core
businessinformationmanagementof a utility is heavily dependenton how the system
is appreciatedby the peoplein the organization.Staff responsiblefor energy tradingis
very familiar with conceptssuchasdemandandprices.Therefore,themetaphorof local
agents‘negotiating’overpowerandtherebyobtainingmarketequilibriumis averyattrac-
tive onewhich simplifiestheunderstandingof theprinciplesof thesystem.Theissueof
naturalnessis alsoimportantfrom thesoftwareengineeringperspective. Along thesame
line of reasoning,theestimateof theenergy systemcharacteristicsin termsof pricesand
demandsis probablythemostusefulonefor the utility. Furthermore,well known con-
ceptsfrom economics,suchaspriceelasticityaredirectly applicable.Finally, thefeature
of localevaluationof loadcontractsfor every loadin theentiresystemis only inherentin
a marketapproach,andwe believe it to bevery useful. Thus,themarketdesigntightly
fits therealsituationconceptually.

In summary, our HOMEBOTS agentapproachto power load managementsucceedsin
reducingbothpeakloadsandoverall costof power delivery andconsumption.Theper-
formedfield testsclearlydemonstratethetechnicalfeasibilityof usingtheelectricalpower
line asa communicationmediumfor our approach.

Therearea numberof areasthatwe will further investigatein thenearfuture. Oneissue
is to furtherexpandthe rangeof applicationsituations,businessscenariosandcustomer
intereststhat can be handledby electronicmarkets. The HOMEBOTS technologyhas
the potential to supportmany more applicationsthan could be pointedout here. We
will develop detailedbusinessscenariosthat serve as a way to illustrate possiblenew
interactive services. Thesescenarioswill provide a basisfor discussionswith utilities
andcustomersto explore needsandto elicit feedback.On this basis,a genericformal
descriptionof new interactiveserviceswill bederived.

Anotherimportanttopic concernsinformationintegration: loadmanagementwill bebut
oneof thenew ICT-basedservicesrunningon thesamepower-line informationandcom-
municationinfrastructure.A significantpart of the informationinvolvedwill beneeded
acrossdifferentservices.This raisesthequestionhow to connectandintegraterelevant



piecesof information.Here,reusable(serviceandsystem)modelsandarchitectures,and
(ontology) mechanisms[26] for the sharingof information and meaningare to be re-
searched.An issuein customerrequirementsengineering—not addressedin economic
scienceor markettheory, by theway— is how oneactuallydeterminesa utility curve in
a practicalandindividual case.In general,this will dependon variousfactorsincluding
personalcharacteristicsof thecustomer, theunderlyingbusinessmodels,aswell astech-
nical modelsanddataconcerningthefunctioningof devices(seeFigure2. Handlingthis
aspectproperlyin preference-andstyle-sensitive userinterfacesis a key elementin any
new ICT-basedservice,becauseit defineshow the serviceis presentedto andinteracts
with the individual customer. Now that the underlyingsoftwareagentandmarkettech-
nology hassuccessfullydemonstratedits feasibility, the major next stepis thereforeto
designandexperimentwith thefull servicechainfrom utility to customer.
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