Tech. report, Lund University, 1994.

Blasting Past Fusion Trees

Arne Andersson* Stefan Nilsson* Torben Hagerup!

10 October 1994

Abstract
We present an O(nloglog n) worst-case time algorithm for sorting arbi-
trary integers, a significant improvement over the bound achieved by the
fusion tree of Fredman and Willard.

Model of computation

We will consider a unit cost random access machine, RAM, with word length
w and a memory composed of 2% words. The instruction set includes addition,
subtraction, comparison, unrestricted shift and the bitwise boolean operations

AND and OR.

The algorithm

We study the problem of sorting n integers in the range 1..2° on a RAM. We say
that T'(n,b) < f(n) if there exists an algorithm with worst-case time complexity
f(n) that solves this sorting problem. The assertion that T(n,bs) < f(n) =
T(n,b) < f(n) will be abbreviated as T'(n,b1) < T(n, bs). Similarly, T'(n,b) <
O(g(n)) will be used to denote that there exists some f, f(n) = O(g(n)), such
that T'(n,b) < f(n).

A sequential version of an integer sorting algorithm by Albers and Hage-
rup [1] achieves

T(n,w/logn) < O(nloglogn),

provided that w > lognloglogn. This can be seen by applying Theorem 1 [1]
with parameters k = logn, m = 2v/1ogn,
Also, using traditional bucket sort, we have

T(n,logn) < O(n).
The range reduction technique by Kirkpatrick and Reisch [6] achieves
T(n,b) < T(n,b/2)+ O(n).

*Department of Computer Science, Lund University, Box 118, S-221 00 Lund, Sweden
tMax-Planck-Institut fiir Informatik, D-66123 Saarbriicken, Germany



Let ¢ = max{logn, w/logn} and consider the following algorithm for sorting
n integers in the range 1..2"%.

1. Use the range reduction technique until the length b of an integer is shorter
than c.

2. If b < logn finish off the sorting using bucket sort, otherwise use the
integer sorting algorithm by Albers and Hagerup.

This algorithm has the worst-case time complexity

T(n,w) < O(nlog Yyn loglog n)
e
= O(nloglogn),

where the first term comes from the range reduction step and the second from
the sorting step.

The algorithm uses ©(n + 2¥/?) space; this can be reduced to O(n) using
universal hashing [4], yielding a randomized algorithm with the same expected
time complexity.

Comments

The new bound is a significant improvement over the O(n+/log n) bound achieved
by the fusion tree of Fredman and Willard [5].

The algorithm was first discovered as a recursive application of Forward
Radix Sort [3]. Using this application, it is possible to achieve T(n,b) <
T(n,b/k) + O(kn) for any k > 1. This technique gives a worst-case cost of
O(ﬁnlog logn), while the space required is ©(n + 2v/*).

T%he result can be extended in many ways. First, using the described algo-
rithm as a subroutine of Forward Radix Sort [3], the results can be extended
to efficiently handle strings of arbitrary length, i.e. longer than one machine
word. Second, instead of using the range reduction technique by Kirkpatrick
and Reisch we may use a modified version of Forward Radix Sort to reduce the
space complexity, as sketched above. Third, the algorithm is well suited as a
basis for new, efficient, parallel sorting algorithms.

These aspects will be treated in an extended article [2]. Just to mention one
result, we claim that n integers can be sorted on an ARBITRARY CRCW PRAM
using O(lognloglogn) time and O(nloglogn) operations.

References

[1] S. Albers and T. Hagerup. Improved parallel integer sorting without con-
current writing. In Proc. 3rd ACM-STAM SODA, pages 463-472, 1992.

[2] A. Andersson, T. Hagerup, and S. Nilsson. Manuscript. In preparation.



[3] A. Andersson and S. Nilsson. A new efficient radix sort. In Proc. 35th
Annual IEEE Symposium FOCS, 1994. To appear.

[4] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal
of Computer and System Sciences, 18:143-154, 1979.

[5] M. L. Fredman and D. E. Willard. Blasting through the information theo-
retic barrier with fusion trees. In Proc. 22nd ACM STOC, pages 1-7, 1990.

[6] D. Kirkpatrick and S. Reisch. Upper bounds for sorting integers on random
access machines. Theoretical Computer Science, 28:263-276, 1984.



