
1

Part I: Introduction to Databases

Kostis Sagonas

2Introduction to Databases

Introduction to Database Concepts

Q Purpose of Database Systems

Q View of Data

Q Data Models

Q Data Definition Language

Q Data Manipulation Language

3Introduction to Databases

Database Management System (DBMS)

Q Collection of interrelated data

Q Set of programs to access the data

Q DBMS contains information about a particular enterprise

Q DBMS provides an environment that is both convenient and
efficient to use.

Q Database Applications:
+ Banking: all transactions

+ Airlines: reservations, schedules

+ Universities: registration, grades

+ Sales: customers, products, purchases

+ Manufacturing: production, inventory, orders, supply chain

+ Human resources: employee records, salaries, tax deductions

Q Databases touch all aspects of our lives

4Introduction to Databases

Purpose of Database System

Q In the early days, database applications were built on top of
file systems

Q Drawbacks of using file systems to store data:

+ Data redundancy and inconsistency

�Multiple file formats, duplication of information in different files

+ Difficulty in accessing data

� Need to write a new program to carry out each new task

+ Data isolation — multiple files and formats

+ Integrity problems

� Integrity constraints (e.g. account balance > 0) become part
of program code

� Hard to add new constraints or change existing ones

5Introduction to Databases

Purpose of Database Systems (Cont.)

Q Drawbacks of using file systems (cont.)

+ Atomicity of updates

� Failures may leave database in an inconsistent state with partial
updates carried out

� E.g. transfer of funds from one account to another should either
complete or not happen at all

+ Concurrent access by multiple users

� Concurrent accessed needed for performance

� Uncontrolled concurrent accesses can lead to inconsistencies

– E.g. two people reading a balance and updating it at the same
time

+ Security problems

Q Database systems offer solutions to all the above problems

6Introduction to Databases

Levels of Abstraction

Q Physical level describes how a record (e.g., customer) is stored.

Q Logical level: describes data stored in database, and the
relationships among the data.

type customer = record
name : string;
street : string;
city : integer;

end;

Q View level: application programs hide details of data types.
Views can also hide information (e.g., salary) for security
purposes.

2

7Introduction to Databases

Instances and Schemas

Q Similar to types and variables in programming languages

Q Schema – the logical structure of the database

+ e.g., the database consists of information about a set of customers and
accounts and the relationship between them)

+ Analogous to type information of a variable in a program

+ Physical schema: database design at the physical level

+ Logical schema: database design at the logical level

Q Instance – the actual content of the database at a particular point in time

+ Analogous to the value of a variable

Q Physical Data Independence – the ability to modify the physical schema
without changing the logical schema

+ Applications depend on the logical schema

+ In general, the interfaces between the various levels and components should
be well defined so that changes in some parts do not seriously influence others.

8Introduction to Databases

Data Models

Q A collection of tools for describing
+ data
+ data relationships
+ data semantics
+ data constraints

Q Entity-Relationship model

Q Relational model

Q Other models:

+ object-oriented model
+ semi-structured data models
+ Older models: network model and hierarchical model

9Introduction to Databases

Entity-Relationship Model

Example of schema in the entity-relationship model

10Introduction to Databases

Entity Relationship Model (Cont.)

Q E-R model of real world

+ Entities (objects)

� E.g. customers, accounts, bank branch

+ Relationships between entities

� E.g. Account A-101 is held by customer Johnson

� Relationship set depositor associates customers with accounts

Q Widely used for database design

+ Database design in E-R model usually converted to design in the
relational model (coming up next) which is used for storage and
processing

11Introduction to Databases

Relational Model

Q Example of tabular data in the relational model

customer-
name

customer-id
customer-
street

customer-
city

account-
number

Johnson

Smith

Johnson

Jones

Smith

192-83-7465

019-28-3746

192-83-7465

321-12-3123

019-28-3746

Alma

North

Alma

Main

North

Palo Alto

Rye

Palo Alto

Harrison

Rye

A-101

A-215

A-201

A-217

A-201

Attributes

12Introduction to Databases

A Sample Relational Database

3

13Introduction to Databases

Data Definition Language (DDL)

Q Specification notation for defining the database schema

+ E.g.
create table account (

 account-number char(10),
 balance integer)

Q DDL compiler generates a set of tables stored in a data
dictionary

Q Data dictionary contains metadata (i.e., data about data)

+ database schema

+ Data storage and definition language

� language in which the storage structure and access methods
used by the database system are specified

� Usually an extension of the data definition language

14Introduction to Databases

Data Manipulation Language (DML)

Q Language for accessing and manipulating the data organized by
the appropriate data model

+ DML also known as query language

Q Two classes of languages

+ Procedural – user specifies what data is required and how to get
those data

+ Nonprocedural – user specifies what data is required without
specifying how to get those data

Q SQL is the most widely used query language

15Introduction to Databases

SQL

Q SQL: widely used non-procedural language

+ E.g. find the name of the customer with customer-id 192-83-7465
select customer.customer-name
from customer
where customer.customer-id = ‘192-83-7465’

+ E.g. find the balances of all accounts held by the customer with
customer-id 192-83-7465

select account.balance
from depositor, account
where depositor.customer-id = ‘192-83-7465’ and
 depositor.account-number = account.account-number

Q Application programs generally access databases through

+ Language extensions that allow embedded SQL

+ Application program interfaces (e.g. ODBC/JDBC) which allow SQL
queries to be sent to a database

Part II: The Relational Model

17Introduction to Databases

The Relational Model

Q Structure of Relational Databases

Q Relational Algebra

Q Tuple Relational Calculus

Q Domain Relational Calculus

Q Extended Relational-Algebra-Operations

Q Modification of the Database

Q Views

18Introduction to Databases

Example of a Relation

4

19Introduction to Databases

Basic Structure

Q Formally, given sets D1, D2, …. Dn a relation r is a subset of
D1 x D2 x … x Dn

Thus a relation is a set of n-tuples (a1, a2, …, an) where
ai ∈ Di

Q Example: if

customer-name = {Jones, Smith, Curry, Lindsay}
customer-street = {Main, North, Park}
customer-city = {Harrison, Rye, Pittsfield}

Then r = { (Jones, Main, Harrison),
 (Smith, North, Rye),
 (Curry, North, Rye),
 (Lindsay, Park, Pittsfield)}
 is a relation over customer-name x customer-street x customer-city

20Introduction to Databases

Attribute Types

Q Each attribute of a relation has a name

Q The set of allowed values for each attribute is called the domain
of the attribute

Q Attribute values are (normally) required to be atomic, that is,
indivisible

+ E.g. multivalued attribute values are not atomic

+ E.g. composite attribute values are not atomic

21Introduction to Databases

Relation Schema

Q A1, A2, …, An are attributes

Q R = (A1, A2, …, An) is a relation schema

E.g. Customer-schema =
 (customer-name, customer-street, customer-city)

Q r(R) is a relation on the relation schema R

E.g. customer (Customer-schema)

22Introduction to Databases

Relation Instance

Q The current values (relation instance) of a relation are
specified by a table

Q An element t of r is a tuple, represented by a row in a table

Jones
Smith
Curry

Lindsay

customer-name

Main
North
North
Park

customer-street

Harrison
Rye
Rye

Pittsfield

customer-city

customer

attributes

tuples

23Introduction to Databases

Relations are Unordered

Q Order of tuples is irrelevant (tuples may be stored in an arbitrary order)

Q E.g. account relation with unordered tuples

24Introduction to Databases

Database

Q A database consists of multiple relations

Q Information about an enterprise is broken up into parts, with each
relation storing one part of the information

E.g.: account : stores information about accounts
 depositor : stores information about which customer
 owns which account
 customer : stores information about customers

Q Storing all information as a single relation such as
 bank(account-number, balance, customer-name, ..)
results in
+ repetition of information (e.g. two customers own an account)

+ the need for null values (e.g. represent a customer without an
account)

Q Normalization theory deals with how to design relational
schemas

5

25Introduction to Databases

The customer Relation

26Introduction to Databases

The depositor Relation

27Introduction to Databases

E-R Diagram for the Banking Enterprise

28Introduction to Databases

Keys

Q Let K ⊆ R

Q K is a superkey of R if values for K are sufficient to identify a
unique tuple of each possible relation r(R) by “possible r” we
mean a relation r that could exist in the enterprise we are
modeling.
Example: {customer-name, customer-street} and
 {customer-name}
are both superkeys of Customer, if no two customers can
possibly have the same name.

Q K is a candidate key if K is minimal
Example: {customer-name} is a candidate key for Customer,
since it is a superkey {assuming no two customers can possibly
have the same name), and no subset of it is a superkey.

29Introduction to Databases

Determining Keys from E-R Sets

Q Strong entity set. The primary key of the entity set becomes
the primary key of the relation.

Q Weak entity set. The primary key of the relation consists of the
union of the primary key of the strong entity set and the
discriminator of the weak entity set.

Q Relationship set. The union of the primary keys of the related
entity sets becomes a super key of the relation.

+ For binary many-to-one relationship sets, the primary key of the
“many” entity set becomes the relation’s primary key.

+ For one-to-one relationship sets, the relation’s primary key can be
that of either entity set.

+ For many-to-many relationship sets, the union of the primary keys
becomes the relation’s primary key

30Introduction to Databases

Schema Diagram for the Banking Enterprise

6

31Introdu ction to Databases

Query Languages

Q Language in which user requests information from the database.

Q Categories of languages

+ procedural

+ non-procedural

Q “Pure” languages:

+ Relational Algebra

+ Tuple Relational Calculus

+ Domain Relational Calculus

Q Pure languages form underlying basis of query languages that
people use.

32Introdu ction to Databases

Relational Algebra

Q Procedural language

Q Six basic operators

+ select

+ project

+ union

+ set difference

+ Cartesian product

+ rename

Q The operators take two or more relations as inputs and give a
new relation as a result.

33Introdu ction to Databases

Select Operation – Example

• Relation r A B C D

α

α

β

β

α

β

β

β

1

5

12

23

7

7

3

10

• σA=B ^ D > 5 (r)
A B C D

α

β

α

β

1

23

7

10

34Introdu ction to Databases

Select Operation

Q Notation: σ p(r)
Q p is called the selection predicate

Q Defined as:

 σp(r) = {t | t ∈ r and p(t)}

Where p is a formula in propositional calculus consisting
of terms connected by : ∧ (and), ∨ (or), ¬ (not)
Each term is one of:

<attribute> op <attribute> or <constant>

 where op is one of: =, ≠, >, ≥. <. ≤
Q Example of selection:

 σ branch-name=“Perryridge”(account)

35Introdu ction to Databases

Project Operation – Example

Q Relation r: A B C

α

α

β

β

10

20

30

40

1

1

1

2

A C

α

α

β

β

1

1

1

2

=

A C

α

β

β

1

1

2

Q ∏A,C (r)

36Introdu ction to Databases

Project Operation

Q Notation:

∏A1, A2, …, Ak (r)

where A1, A2 are attribute names and r is a relation name.

Q The result is defined as the relation of k columns obtained by
erasing the columns that are not listed

Q Duplicate rows removed from result, since relations are sets

Q E.g. To eliminate the branch-name attribute of account
 ∏account-number, balance (account)

7

37Introdu ction to Databases

Union Operation – Example

Q Relations r, s:

 r ∪ s:

A B

α

α

β

1

2

1

A B

α

β

2

3

r
s

A B

α

α

β

β

1

2

1

3

38Introdu ction to Databases

Union Operation

Q Notation: r ∪ s

Q Defined as:

r ∪ s = {t | t ∈ r or t ∈ s}

Q For r ∪ s to be valid:

1. r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible (e.g., 2nd column
 of r deals with the same type of values as does the 2nd
 column of s)

Q E.g., to find all customers with either an account or a loan
 ∏customer-name (depositor) ∪ ∏customer-name (borrower)

39Introdu ction to Databases

Set Difference Operation – Example

Q Relations r, s:

r – s:

A B

α

α

β

1

2

1

A B

α

β

2

3

r
s

A B

α

β

1

1

40Introdu ction to Databases

Set Difference Operation

Q Notation r – s

Q Defined as:

 r – s = {t | t ∈ r and t ∉ s}

Q Set differences must be taken between compatible relations.

+ r and s must have the same arity

+ attribute domains of r and s must be compatible

41Introdu ction to Databases

Cartesian-Product Operation-Example

Relations r, s:

r x s:

A B

α

β

1

2

A B

α
α
α
α
β
β
β
β

1
1
1
1
2
2
2
2

C D

α
β
β
γ
α
β
β
γ

10
19
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

C D

α
β
β
γ

10
10
20
10

E

a
a
b
br

s

42Introdu ction to Databases

Cartesian-Product Operation

Q Notation r x s

Q Defined as:

r x s = {t q | t ∈ r and q ∈ s}

Q Assume that attributes of r(R) and s(S) are disjoint. (That is,
R ∩ S = ∅).

Q If attributes of r(R) and s(S) are not disjoint, then renaming must
be used.

8

43Introduction to Databases

Composition of Operations

Q Can build expressions using multiple operations

Q Example: σA=C(r x s)

Q r x s

Q σA=C(r x s)

A B

α
α
α
α
β
β
β
β

1
1
1
1
2
2
2
2

C D

α
β
β
γ
α
β
β
γ

10
19
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

A B C D E

α
β
β

1
2
2

α
β
β

10
20
20

a
a
b

44Introduction to Databases

Rename Operation

Q Allows us to name, and therefore to refer to, the results of
relational-algebra expressions.

Q Allows us to refer to a relation by more than one name.

Example:

 ρ x (E)

returns the expression E under the name X

If a relational-algebra expression E has arity n, then

 ρx (A1, A2, …, An) (E)

returns the result of expression E under the name X, and with the

attributes renamed to A1, A2, …., An.

45Introduction to Databases

Banking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-only)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

46Introduction to Databases

Example Queries

Q Find all loans of over $1200

 σamount > 1200 (loan)

Q Find the loan number for each loan of an amount greater than
$1200

 ∏loan-number (σamount > 1200 (loan))

47Introduction to Databases

Example Queries

Q Find the names of all customers who have a loan, an account, or
both, from the bank

∏customer-name (borrower) ∪ ∏customer-name (depositor)

Q Find the names of all customers who have a loan and an account
at bank.

∏customer-name (borrower) ∩ ∏customer-name (depositor)

48Introduction to Databases

Example Queries

Q Find the names of all customers who have a loan at the Perryridge
branch.

 ∏customer-name (σbranch-name=“Perryridge”

 (σborrower.loan-number = loan.loan-number(borrower x loan)))
Q Find the names of all customers who have a loan at the Perryridge

branch but do not have an account at any branch of the bank.

 ∏customer-name (σbranch-name = “Perryridge”

 (σborrower.loan-number = loan.loan-number(borrower x loan)))

 – ∏customer-name(depositor)

9

49Introduction to Databases

Example Queries

Q Find the names of all customers who have a loan at the Perryridge
branch.

+ Query 1

 ∏customer-name(σbranch-name = “Perryridge”

 (σborrower.loan-number = loan.loan-number(borrower x loan)))

+ Query 2

 ∏customer-name(σloan.loan-number = borrower.loan-number(
 (σbranch-name = “Perryridge”(loan)) x
 borrower)
)

50Introduction to Databases

Example Queries

Find the largest account balance

+ Rename account relation as d

+ The query then is:

 ∏balance(account) - ∏account.balance

 (σaccount.balance < d.balance (account x ρd (account)))

51Introduction to Databases

Formal Definition

Q A basic expression in the relational algebra consists of either one
of the following:
+ A relation in the database

+ A constant relation

Q Let E1 and E2 be relational-algebra expressions; the following are
all relational-algebra expressions:
+ E1 ∪ E2
+ E1 - E2
+ E1 x E2
+ σp (E1), P is a predicate on attributes in E1
+ ∏s(E1), S is a list consisting of some of the attributes in E1

+ ρ x (E1), x is the new name for the result of E1

52Introduction to Databases

Additional Operations

We define additional operations that do not add any power to the

relational algebra, but that simplify common queries.

Q Set intersection

Q Natural join

Q Division

Q Assignment

53Introduction to Databases

Set-Intersection Operation

Q Notation: r ∩ s

Q Defined as:

Q r ∩ s ={ t | t ∈ r and t ∈ s }

Q Assume:

+ r, s have the same arity

+ attributes of r and s are compatible

Q Note: r ∩ s = r - (r - s)

54Introduction to Databases

Set-Intersection Operation - Example

Q Relation r, s:

Q r ∩ s

A B

α
α
β

1
2
1

A B

α
β

2
3

r s

A B

α 2

10

55Introdu ction to Databases

Natural-Join Operation

Q Notation: r s

Q Let r and s be relations on schemas R and S respectively.The result is a
relation on schema R ∪ S which is obtained by considering each pair of
tuples tr from r and ts from s.

Q If tr and ts have the same value on each of the attributes in R ∩ S, a tuple t
is added to the result, where

+ t has the same value as tr on r

+ t has the same value as ts on s

Q Example:

R = (A, B, C, D)

S = (E, B, D)

Q Result schema = (A, B, C, D, E)

Q r s is defined as:

∏r.A, r.B, r.C, r.D, s.E (σr.B = s.B r.D = s.D (r x s))

56Introdu ction to Databases

Natural Join Operation – Example

Q Relations r, s:

A B

α
β
γ
α
δ

1
2
4
1
2

C D

α
γ
β
γ
β

a
a
b
a
b

B

1
3
1
2
3

D

a
a
a
b
b

E

α
β
γ
δ
∈

r

A B

α
α
α
α
δ

1
1
1
1
2

C D

α
α
γ
γ
β

a
a
a
a
b

E

α
γ
α
γ
δ

s

r s

57Introdu ction to Databases

Division Operation

Q Suited to queries that include the phrase “for all”.

Q Let r and s be relations on schemas R and S respectively
where
+ R = (A1, …, Am, B1, …, Bn)

+ S = (B1, …, Bn)

The result of r ÷ s is a relation on schema

R – S = (A1, …, Am)

r ÷ s = { t | t ∈ ∏ R-S(r) ∧ ∀ u ∈ s (tu ∈ r) }

r ÷ s

58Introdu ction to Databases

Division Operation – Example

Relations r, s:

r ÷ s: A

B

α

β

1

2

A B

α
α
α
β
γ
δ
δ
δ
∈
∈
β

1
2
3
1
1
1
3
4
6
1
2

r

s

59Introdu ction to Databases

Another Division Example

A B

α
α
α
β
β
γ
γ
γ

a
a
a
a
a
a
a
a

C D

α
γ
γ
γ
γ
γ
γ
β

a
a
b
a
b
a
b
b

E

1
1
1
1
3
1
1
1

Relations r, s:

r ÷ s:

D

a
b

E

1
1

A B

α
γ

a
a

C

γ
γ

r

s

60Introdu ction to Databases

Division Operation (Cont.)

Q Property
+ Let q – r ÷ s

+ Then q is the largest relation satisfying q x s ⊆ r

Q Definition in terms of the basic algebra operation
Let r(R) and s(S) be relations, and let S ⊆ R

r ÷ s = ∏R-S (r) –∏R-S ((∏R-S (r) x s) – ∏R-S,S(r))

To see why
+ ∏R-S,S(r) simply reorders attributes of r

+ ∏R-S(∏R-S (r) x s) – ∏R-S,S(r)) gives those tuples t in

 ∏R-S (r) such that for some tuple u ∈ s, tu ∉ r.

11

61Introduction to Databases

Assignment Operation

Q The assignment operation (←) provides a convenient way to
express complex queries, write query as a sequential program
consisting of a series of assignments followed by an expression
whose value is displayed as a result of the query.

Q Assignment must always be made to a temporary relation
variable.

Q Example: Write r ÷ s as

temp1 ← ∏R-S (r)

temp2 ← ∏R-S ((temp1 x s) – ∏R-S,S (r))

result = temp1 – temp2

+ The result to the right of the ← is assigned to the relation variable on

the left of the ←.

+ May use variable in subsequent expressions.

62Introduction to Databases

Example Queries

Q Find all customers who have an account from at least the
“Downtown” and the Uptown” branches.

+ Query 1

 ∏CN(σBN=“Downtown”(depositor account)) ∩

 ∏CN(σBN=“Uptown”(depositor account))

where CN denotes customer-name and BN denotes
branch-name.

+ Query 2

 ∏customer-name, branch-name (depositor account)

÷ ρtemp(branch-name) ({(“Downtown”), (“Uptown”)})

63Introduction to Databases

Q Find all customers who have an account at all branches located
in Brooklyn city.

 ∏customer-name, branch-name (depositor account)
÷ ∏branch-name (σbranch-city = “Brooklyn” (branch))

Example Queries

64Introduction to Databases

Extended Relational-Algebra-Operations

Q Generalized Projection

Q Aggregate Functions

65Introduction to Databases

Generalized Projection

Q Extends the projection operation by allowing arithmetic functions
to be used in the projection list.

∏ F1, F2, …, Fn(E)

Q E is any relational-algebra expression

Q Each of F1, F2, …, Fn are are arithmetic expressions involving
constants and attributes in the schema of E.

Q Given relation credit-info(customer-name, limit, credit-balance),
find how much more each person can spend:

∏customer-name, limit – credit-balance (credit-info)

66Introduction to Databases

Aggregate Functions and Operations

Q Aggregation function takes a collection of values and returns a
single value as a result.

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

Q Aggregate operation in relational algebra

G1, G2, …, Gn J F1(A1), F2(A2),…, Fn(An) (E)

+ E is any relational-algebra expression

+ G1, G2 …, Gn is a list of attributes on which to group (can be empty)

+ Each Fi is an aggregate function

+ Each Ai is an attribute name

12

67Introdu ction to Databases

Aggregate Operation – Example

Q Relation r:

A B

α
α
β
β

α
β
β
β

C

7

7

3

10

J sum(c) (r)
sum-C

27

68Introdu ction to Databases

Aggregate Operation – Example

Q Relation account grouped by branch-name:

branch-name
�

sum(balance) (account)

branch-name account-number balance

Perryridge
Perryridge
Brighton
Brighton
Redwood

A-102
A-201
A-217
A-215
A-222

400
900
750
750
700

branch-name balance

Perryridge
Brighton
Redwood

1300
1500
700

69Introdu ction to Databases

Aggregate Functions (Cont.)

Q Result of aggregation does not have a name

+ Can use rename operation to give it a name

+ For convenience, we permit renaming as part of aggregate
operation

branch-name
�

sum(balance) as sum-balance (account)

70Introdu ction to Databases

Modification of the Database

Q The content of the database may be modified using the following
operations:

+ Deletion

+ Insertion

+ Updating

Q All these operations are expressed using the assignment
operator.

71Introdu ction to Databases

Deletion

Q A delete request is expressed similarly to a query, except instead
of displaying tuples to the user, the selected tuples are removed
from the database.

Q Can delete only whole tuples; cannot delete values on only
particular attributes

Q A deletion is expressed in relational algebra by:

r ← r – E

where r is a relation and E is a relational algebra query.

72Introdu ction to Databases

Deletion Examples

Q Delete all account records in the Perryridge branch.

account ← account – σ branch-name = “Perryridge” (account)

Q Delete all loan records with amount in the range of 0 to 50

loan ← loan – σ amount ≥ 0 and amount ≤ 50 (loan)

Q Delete all accounts at branches located in Needham.

r1 ← σ branch-city = “Needham” (account branch)

r2 ← ∏branch-name, account-number, balance (r1)

r3 ← ∏ customer-name, account-number (r2 depositor)

account ← account – r2

depositor ← depositor – r3

13

73Introdu ction to Databases

Insertion

Q To insert data into a relation, we either:

+ specify a tuple to be inserted

+ write a query whose result is a set of tuples to be inserted

Q in relational algebra, an insertion is expressed by:

r ← r ∪ E

where r is a relation and E is a relational algebra expression.

Q The insertion of a single tuple is expressed by letting E be a
constant relation containing one tuple.

74Introdu ction to Databases

Insertion Examples

Q Insert information in the database specifying that Smith has
$1200 in account A-973 at the Perryridge branch.

account ← account ∪ {(“Perryridge”, A-973, 1200)}

depositor ← depositor ∪ {(“Smith”, A-973)}

Q Provide as a gift for all loan customers in the Perryridge branch,
a $200 savings account. Let the loan number serve as the
account number for the new savings account.

r1 ← (σbranch-name = “Perryridge” (borrower loan))

account ← account ∪ ∏branch-name, account-number,200 (r1)

depositor ← depositor ∪ ∏customer-name, loan-number,(r1)

75Introdu ction to Databases

Updating

Q A mechanism to change a value in a tuple without charging all
values in the tuple

Q Use the generalized projection operator to do this task

r ← ∏ F1, F2, …, FI, (r)

Q Each F, is either the ith attribute of r, if the ith attribute is not
updated, or, if the attribute is to be updated

Q Fi is an expression, involving only constants and the attributes of
r, which gives the new value for the attribute

76Introdu ction to Databases

Update Examples

Q Make interest payments by increasing all balances by 5 percent.

account ← ∏ AN, BN, BAL * 1.05 (account)

where AN, BN and BAL stand for account-number, branch-name
and balance, respectively.

Q Pay all accounts with balances over $10,000
6 percent interest and pay all others 5 percent

account ← ∏ AN, BN, BAL * 1.06 (σ BAL > 10000 (account))
 ∪ ∏AN, BN, BAL * 1.05 (σBAL ≤ 10000 (account))

End of Part II

78Introdu ction to Databases

Result of σσ branch-name = “ Perryridge” (loan)

14

79Introdu ction to Databases

Loan Number and the Amount of the Loan

80Introdu ction to Databases

Names of All Customers Who Have
Either a Loan or an Account

81Introdu ction to Databases

Customers With An Account But No Loan

82Introdu ction to Databases

Result of borrower ×× loan

83Introdu ction to Databases

Result of σσ branch-name = “ Perryridge” (borrower ×× loan)

84Introdu ction to Databases

Result of ΠΠcustomer-name

15

85Introdu ction to Databases

Largest Account Balance in the Bank

86Introdu ction to Databases

Customers Who L ive on the Same Street and In the
Same City as Smith

87Introdu ction to Databases

Customers With Both an Account and a Loan
at the Bank

88Introdu ction to Databases

Result of ΠΠcustomer-name, loan-number, amount
(borrower loan)

89Introdu ction to Databases

Result of ΠΠbranch-name(σσcustomer-city =

“ Harr ison” (customer account depositor))

90Introdu ction to Databases

Result of ΠΠbranch-name(σσbranch-city =
“ Brooklyn” (branch))

16

91Introduction to Databases

Result of ΠΠcustomer-name, branch-name(depositor account)

92Introduction to Databases

The credit-info Relation

93Introduction to Databases

Result of ΠΠcustomer-name, (limit – credit-balance) as

credit-available(credit-info).

94Introduction to Databases

The pt-works Relation

95Introduction to Databases

The pt-works Relation After Grouping

96Introduction to Databases

Result of branch-name ςς sum(salary) (pt-works)

17

97Introduction to Databases

Result of branch-name ςς sum salary, max(salary) as

max-salary (pt-works)

98Introduction to Databases

Names of All Customers Who Have a
Loan at the Perryridge Branch

99Introduction to Databases

The branch Relation

100Introduction to Databases

The loan Relation

101Introduction to Databases

The borrower Relation

Part III: SQL

18

103Introduction to Databases

SQL

Q Basic Structure

Q Set Operations

Q Aggregate Functions

Q Nested Subqueries

Q Derived Relations

Q Modification of the Database

Q Data Definition Language

Q Embedded SQL, ODBC and JDBC

104Introduction to Databases

Basic Structure

Q SQL is based on set and relational operations with certain
modifications and enhancements

Q A typical SQL query has the form:
select A1, A2, ..., An
from r1, r2, ..., rm
where P

+ Ais represent attributes

+ ris represent relations

+ P is a predicate.

Q This query is equivalent to the relational algebra expression.

∏A1, A2, ..., An(σP (r1 x r2 x ... x rm))

Q The result of an SQL query is a relation.

105Introduction to Databases

The select Clause

Q The select clause corresponds to the projection operation of the
relational algebra. It is used to list the attributes desired in the result of
a query.

Q Find the names of all branches in the loan relation
select branch-name
from loan

Q In the “pure” relational algebra syntax, the query would be:

∏branch-name(loan)

Q An asterisk in the select clause denotes “all attributes”

select *
from loan

NOTES:
+ SQL does not permit the ‘-’ character in names, so you would use, for

example, branch_name instead of branch-name in a real implementation.
We use ‘-’ since it looks nicer!

+ SQL names are case insensitive.

106Introduction to Databases

The select Clause (Cont.)

Q SQL allows duplicates in relations as well as in query results.

Q To force the elimination of duplicates, insert the keyword distinct
after select.
Find the names of all branches in the loan relations, and remove
duplicates

select distinct branch-name
from loan

Q The keyword all specifies that duplicates not be removed.

select all branch-name
from loan

107Introduction to Databases

The select Clause (Cont.)

Q The select clause can contain arithmetic expressions involving
the operation, +, –, ∗, and /, and operating on constants or
attributes of tuples.

Q The query:

select loan-number, branch-name, amount ∗ 100
from loan

would return a relation which is the same as the loan relations,
except that the attribute amount is multiplied by 100.

108Introduction to Databases

The where Clause

Q The where clause corresponds to the selection predicate of the
relational algebra. If consists of a predicate involving attributes
of the relations that appear in the from clause.

Q The find all loan number for loans made a the Perryridge branch
with loan amounts greater than $1200.

select loan-number
from loan
where branch-name = ‘Perryridge’ and amount > 1200

Q Comparison results can be combined using the logical
connectives and, or, and not.

Q Comparisons can be applied to results of arithmetic expressions.

19

109Introduction to Databases

The where Clause (Cont.)

Q SQL Includes a between comparison operator in order to simplify
where clauses that specify that a value be less than or equal to
some value and greater than or equal to some other value.

Q Find the loan number of those loans with loan amounts between
$90,000 and $100,000 (that is, ≥$90,000 and ≤$100,000)

select loan-number
from loan
where amount between 90000 and 100000

110Introduction to Databases

The from Clause

Q The from clause corresponds to the Cartesian product operation of the
relational algebra. It lists the relations to be scanned in the evaluation of
the expression.

Q Find the Cartesian product borrower x loan
select ∗
from borrower, loan

Q Find the name, loan number and loan amount of all customers having a
loan at the Perryridge branch.

select customer-name, borrower.loan-number, amount
from borrower, loan
where borrower.loan-number = loan.loan-number and

 branch-name = ‘Perryridge’

111Introduction to Databases

The Rename Operation

Q The SQL allows renaming relations and attributes using the as
clause:

old-name as new-name

Q Find the name, loan number and loan amount of all customers;
rename the column name loan-number as loan-id.

select customer-name, borrower.loan-number as loan-id, amount
from borrower, loan
where borrower.loan-number = loan.loan-number

112Introduction to Databases

Tuple Variables

Q Tuple variables are defined in the from clause via the use of the
as clause.

Q Find the customer names and their loan numbers for all
customers having a loan at some branch.

 select customer-name, T.loan-number, S.amount
 from borrower as T, loan as S
 where T.loan-number = S.loan-number

Q Find the names of all branches that have greater assets than
some branch located in Brooklyn.

 select distinct T.branch-name
 from branch as T, branch as S
 where T.assets > S.assets and S.branch-city = ‘Brooklyn’

113Introduction to Databases

String Operations

Q SQL includes a string-matching operator for comparisons on character
strings. Patterns are described using two special characters:

+ percent (%). The % character matches any substring.

+ underscore (_). The _ character matches any character.

Q Find the names of all customers whose street includes the substring
“Main”.

select customer-name
from customer
where customer-street like ¶%Main%·

Q Match the name “Main%”

like ¶Main\%· escape ¶\·

Q SQL supports a variety of string operations such as

+ concatenation (using “||”)

+ converting from upper to lower case (and vice versa)

+ finding string length, extracting substrings, etc.

114Introduction to Databases

Ordering the Display of Tuples

Q List in alphabetic order the names of all customers having a loan
in Perryridge branch

select distinct customer-name
from borrower, loan
where borrower loan-number - loan.loan-number and
 branch-name = ¶Perryridge·

order by customer-name

Q We may specify desc for descending order or asc for ascending
order, for each attribute; ascending order is the default.

+ E.g. order by customer-name desc

20

115Introduction to Databases

Duplicates

Q In relations with duplicates, SQL can define how many copies of
tuples appear in the result.

Q Multiset versions of some of the relational algebra operators –
given multiset relations r1 and r2:

1. If there are c1 copies of tuple t1 in r1, and t1 satisfies selections σθ,,

then there are c1 copies of t1 in σθ (r1).

2. For each copy of tuple t1 in r1, there is a copy of tuple ΠA(t1) in ΠA(r1)
where ΠA(t1) denotes the projection of the single tuple t1.

3. If there are c1 copies of tuple t1 in r1 and c2 copies of tuple t2 in r2,
there are c1 x c2 copies of the tuple t1. t2 in r1 x r2

116Introduction to Databases

Duplicates (Cont.)

Q Example: Suppose multiset relations r1 (A, B) and r2 (C)
are as follows:

 r1 = {(1, a) (2,a)} r2 = {(2), (3), (3)}

Q Then ΠB(r1) would be {(a), (a)}, while ΠB(r1) x r2 would be

{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}

Q SQL duplicate semantics:

select A1,, A2, ..., An
from r1, r2, ..., rm
where P

is equivalent to the multiset version of the expression:

Π A1,, A2, ..., An(σP (r1 x r2 x ... x rm))

117Introduction to Databases

Set Operations

Q The set operations union, intersect, and except operate on
relations and correspond to the relational algebra operations
∪, ∩, −.

Q Each of the above operations automatically eliminates
duplicates; to retain all duplicates use the corresponding multiset
versions union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it
occurs:

+ m + n times in r union all s

+ min(m,n) times in r intersect all s

+ max(0, m – n) times in r except all s

118Introduction to Databases

Set Operations

Q Find all customers who have a loan, an account, or both:

(select customer-name from depositor)
union
(select customer-name from borrower)

Q Find all customers who have both a loan and an account.

(select customer-name from depositor)
intersect
(select customer-name from borrower)

Q Find all customers who have an account but no loan.

(select customer-name from depositor)
except
(select customer-name from borrower)

119Introduction to Databases

Aggregate Functions

Q These functions operate on the multiset of values of a column of
a relation, and return a value

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

120Introduction to Databases

Aggregate Functions (Cont.)

Q Find the average account balance at the Perryridge branch.

select avg (balance)
from account
where branch-name = ‘Perryridge’

Q Find the number of tuples in the customer relation.

select count (*)
from customer

Q Find the number of depositors in the bank.

select count (distinct customer-name)
from depositor

21

121Introdu ction to Databases

Aggregate Functions – Group By

Q Find the number of depositors for each branch.

select branch-name, coun t (distinct customer-name)
from depositor, account
where depositor.account-number = account.account-number
group by branch-name

Note: Attributes in select clause outside of aggregate functions
must appear in group b y list

122Introdu ction to Databases

Aggregate Functions – Having Clause

Q Find the names of all branches where the average account
balance is more than $1,200.

select branch-name, avg (balance)
from account
group b y branch-name
having avg (balance) > 1200

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where clause are
applied before forming groups

123Introdu ction to Databases

Nested Subqueries

Q SQL provides a mechanism for the nesting of subqueries.

Q A subquery is a select-f rom-where expression that is nested
within another query.

Q A common use of subqueries is to perform tests for set
membership, set comparisons, and set cardinality.

124Introdu ction to Databases

Example Query

Q Find all customers who have both an account and a loan at the
bank.

select distinct customer-name
from borrower
where customer-name in (select customer-name

 from depositor)

Q Find all customers who have a loan at the bank but do not have
an account at the bank

select distinct customer-name
from borrower
where customer-name not in (select customer-name

 from depositor)

125Introdu ction to Databases

Example Query

Q Find all customers who have both an account and a loan at the
Perryridge branch

select distinct customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number and

 branch-name = “Perryridge” and
 (branch-name, customer-name) in

(select branch-name, customer-name
from depositor, account
where depositor.account-number =

 account.account-number)

Q Note: Above query can be written in a much simpler manner.
The formulation above is simply to illustrate SQL features.

126Introdu ction to Databases

Set Comparison

Q Find all branches that have greater assets than some branch
located in Brooklyn.

select distinct T.branch-name
from branch as T, branch as S
where T.assets > S.assets and
 S.branch-city = ¶Brooklyn·

Q Same query using > some clause

select branch-name
from branch
where assets > some
 (select assets
 from branch
 where branch-city = ¶Brooklyn·)

22

127Introduction to Databases

Definition of Some Clause

Q F <comp> some r ⇔ ∃ t ∈ r s.t. (F <comp> t)
Where <comp> can be: <, ≤, >, =, ≠

0
5
6

(5< some) = true

0
5

0

) = false

5

0
5(5 ≠ some) = true (since 0 ≠ 5)

(read: 5 < some tuple in the relation)

(5< some

) = true(5 = some

(= some) ≡ in
However, (≠ some) ≡ not in

128Introduction to Databases

Definition of all Clause

Q F <comp> all r ⇔ ∀ t ∈ r (F <comp> t)

0
5
6

(5< all) = false

6
10

4

) = true

5

4
6(5 ≠ all) = true (since 5 ≠ 4 and 5 ≠ 6)

(5< all

) = false(5 = all

(≠ all) ≡ not in
However, (= all) ≡ in

129Introduction to Databases

Example Query

Q Find the names of all branches that have greater assets than all
branches located in Brooklyn.

select branch-name
from branch
where assets > all

(select assets
from branch
where branch-city = ‘Brooklyn’)

130Introduction to Databases

Test for Empty Relations

Q The exists construct returns the value true if the argument
subquery is nonempty.

Q exists r ⇔ r ≠ Ø

Q not exists r ⇔ r = Ø

131Introduction to Databases

Example Query

Q Find all customers who have an account at all branches located in
Brooklyn.

select distinct S.customer-name
from depositor as S
where not exists (

(select branch-name
from branch
where branch-city = ‘Brooklyn’)

 except
(select R.branch-name
from depositor as T, account as R
where T.account-number = R.account-number and

S.customer-name = T.customer-name))

Q Note that X – Y = Ø ⇔ X ⊆ Y

Q Note: Cannot write this query using = all and its variants

132Introduction to Databases

Test for Absence of Duplicate Tuples

Q The unique construct tests whether a subquery has any
duplicate tuples in its result.

Q Find all customers who have at most one account at the
Perryridge branch.

 select T.customer-name
 from depositor as T
 where unique (

 select R.customer-name
 from account, depositor as R
 where T.customer-name = R.customer-name and

 R.account-number = account.account-number and
 account.branch-name = ‘Perryridge’)

23

133Introdu ction to Databases

Example Query

Q Find all customers who have at least two accounts at the
Perryridge branch.

 select distinct T.customer-name
 from depositor T
 where not unique (

 select R.customer-name
 from account, depositor as R
 where T.customer-name = R.customer-name and

 R.account-number = account.account-number and
 account.branch-name = ¶Perryridge·)

134Introdu ction to Databases

Example Queries

Q A view consisting of branches and their customers
create view all-customer as

 (select branch-name, customer-name
 from depositor, account
 where depositor.account-number = account.account-number)

 union
 (select branch-name, customer-name
 from borrower, loan
 where borrower.loan-number = loan.loan-number)

Q Find all customers of the Perryridge branch

select customer-name
from all-customer
where branch-name = ‘Perryridge’

135Introdu ction to Databases

Derived Relations

Q Find the average account balance of those branches where the
average account balance is greater than $1200.

select branch-name, avg-balance
from (select branch-name, avg (balance)

 from account
 group b y branch-name)

 as result (branch-name, avg-balance)
where avg-balance > 1200

 Note that we do not need to use the having clause, since we
compute the temporary relation result in the from clause, and the
attributes of result can be used directly in the where clause.

136Introdu ction to Databases

Modification of the Database – Deletion

Q Delete all account records at the Perryridge branch

delete from account
where branch-name = ¶Perryridge·

Q Delete all accounts at every branch located in Needham city.

delete from account
where branch-name in (select branch-name

 from branch
 where branch-city = ¶Needham·)

delete from depositor
where account-number in
 (select account-number

 from branch, account
 where branch-city = ¶Needham·

 and branch.branch-name = account.branch-name)

137Introdu ction to Databases

Example Query

Q Delete the record of all accounts with balances below the
average at the bank.

delete from account
where balance < (select avg (balance)

 from account)

+ Problem: as we delete tuples from deposit, the average balance
changes

+ Solution used in SQL:

1. First, compute avg balance and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or
retesting the tuples)

138Introdu ction to Databases

Modification of the Database – Insertion

Q Add a new tuple to account

insert into account
values (‘A-9732’, ‘Perryridge’,1200)

or equivalently

insert into account (branch-name, balance, account-number)
values (‘Perryridge’, 1200, ‘A-9732’)

Q Add a new tuple to account with balance set to null

insert into account
values (‘A-777’,‘Perryridge’, null)

24

139Introdu ction to Databases

Modification of the Database – Insertion

Q Provide as a gift for all loan customers of the Perryridge branch, a
$200 savings account. Let the loan number serve as the account
number for the new savings account

 insert into account
select loan-number, branch-name, 200
from loan
where branch-name = ‘Perryridge’

 insert into depositor
select customer-name, loan-number
from loan, borrower
where branch-name = ‘Perryridge’
 and loan.account-number = borrower.account-number

Q The select from where statement is fully evaluated before any of
its results are inserted into the relation (otherwise queries like
 insert into table1 select * from table1
would cause problems

140Introdu ction to Databases

Modification of the Database – Updates

Q Increase all accounts with balances over $10,000 by 6%, all
other accounts receive 5%.

+ Write two update statements:

update account
set balance = balance ∗ 1.06
where balance > 10000

update account
set balance = balance ∗ 1.05
where balance ≤ 10000

+ The order is important!

141Introdu ction to Databases

Data Definition Language (DDL)

Q The schema for each relation.

Q The domain of values associated with each attribute.

Q Integrity constraints

Q The set of indices to be maintained for each relations.

Q Security and authorization information for each relation.

Q The physical storage structure of each relation on disk.

Allows the specification of not only a set of relations but also
information about each relation, including:

142Introdu ction to Databases

Domain Types in SQL

Q char(n). Fixed length character string, with user-specified length n.

Q varchar(n). Variable length character strings, with user-specified maximum
length n.

Q int. Integer (a finite subset of the integers that is machine-dependent).

Q smalli nt. Small integer (a machine-dependent subset of the integer
domain type).

Q numeric(p,d). Fixed point number, with user-specified precision of p digits,
with n digits to the right of decimal point.

Q real, double precision. Floating point and double-precision floating point
numbers, with machine-dependent precision.

Q float(n). Floating point number, with user-specified precision of at least n
digits.

143Introdu ction to Databases

Create Table Construct

Q An SQL relation is defined using the create table
command:

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

+ r is the name of the relation

+ each Ai is an attribute name in the schema of relation r

+ Di is the data type of values in the domain of attribute Ai

Q Example:

create table branch
(branch-name char(15) not nu ll ,
branch-city char(30),
assets integer)

144Introdu ction to Databases

Integrity Constraints in Create Table

Q not nu ll

Q primary key (A1, ..., An)

Q check (P), where P is a predicate

Example: Declare branch-name as the primary key for
branch and ensure that the values of assets are non-
negative.

create table branch
(branch-namechar(15),
branch-city char(30)
assets integer,
primary key (branch-name),
check (assets >= 0))

primary key declaration on an attribute automatically
ensures not nu ll in SQL-92 onwards, needs to be
explicitly stated in SQL-89

25

145Introduction to Databases

Drop and Alter Table Constructs

Q The drop table command deletes all information about the
dropped relation from the database.

Q The after table command is used to add attributes to an
existing relation. All tuples in the relation are assigned null
as the value for the new attribute. The form of the alter
table command is

alter table r add A D

where A is the name of the attribute to be added to relation r
and D is the domain of A.

Q The alter table command can also be used to drop attributes
of a relation

alter table r drop A
where A is the name of an attribute of relation r

+ Dropping of attributes not supported by many databases

146Introduction to Databases

SQL Data Definition for Part of the Bank Database

147Introduction to Databases

Embedded SQL

Q The SQL standard defines embeddings of SQL in a variety of
programming languages such as Pascal, PL/I, Fortran, C, and
Cobol.

Q A language to which SQL queries are embedded is referred to as
a host language, and the SQL structures permitted in the host
language comprise embedded SQL.

Q The basic form of these languages follows that of the System R
embedding of SQL into PL/I.

Q EXEC SQL statement is used to identify embedded SQL request
to the preprocessor

EXEC SQL <embedded SQL statement > END-EXEC

Note: this varies by language. E.g. the Java embedding uses
 # SQL { …. } ;

148Introduction to Databases

Example Query

Q Specify the query in SQL and declare a cursor for it

EXEC SQL

declare c cursor for
select customer-name, customer-city
from depositor, customer, account
where depositor.customer-name = customer.customer-name
 and depositor account-number = account.account-number

and account.balance > :amount

END-EXEC

From within a host language, find the names and cities of
customers with more than the variable amount dollars in some
account.

149Introduction to Databases

Embedded SQL (Cont.)

Q The open statement causes the query to be evaluated

EXEC SQL open c END-EXEC

Q The fetch statement causes the values of one tuple in the query
result to be placed on host language variables.

EXEC SQL fetch c into :cn, :cc END-EXEC
Repeated calls to fetch get successive tuples in the query result

Q A variable called SQLSTATE in the SQL communication area
(SQLCA) gets set to ‘02000’ to indicate no more data is available

Q The close statement causes the database system to delete the
temporary relation that holds the result of the query.

EXEC SQL close c END-EXEC

Note: above details vary with language. E.g. the Java embedding
defines Java iterators to step through result tuples.

150Introduction to Databases

JDBC

Q JDBC is a Java API for communicating with database systems
supporting SQL

Q JDBC supports a variety of features for querying and updating
data, and for retrieving query results

Q JDBC also supports metadata retrieval, such as querying about
relations present in the database and the names and types of
relation attributes

Q Model for communicating with the database:

+ Open a connection

+ Create a “statement” object

+ Execute queries using the Statement object to send queries and
fetch results

+ Exception mechanism to handle errors

26

151Introduction to Databases

JDBC Code

public static void JDBCexample(String dbid, String userid, String passwd)

 {
 try {

 Class.forName ("oracle.jdbc.driver.OracleDriver");

 Connection conn = DriverManager.getConnection(
"jdbc:oracle:thin:@aura.bell-labs.com:2000:bankdb", userid, passwd);

 Statement stmt = conn.createStatement();

 … Do Actual Work ….

 stmt.close();

 conn.close();

 }

 catch (SQLException sqle) {

 System.out.println("SQLException : " + sqle);

 }

 }

152Introduction to Databases

JDBC Code (Cont.)

Q Update to database
try {

 stmt.executeUpdate("insert into account values
 ('A-9732', 'Perryridge', 1200)");

} catch (SQLException sqle) {

 System.out.println("Could not insert tuple. " + sqle);

}

Q Execute query and fetch and print results
ResultSet rset = stmt.executeQuery("select branch_name, avg(balance)

 from account
 group by branch_name");

while (rset.next()) {

System.out.println(
 rset.getString("branch_name") + " " + rset.getFloat(2));

}

153Introduction to Databases

JDBC Code Details

Q Getting result fields:

+ rs.getString(“branchname”) and rs.getString(1) equivalent if
branchname is the first argument of select result.

Q Dealing with Null values

int a = rs.getInt(“a”);

if (rs.wasNull()) Systems.out.println(“Got null value”);

