
ACTA
UNIVERSITATIS
UPSALIENSIS
UPPSALA
2009

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 600

Novice Programming Students'
Learning of Concepts and Practise

ANNA ECKERDAL

ISSN 1651-6214
ISBN 978-91-554-7406-5
urn:nbn:se:uu:diva-9551

To my children Per, Nils, and Olof

List of Papers

This thesis is based on the following papers, which are referred to in the text

by their Roman numerals.

I Eckerdal, A., Thuné, M. (2005) Novice Java Progammers’ Conceptions

of "Object" and "Class", and Variation Theory. SIGCSE Bulletin, 37(3),
pp.89–93

II Eckerdal, A., McCartney, R., Moström, J.E., Ratcliffe, M., Sanders, K.,

Zander, C. (2006) Putting Threshold Concepts into Context in Com-

puter Science Education. SIGCSE Bulletin, 38(3), pp. 103–107
III Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Ratcliff, M.,

Sanders, K., Zander, C. (2007) Threshold Concepts in Computer Sci-

ence: do they exist and are they useful? SIGCSE Bulletin, 39(1), pp.
504–508

IV Thuné, M., Eckerdal, A. (2009) Variation Theory Applied to Students’

Conceptions of Computer Programming. European Journal of Engi-
neering Education, Accepted for publication

V Eckerdal, A., Berglund, A. (2005) What does it take to learn ’program-

ming thinking’? In Proceedings of the 1st International Computing Ed-

ucation Research Workshop, pp. 135–143.

VI McCartney, R., Eckerdal, A., Moström, J. E., Sanders, K., Zander, C.

(2007) Successful students’ strategies for getting unstuck. SIGCSE Bul-
letin, 39(3) pp. 156–160.

VII Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Zander, C.

(2006) Categorizing Student Software Designs: Methods, results, and

implications. Computer Science Education, 16(3), pp. 197–209.
VIII Eckerdal, A., McCartney, R., Moström, J., Sanders, K., Thomas, L.,

Zander, C. (2007) From Limen to Lumen: Computing students in liminal

spaces. In Proceedings of the 3rd International Computing Education

Research Workshop, pp. 123–132,

IX Eckerdal, A. (2009) Ways of Thinking and Pratising in Introductory

Programming. Technical Report 2009-002, Department of Information

Technology, Uppsala University, Sweden.

Reprints were made with permission from the publishers.

Comments on my contributions

In this section I list my main contributions for the papers included in this

thesis.

I I planned and performed the data gathering and the writing, but in close

discussion with the second author. Both authors separately analysed the

data, and discussed the results until we came to an agreement.

II The six authors contributed equally to the background studies and writ-
ing of the paper.

III Data for this paper was gathered at three occasions. The first gathering
was performed by four of the seven authors, me included. The second
by two of the authors, not including me, and the last and most important
and time consuming data gathering was planned and performed by all
seven authors. The data analyses and writing were performed jointly by
the seven authors of the paper.

IV I planned and performed the data gathering, but in close discussion with

the first author. We analysed the data jointly. The first author outlined

and wrote the paper, in discussion with me.

V I planned and performed the data gathering and the analysis, suggested
the topic and wrote the paper, but in close discussion with the second
author.

VI Data for this study was gathered by six researchers, where I was one.
Five of the researchers, me included, performed the data analysis and
writing jointly. The idea for the research came from one of the other
authors.

VII Data for this paper was gathered by twentyone researchers. A subgroup
of four researchers, me included, together with an additional researcher
analysed a partial set of the data. The analysis and writing was jointly
performed by the five authors of the paper.

VIII Data for this study was gathered by six researchers, where I was one.

Five of these, plus a new member of the group are authors of the paper. I

was the initiator of the paper. I suggested the topic, the analysis method,

and outlined the structure of the paper. The data analysis the research

builds on and the writing was performed jointly by the authors.
IX I am the sole author of this paper.

Contents

1 Introduction . 11

1.1 Research questions . 12

1.2 Terminology used in the thesis . 13

1.3 Methodology . 15

1.3.1 The first investigation . 15

1.3.2 The second investigation . 16

1.3.3 The third investigation . 16

1.4 Overview of the thesis . 16

1.4.1 Student learning of concepts . 17

1.4.2 Student learning of practise . 17

1.4.3 The relationship between conceptual and practical learning 18

2 The research in context . 19

2.1 The Computer Science Education research field 19

2.2 The present research and the Computer Science Education re-
search field . 20

3 Research approaches . 27

3.1 Qualitative research . 27

3.2 Phenomenography . 28

3.3 Content analysis . 30

3.4 Trustworthiness in Qualitative Research 32

4 The present research . 35

4.1 Research approaches applied in the present research 35

4.1.1 Phenomenography and variation theory in the present re-

search . 35

4.1.2 Content analysis in the present research 36

4.2 Trustworthiness of the present research 37

4.2.1 Trustworthiness in the first investigation 37

4.2.2 Trustworthiness in the second investigation 38

4.2.3 Trustworthiness in the third investigation 39

5 Results . 41

5.1 Learning of concepts . 41

5.2 Learning of practise . 43

5.3 Ways of Thinking and Practising . 45

6 Discussion - from a teaching perspective . 49

6.1 Phenomenography in practise - an empirical example 49

6.1.1 The phenomenographic outcome space 50

6.1.2 Discernment and variation - identification of critical features 50

6.1.3 Dimensions of variation - open a space for learning 51

6.1.4 Implications for education - patterns of variation 52
6.1.5 The results related to previous research 55

6.2 Dimensions of variation and student learning of practise 57
7 Conclusions and future work . 61

Summary in Swedish . 65
Acknowledgements . 68

Bibliography . 69

1. Introduction

This thesis addresses the role of concepts and the role of practise in computer
programming students’ learning. Specifically, the relationship between prac-
tise and concepts in students’ learning process is investigated. The research is
empirically based on studies with students from several countries.
Computer science has conceptual1 as well as practical learning goals

(Roberts and Engel, 2001). Many computer programming students claim

that “learning through practise” is by far the best way to learn to program,

both regarding “learning to do practise” as regarding learning the concepts

(Eckerdal, 2006). This claim seems to be supported by many educators,

considering the huge amount of papers that have been published on how

to help students to “learn through” and “learn to do” practise (Valentine,

2004; Gross and Powers, 2005). Still, after decades of attempts to improve

the learning outcome (from an early reference from the childhood of

programming education in 19692 it is reported about a “high withdrawal

rate” from a course), mainly by focusing on the role of the practise, serious

learning problems seem to prevail (Eckerdal et al., 2006b; Fleury, 2000;

Fleury, 2001; Lister et al., 2004; McCracken et al., 2001; Robins et al., 2003).

In contrast to this focus on practise, research in higher education in general

has had a strong focus on students’ conceptual learning (Entwistle, 2003;

Entwistle, 2007; Molander, 1996; Molander et al., 2001; Posner et al., 1982).
The primary contribution of the present research lies in the investigation of

the relationship between students’ conceptual and practical learning, where

the focus of the latter is on “learning to do” practise. First the role of practise

and the role of concepts are investigated separately. It is shown that students

have great difficulties in learning both concepts and practise. The investiga-

tions further strongly indicate complex relationships and mutual dependen-

cies between practise and concepts in students’ learning process. The results

thus point to a need to further explore this relation. This has also previously

been pointed to in science and technology education research (Séré, 2002;

McCormick, 1997).

The thesis also contributes to the body of knowledge on learning in higher
education by presenting an analytical model of how the learning of concepts
and practise relate in novice programming students’ learning.

The present research builds on three empirical investigations. Data from the
investigations have been analysed from several different perspectives in order

1By conceptual learning goals I mean subject specific concepts students are supposed to learn,

see Section 1.2.
2Retrieved 080812 from http://portalparts.acm.org/880000/873609/fm/frontmatter.pdf

11

to provide insights into students’ learning of concepts as well as their learning

of the practise.
There are two objectives of this thesis. The first is to contribute to the body

of knowledge of the learning process in programming education. The second

is pragmatic: to give concrete advice to programming educators on how teach-

ing and learning can be improved.

1.1 Research questions
As a teacher in computer science my interest in students’ learning led me to re-
search on teaching and learning. A first investigation revealed novice students’
understanding of some central concepts. At the same time the data showed the
first traces of a complex relationship between practise and conceptual learn-
ing. One of the novice students in the study comments the course he or she
had just finished, a first programming course:

Yes, I think it has been difficult with concepts and stuff, as to understand how to

use different, how one should use different things in a program. And I actually

think that most of it has been difficult [...] But I still think the course, it’s

difficult for a novice to sort of get a grip of how to study when you implement

the programs and like that. (Eckerdal and Berglund, 2005, p. 138)

This student finds it difficult to learn the concepts, but what he or she em-
phasises is problems with “learning through practise”, the same practise that
is developed to help students learn the concepts. The novice students in this
study specifically stressed the importance of practise in learning the concepts.
But if “learning through practise” causes the largest problem, the students
will neither learn “to do the practise”, nor the concepts. Keeping in mind the
substantial efforts in the last decades to improve “learning through practise”
to facilitate novice students’ learning (Valentine, 2004; Gross and Powers,
2005), it becomes obvious that practise is not merely the unproblematic road
to conceptual learning.

The subsequently performed investigations established the important but
problematic role of practise in programming education and led to my overar-
ching research question:

• Which roles do practise and concepts play in programming students’ learn-
ing process?

This question is broad, and to investigate all aspects of it is beyond the

scope of a thesis. I have thus limited the question. To this end I have used

a conceptual framework, Ways of Thinking and Practising, WTP (Entwistle,

2003; McCune and Hounsell, 2005), to embrace both the practical and the

conceptual aspects of learning to program, and how these two are related.
The research questions highlighted in this thesis focuses on three themes

related to the WTP framework. The first theme concerns students conceptual

learning:

12

• How do novice programming students understand programming concepts?

• How do novice students understand what computer programming means,
and how do they understand what learning to program means?

• How can the results from a phenomenographic outcome space inform
teaching and thus improve learning in computer programming education?

The second theme concerns the role of practise in computer science educa-

tion:

• What strategies do computer science students use when they are stuck in

their learning?
• Can computer science students design software?

The third theme deals with how conceptual learning and practise are related

in the learning process:

• How do students experience the process of learning threshold concepts, the

so called liminal space (Meyer and Land, 2005) in computer science?
• How do practise and concepts relate in novice programming students’
learning?

The first theme is discussed in Paper I through Paper V, the second in Pa-
per VI and Paper VII, and the third theme is the topic of Paper VIII and Pa-
per IX. The papers are separately described in Section 1.4.

1.2 Terminology used in the thesis

The focus of the thesis is to discuss the role of concepts and the role of prac-
tise in programming students’ learning. My use of the word concept is broad.
I will discuss concept as “an abstract or generic idea generalized from partic-

ular instances”, and as “any idea of what a thing ought to be”3. Some of the

concepts discussed in the thesis are lexical, word-sized, for example “class”

and “object” while others are broader, for example “computer programming”.

Practise is a broad term. In Paper IX I distinguish between skills, activities
and exercises. Programming students are supposed to learn new practical skills
like reading, writing, and debugging code. Each skill is manifested in many
different activities that the students are supposed to learn, and these activities
demand different levels of proficiency to be properly performed. For example
the skill of reading code can, for a novice student, mean the recognition of key
words in a program, while at a higher level of proficiency reading code implies
being able to relate the code to a problem domain. Exercises on the other hand
are here discussed in terms of practises where students follow more or less
detailed instructions prepared by the teacher. Exercises are less discussed than
the other two, since they represent “learning through practise”, while the focus
of this thesis is on “learning to do the practise”.

Practise, in terms of exercises, is the main means to reach both concep-
tual and practical learning goals, for example reading, writing, and debugging

3Retrieved 090110 from Merriam-Webster Online Dictionary, http://www.merriam-

webster.com/dictionary/

13

code. Computer programming thus involves “learning through the practise” as

well as “learning to do the practise”.
The rest of this section explains some computer specific terms used in the

thesis. Other computing terms are defined when they are introduced in the

text.

Computer science is a discipline in higher education which involves meth-
ods and theories underlying computers and software systems. Software com-

prises the computer programs, associated documentation and configuration

data that is needed to make the programs work correctly. The purpose of pro-

ducing software systems is to make computers solve problems.

The software development process is traditionally divided into several
phases: problem analysis, software design, implementation and testing.
Computer programming, which is sometimes used synonymously with
implementation and sometimes in the broader sense as software development,
is a core area in computer science. When implementing, the programmer
writes code in a certain programming language, where code refers to
the instructions which tell the computer what to do. These instructions
follow rules from the particular programming language used. Syntax is the
description of the possible combinations of symbols and specific words that
are accepted in a programming language.
Software development involves use of certain software tools. For example,

in the implementation and testing phase specific text editors are used that are
developed to facilitate the implementation by, for example, recognising the
syntax of the language. The editor and the compiler are often integrated in a
development environment. The compiler is the software that translates (com-
piles) the code to a representation that is executable for a computer. When the
code is tested it is checked to determine if it meets the requirements given.
This involves debugging the code, which means finding and removing errors.

There exist several fundamentally different ways to tackle a problem for a
program developer. Consequently there are different programming paradigms
available. This thesis will discuss the object-oriented paradigm which is cur-
rently dominant in industry and university education. Examples of program-
ming languages within the object-oriented paradigm are Java and C++.
Meyer (1988) describes the thoughts behind the object oriented

paradigm:

A software system is a set of mechanisms for performing certain actions on

certain data. When laying out the architecture of a system, the software de-

signer is confronted with a fundamental choice: should the structure be based

on the actions or on the data? (Meyer, 1988, p. 41).

The latter choice is one of the main principles behind the object oriented
paradigm. Meyer has the following definition of object-oriented design:
“Object-oriented design is the method which leads to software architectures
based on the objects every system or subsystem manipulates (rather than
’the’ function it is meant to ensure).” (Meyer, 1988, p. 50).

14

The principal aim of software engineering is to produce programs with

high quality, which is to say programs that are correct, efficient, reusable,

extendible, easy to use, which are exactly the features that underpinned the

development of the object-oriented paradigm (Meyer, 1988).

1.3 Methodology

My interest in understanding the student learning process, which appeared so

difficult to penetrate, led me to investigate students’ learning of concepts and

practise, as presented in Section 1.1. The research aims to give a broad picture

of students’ learning experiences, emanating from the students’ perspectives.

Students experience learning as a whole, and in order to untangle the complex

experience, several studies were performed. In this section this is described as

three different investigations, although they together form the pool of empiri-

cal data that the research builds upon, and from which conclusions are drawn.
The data in the first investigation are interviews with novice programming

students. The second investigation involves several data collections, including

informal interviews and a questionnaire administrated to educators, and inter-

views with senior students. The third investigation includes a large set of data

from senior students’ doing a design task. In this way, data showing students’

understanding of concepts as well as the role of practise in programming edu-

cation were gathered.

1.3.1 The first investigation

The first investigation included in the present research is a study with 14

Swedish first year non-major computer science students. It is common at

Swedish universities that non-major computer science students in technical

and natural science education take at least one computing course where they

are given an introduction to programming. The students had just finished their

first programming course, using Java as the programming language. The aim

of the investigation was to get a rich description of the variation in the stu-

dents’ different experiences of some concepts in object-oriented program-

ming. The students were thus interviewed for example on their understanding

of the concepts object and class, and what it means to learn to program. The
answers to these questions were transcribed verbatim and translated to En-
glish where needed. The analysis was performed using a phenomenographic
research approach, see Section 3.
The research questions informed by this study are how novice students un-

derstand what programming is and what learning to program means, how they

understand central concepts in the object-oriented paradigm, and how the re-

sults from a phenomenographic outcome space can inform teaching. Further-

more data from the first investigation informed the question on how concep-

tual learning and practise relate in programming students’ learning process.

15

1.3.2 The second investigation

The second investigation was performed by a group of researchers from Swe-
den, the United Kingdom, and the United States. The work was motivated by
an interest in threshold concepts in computer science (Meyer and Land, 2005).
Two pre-studies were performed with educators at two international confer-
ences during the summer and fall of 2005. Educators were informally inter-
viewed, and some answered a questionnaire. The aim was to find threshold
concept candidates for further investigation. These two studies laid the foun-
dation for an interview study with students, aiming at identifying threshold
concepts from the students’ perspectives. A subsequent multinational study
with students from seven universities in the three countries was performed dur-
ing spring 2006. 16 graduating computer science students were interviewed.

The interviews have been analysed from three different perspectives and
inform the following research questions. The first analysis aimed at identify-
ing threshold concepts in the discipline. The second analysed the parts of the
interviews where the students discussed strategies for getting unstuck in their
studies. The last analysis took a theoretical standpoint, aiming at investigat-
ing what liminal space means and involves in computer science. The theory
of liminal space was used as a tool in the search for learning experiences
characteristic of computer programming. Furthermore data from the second
investigation informed the question on how conceptual learning and practise
relate in programming students’ learning process.

1.3.3 The third investigation

A multinational study was performed by 21 researchers at 21 institutions in
the United States, the United Kingdom, Sweden, and New Zealand. This study
involved 314 participants from three levels of education; students with low
competence, graduating seniors, and educators (Tenenberg et al., 2005). The
research presented in the present thesis was performed by a subgroup of the
original 21 researchers, plus one researcher not participating in the original
investigation. The data used for this research were software designs produced
by a subset of the participants, the 149 near-graduation seniors. The partici-
pants were asked to design a “Super alarm clock” according to a number of
criteria that were to be met. Beside these criteria, there was little guidance on
how to perform the task. The designs were made on paper.
This investigation informs the research question on graduating computer

science students’ ability to design.

1.4 Overview of the thesis

As explained above, the papers in the thesis are organized around three

themes. Concepts and practise are two inseparable and equally important

learning goals in programming education. The themes thus focus on student

16

learning of concepts, student learning of practise, and the relationship

between the two in students’ learning process.
The first theme on student learning of concepts is discussed in the first five

papers of the thesis.
The second theme, dealing with students’ learning practise, is illuminated

in Paper VI and Paper VII.
The last theme, how conceptual learning and learning practise are related in

students’ learning process is examined in Paper VIII and Paper IX.

1.4.1 Student learning of concepts

Student learning of concepts is researched at different levels of granularity.

The analysis from a bird’s eye view discusses students’ understanding of what

computer programming means, while the analysis at the next level aims at

identifying central, threshold concepts in computer programming. Finally, the

analysis that focuses primarily on details look at students’ understanding of a

few, possible threshold concepts. Below follows a description on the papers

that belong to this theme.
At the most coarse-grained level Paper IV, Variation Theory applied to Stu-

dents’ Conceptions of Computer Programming, investigates students’ under-
standing of the whole subject area, computer programming. This is followed
in Paper V, What does it take to learn ’programming thinking’?, by an in-
vestigation of the same students’ understanding of what learning computer
programming means.

At the next level of granularity, Paper II, Putting Threshold Concepts into
Context in Computer Science Education, identifies so called threshold con-

cepts in computer science. Further Paper III, Threshold Concepts in Computer
Science: Do they exist and are they useful?, investigates students’ learning of

such concepts.
Finally, at the most fine-grained level Paper I, Novice Java Programmers’

Conception of “Object” and “Class” and Variation Theory presents an in-

depth study of students’ understanding of a few central concepts, concepts

that are possible threshold concepts in object-oriented programming.

1.4.2 Student learning of practise

Learning computer programming concerns learning practical skills. In the

present thesis Paper VII, Categorizing Student Software Designs: Methods,
results, and implications, focuses on one specific skill, software design. De-
sign is, beside writing code, reading code, and debugging code, considered as
a core skill in programming education. The investigation on senior students’
ability to design software is an important contribution to the body of knowl-
edge of students’ skillfulness.
Our investigation, together with related projects (McCracken et al., 2001;

Whalley et al., 2006; Fitzgerald et al., 2008), all point to the conclusion that
students have great problems in learning the practise. The learning outcome

17

in programming education has been argued to be closely related to good pro-

gramming strategies (Robins et al., 2003; Davies, 1993). We have thus inves-

tigated such strategies in terms of what graduating students do when they are

stuck in their learning. This line of research is presented in Paper VI, Success-
ful students’ strategies for getting unstuck. Some of the strategies identified

and labeled in the paper have an abstract character, like “Be persistent/don’t

stop” or “See patterns”. Others have a more concrete, practical nature, for ex-

ample “Use a [software] tool”, “Write programs” or “Trace [code]”. Many

of the strategies found in the analysis are thus related to the practical aspect

of programming. In this way Paper VI emphasis the importance of students’

learning practise and broadens the research presented in Paper VII which fo-

cuses on one particular aspect of practise, students’ ability to design.

1.4.3 The relationship between conceptual and practical
learning

The last theme presented in the thesis focuses on the complex relationship be-
tween conceptual and practical learning. The theme is highlighted by results
from Paper I Novice Java Programmers’ Conception of “Object” and “Class”
and Variation Theory, Paper IV Variation Theory applied to Students’ Con-
ceptions of Computer Programming, and Paper V What does it take to learn
’programming thinking’? with novice students, but is established and elab-

orated in Paper VIII From Limen to Lumen: Computing students in liminal
spaces, with senior students. The results of this analysis reveals a broad and
rich picture of the students’ learning experiences where the practise as well
as the concepts play important but problematic roles in the students’ learning
process.

In this way Paper VIII gives a background for the analysis presented in
Paper IX, Ways of Thinking and Practising in Introductory Programming. The
paper is the synthesis of my thesis work. Important results from the first two

investigations on conceptual and practical learning are discussed and further

developed. The focus, discussed and analysed in depth, is however on how

conceptual and practical learning relate in students’ learning process.

18

2. The research in context

2.1 The Computer Science Education research field

Computer science1 is a young discipline, only half a century old. As a dis-
cipline of its own, computer science education is even younger. Computer
science has developed with an “astonishing pace” which has had “a pro-
found effect on computer science education, affecting both content and ped-
agogy.” (Roberts and Engel, 2001, Chapter 2) The rapid change of the sub-
ject matter taught has inevitably affected also the computer science educa-
tion research discipline. The discipline has however encountered several prob-
lems. Berglund (2005) identifies some of them. First, the discipline is cross-
disciplinary. It encompasses computer science, but in addition a range of other
disciplines including pedagogy, psychology, learning technology, and more.
According to Berglund, the lowest common denominator in this diverse field
is “the aim to improve learning and teaching within computer science, and
thereby to contribute to computer science.” (Berglund, 2005, p. 23, italics in

original) This is in line with the aim of the present research.
Berglund further points to the problem of knowing “who is ‘in’ the com-

munity.” He writes, with reference to Clancy et al. (2001):

As many of the leading researchers within the field are better known for their

contribution to other sub-areas of computer science, it is also hard to determine

where the edges of the community are. (Berglund, 2005, p. 23)

Another problem recognized, relevant for the present thesis, is that there has

been, and still is a need of more qualitative research in computer science

education research (Berglund et al., 2006). Berglund et al. (2006, p. 25) claim

that “research into student learning is strengthened by increased awareness of

the role and relevance of qualitative research approaches in CER.”

A question that has been discussed in the CER community, and still is an issue,
is how to define research in computer science education. What distinguishes
research in teaching and learning from mere ideas of good teaching practise
based on personal teaching experiences? This is debated for example in Gold-
weber et al. (2004), where one of the authors writes: “CSEd research is new. It

1Computer science is commonly abbreviated CS. Accordingly, computer science education is

abbreviated CSEd or CSE, and computing education research CER.

19

co-exists in places with other sorts of publications (like SIGCSE) and where

it starts and stops, where its edges are, are not yet clear.”2

Fincher and Petre discuss how computer science education research has

emerged as an “identifiable area” (Fincher and Petre, 2004, p. 1) during the

past decades. The growth has come from different places like computer sci-

ence practitioner conferences, sub-specialist areas like psychology of pro-

gramming, and computer science research groups at different academic insti-

tutions. Another factor contributing to the shattered picture is the contributors,

who have diverse expert knowledge like education, psychology, and different

areas of computer science, and consequently have published in different re-

search fora. Fincher and Petre write about this sprawling research field: “De-

spite this growth–and because of it–we are struggling to find the shape and

culture of our literature.” (p. 2)
Fincher and Petre discuss the characteristics of the publications that can be

referred to as research: “they can be thought of as having two components: a

dimension of rationale, argumentation or ’theory’, and a dimension of empir-

ical evidence.” (p. 2)

The research presented in this thesis is well in line with the two criteria
discussed by Fincher and Petre. All the papers build on empirical data (ex-
cept Paper II, Putting Threshold Concepts into Context in Computer Science
Education, which is a literature review) and they all include arguments, or

theories, which the interpretations and inferences build on. Furthermore, all

papers are published in well established fora, where the papers have been

peer-reviewed by relevant specialists in computer science and/or education.

2.2 The present research and the Computer Science
Education research field

Students’ learning of computer science has been investigated from different

perspectives. This section will put the present research in a context of re-

search in computer science education, and specifically regarding research on

students’ learning computer programming which is a sub-field of the wider

computer science education research field.
Pears et al. (2007) report on a literature survey on teaching of introductory

programming. The following areas are investigated in the survey: Curricula,

Pedagogy, Language choice, and Tools for teaching.

Randolph (2007) presents, from a positivistic perspective rooted in psycho-
logical research, a major overview of articles in computer science education.
The author reviewed 352 computer science education articles published be-
tween 2000 and 2005. Randolph claims among other things that “several dif-

2SIGCSE mission statement, http://sigcse.org/about/, says: “The ACM Special Interest Group

on Computer Science Education provides a forum for educators to discuss issues related to

the development, implementation, and/or evaluation of computing programs, curricula, and

courses, as well as syllabi, laboratories, and other elements of teaching and pedagogy.”

20

ferences in research practises across the fields of computer science education,

educational technology, and education research proper were found.” (p. iv)

Randolph furthermore found that one third of the articles reviewed “did not

report research on human participants” and most of them “were program de-

scriptions” (p. 173).

An older survey is by Austing et al. (1977) who report on literature in com-
puter science education from the publication of the first ACMComputing Cur-
ricula 1968 (ACM Curriculum Committee on Computer Science, 1968), up to
1977, including for example survey reports, descriptions of programs, and de-
scriptions of courses and other material.

A psychological/educational perspective on learning is the focus of Robins
et al.’s review (2003) which compares “novice and expert programmers, pro-
gramming knowledge and strategies, program generation and comprehension,
and object-oriented versus procedural programming.” (p. 137) Robins et al.
specifically focus on “novice programming and topics relating to novice teach-
ing and learning.” (p. 137)
Simon (2007) summarises the range of different types of publications in

computer science education. He presents an overview of classification of

papers in the field that have been published in different fora. For example,

Pears et al. (2005) present a classification which, with reference to Fincher

and Petre (2004), suggests the following areas for computer science education

research: studies in teaching, learning, and assessment; institutions and
educational settings; problems and solutions; computing education research
as a discipline.

The focus of the present research is on learning, namely programming stu-

dents’ learning of concepts and practise. Computer programming is one of

the core areas in computer science education, which is established in the in-

fluential ACM/IEEE Computing Curricula 2001 (Roberts and Engel, 2001)3.
Even though computer programming is a young discipline in higher educa-
tion, students’ difficulties are widely reported in the literature (Ben-Ari, 1998;
Eckerdal and Thuné, 2005; Fleury, 1999; Fleury, 2000; Lister et al., 2004;
McCracken et al., 2001; Robins et al., 2003).

The present thesis work is put in a research context below in the follow-
ing way: first I present studies on students’ conceptual understanding, which
include questions on student understanding of single concepts as well as ques-
tions at a more coarse-grained level including student understanding of what
computer programming is. Studies on student learning of practise is discussed
from two perspectives. First, studies that investigate practise as a learning goal
in terms of programming skills are presented. Then, studies investigating prac-
tise as a means to reach learning goals, conceptual as well as practical, are
discussed. Because of the many published articles related to the psycholog-

3This curriculum is one in a series of curricula developed for computer science education, the

first dating back to 1968 (ACM Curriculum Committee on Computer Science, 1968).

21

ical/educational study of programming, I will finally briefly touch upon this

area of research, although it is not within the scope of the present thesis.

Student learning of concepts
As described in Section 1.4 the thesis presents research on student learning

of concepts at different levels of granularity. At the most coarse-grained level

are Paper IV, which discusses novice students’ understanding of computer

programming, and Paper V, which discusses the same students’ understanding

of what learning computer programming means.
Examples of research related to these questions are Booth (1992), who in

her influential thesis investigates what it means and what it takes to learn to

program, and Bruce et al. (2004) and Thuné and Eckerdal (2009), (Paper

IV), who follow this line of research, studying students’ understanding

of what programming means. Similar research is presented by Eckerdal

and Berglund (2005), (Paper V), and Stamouli and Huggard (2006) who

investigate students’ understanding of what learning to program means. The

studies show very similar findings. Students’ understandings vary from a

narrow language-syntax-centered understanding to more desirable broader

understandings including programming as problem solving, a skill that can

be used outside of computing education.

Many studies point to the necessity of a good understanding of the central
concepts within object-oriented programming. Ragonis and Ben-Ari (2005)
present a long-term study on high school students’ learning of concepts in
object-oriented programming including “class vs. object, instantiation and
constructors, simple vs. composed classes, and program flow. In total, 58 con-
ceptions and difficulties were identified.” (Ragonis and Ben-Ari, 2005, p. 203)
Fleury (2000) found that students constructed their own understanding of
concepts when they worked with programming assignments, and that those
constructions were not always complete and correct. In a multinational study
Sanders et al. (2008) investigated what novice object-oriented programming
students see as the most important concepts, and how they express the rela-
tionships among those concepts. Some results from the study are that “[u]nlike
earlier research, we found that our students generally connect classes with
both data and behavior” (p. 332), but “few students see modeling as one of
the most important OO concepts.” (p. 336) Another multinational study, pre-
sented by Sanders et al (2005), involved 20 researchers and 276 participants
from 20 different institutions. The study aimed to elicit novice object-oriented
programmers’ knowledge of programming concepts by using a “multiple,
participant-defined, single-criterion card sort”. The authors point to “the un-
expected result that there were few discernible systematic differences in the
population.” (p. 121)

Examples of studies on students’ conceptual understanding with a phe-
nomenographic approach are Berglund (2005) who investigated senior stu-
dents’ understanding of concepts within computer systems, Boustedt (2007)
who studied senior students’ understanding of some advanced object-oriented

22

concepts, and Eckerdal and Thuné (2005), (Paper I), who investigated novice

students’ understanding of central object-oriented concepts.
Holmboe (1999) emphasises that good understanding in programming re-

quires both practical skills and conceptual understanding, and a connection

between the two. This mirrors the three foci of the present thesis. The follow-

ing two sections will discuss the role of practise in computer science educa-

tion.

Learning programming skills
There exists a considerable body of research on the role of practise in com-

puter science education, both as means to reach the learning goals, and as a

goal in itself. The latter is discussed in this section, in terms of skills students

are supposed to learn.
A well known multinational study is McCracken et al. (2001) who investi-

gated novice students’ ability to write code. The authors concluded that many

students can not program after their first introductory programming course,

but lacked evidence for an explanation. Lister et al. (2004) continued the Mc-

Cracken study and found that students’ problems with programming “relate

more to the ability of students to read code than to write it.” (p. 139) This

line of research has been extended by Whalley et al. (2006), who also study

students’ ability to read code. The authors found that “[s]tudents who can-

not read a short piece of code and describe it in relational terms are not well

equipped intellectually to write code of their own.” (p. 251) In the same line

of research is Lopez et al. (2008) who investigated the relationship between

reading, tracing and writing code in novice students’ learning. The authors

found correlation between performance on “code tracing tasks” and “perfor-

mance on code writing tasks” and also between “performance on ’explain in

plain English’ tasks and code writing.” (p. 101)

Students’ ability to debug code is investigated in a multinational study by
Fitzgerald et al. (2008). The authors found that students that can debug are of-
ten good novice programmers, but the opposite does not always apply. On the
other hand, “once students find bugs, they can fix them.” (p. 93) Senior com-
puter science students’ ability to design software is investigated in a multina-
tional study by Eckerdal et al. (2006), (Paper VII). The authors found that that
only 9 % of the students produced partial or complete designs. We further-

more found that the number of academic courses taken by the students, the

time the students spend on the design task, and the number of programming

languages well known by the students were significantly correlated with the

result of the design task. In summary, all the studies point to students’ difficul-
ties in learning the practical skills. This applies to novices as well as to senior
students.

Practise as means for learning to program
Practise is often seen as an inevitable means to reach learning goals. Resources
that enhance practise for learning are frequently discussed topics in confer-
ence papers and journal articles. Such a resource which is expected to have

23

high impact on object-oriented educations is the Java Task Force that was ap-

pointed by the ACM Education Board in 20044. The mission was to develop
a s collection of pedagogical resources that would support the use of Java in
first-year computer science courses.
There is a strong focus on technology based learning support in the com-

puter science education literature. This is pointed to by Valentine (2004) who

did a meta-analysis on twenty years of proceedings from the largest confer-

ence in computer science education. The author categorized research papers

dealing with beginning programming courses. During 1994-2003, 42% of the

number of papers in the proceedings described software that was developed

by the author of the paper to enhance learning.
Technology supported resources developed to enhance learning to program

are discussed by Powers et al. (2006). According to the authors software re-

sources developed to help novices to learn to program can be divided into

several groups, for example Narrative tools, which “support programming to
tell a story” and Visual programming tools, which “support the construction
of programs through a drag-and drop interface”. An example of the former
is Alice (Powers et al., 2007) and an example of the latter is JPie (Goldman,
2004).

Ellis et al. (1998) report on technology supported resources for Problem
Based Learning. For example, the authors discuss resources to provide subject
guidance and information access, and resources to assist scaffolding. In the
former group reference material like CD-ROM and the web is mentioned.
How do we know that technology based learning resources lead to good

conceptual or practical learning? Gross and Powers (2005) performed an

extensive literature search for assessments of the educational impact of

novice programming environments. The authors relate their literature search

to novice programmers learning difficulties saying that teachers “have

developed a myriad of tools to help novices learn to program. Unfortunately,

too little is known about the educational impact of these environments.”
Pair programming has been greatly discussed in the computer science com-

munity during recent years. The fundamental thoughts behind pair program-

ming are described as “students sit side-by-side at one computer to complete

a task together, taking turns ’driving’ and ’navigating.’ ” (VanDeGrift, 2004).

Studies on the learning outcome of pair programming, and how pairs best are

selected have been performed. Examples of this are VanDeGrift (2004) and

Katira (2004).
Extreme programming (XP) has been discussed and used in industry, and

to some extent in higher education. In XP planning, analyzing, and designing
is done a little at a time, throughout software development. The XP practises
also include other factors like pair programming and programmers’ collective
ownership of the code in the system (Beck and Andres, 2004).

4The reports from the Java Task Force with associated material are available from

http://jtf.acm.org/index.html Retrieved November 18, 2008.

24

Other aspects of the practise discussed in the literature are the role of

projects and programming assignments, and the roles of the programming

language and programming environment. The former are discussed for

example by Daly (2004) and Newman (2003). The latter are discussed

in for example Kölling (1999a) and Kölling (1999b) where the author

discusses where different programming languages and different programming

environments are suitable.

Psychological/educational study of programming
As a contrast to my own research I will mention two large research areas in

computer science education: research on students’ misconceptions, and re-

search comparing novices and experts behaviour. These research areas are

close to the present research, but not the exact focus.
Robins et al. (2003) discuss “literature relating to the psychologi-

cal/educational study of programming.” The authors discuss “general trends”,

for example regarding comparison of novice and expert programmers.

Examples from this line of research are Gugerty and Olson (1986) who

compare expert and novice debuggers, Kahney (1983) who investigate

novices’ and experts’ understanding of recursive procedures, Zou and

Godfrey (2008) who investigate differences between newcomers’ and

experts’ interaction with software development tools, and Winslow (1996)

who, based on an overview of psychological research in programming

pedagogy, claim that it takes 10 years of experience to turn a novice

programmer into an expert.

Students’ misconceptions are frequently reported in studies on students
learning to program. I will mention a few. Ragonis and Ben-Ari (2005)
present a large study with high school students learning to program. The
article includes detailed lists of difficulties and misconceptions related to
several concepts in object-oriented programming. Holland, Griffiths and
Woodman (1997) claim that misconceptions of basic object concepts “can
be hard to shift later. Such misconceptions can act as barriers through which
later all teaching on the subject may be inadvertently filtered and distorted.”
Sanders and Thomas (2007) describe a close examination of student
programs from an introductory programming course, in which they found
evidence of misconceptions. Among other things they found difficulties in
distinguishing between classes and objects, and in modelling.
Other programming paradigms are also discussed in this context. Spohrer

and Soloway (1986) studied novice Pascal students and investigated “whether
or not most novice programming bugs arise because students have miscon-
ceptions about the semantics of particular language constructs.” (p. 183) The
authors found that for most of the bugs investigated that was not the case. Bay-
man and Mayer (1983) report on a study on beginning BASIC programmers
misconceptions of statements they had learned, and Fung et al. (1990) report
on “novices’ misconceptions about the interpreter in Prolog” (p. 311).

25

3. Research approaches

My research interest is in programming students’ learning, and specifically in
the students’ own experiences of their learning. I first investigated students’
experiences of some programming concepts, and how they went about learn-
ing the concepts. Aiming at describing this from the students’ perspective the
first two investigations mainly used interviews with students. Interviews with
educators and a brief survey were initially used in the second investigation,
but the results from initial analyses pointed to qualitative, student centered re-
search methods, and consequently interviews with students were performed.
From the initial research questions, the data and the analyses led to new

research questions concerning the role of practise in programming students’
learning, but still related to how the students experience their learning.
The research questions presented in Section 1.1 suggest a predominantly

qualitative research approach since the focus is on how-questions, see Section

3.1 below. Quantitative methods have been used to a minor extent, and only

as a complement to a primary, qualitative approach.
In the present section I will briefly introduce the reader to qualitative re-

search in general, and in particular to phenomenography and variation theory.

Parts of the content analysis tradition will be discussed, namely qualitative

content analysis, which has been applied in the present research. In addition,

trustworthiness in qualitative research is introduced, and discussed in relation

to the present work.

3.1 Qualitative research
Qualitative research is spread widely and cross cuts many disciplines, using
a variety of methods and approaches. Denzin and Lincoln (2005) discuss the
development of qualitative research. Considering its complex development,
qualitative research is difficult to define. The authors still offer an “initial,
generic definition” (p. 3):

qualitative research involves an interpretive naturalistic approach to the world.

This means that qualitative researchers study things in their natural settings,

attempting to make sense of, or interpret, phenomena in terms of the meanings

people bring to them. (Denzin and Lincoln, 2005, p. 3)1

1In the following text I will refer to this definition when I discuss the naturalistic paradigm.

27

According to Denzin and Lincoln (1994) qualitative researchers “seek an-

swers to questions that stress how social experience is created and given mean-

ing” in contrast to quantitative studies which “emphasize the measurement

and analysis of causal relationships between variables, not processes.” (Den-

zin and Lincoln, 1994, p. 4) Qualitative studies often focus on Why? and How?
questions, less on How much? which is common in quantitative studies. The
aim of qualitative research is rather to give “thick descriptions” of phenom-
ena than to measure variables. To “make sense of” and look for “the meaning
people bring” to phenomena are watchwords.
Examples of data collection methods used in qualitative research are par-

ticipant observation and video recordings, but as Denzin and Lincoln (2005)

write: “No specific method or practise can be privileged over any other.” (p. 7).

Empirical materials used involve for example interviews, artifacts, and histor-

ical texts “that describe routine and problematic moments and meanings in

individuals’ lives.” (Denzin and Lincoln, 2005, p. 3-4)
The research questions (see Section 1.1) require analysis methods that can

elicit the meaning embedded in the material. Content analysis is such a method
that has been used on interviews and written artifacts to elicit meaning by
categorisation. Phenomenography, here applied in the analyses of interviews,
is another approach, used in educational research to understand differences
in learning outcome by eliciting qualitatively different ways in which people
experience phenomena.

3.2 Phenomenography

Phenomenography is a qualitative research approach, intended for
educational research. Phenomenography was first developed in the 70’s
in Gothenburg, Sweden by a group of researchers. Ference Marton, Lars
Owe Dahlgren, Lennart Svensson and Roger Säljö performed a study on
students reading a text aiming at understanding the differences in students’
understandings. They found clear qualitative variation in what the students
understood, as well as how they went about studying the text. These findings

have been used as a point of departure for research on learning in various

subject areas in higher education, and have led to insights, such as the

distinction between deep and surface approach to learning (Marton et al.,

1984). From this empirical basis the phenomenographic research approach

emerged, which focuses on describing and understanding the variation in

how people experience phenomena in the world2 Phenomena are described
by Marton and Booth (1997) as the units that exceed a situation, bind it
together with other situations and give it a meaning.
Marton and Booth (1997) write about variation in peoples’ capabilities for

experiencing the world:

2In the following text I will use understanding as interchangeable with experience since the

present research discusses students’ understandings of phenomena.

28

These capabilities can, as a rule, be hierarchically ordered. Some capabilities

can, from a point of view adopted in each case, be seen as more advanced, more

complex, or more powerful than other capabilities. Differences between them

are educationally critical differences, and changes between them we consider

to be the most important kind of learning. (Marton and Booth, 1997, p. 111)

The object of interest in a phenomenographic study is thus how a certain phe-
nomenon is experienced by a certain group of people, and the variation in

the way the phenomenon is experienced (Marton and Booth, 1997, p. 110). It

focuses on the students’ perspectives and understandings, not on misconcep-

tions. It does not take the researcher’s perspective as the point of departure, but

endeavours to adopt the student’s perspective on learning. Marton and Svens-

son (1979) claim that in this perspective, the world as the student experiences

it, becomes visible. The experience is a relation between the student and his

or her world, it is not two independent descriptions, one of the student and one

of the world. “[W]e have one description which is of a relational character.”

(Marton and Svensson, 1979, p. 472)

In phenomenographic studies, data are often gathered in the form of inter-
views where people are encouraged to describe their different experiences, or
understandings of some phenomenon. The interviews are transcribed verba-
tim and the data, as text, are analysed. The analysis aims at identifying dif-
ferent understandings of the phenomenon discussed. The understandings are
found when the data are read and reread and patterns of distinctly different
understandings are looked for. Individual, decontextulised quotes illustrating
certain understandings are compared with each other, grouped and regrouped,
and eventually different categories of understanding emerge which form an
outcome space. The quotes are also read and reread in their own context to
make subtle distinctions to the researcher’s understanding of the data. The re-
searcher formulates the essence of the understandings found with his or her
own words in the categories of description. In this iterative analysis, by again
and again going back to the data, the categories of description finally emerge.

A fundamental assumption in phenomenography is that there exist only a
limited number of qualitatively different ways in which a certain phenomenon
can be understood. The categories in the outcome space show a “hierarchical
structure of increasing complexity, inclusivity, or specificity” (Marton and
Booth, 1997, p. 126). The categories describe the qualitatively different ways
of experiencing the phenomenon that the researcher has identified in the
data. Different categories reflect different combinations of features of the
phenomenon which are present in the focal awareness at a particular point in
time (Marton and Booth, 1997, p. 126). Marton, Runesson and Tsui (2004,
p. 22) describe critical features: “the features that must be discerned in order
to constitute the meaning aimed for.”

The phenomenographic analysis is done at a collective level, not aiming at
putting individuals in certain categories. An individual can hold several of the
understandings expressed in the categories of description, but mapping be-
tween individuals and categories is not the aim of the analysis. It is unlikely

29

that the collected data can reveal all the different ways in which each individ-

ual student understands the concepts of interest. However, when statements

from different students are brought together, that collective “pool of mean-

ing” reveals a rich variety in understandings. When quotes are taken out of

their contexts and compared to each other, the individuals are put in the back-

ground, and the collective understandings of the group are in the foreground.
Learning is understood as developing richer ways to see a phenomenon, as

represented in the more advanced categories of the phenomenographic out-

come space. Variation theory, which originates from phenomenography, em-

phasises variation and discernment as key words in this process. A necessary

but not sufficient condition for discerning a specific feature of a phenomenon

is that the student gets the opportunity to experience variation in a dimension
corresponding to that feature. In Paper IV we explain dimension of variation,
or for short dimension, in the following way:

For example, if ’size’ and ’colour’ are the features of a phenomenon ’picture

component’, then there is a ’size’ dimension and a ’colour’ dimension of the

corresponding feature space. A particular instance of ’picture component’ can

be represented by its values in those dimensions, i.e., by its particular size and

colour.

Each feature of the phenomenon studied that appears in an outcome space
corresponds in this way to a dimension. Marton, Runesson and Tsui (2004,
p. 21) discuss the need to create a space, which means “opening up a dimen-
sion of variation (as compared to the taken-for-granted nature of the absence
of variation).” The authors describe such a space:

A space of learning comprises any number of dimensions of variation and

denotes the aspects of a situation, or the phenomena embedded in that situation,

that can be discerned due to the variation present in the situation. [...] [The

space] delimits what can be possible learned (in sense of discerning) in that

particular situation. (Marton et al., 2004, p. 21) (Italics in original)

3.3 Content analysis

Content analysis is described by Mostyn (1985) as “a very ordinary, everyday
activity we all engage in [...] when we draw conclusions from unstructured
communications” (p. 115) Content analysis originally dealt with quantitative
analysis of data (what-, where-, and how many- questions) but has developed
to include qualitative analysis (why-questions).
Qualitative content analysis as a research method deals with analysing arti-

facts, often texts, with focus on the content and meaning embedded in the text.
The goal of qualitative content analysis is to understand the meaning of un-
structured communication, and through a process of condensing raw data into
categories come to a better understanding of the phenomenon studied. This

30

process involves inferences and interpretations that require knowledge of the
context and subject studied. Hsieh and Shannon (2005) define qualitative con-
tent analysis in the following way:

a research method for the subjective interpretation of the content of text data

through the systematic classification process of coding and identifying themes

or patterns (Hsieh and Shannon, 2005, p. 1278)

Mostyn describes qualitative content analysis as “the ’diagnostic tool’ of qual-
itative researchers” (p. 117). As such, content analysis is used in a variety
of research methods including discourse analysis, ethnographic research, and
computer text analysis (Krippendorff, 2004, p. 19).
The object of interest in qualitative content analysis is often a text, for ex-

ample transcribed interviews, but data can equally come from observing be-
havior, artifacts, etc. (Mostyn, 1985, p. 124). To gain insights into the meaning
embedded in the data, the analysis requires interpretation that goes beyond in-
ference. Mostyn writes:

we become concerned with content as a reflection of deeper phenomena. Words

are treated as symbols and the data has attributes of its own; we are analyzing

both manifest and latent data. (p. 116)

Graneheim and Lundman (2004) describe manifest as “what the text says [...]
the visible, obvious components”, while latent data is described as “what the
text talks about [...] an interpretation of the underlying aspects of the text”.
(p. 106)
The researcher scrutinizes the data, looking for regularities “in terms of sin-

gle words, themes, or concepts.” (Mostyn, 1985, p. 118) This in-depth analysis

leads to identification of categories, which is the heart of content analysis.
Mayring (2000) describes content analysis as “a bundle of techniques for

systematic text analysis”. He specifically describes two approaches that offer
procedures for data analysis. The first is inductive category development. It is
described as a “reductive” process:

the material is worked through and categories are tentative and step by step de-

duced. Within a feedback loop those categories are revised, eventually reduced

to main categories [...]

In this way, data can be categorised with an explorative approach. The cate-
gories are developed as the researcher delves deeper into the data and lets the
data speak. The categories developed during the process guide the researcher
in his or her interpretations and inferences in the analysis.

The second approach is deductive category application. Mayring writes:
“Deductive category application works with prior formulated, theoretical de-
rived aspects of analysis, bringing them in connection with the text.”

Meaning embedded in the data is, with this approach, unveiled when parts
of the data are fitted into pre-existing categories or theories, and the result

31

subsequently is interpreted. The researcher uses his or her knowledge of the

data in terms of the participants and context of the data gathering in the process

of interpretations and inferences.

3.4 Trustworthiness in Qualitative Research

Evaluation of research and its trustworthiness depends on the research

paradigm used. This is due to the fact that different research paradigms have

different knowledge claims. Lincoln and Guba (1985) write that “criteria

for what counts as significant knowledge vary from paradigm to paradigm.”

(Lincoln and Guba, 1985, p. 301)
Lincoln and Guba contrast criteria related to what they call the

conventional paradigm, where most research in the area of computer science
belongs, with criteria appropriate for the naturalistic paradigm, where the
present, qualitative research belongs. The trustworthiness criteria of the
conventional paradigm are often discussed in terms of “internal validity”,
“external validity”, “reliability”, and “objectivity”. Internal validity “refers to
the extent to which the findings accurately describe reality” (Hoepfl, 1997,
p. 58), and external validity “refers to the ability to generalize findings across
different settings.” (Hoepfl, 1997, p. 59). Hoepfl writes with reference to Kirk
and Miller (1986, p. 41-42), that three different types of reliability have been
identified in conventional research:

1) the degree to which a measurement, given repeatedly, remains the same; 2)

the stability of a measurement over time; and 3) the similarity of measurements

within a given time period (Hoepfl, 1997, p. 59–60)

Lincoln and Guba write that the usual criterion for objectivity is “intersub-
jective agreement; if multiple observers can agree on a phenomenon their
collective judgment can be said to be objective.” (Lincoln and Guba, 1985,
p. 292) Another approach to establish objectivity is “through methodology; to
use methods that by their character render the study beyond contamination by
human foibles.” (p. 292–293)

The comparable criteria in the naturalistic paradigm are “credibility”,
“transferability”, “dependability”, and “confirmability” (Lincoln and Guba,
1985, p. 300).

There have been several phases in the development of qualitative research,
and the discussions in the literature on how to certify trustworthiness have
consequently developed over the years.
In the present discussion on evaluation of qualitative research I will use

the trustworthiness criteria suggested by Lincoln and Guba (1985). There are

other approaches suggested to ensure trustworthiness in qualitative research,

for example applying ideas from the conventional paradigm criteria. A recent

example of a discussion on trustworthiness as an alternative construct to va-

lidity, reliability, and generalisability in phenomenographic research is Collier

et al. (2008).

32

In the following I will discuss each of the four criteria; credibility, trans-

ferability, dependability, and confirmability as they, according to Lincoln and

Guba, can be used to evaluate trustworthiness of research within the natural-

istic paradigm.
The first criterion, credibility, deals with carrying out an inquiry in a way

that enhances the chances for the findings to be found credible or believable.

This can involve credibility from the participants’ perspective. Credibility has

less to do with the size of the sample than the quality of the data, the anal-

ysis and the written report. Lincoln and Guba suggest techniques to address

credibility. Examples of these techniques are prolonged engagement, persis-

tent observations, peer debriefing and triangulation, where the latter can refer

to triangulation of data, methods, multiple analysts, and theory.
The second criterion, transferability, refers to the degree to which the re-

sults of the research can be transferred to other settings, contexts, or popula-
tions. Lincoln and Guba discuss transferability in terms of where “the burden
of the proof lies” (Lincoln and Guba, 1985, p. 298). Instead of making gener-
alizations, the researcher should provide what Lincoln and Guba call a “thick”
description of the research. This description can include description of prepa-
ration of the study and the underlying research questions and assumptions,
data gathering including choice of data collection methods and participants,
quotations from interviews, analysis methods and decisions taken during the
process of analysis, and the inferences the researcher has come to, and more.
The thick description is presented to the reader so that he or she can determine
whether the findings are applicable to his or her situation. The investigator
does not know the context of the receiver. Only the receiver of the research
knows and can judge the transferability of the research. Lincoln and Guba
write:

The best advice to give to anyone seeking to make a transfer is to accumulate

empirical evidence about contextual similarity; the responsibility of the origi-

nal investigator ends in providing sufficient descriptive data to make such simi-

larity judgments possible. (Lincoln and Guba, 1985, p. 298) (Italics in original)

The authors emphasise that the researcher should provide “the thick descrip-
tion necessary to enable someone interested in making a transfer to reach a
conclusion about whether transfer can be contemplated as a possibility.” (Lin-
coln and Guba, 1985, p. 316)

The third criterion discussed is dependability, which is the naturalistic cor-
respondence to reliability. Dependability emphasises that the researcher needs
to account for the changing context in which the research occurs. Lincoln and
Guba write: “The naturalist sees reliability as part of a larger set of factors that
are associated with observed changes.” Aiming to demonstrate dependability
“the naturalist seeks means for taking into account both factors of instabil-
ity and factors of phenomenal or design induced change.” (p. 299) Lincoln

and Guba write that it is argued that if credibility is fulfilled, dependability is

also fulfilled: “Since there can be no validity without reliability (and thus no

credibility without dependability), a demonstration of the former is sufficient

33

to establish the latter.” (p. 317) Techniques related to credibility thus ensures

that dependability is fulfilled.
The fourth criterion is confirmability, which corresponds to objectivity in

the conventional paradigm. To what degree can the results of the research be
confirmed or corroborated by others? Lincoln and Guba write that there are
three different perspectives on objectivity (p. 299). The perspective that is of-
ten preferred by naturalists is “Objectivity exists when an appropriate method-
ology is employed that maintains an adequate distance between observer and
observed.” (p. 300) The authors conclude that this definition

removes the emphasis from the investigator (it is no longer his or her objectiv-

ity that is at stake) and places it where, as it seems to the naturalist, it ought

more logically to be: on the data themselves. [...] Are they or are they not con-
firmable? (p. 300) (Italics in original)

Techniques to ensure confirmability suggested by Lincoln and Guba are for

example triangulation and the keeping of a reflexive journal. (p. 319)

34

4. The present research

This section discusses how the research approaches presented in Section 3.2
and Section 3.3 are applied in the present thesis. Subsequently the section
discusses how trustworthiness, as discussed in Section 3.4, has been ensured
in the different investigations involved in the thesis.

4.1 Research approaches applied in the present
research

The thesis has three themes as is discussed in Section 1.1. The first theme, stu-
dent learning of concepts, is analysed by means of deductive content analysis
(Paper III), by means of phenomenography (Paper I, Paper IV, and Paper V),
and by means of variation theory (Paper I and Paper IV). Paper II is mainly
a literature review of work related to “threshold concept” (Meyer and Land,
2005) and will not be discussed below.
The second theme, student learning of practise, is analysed by means of

inductive content analysis (Paper VI and Paper VII).
The third theme, the relationship between students’ conceptual and practi-

cal learning, is analysed by means of deductive content analysis (Paper VIII),

and by means of phenomenography and variation theory (Paper IX).

4.1.1 Phenomenography and variation theory in the present
research

Paper I includes a traditional phenomenographic analysis of novice students’
understanding of two central concepts in object-oriented programming, object
and class. The analysis is described, and quotes from the students illustrate
the different understandings identified. Two sets of categories of description
are presented, and features of the different understandings are identified. The
paper further includes a discussion of how variation theory can be applied to
the phenomenographic results, and implications for teaching are inferred from
the latter discussion.
Paper IV includes a traditional phenomenographic analysis of students’ un-

derstanding of the phenomenon “programming” including quotes that illus-

trates the different categories of description. The paper further shows how the

phenomenographic results can be used to design learning activities that sup-

port students’ learning, by use of variation theory and patterns of variation. To

this end we introduce the theory of phenomenography and variation theory,

35

and give a thorough review of the steps taken to identify the dimensions of

variation that are related to the phenomenographic outcome space discussed.

Finally we suggest appropriate patterns of variation that can be used to help

students discern some of the identified dimensions of variation, and how these

patterns can be applied in teaching novice programming.

Paper V includes a traditional phenomenographic analysis of students’ un-
derstanding of the phenomenon “learning to program” with a description of
the analysis performed and with quotes from the students to illustrate the cat-
egories of description identified in the analysis. We relate the results from the
analysis to the “process-object duality” theory from mathematics education.
We show that the phenomenographic analysis reveals problems students expe-
rience in learning object-oriented programming, not indicated in the “process-
object duality” theory.
Paper IX builds mostly on the results presented in Paper I, Paper IV, Pa-

per V, and Paper VIII. Paper IX uses phenomenography and variation theory

to build an analytical model of students’ learning of practise and concepts.

Dimensions of variation are in the center of the discussion, tying together stu-

dents’ conceptual and practical learning. The conceptual understandings used

to illuminate the analysis are novice students’ different understandings of the

concepts object and class and related dimensions of variation, as presented in

Paper I. The practise is analysed by identifying common novice programming

activities at different level of proficiency. Subsequently it is argued that these

activities also are related to the same dimensions of variation. In this way prac-

tise, expressed as activities at different level of proficiency, and qualitatively

different conceptual understandings are related through dimensions of varia-

tion, and a model of the complex learning process of novice programming is

developed.

4.1.2 Content analysis in the present research

Paper III is based on deductive content analysis of semi-structured interviews

with students from the second investigation who discuss important and diffi-

cult concepts they have met during their education. The interview questions

were constructed to capture Meyer and Land’s definition of threshold con-

cepts (Meyer and Land, 2005). For each concept discussed by the students we

analysed whether the criteria that characterize threshold concepts were met.

In this way we identified two threshold concepts in computer science, pointers

and object-oriented programming.

In Paper VI inductive content analysis is used on parts of the interviews
discussed above. The goal with the research was to identify strategies that
students use successfully in their computing studies, and to categorize the
strategies in ways that made them useful for future students and educators
(Paper VI, p. 156). Some interview questions concerned what the students did
when they were stuck in their learning process. We aimed at identifying all
strategies to get unstuck mentioned by the students. In an iterative process
we grouped the strategies in categories. We first created many small cate-

36

gories where only a few strategies that appeared more or less the same were

grouped together. The smaller categories were subsequently grouped together

into broader, more abstract categories that covered large numbers of related

strategies. The categories, the many small as well as the broader and more

abstract, are presented in the paper.

Deductive content analysis is used in paper VIII on the interview data from
the second investigation. Meyer and Land (2005) use the metaphor the limi-
nal space to capture important features of students’ experiences of being in
the midst of learning threshold concepts (Meyer and Land, 2005). We anal-
ysed the parts of the interviews where students discussed their learning of the
threshold concepts identified in Paper III. The analysis aimed at investigating
the liminal space criteria, as discussed by Meyer and Land, and discussing
how these criteria appear in computer science students’ learning process.
In Paper VII, inductive content analysis was used to categorise artifacts

produced by senior students. The research examined how students’ software

designs can be compared, and in addition investigated senior students’ ability

to design. The students were asked to design a software system. The designs,

made on papers, were the artifacts analysed by the research group. Starting

with a sample of 20 of the total 149 designs, we made an initial categorisa-

tion of the designs, based on their semantics and guided by our experiences as

computer scientists, researchers, and teachers. We subsequently categorised

the remaining designs, each researcher categorising 70 designs. Agreement

was reached in close discussions within the research group. The identified

categories were subsequently discussed in relation to academic and demo-

graphic background data gathered from the participants, which supported the

interpretation of the results of the categorisation. In this part of the analysis

we used quantitative methods for parts of the interpretation of the categories

and inferences drawn.

4.2 Trustworthiness of the present research

In this section I will discuss how trustworthiness, as presented in Section 3.4,

have been ensured in the present thesis. The three investigations will be dis-

cussed separately. For each of the three criteria suggested by Lincoln and

Guba (1985), credibility, transferability, and confirmability, I will discuss how

I have used techniques to ensure trustworthiness in the investigations. Since

the dependability criterion is fulfilled with the credibility criterion, depend-

ability will not be discussed (Lincoln and Guba, 1985, p 317). The techniques

I discuss relate to the techniques suggested by Lincoln and Guba, but with

minor modifications in my applications of them.

4.2.1 Trustworthiness in the first investigation

Data in the first investigation were collected from a series of interviews with

14 first year students who had just finished their first programming course.

37

The interviews aimed to elicit students’ different understandings of some cen-

tral concept. Research approaches used on the data are phenomenography in

Paper I, Paper IV, Paper V, and Paper IX, and variation theory in Paper I, Pa-

per IV and Paper IX. Below I describe how I have established trustworthiness

in the phenomenographic analyses which includes variation theory, by fulfill-

ing the three criteria.
Data collection and the analysis of the data from the first investigation was

done in close discussion with a colleague. Both of us have long experience of

teaching programming, and can thus be said to have prolonged engagement in

the field. The phenomenographic analysis was partly performed by me, and

later scrutinised by my colleague, and partly done by both of us separately,

and then joined in discussions where we came to agreement on the results.

The analyses have further been discussed in seminars with researchers in the

CER field, and conference and journal papers have been peer reviewed. Peer

debriefing has thus been used and the credibility criterion ensured.
The second criterion, transferability, has been ensured in the presentations

through a thick description in the following ways. Great effort was made to
ensure that the group of students investigated, the choice of participants for the
interviews, the course they studied, the questions asked, the research approach
taken, and the analyses performed were described in as much detail as possible
considering page limitations and other practical limitations. In this way a thick
description was provided for the reader.
Keeping of a reflexive journal is one technique suggested by Lincoln and

Guba to ensure the confirmability criterion (p. 319). In the first investigation
reflexivity, as discussed by Finlay (2002), has been used to some extent to
ensure confirmability. The researcher always influences both collection and
interpretation of data. Reflexivity means explicitly, with self-awareness,
analysing one’s own role in the research process (Finlay, 2002). Finlay
writes: “Reflexive analysis in research encompasses continual evaluation
of subjective responses, intersubjective dynamics, and the research process
itself.” (p. 532) This has been carried out in close dialog with my co-authors,
by presenting the research at conferences, and specifically in educational
situations where people from outside the phenomenographic community have
been introduced to this research approach partly through my own research.
This has encouraged me to analyse my own role in the research process. In
this way the third criterion, confirmability, has been ensured.

4.2.2 Trustworthiness in the second investigation

The second investigation was multinational. This implies that the pool of data
is possibly richer than if the data came from one institution only. The back-
ground of the participants is more diverse, and the education differs between
countries and institutions. To ensure stringent interview conditions so that the
data can be treated as one pool of information, certain steps were taken con-
cerning choice of participants, and preparation of the interviews. To ensure
that the participants were at comparable level in their educations, and stud-

38

ied at similar study programs, the issues of the background of participants

and their study programs were thoroughly discussed within the group of re-

searchers. To ensure trustworthiness in the performance of the study, the in-

terview questions were worked out in close discussion among the researchers.

One of the researchers subsequently performed a pilot interview with the rest

of the researchers present, listening, but not interfering. The pilot interview

was followed by a discussion among the researchers to resolve possible ques-

tions. The pilot interview was not added to the pool of information used in the

subsequent analyses. The purpose of the pilot interview was solely to ensure

trustworthiness in the performance of the study.

Research approaches used on the data are deductive content analysis in Pa-
per III and Paper VIII, and inductive content analysis in Paper VI. Below I
describe how my use of content analysis ensured trustworthiness in ways that
fulfill the criteria discussed.

All researchers involved in the second investigation have long experience
of teaching computer science. In addition, the work has been triangulated con-
cerning data gathering methods in the following way: we have performed in-
formal interviews with educators, an instructor survey, interviews with stu-
dents, and a literature survey. Prolonged engagement in the field and trian-
gulation ensures the fulfillment of the first criterion, credibility. Triangulation
furthermore ensures the third criterion, confirmability.

In our reports we provided thick descriptions of interviewees, interview
and survey questions, excerpts from the data, and how the analyses were per-
formed. This ensures transferability.

4.2.3 Trustworthiness in the third investigation

The third investigation was performed by a group of 21 researchers from four
countries. The investigation was led and designed by three of the researchers.
Data was gathered by all researchers. A multinational study implies rich data
in the sense described above. To ensure stringent interview conditions so that
the data can be treated as one pool of information, certain steps were taken
concerning choice of participants, and preparation of the “design brief”, that
is the task given to the participants which describe the problem and provide
instructions (see Paper VII, p. 198). All researchers were given the same, de-
tailed information on what was regarded as appropriate level of education of
expected participants. The performance of the study was described in detail,
and before the study was performed all researchers tried the “design brief”
themselves, followed by a discussion among the researchers. In this way the
researchers were given an opportunity to discover ambiguities in the setup of
the study, and resolve differing understandings among themselves. The “de-
sign brief” was thereafter reviewed by the leaders of the investigation in line
with the responses from the researchers before given to the participants.
The research approach used in Paper VII is deductive content analysis,

which, as described below, has been used in a way that ensures trustworthi-
ness.

39

As in the second investigation, prolonged engagement in the field is fulfilled

since all researchers involved in the data gathering as well as those involved

in the analysis of the data have long experience of teaching computer science.

The subset of data used in Paper VII, designs from senior students, is trian-

gulated consider that the participants came from 21 institutions in four coun-

tries. In this way the first criterion, credibility, as well as the third criterion,

confirmability, have been fulfilled.

The report of the research provides the reader with a thick description which
ensures transferability. The study is clearly described, the “design brief” given
to the students is included in the paper, and the paper gives a rich description
of the categorization procedure performed.

40

5. Results

This section presents results from the nine papers included in the thesis, or-
ganised around its three themes. The first theme, student learning of concepts,
form a major part of the thesis. There is a large body of previous research

on the second theme, students learning of practise, and the present research
on this theme thus focuses on one specific skill, software design, which is
less well researched than other central skills like reading and writing code.
In the third theme, the relationship between conceptual and practical learn-
ing, I synthesise the results from the first two themes using the conceptual
framework Ways of Thinking and Practising.

Results concerning possible implications for teaching are brought together
in Section 6.

5.1 Learning of concepts

The first theme deals with problems concerning student learning of concepts.
In particular three specific aspects of student learning of concepts are re-
searched, reflecting the research questions in Section 1.1.
The first research question presented in Section 1.1 concerns novice stu-

dents’ understanding of programming concepts. The phenomenographic anal-

ysis presented in Paper I shows that the novice students’ understanding of

the concepts object and class vary from a narrow textual representation of the

concepts, to a broader understanding of the concepts including the active be-

haviour of the objects when the program is executed, to the most desirable

understanding that includes the two previous, but also the modeling aspects

of the concepts. Very few students seem to have reached this understanding

although it is fundamental in object-oriented programming. In particular our

results show that:

• There are particular ways to understand the concepts object and class that are

critical for students to discern. Few students seem to have reached the full under-

standing of the concepts described in the phenomenographic outcome spaces. The

results from Paper I can be used by educators in the way that they can accentu-

ate the identified features of the concepts in their teaching, and thus facilitate for

students’ learning and further studies.

The investigation presented in Paper I of students’ understandings of the con-
cepts object and class is in line with results presented in Paper II and Pa-
per III, where conceptual learning is discussed at a higher level of granularity.
While the first paper focuses on two specific concepts in the object-oriented

41

paradigm, namely object and class, Paper II and Paper III aim at discussing

and identifying important concepts, so called “threshold concepts” (Meyer

and Land, 2005) in computer science in general. Threshold concepts are de-

scribed by Meyer and Land as a subset of core concepts in a discipline that

might be used to organize and focus education.

Paper II discusses threshold concepts in relation to a number of other com-
puter science education research areas. Paper II specifically discusses how the
idea of threshold concepts relates to, and differs from, constructivism, men-
tal models, student misconceptions, breadth-first approaches to introductory
computer science, and fundamental ideas. We found support in the literature
for the conclusion that abstraction and object-orientation fulfill the criteria of
being threshold concepts.

Paper III continues the discussion started in Paper II. The paper presents an
empirical investigation that aimed at identifying possible threshold concepts
in computer science. We found empirical evidence of two threshold concepts:
object-oriented programming, which was suggested from the literature survey
in Paper II, and pointers.

We have not yet pinpointed which aspect(s) of object-oriented program-
ming is(are) threshold concept(s). Object and class, which are the concepts
investigated in Paper I, seem however to be reasonable candidates to study
since they are not only central, but often introduced early in programming
education. In particular our results show that:

• There exist threshold concepts in computer programming. The identification of

such concepts gives valuable information for educators. Object and class, which

are threshold concepts candidates, can act as nodes around which introductory

programming education can be organised.

Paper IV and Paper V investigate student understanding of what programming

and what learning to program means. This is the second research question.
The action dimension described in the outcome spaces in Paper I reappear in

the outcome space in Paper IV. There seems to be similarities between how the

phenomena “object” and “class” are understood relative to the phenomenon

“computer programming”. Or to phrase it with the variation theory terminol-

ogy: there are dimensions in the programming learning space that seem to

be common to several phenomena. If a specific feature of one phenomenon

is discerned, for example a feature related to the action dimension, this can

facilitate for the learning of other phenomena which are related to the same

dimension. This is further developed in Paper IX, where variation theory is

used to research students’ learning process.

Another interesting connection between Paper I, Paper IV, and Paper V is
the similarities in their respective outcome spaces. The understandings de-
scribed go from a narrow, programs-as-text and programming-as-coding foci,
to broader understandings that include the reality outside the computer and
the course. The importance of students reaching the more advanced ways of
understanding these phenomena are pointed to for example in Computing Cur-
ricula 2001 Section 7.2 (Roberts and Engel, 2001).

42

Students’ understandings of the subject studied, here computer program-

ming (Paper IV), and their understanding of what it means to learn that subject
(Paper V), have been shown to be important for how students approach their
studies, and thus have impact on the learning outcome (Booth, 1992, p. 261–
262). Paper IV consequently discusses how variation theory, and specifically
the patterns of variation discussed by Marton and Tsui (2004), can be applied
to a phenomenographic outcome space. The discussion gives examples on
how a phenomenographic analysis can be applied in teaching to help students
advance their understanding of what computer programming means, which is
the third research question.

In particular our results show that:

• There is a wide variety in students’ understanding of what programming and learn-

ing to program means. Related work has emphasised the importance of students

coming to a good understanding of what programming, and learning to program

means. The phenomenographic outcome spaces and variation theory can be used

by educators to facilitate for students’ learning of these matters.

Paper V points to similarities with Hazzan’s (2003) work on the process-object
duality learning theory. Paper V however also points to differences in terms of
problems novice students encounter, which are not observed in the process-
object duality theory. The practise, discussed as processes by Hazzan, might
be the major obstacle for some programming students in their learning. If the
practise is experienced as too difficult to master, it can not serve as the a means
for students to reach the learning goals. In this way results from Paper V point
to the next theme of the thesis, students’ learning of the practise.

5.2 Learning of practise

The second theme concerns the role of practise in computer science educa-
tion. Practise is important for students’ learning to program, both as a means
to reach the learning goals, and as a learning goal in itself. Paper VI focuses
on the former aspect in terms of students’ learning strategies, which is the first
research question in the second theme of the thesis, see Section 1.1. Paper VII
discusses the latter aspect of practise, namely one specific learning goal, soft-
ware design. This reflects the second research question in the second theme
of the thesis. Software design is one of several important skills programming
students are supposed to learn, as discussed in Paper IX.

Students’ approaches to their learning have shown to be important for the
learning outcome (Marton et al., 1984). According to for example Trigwell et
al. (1994), approaches to learning can be discussed in terms of intention and
strategy, where intention is what the student attempts to do, while strategy
is what the student does to fulfill the intention. Paper VI identifies students’
learning strategies. We discuss strategies in terms of what the students said
they did when they were stuck in their learning.

The list of identified strategies is long, altogether 35 strategies. We grouped
the strategies into four super-categories. The super-categories found are In-

43

puts/interactions where the students talk about getting help from elsewhere,

Concrete/do stuff which is in line with what I call learning through practising,

Abstract/understand stuff which captures when the students discuss “learning

and getting unstuck at a higher level” (p. 158), as opposed to the former cate-

gory, and the last category, “Use the Force”, which involves strategies where

students use “their willpower or character” (p. 158).
Programming strategies have been claimed to be important parts of pro-

gramming skills (Davies, 1993). Robins et al. (2003) found in their literature

review that lack of programming strategies caused problems for novice stu-

dents. Our analysis is focused on learning strategies. Davies’ and Robins et

al.’s discussions are still relevant for our research since the strategies discussed

in our study often concerns problems with programming concepts.

Although all students in the study but one described that they sometimes
were stuck in their learning, they all had several strategies for getting unstuck,
and the strategies were surprisingly diverse.
In particular our results from the research on practise as a means to reach

learning goals, show that:

• It is important that students learn a variety of strategies for mastering the prob-

lems they meet in their learning. We specifically noticed the “importance of social

interaction, and the active responsibility taken by the students”. (Paper VI, p. 160)

Paper VII discusses one particular programming practise, software design.

The focus of the paper is the problem of assessing designs: how can students’

software designs be analysed and compared? The focus of the investigation

and the data collection, and my focus in this theme, is however on how stu-

dents learn to design. This is also present in the paper, but given as a back-

ground for the discussion on how to analyse rich artifacts like written and

drawn designs.
The paper shows how the technique of semantic categorization can be used

to organize such rich artifacts. 149 designs produced by near-graduating stu-

dents were categorized into six groups of similar designs, depending on their

semantics, and “ordered relative to the degree to which the stated requirements

were met” (p. 199).

The overall question of the study was: Can students near graduation de-
sign software systems? Only 9% of the designs were assessed as reasonable
designs. They fell into the two highest categories, labeled Partial design and
Complete, of which only 2% were Complete. 29% of the designs fell into the
category First step and showed some progress toward a design. The remaining
62% had no or very little information added beyond the specification given.
We saw a significant increase in number of syntactic features in the higher

categories compared to the lower. Also the length of the designs increased in

the higher categories, except for the highest, which slightly decreased, and the

more advanced designs more often than the others included “an overview, de-

tails on part responsibilities, and communication between the parts” (p. 199).

Other observations of interest are that there was a positive correlation between

number of computer science courses taken and the category of the design: the

more courses taken the higher category; academic performance measured by

44

grades on computer science courses seemed though to have little or no rela-

tionship to the design produced.
We found that semantic categorization is possible, but time-consuming and

some designs required extensive discussions between the researchers to be

categorized.

In particular our results from the research on practise as a learning goal
show that:

• Computer science students near graduation have great difficulties in mastering de-

sign tasks, even though design is one of the core skills the students are supposed

to learn during their education.

The present research points to the problematic role of practise in programming

students’ learning. Practise is not merely the means to reach the conceptual

learning goals. The role of practise in the learning process needs to be further

researched.

5.3 Ways of Thinking and Practising

The research presented in Paper VIII, From Limen to Lumen: Computing stu-
dents in liminal spaces, investigates the learning process related to threshold
concepts in computer science, which is the first research question in the third
theme in the thesis. Paper III identifies two such concepts, pointers and object-
oriented programming. In Paper VIII we take the analyses from Paper III one
step further. We use the theory of liminal space as it is discussed by Meyer
and Land (2005). The liminal space is described as “the transitional period
between beginning to learn a concept and fully mastering it” (Paper VIII,
p. 124). We applied the theory to our data as a framework to highlight cer-
tain features of the learning experience which, looking at the data as a whole,
are difficult to discern. We looked for the standard features of the liminal space
as described by Meyer and Land, but in addition we found some that may be
specific to computer science. The result of the analysis reveals a broad and
rich picture of the students’ learning experiences.

The picture thus unfolded shows a transformative process which often takes
long time, involves strong emotions and elements of mimicry, and contains
specific parts, or sorts of understandings, which can become stuck places for
students. The parts identified include an abstract, or theoretical, understand-
ing of the concept; a concrete understanding – the ability to implement the
concept (without necessarily having the abstract understanding); the ability
to go back and forth between the abstract and the concrete understandings;
an understanding of the rationale for learning and using the concept; and an
understanding of how to apply the concept to new problems. Students need
to attain all these understandings. This can explain why they obviously get
stuck at different places, and “why the path through this space is not a sim-
ple linear progression.” (p. 130) Students rather seem to “need to go back and
forth between the theoretical and the practical” (p. 130), and different students
take different “routes” depending on individual stuck places. We further point

45

to a result characteristic for computer science: “we commonly observed the

particular partial understanding of not being able to translate from an abstract

understanding to concrete implementation or design” (p. 130)

Beside this we discuss students’ expressions of how, and if, they know that
they know a concept. The students express the experience of mastering a con-
cepts sometimes as emotional, sometimes as being able to visualize their un-
derstanding, and sometimes as being able to master the handicraft of program-
ming. We further found evidence in the data that there were students who said
they knew a concept that they apparently did not fully know, and students who
doubted their own knowledge even though it seemed as if they knew.

The learning is experienced as a complex whole by the students, and thus
difficult to fully discern. We found that the liminal space, as an analytic tool,
provided a way to theoretically separate several important features of the pro-
cess, and thus untangle some of the complexity of the learning.

In particular our results give empirical evidence that:

• The practise as well as the concepts are problematic for the students to learn. Both

are important in the learning process and can become stuck places for the students.

If the students face a problem with one of them, it is expected to have negative

influence on the other.

In this way Paper VIII gives an empirical background for the analysis pre-
sented in Paper IX.

Paper IX, Ways of Thinking and Practising in Introductory Programming,
is the synthesis of my thesis work. The paper builds on results from the first
and the second investigations. Students’ conceptual and practical learning are
investigated, specifically how practise and concepts relate in student learning,
which is the second research question in the third theme of the thesis. I argue
from the empirical data that concepts and practise are equally important parts
of the learning goals, and equally difficult for students to learn. Furthermore,
there is a mutual dependency and complex relationship between the two. This
discussion points to the need to research this relation. In particular:

• The research identifies dimensions of variation related to qualitatively different

conceptual understandings. The research further identifies dimensions of variation

related to practise in terms of programming activities at different levels of profi-

ciency.

• Based on results from the analyses of the data and elements from phenomenogra-

phy and variation theory, an analytical model is proposed. The model shows that

activities as well as conceptual understandings relate to dimensions of variation.

Previous research has discussed dimensions of variation related to concepts

as well as to practise (Marton and Tsui, 2004; Fazey and Marton, 2002). The

present research takes this one step further. In particular:

• The most significant finding is that practise, in terms of programming activities,

and conceptual understandings have dimensions of variation in common. This was
possible to show since the research proposes a way to identify dimensions of vari-

ation related to practises.

46

• The dimensions of variation are thus like interfaces between conceptual under-

standings and activities. If a dimension of variation is discerned, this can open a

possibility for students to discern concepts and to learn activities in new ways.

This finding can to some extent explain the complex learning of computer pro-
gramming, where some students seem to first learn the concepts and then the
practise, while other students seem to learn in the opposite order. The model
can further to some extent explain why programming activities not always fa-
cilitate for students’ learning. If the activity is at a level of proficiency that
presupposes dimensions of variation not yet discerned by the student, the stu-
dent might have problems to learn through the activity. This can be phrased
using terminology from variation theory: if the patterns of variation involved
in the learning situation are too complex, students might not discern the di-
mensions of variation involved in the situation.
The result shows that the dimensions of variation can relate to several con-

cepts and activities. This carries implications for learning, in particular:

• If, for example, one way to understand a concept is discerned through a dimension

of variation, this learning experience can facilitate for discernment of other related

ways to understand concepts, and for the learning of related activities.

The results also indicate that activities as well as concepts can be related to

more than one dimension of variation. It is fundamental in variation theory
that concepts can relate to more than one dimension of variation (Marton and

Tsui, 2004). The result that activities can relate to more than one dimension

of variation indicates in particular that:

• Higher level of practical proficiency relate to more dimensions of variation in a

similar way as more advanced ways to understanding concepts relate to more di-

mensions of variation.

47

6. Discussion - from a teaching
perspective

As educators we know that many students, specially the novices, have great
difficulty learning to program. This section will discuss how results from anal-
yses inspired by phenomenography and variation theory can be implemented
in programming teaching to facilitate for students’ learning.

I will first discuss and develop the phenomenographic analysis presented in
Paper I, see Section 6.1. This discussion is inspired by the research presented
in Paper IV. In Section 6.2 I further discuss implications for teaching ema-
nating from the analysis on how students’ conceptual and practical learning
relate, which is presented in Paper IX.

6.1 Phenomenography in practise - an empirical
example

To exemplify how a phenomenographic outcome space can be used by educa-

tors, I will show an outcome space of novice students’ understandings of the

concepts object and class, and discuss a process that starts with a phenomeno-

graphic outcome space, identifies critical features of the phenomena (in this

example two object-oriented concepts), discusses corresponding dimensions

of variation, and arrives at implications for teaching in terms of concrete ad-

vice for educators. For a comprehensive description of the data and the analy-

sis that gave the outcome space, see Paper I and Eckerdal (2006).

The results presented in Paper I indicate that many students have a problem
fully grasping the investigated concepts object and class. The phenomeno-
graphic outcome spaces give however valuable information to educators on
the different ways in which our students can understand these concepts. In ad-
dition the outcome spaces provide information necessary for retrieving what
is educationally critical for a good understanding of the concepts. Education-
ally critical means that there are certain ways to understand a concept that are
critical in the sense that if the student has not discerned these ways of seeing
the concept, something important is missing, something that might be critical
for the students future studies, or critical for the development of the student’s
capabilities in the subject studied, here computer programming. Educationally
critical features of a concept can be identified by use of other techniques, see
for example Runesson (2006), but in the present thesis phenomenography has
been used.

49

6.1.1 The phenomenographic outcome space

The concepts object and class are closely related, and can hardly be under-
stood without each other. When describing the different understandings found
in the data, it is not surprising to find similar patterns for the understandings
of the two concepts. The initial two outcome spaces presented in Paper I have
thus been collapsed in one outcome space in Table 6.1 below.

Class is understood as an entity of the program, contributing to the struc-
ture of the code and describing the object, where the object is understood
as a piece of program text.

As above, and in addition class is understood as a description of properties
and behaviour of objects, where object is understood as something that is
active during execution of the program.

As above, and in addition class is understood as a description of properties
and behaviour of objects, where object is understood as a model of some
real world phenomenon.

Table 6.1: Summary of categories describing the different ways to understand the
concepts object and class found in a group of novice students. The latter categories
include the understandings in the former.

The analysis indicated inclusive categories, as expressed in Table 6.1. This
means that an understanding expressed in one of the latter categories includes
the understandings expressed in the former, and thus expresses a richer un-
derstanding of the concepts. It is hardly possible to understand that an object
is a model of something in reality without understanding that this implies a
description of its properties and behaviors, expressed in the code.
What can we as educators do to facilitate for the students to develop their

conceptual understanding? The following three sections, inspired by the re-

search presented in Paper IV, discuss how the empirical results presented in

Table 6.1 can be further analysed and give implications for teaching.

6.1.2 Discernment and variation - identification of critical
features

As discussed in Section 3.2, different categories in an outcome space rep-

resent combinations of features of the phenomenon, which are present in the

focal awareness at a particular point in time (Marton and Booth, 1997, p. 126).

50

Learning is understood as developing richer ways to see the phenomenon, as

represented in the more advanced categories of the phenomenographic out-

come space. A necessary, but not always sufficient condition for discerning

a specific feature of a phenomenon, is that the student gets the opportunity

to experience variation in a dimension corresponding to that feature. (Marton

et al., 2004, p. 31).
The first category in Table 6.1 reflects the students’ understanding of classes

as entities of the program, contributing to the structure of the code, and objects

as a piece of program text. The focus of this understanding of a class is the ap-

pearance of the structure of the program text. The focus of the understanding

of objects, is on the program text. The feature, critical in this category is thus

the textual representation of the concepts.

In the second category, in addition to the above understanding, classes are
understood as descriptions of properties and behaviour of objects, where ob-
jects are understood as something active in the program. The focus in this
category is on what happens during execution of the program, in particular on
the objects created and how they contribute to different events at run-time1.

The objects are the active parts of the program, accomplishing the task given.

The new feature added to this category is the active behavior when the pro-

gram is executed.
The last category includes, in addition to what is described above, that

classes are understood as descriptions of properties and behaviour of objects,

where objects are understood as models of some real world phenomenon. The

focus is still on the class’ description of the active objects, but now with an

emphasis on the reality aspect of the class description. The new feature ex-

pressed in this category is the modeling aspects of the concepts.

The students’ foci, and consequently the critical features of the concepts,
are hence identified. Variation in a dimension corresponding to a feature is, as
discussed above, a prerequisite for learning to take place. Having expressed
the identified critical features of the concepts, as captured by the categories
of description in Table 6.1, it is now possible to discuss what dimensions of
variation correspond to each feature.

6.1.3 Dimensions of variation - open a space for learning

When there is a variation in a dimension that corresponds to a critical feature,
this opens a possibility for students to discern the feature and thus learn the
concept in a new way. In the first category in Table 6.1 the critical feature is
the textual representation of the concepts. To be able to discern this feature,
students need to discern that in different programs objects and classes appear
in different ways. In that sense, the textual representation of programs consti-
tutes a relevant dimension related to this feature. Different, specific program

1For readers not familiar with programming: “run-time” means the period of time when a pro-

gram is running.

51

texts constitute values along this dimension and if students discern such vari-

ation, it opens the possibility of understanding object and class in this way.
The new feature expressed in the second category that the students need

to discern is the active behavior of the program during execution. Different

actions resulting from different program executions constitute values in the

corresponding dimension of variation.
In the last category in Table 6.1, the new feature added is the modeling

aspect of the concepts. In this case, different real-life phenomena modeled as

classes and corresponding objects, constitute values along this dimension.
The line of reasoning above is summarized in Table 6.2. It includes the stu-

dents’ different understanding of the concepts object and class, as expressed

in Table 6.1, see the left column in Table 6.2. The right column includes the

corresponding dimensions of variation.

Students’ understandings of the

concepts object and class

Corresponding dimensions of vari-

ation

Class is understood as an entity

of the program, contributing to the

structure of the code and describing

the object.

The textual representation of the

concepts.

As above, and in addition, class

is understood as a description of

properties and behaviour of ob-

jects, where object is understood as

something that is active in the pro-

gram.

As above, and in addition, the ac-

tion of the program.

As above, and in addition, class

is understood as a description of

properties and behaviour of the ob-

ject, where object is understood as

a model of some real world phe-

nomenon.

As above, and in addition, the mod-

eling aspects of the concepts.

Table 6.2: Categories describing the different understandings of the concepts object

and class, and the corresponding dimensions of variation related to the critical fea-
tures of the identified understandings.

6.1.4 Implications for education - patterns of variation

Table 6.2 carries implications for teaching. Teaching is here defined in a wide

sense, not restricted to lecturing, but may include for example programming

assignments given to students, software tools introduced to students, lectures,

Internet and fellow students, anything the students meet and choose to use in

their learning. The whole organisation of the learning environment is in this

sense teaching.

52

The educator can create learning conditions that enable students to discern

new features of the concepts. In this context it means creating possibilities

for experiencing variation in dimensions related to features. We know from

the analysis of our data that any variation is not sufficient. By varying some
things and keeping others invariant, we can create the conditions necessary
for learning. As educators we know this can be done in several different ways,
and yet it is a difficult task.
The claim that not any variation is sufficient for creating good learning con-

ditions is important in computer programming and counter-intuitive to howwe
often teach. For example Kölling and Rosenberg (2001) write that novice stu-
dents should read code, not only simple code but large programs including
many classes which can help them understand what object-oriented program-
ming is. The downside of this approach is that large programs often mean that
a number of different features of several concepts are present and vary simul-
taneously. The present research, together with a number of classroom studies
reported by Marton and Tsui (2004), indicate that if students are not intro-
duced to the critical features in adequate ways, they may not discern these
features, and simultaneous variation of several features may not always pro-
vide good learning conditions. This is evident in the following quotes from
one of the students in the first investigation, when he or she discusses the con-
trast between learning mathematics and learning computer programming:

Here [in the programming course] you feel as if you only learn a lot of exam-

ples. You know, we’ve gotten so many examples of everything, in some way it

feels as if you don’t understand the base from the beginning

All the examples have obviously not helped the student sufficiently since he

or she says about the programming course:

I think it has been difficult with concepts and stuff, as to understand how to

use different, how one should use different things in a program. And I actually

think that most of it has been difficult

Marton et al. (2004, p. 16–17) discuss so called patterns of variation which
are identified from empirical studies. The patterns are ways of systematically
combining variation and invariance in the teaching. Four different patterns are
identified that can be used by educators as a toolbox. The patterns are contrast,
generalization, separation, and fusion respectively. In short the patterns means

(quoting Paper IV):

contrast to contrast a phenomenon P to other related phenomena, to make it possi-

ble to discern P as a phenomenon distinct from other phenomena.

generalization to exhibit varying specific appearances of P, in order to open the

possibility to discern the general meaning of P.

separation there is variation in precisely one dimension, to create the possibility to

discern that particular dimension, keeping the other dimensions invariant.

53

fusion to exhibit variation in several dimensions simultaneously, to open the possi-

bility to discern the relations between these dimensions.

Patterns of variation: some examples
The content of Table 6.2 can be implemented in the teaching and learning

environment by use of patterns of variation in a number of ways. There is

great freedom and possibility to adapt the results to the need and desire of

each educator, study group and learning resources. The following paragraphs

discuss possible ways to achieve this, by showing a few examples.
For the first category, the students need to become aware that different pro-

grams represent classes and objects differently, at a textual level. This cor-

responds to the second part of the first category. In the first part of the first

category, the focus is on the structure of the program text. There are several

aspects of a program structure. A single class has a structure in terms of its

attributes and methods. Students also encounter problems including several

classes where each class is an entity of the program. Both these aspects of

the structure of the code need to be exposed in teaching. A way to achieve

this is to use the generalization pattern, in a variety of simple UML class di-
agrams2 (Rumbaugh et al., 1999). By exhibiting various specific appearances

of classes, the general meaning of class and object as text can be discerned.

To transfer the structure from the diagram to the code where the methods are

separated from the attributes is possible even if there is only one single class

and will show varying textual examples. This is often the case in the exam-

ples considered in the beginning of a programming course. The feature that

the class is a help when structuring the program is made even more apparent

when more than one class is used to solve a problem. Each class is represented

in a UML diagram and forms its own entity of the program.
For the second category, the new feature focuses on actions during program

execution. Different actions of the program taking place when the program

is executed make a dimension of variation related to this feature. I will first

discuss the separation pattern. The general idea of this pattern is that there is
variation in precisely one dimension, so there is a possibility for the student to
discern that particular dimension. This seems to be an appropriate pattern for
our purpose. It is however difficult to achieve variation in one dimension only
since a change in action requires a change in the program text. In Paper IV we
suggest the notion of pseudo separation. In this context this means that the tex-
tual differences between two programs is kept small, but still causes a change
in action when the program is executed. This will give the student the possibil-
ity of discerning the action dimension separately. Pseudo separation is a form
of fusion pattern since in fact there is a variation in both the action dimension
and the textual dimension, even though the latter is not prominent. When the
student has discerned the action dimension, the proper fusion pattern can be
used to show the relation between the program’s textual representation and its
actions. An example of a resource that can be used for the latter example is

2UML (Unified Modeling Language) is a visual language. It is a standard for modeling, devel-

oping and documenting object-oriented computer systems.

54

BlueJ (Barnes and Kölling, 2003), where a debugger can be used to execute

the program in steps so the variation of the code and variation in values of

variables can be observed simultaneously during program execution.

For the last category in Table 6.2 the feature added focuses on objects and
classes as models of the real world. To help students discern the dimension re-
lated to the modeling feature, the generalization pattern can be used. Modeling
appears in many areas in the students’ lives. Road signs model real world phe-
nomenon like road bumps and let us avoid long, written instructions. Mathe-
matical symbols model complex relations like sums and integrals and simplify
the treatment of computations. Modeling in computer programming helps us
to treat complex real-world problems. Once the student has discerned the mod-
eling dimension, the fusion pattern, where variations in several dimensions are

exhibited simultaneously, can be used to help the student discern the relation-

ship between the modeling dimension and the action and textual dimensions.

Results from the first investigation point to the importance of letting students

follow the whole process of a programming task, including the analysis of a

problem in real life, and not only focus on implementing code. This can be

implemented in teaching by using an assignment where several classes are

needed. The first part of the assignment would be to do an object oriented

analysis of a real world problem, deciding which classes are needed, which

methods each class should include, and which information the classes need

to exchange. If the students are in their first programming course, they may

in a next step need help to modify their models to find suitable classes with

attributes and methods before starting to code. After implementing and testing

the code, the students are supposed to discuss in groups their different solu-

tions, and how their final solutions differ from their first analysis. This might

help the students to discern the real world feature of objects and classes, and

also to discern the relationship between the real world problem, the model in

terms of class diagrams, and the implementation of the problem as code.
For further examples on how results from phenomenographic analyses can

be implemented in teaching, I refer to Paper IV where a phenomenographic
analysis of novice students’ understanding of what computer programming
means is described. Critical features and corresponding dimensions of vari-
ation are identified, followed by a discussion on how patterns of variation
can be used to open a space of learning for the students. In Paper V on the
other hand, we present a phenomenographic analysis of novice students’ un-
derstanding of what it means to learn computer programming. It has shown to
be important for students to have a good understanding of what learning the
subject means. The outcome space presented in Paper V can be used by edu-
cators in similar ways as the present discussion to facilitate for novice students
to get a good foundation for their learning.

6.1.5 The results related to previous research

My results can shed new light upon and give explanation to other research and
discussions in the field.

55

For example, Computing Curricula 2001 Section 7.2 (Roberts and Engel,
2001) writes:

Introductory programming courses often oversimplify the programming pro-

cess to make it accessible to beginning students, giving too little weight to

design, analysis, and testing relative to the conceptually simpler process of

coding. Thus, the superficial impression students take from their mastery of

programming skills masks fundamental shortcomings that will limit their abil-

ity to adapt to different kinds of problem-solving contexts in the future.

This is in line with the discussion above on the need for students to follow a
whole programming task, including the analysis to find suitable objects in a
real world problem, to get a good understanding of object-oriented program-
ming. Using terminology from variation theory, if the focus of introductory
programming is on coding only, the textual dimension of variation is high-
lighted at the expense of the action and modeling dimensions.

As a second example I will discuss some misconceptions pointed to in the
literature (Holland et al., 1997), namely an overemphasizing of the object’s
data feature at the expense of the behavioural feature and the “object as a kind
of variable” misconception. The latter may occur if the examples students first
come across have only one instance variable. Students with previous experi-
ence of procedural programming may develop the misconception that objects
are in some sense mere wrappers for variables.

Both misconceptions point to the importance of understanding the concepts
as they are described in the second categories in Table 6.2. The second cat-
egory emphasizes that classes describe the behaviour of objects. The second
category also explains classes as a description of properties of objects, and
most real-world objects have more than one property.

Holland et. al give some advice on how to help students avoid these mis-
conceptions. To increase the chances of avoiding the “object as a kind of
variable” misconception the authors suggest that all the classes showed as
an introduction should have more than one instance variable and that these
variables should be of different type. Another way to avoid over-emphasising
the object’s data feature, suggested by the authors, is using introductory object
examples where the response to a message is substantially altered depending
on the state of the object. Holland et al.’s suggestions are in line with variation
theory and the discussion in Section 6.1.4. Using variation theory terminol-
ogy, examples with at least two instance variables of different types is us-
ing the generalization pattern, and examples where the response to a message
substantially alters depending on the object is using the (pseudo) separation
pattern as discussed above.
A third example, also mentioned by Holland et al. and Sanders and Thomas

(2007), is the common problem among novice programmers of understand-

ing the difference between class and object. This might become a problem if

several examples are presented in which only a single instance of each class

is used. Holland et al. suggest that it would help to avoid this misconception

56

if several instances of each class are always presented. As explained in Sec-

tion 6.1.2, the textual representation of programs constitutes a dimension of

variation. This implies variation in the sense of presenting more than one in-

stance of the class in the code, as recommended by Holland et al., which is

according to the first category in Table 6.2.

In the light of the present study, the recommendations from Holland et al.
are explained by and theoretically rooted in variation theory. Variation theory
and patterns of variation are thus scientifically based and empirically tested
tools to be used by educators to develop their teaching.
As a fourth example, Holmboe (1999) performed a study where students

who had just finished an introductory course on object-oriented programming,

senior students, and educators, were asked to describe in their own words

what object-oriented programming is. He made a qualitative analysis of the

answers, and concludes that some types of knowledge are more suitable as

a basis for further knowledge construction than others. He writes about the

understanding that includes the world outside the computer itself: “A person

with holistic knowledge relates the implementation and design of a computer

program to the real world being simulated.” Holmboe emphasizes the impor-

tance that “[...] more students will experience the connection between reality,

model and implemented program, and thus reach holistic knowledge of object-

orientation sooner in their learning process.” The third category in Table 6.2

captures an understanding of classes and objects that includes the world out-

side the computer itself, the modeling of real-world phenomena, and Sec-

tion 6.1.4 discusses how educators can facilitate for students to discern this

understanding by use of patterns of variation.
One challenge for educators of object-oriented programming, is to construct

an educational environment which facilitates for students to reach a rich un-

derstanding of the concepts object and class. To this end it is important to

know the different ways in which students (as opposed to experts) typically

experience these concepts. My phenomenographic study has given such in-

sight. Next the educator needs to identify critical features and related dimen-

sions of variation of the concepts the students need to discern in order to reach

a rich understanding. Here, variation theory can be used, as demonstrated in

the previous discussion. Finally, the patterns of variation are like a tool box

for educators to open up dimensions of variation and thus give students op-

portunities to come to richer understandings of the concepts.

6.2 Dimensions of variation and student learning of
practise

Paper VIII discusses students’ learning of threshold concepts. The paper

points to the important but problematic role of practise in programming

students’ learning, and how concepts and practise interact in the learning

process.

57

Paper IX develops this line of research further. The paper gives examples of

typical novice student programming activities related to the skills of reading,

writing, and debugging code, see Table 6.3.

Read code: to discern main parts of short programs; to read code and recognize

key words; to read code and understand what will happen when the instructions

are executed; to read and relate code to the application and the problem domain.

Write code: to use an editor to emphasise the structured of a program by means

of indents, empty lines etc.; to write common programming building blocks in a

syntactically correct way; to design a short algorithm; to express a short algorithm

in pseudo code; to implement pseudo code in a programming language; to design a

solution to a whole problem and transfer the design to pseudo code, using common

programming building blocks; to implement the solution to a problem according

to basic software quality requirements.

Test and debug code: to use a compiler to find and correct minor syntax errors;

to use the computer to execute code to verify expected output; to use a compiler to

get executable code; to read and understand simple syntax errors, such as missing

semicolon; to correct simple syntax errors, for example missing semicolon; to

hand execute a program on paper before coding; to diagnose semantic errors in

the code; to test code in relation to the problem domain and usability.

Table 6.3: Common novice programming skills with associated activities.

The paper discusses how the activities correspond to different levels
of proficiency, and furthermore, how the activities relate to previously
identified dimensions of variation. These dimensions were identified from
the phenomenographic outcome space on novice students’ understandings
of the concepts object and class as discussed in Section 6.1.3. The
identified dimensions of variation are thus related to different conceptual
understandings as well as to activities at different levels of proficiency. In
this way, the dimensions of variation act as interfaces between qualitatively
different conceptual understandings and activities at different levels of
proficiency.
There are implications for teaching following from these results. First,

novices are often expected to perform many of the activities mentioned

in Table 6.3 at an early stage of their education. Some of them are

however related to dimensions of variation corresponding to a high level

of proficiency. These dimensions are at the same time related to advanced

ways of understanding concepts that we know very few of the students have

discerned yet. This means, using variation theory terminology, that the

students have not yet discerned the dimensions of variation related to the

58

activities, and we still expect them to manage them. This can to some extent

explain why novice students have such big problems learning, and why the

activities in the lab do not always lead to the expected learning outcome.

Another result from Paper IX is that to be able to discern a certain feature of
a concept, or to make an activity meaningful, certain dimensions of variation

in the learning space need to be open for the student. Or, to phrase the same

thing differently: the learning of concepts and activities presupposes that re-

lated dimensions of variation are discerned. At the same time, the richer ways

to see the concepts, and the activities at the higher level of proficiency, relate

to more dimensions of variation and require thus that more dimensions and
their relations be discerned.
Educators can use the results from Paper IX together with patterns of vari-

ation to facilitate students’ learning, the conceptual as well as the practical.

When dimensions of variation are identified, appropriate patterns of variation

can be introduced to the students to facilitate the learning of corresponding

concepts and practises.

59

7. Conclusions and future work

Computer programming is a core area in computer science education that in-
volves practical and well as conceptual learning goals. It is however widely
reported in the computer science education research literature that novice stu-
dents have great problems in learning to program. The problems reported ap-
ply to both concepts and practise.

The research presented in this thesis contributes to the body of knowledge
on students’ learning by investigating the relationship between conceptual
and practical learning in novice students’ learning to program. Previous re-
search in computer science education has focused either on students’ learning
practise or on concepts. The present research however indicates that students’
problems with learning to program partly depend on a complex relationship
and mutual dependence between the two.

The most common way to reach practical as well as conceptual learning
goals in programming education is to “learn through practising”. Students are
expected to “learn to do the practise” as well as to learn the concepts through
practising. If the students do not master the practise this might hinder further
learning, conceptual as well as practical. The present research indicates that
the students find practise at least as difficult to learn as concepts. The practise
in not merely the unproblematic means of reaching the learning goals.

The research builds on three empirical investigations. The data from the
investigations have been analysed from several perspectives. Students’ con-
ceptual and practical learning are first investigated separately by means of
content analysis, and phenomenography and variation theory.

The analyses of student learning of concepts show that many students have
problems to learn central concepts. The analyses show however how phe-
nomenographic results can be used to facilitate for students’ learning by use
of variation theory. The analysis of students’ ability to master the practise
shows that students hold a great variety of strategies that they can use when
they are stuck in their learning. On the other hand senior computer science
students perform poorly when asked to perform a design tasks. Design is a
core skill in computer science education. There are obviously problems in
students’ achievements of the practical learning goal.

In a subsequent analysis inspired by phenomenography and variation theory
I show that practise, in terms of programming activities at different levels
of proficiency, as well as conceptual understandings at qualitatively different
levels, are related to dimensions of variation.
Previous phenomenographic research points to how critical features of con-

cepts are related to dimensions of variation. Previous research also suggests

61

that practise can be related to dimensions of variation. The most significant

finding in the present thesis is that I have demonstrated that practise, in terms

of activities at different level of proficiency, and qualitatively different concep-

tual understandings, have dimensions of variation in common. This has been
possible since I propose a way to identify dimensions of variation related to
practises.
An analytical model is suggested where the dimensions of variation are like

interfaces, relating concepts and activities. The implications of the model are

several. If the dimensions of variation are at the center of the learning process

this implies that when students discern a dimension of variation, related con-

ceptual understandings and the meaning embedded in related practises can be
discerned.

The model further suggests that activities as well as concepts can relate
to more than one dimension. This implies that activities at a higher level
of proficiency, as well as qualitatively richer understandings of concepts,
relate to more dimensions of variation. The analysis on novice students’
conceptual understandings points to dimensions of variation that many of
the novice students not seem to have discerned. The analysis of students’
activities shows that some of the activities students’ often are expected to do
and learn early in their education, relate to these dimensions of variation
that the former study showed were problematic to discern. This can to some
extent explain why the exercises in the computer lab do not always lead to
improved learning. The results can furthermore be used by educators to help
students’ discern dimensions of variation and thus facilitate for the learning,
practical as well as conceptual. A concrete example is given on how varia-
tion theory and patterns of variation can be applied in programming education.

The results need further investigations. Phenomenography and variation the-

ory (Marton and Booth, 1997; Marton and Tsui, 2004) traditionally discuss

ways to identify critical features of phenomena like concepts, and ways to

open a space of learning for students by means of patterns of variation in the

teaching. The present work contributes to the body of knowledge of the stu-

dent learning by proposing a way to identify dimensions of variation related

to practise. Furthermore, the research proposes a model which demonstrates

how dimensions of variation are like interfaces between concepts and prac-

tise, and between several concepts and several practises. There is a need of

further empirical studies on how practise relates to dimensions of variation,

and on the relationship between conceptual and practical learning. The an-

alytical model can thus be used. This line of research might be possible by

performing Learning Studies (Lo et al., 2004) which focus on educationally

critical features of concepts and related practises.

62

Summary in Swedish

Nybörjarstudenters lärande av begrepp och praktik i
programmering

Programmering är ett kärnämne inom datavetenskapliga utbildningar på uni-
versitetsnivå. Undervisning i programmering har lärandemål som gäller prak-
tik lika väl som begrepp. Forskning i datavetenskapens didaktik visar emeller-
tid att nybörjarstudenter har stora svårigheter att lära sig programmering. De
rapporterade svårigheterna gäller såväl praktik som begreppsförståelse.

Forskningen i den här avhandlingen bidrar till befintlig forskning genom
att undersöka relationen mellan begreppsligt och praktiskt lärande med fokus
på nybörjarstudenters lärande av objekt-orienterad programmering. Tidigare
forskning inom datavetenskapens didaktik har antingen fokuserat på studen-
ters lärande av praktik, eller på lärandet av begrepp. Trots många försök att
utveckla undervisningen kvarstår problemen med nybörjarstudenters lärande.
Avhandlingen visar emellertid att studenters problem att lära sig programme-
ring delvis beror på ett komplext samspel mellan och ett ömsesidigt beroende
av praktik och begrepp i lärandeprocessen.

Det vanligaste sättet att nå de praktiska såväl som de begreppsliga läran-
demålen i programmeringsutbildningar är att “lära genom att göra praktik”,
det vill säga genom att skriva datorprogram. Studenternas lärande av de prak-
tiska såväl som de begreppsliga lärandemålen beror till stor del på om de
klarar av att “göra praktik”. Avhandlingen pekar på att studenterna erfar prak-
tiken åtminstone lika svår att lära som koncepten. Praktiken är inte bara ett
oproblematiskt medel att nå de konceptuella lärandemålen.

Forskningen bygger på tre empiriska studier. Den första studien under-
sökte nybörjarstudenters förståelse av några centrala begrepp inom objekt-
orienterad programmering. 14 civilingenjörsstudenter inom området miljö-
och vattenteknik intervjuades. Data från den första studien har främst anal-
yserats med en fenomenografisk och variationsteoretisk forskningsansats.

Den andra studien fokuserade på att identifiera centrala och för studenterna
problematiska begrepp, så kallade tröskelbegrepp. 16 sistaårsstudenter med
datavetenskaplig inriktning intervjuades. Data från den andra studien har anal-
yserats med en innehållsanalytisk forskningsansats.

Syftet med den tredje studien var att undersöka om studenter i slutet av
sin datavetenskapliga utbildning kan designa datorprogram. Data från under-
sökningarna, designer gjorda av studenterna under kontrollerade former, ana-
lyserades med en innehållsanalytisk forskningsansats.

63

Studenternas lärande av begrepp och praktik analyserades först var för sig.

Därefter undersöktes relationen mellan begreppsligt och praktiskt lärande.
Den fenomenografiska analysen av nybörjarstudenternas begrepps-

förståelse visar kvalitativt skilda sätt på vilka studenterna förstår, eller

uppfattar, några centrala begrepp i objekt-orienterad programmering.

Resultatet tyder på att många studenter har problem att lära sig de mer

avancerade sätten att förstå begreppen, som också är de önskvärda från ett

utbildningsperspektiv. Den variationsteoretiska analysen visar emellertid att

variationsmönster (eng. patterns of variation) kan användas av lärare på
resultat från den fenomenografiska analysen för att stödja studenter i deras
lärande.
Analysen av hur studenter klarar de praktiska lärandemålen visar att

studenterna besitter en stor variation av strategier som de kan använda

när de får problem i sina studier. Studien visar också att studenter i slutet

av sin datavetenskapliga utbildning presterade sämre än förväntat på

designuppgiften. Design är ett kärnområde i datavetenskaplig utbildning som

studenterna förväntas lära sig. Resultaten av analysen tyder på att det finns

problem med studenters förvärvande av de praktiska lärandemålen.
Analysen av relationen mellan begreppsligt och praktiskt lärande är inspi-

rerad av fenomenografi och variationsteori. Den visar att såväl praktiken, i

termer av programmeringsaktiviteter på olika färdighetsnivåer, som kvalita-

tivt skilda förståelser av begrepp, är relaterade till variationsdimensioner (eng.

dimensions of variation).
Tidigare fenomenografisk forskning pekar på hur kritiska aspekter

av begrepp är relaterade till variationsdimensioner. Tidigare forskning

föreslår också att praktik kan relateras till variationsdimensioner. Det mest

signifikanta resultatet i avhandlingen är att det visas att praktiken, i termer

av programmeringsaktiviteter på olika färdighetsnivåer, och kvalitativt

skilda begreppsliga förståelser, har gemensamma variationsdimensioner.
Avhandlingen beskriver ett sätt att relatera variationsdimensioner till
programmeringsaktiviteter, vilket har gjort det möjligt att komma
fram till resultatet att begrepp och aktiviteter kan ha gemensamma
variationsdimensioner.

En analytisk modell föreslås där variationsdimensioner fungerar som
gränssnitt mellan begrepp och aktiviteter. Modellen har flera implikationer.
Om variationsdimensioner är i centrum av lärandeprocessen, innebär det att
när studenter urskiljer en variationsdimension, kan relaterade begreppsliga
förståelser och meningen i relaterade aktiviteter urskiljas.

Modellen visar dessutom att såväl aktiviteter som begrepp kan relatera
till mer än en variationsdimension. En tolkning av det resultatet är att
aktiviteter på en högre färdighetsnivå, likaväl som kvalitativt rikare
begreppsliga förståelser, relaterar till fler variationsdimensioner. Analysen av
studenternas begreppsliga förståelser pekar på att många inte har uppfattat
alla variationsdimensioner. Analysen visar ytterligare att vissa aktiviteter som
studenterna förväntas kunna på ett tidigt stadium av sin utbildning, relaterar
till just de variationsdimensioner som den tidigare nämnda studien pekar

64

på som svåra att uppfatta. Det nämnda resultatet kan till viss utsträckning

förklara varför de praktiska övningarna i programmeringsundervisningen inte

alltid leder till ökat lärande, varken av begrepp eller praktik.

Det är viktigt för läraren att kunna identifiera variationsdimensioner så
att dessa kan lyftas fram i undervisningen. Avhandlingen ger konkreta
exempel på hur variationsteori och variationsmönster kan användas i
programmeringsundervisning. Utgående från ett fenomenografiskt utfallsrum
visas hur kritiska aspekter av de olika förståelserna beskrivna i utfallsrummet
kan identifieras. Varje kritisk aspekt relaterar till en variationsdimension.
Därefter diskuteras hur olika variationsmönster kan användas för att lyfta
fram variationsdimensioner i undervisningen, vilket kan hjälpa studenter att
urskilja de identifierade variationsdimensionerna. Läraren kan på så sätt ge
möjlighet till studenterna att lära sig relaterade begrepp och praktik på nya
sätt.

65

Acknowledgments

At the end of my PhD studies I look back on a joyful but also demanding

journey. Many people have helped and encouraged me during the journey.

There are friends and relatives, colleagues and students, who have been

supporters and contributed to the thesis, and I would like to thank them all. I

will mention some of them below.

First of all I would like to thank Michael Thuné who has been my super-
visor during the whole thesis work, and Anders Berglund who has been my
supervisor after my licentiate thesis, for your great support during the process
of creating this thesis. Your knowledge in the two areas my research spans,
your advice, patience, and encouragement to me to try my own ideas, and our
exciting discussions and collaboration on papers have been invaluable in my
thesis work. I would also like to thank Shirley Booth who introduced me to
the phenomenographic research approach during my licentiate work.
I would also like to thank my co-authors of papers in the thesis, the Sweden

Group, for the enjoyable and rewarding research we have performed together

(in alphabetic order): Jonas Boustedt, Robert McCartney, Jan Erik Moström,

Mark Ratcliffe, Kate Sanders, Lynda Thomas, and Carol Zander. I would es-

pecially like to thank Robert McCartney and Kate Sanders for their English

proof reading the thesis, and Jonas Boustedt and Carol Zander for enjoyable

travel to conferences and research meetings, and for long and rewarding dis-

cussions.

I also want to thank my research group at the Department of Information
Technology at Uppsala University for valuable seminars with discussions,
feedback, and encouragement, and all colleagues at the Department of
Scientific Computing for a warm and stimulating work environment.
Specifically I want to thank Liselott Dominicus for being a friend and
traveling companion on the journey to the PhD.

Finally I would like to thank my family, Per, Nils, and Olof, who have made
everything worthwhile. In this I also include my mother Anne-Mari Sundin
who has encouraged me to start by saying:

Bättre lyss till den sträng som brast än aldrig spänna sin båge.

and has continued to support my work throughout.

67

My thesis work has been financed by The Swedish Research Council, and

Faculty of Educational Sciences, Uppsala University.

68

Bibliography

ACM Curriculum Committee on Computer Science (1968). Curriculum ’68: Rec-

ommendations for the undergraduate program in computer science. Communications
of the ACM, 11(3):151–197.

Austing, R. H., Barnes, B. H., and Engel, G. L. (1977). A survey of the literature

in computer science education since curriculum ’68. Communications of the ACM,

20(1):13–21.

Barnes, D. and Kölling, M. (2003). Objects First with Java - A Practical Introduction
using BlueJ. Prentice Hall/Pearson Education.

Bayman, P. and Mayer, R. E. (1983). A diagnosis of beginning programmers’

misconceptions of basic programming statements. Communications of the ACM,

26(9):677–679.

Beck, K. and Andres, C. (2004). Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional.

Ben-Ari, M. (1998). Constructivism in computer science education. In SIGCSE ’98:
Proceedings of the twenty-ninth SIGCSE technical symposium on Computer science
education, pages 257–261, New York, NY, USA. ACM.

Berglund, A. (2005). Learning computer systems in a distributed project course. The
what, why, how and where. Number 62 in Uppsala Dissertations from the Faculty of

Science and Technology. Acta Universitatis Upsaliensis,

Uppsala, Sweden.

Berglund, A., Daniels, M., and Pears, A. (2006). Qualitative research projects in

computing education research: an overview. In ACE ’06: Proceedings of the 8th
Austalian conference on Computing education, pages 25–33. Australian Computer

Society.

Booth, S. A. (1992). Learning to Program. A phenomenographic perspective. Num-

ber 89 in Göteborg Studies in Educational Science. Acta Universitatis Gothoburgen-

sis, Göteborg, Sweden.

Boustedt, J. (2007). Students Working with a Large Software System: Experiences
and Understandings. Licentiate thesis, Uppsala University, Uppsala, Sweden.

Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Sanders,

K., and Zander, C. (2007). Threshold concepts in computer science: do they exist

and are they useful? SIGCSE Bulletin, 39(1):504–508.

69

Bruce, C., McMahon, C., Buckingham, L., Hynd, J., Roggenkamp, M., and Stoodly,

I. (2004). Ways of experiencing the act of learning to program: A phenomenographic

study of introductory programming students at university. Journal of Information
Technology Education, 3:143–160.

Clancy, M., Stasko, J., Guzdial, M., Fincher, S., and Dale, N. (2001). Models and

Areas for CS Education Research. Computer Science Education, 11(4):323–341.

Collier Reed, B., Ingerman, Å., and Berglund, A. (2008). Reflections on trustwor-

thiness in phenomenographic research:ărecognising purpose, context and change in

the process of research. Education as Change, (in press).

Daly, C. and Waldron, J. (2004). Assessing the assessment of programming abil-

ity. In Proceedings of the 35th SIGCSE technical symposium on Computer science
education, pages 210–213.

Davies, S. P. (1993). Models and theories of programming strategy. International
journal of Man-Machine Studies, 39(2):237–267.

Denzin, N. K. and Lincoln, Y. S. (1994). Introduction. Entering the Field of Qualita-

tive Research. In Denzin, N. K. and Lincoln, Y. S., editors, Handbook of Qualitative
Research, pages 1–17. SAGE Publications.

Denzin, N. K. and Lincoln, Y. S. (2005). Introduction: The discipline and practice

of qualitative research. In Denzin, N. K. and Lincoln, Y. S., editors, The SAGE
Handbook of Qualitative Research third edition, pages 1–32. SAGE Publications.

Eckerdal, A. (2006). Novice Students’ Learning of Object-Orientd Programming.
Licentiate thesis, Uppsala University, Uppsala, Sweden.

Eckerdal, A. (2009). Ways of Thinking and Practising in Introductory Program-

ming. Technical Report 2009-002, Department of Information Technology, Uppsala

University, Sweden.

Eckerdal, A. and Berglund, A. (2005). What Does It Take to Learn ’Programming

Thinking’? In Proceedings of the 1st International Computing Education Research
Workshop, ICER, pages 135–143, Seattle, Washington, USA.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Sanders, K., and Zander,

C. (2006a). Putting threshold concepts into context in computer science education.

SIGCSE Bulletin, 38(3):103–107.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., and Zander, C. (2006b).

Can graduating students design software systems? In SIGCSE ’06: Proceedings of
the 37th SIGCSE technical symposium on Computer science education, pages 403–
407.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliff, M., and Zander, C. (2006c).

Categorizing student software designs: Methods, results, and implications. Com-
puter Science Education, 16(3).

70

Eckerdal, A., McCartney, R., Moström, J. E., Sanders, K., Thomas, L., and Zan-

der, C. (2007). From Limen to Lumen: Computing students in liminal spaces. In

Proceedings of the 3rd International Workshop on Computing Education Research,
pages 123–132. ACM.

Eckerdal, A. and Thuné, M. (2005). Novice java programmers’ conceptions of "ob-

ject" and "class", and variation theory. SIGCSE Bulletin, 37(3):89–93.

Ellis, A., Carswell, L., A., B., Deveaux, D., Frison, P., Meisalo, V., Meyer, J., Nulden,

U., Rugelj, J., and Tarhio, J. (1998). Resources, tools, and techniques for prob-

lem based learning in computing. In ITiCSE-WGR ’98: Working Group reports of
the 3rd annual SIGCSE/SIGCUE ITiCSE conference on Integrating technology into
computer science education, pages 41–56.

Entwistle, N. (2003). Concepts and conceptual frameworks underpinning the ETL

project. Occasional Report 3 of the Enhancing Teaching-Learning Environments

in Undergraduate Courses Project, School of Education, University of Edinburgh,

March 2003.

Entwistle, N. (2007). Conceptions of learning and the experience of understanding:

Thresholds, contextual influences, and knowledge objects. In Vosniadou, S., Baltas,

A., and Vamvakoussi, X., editors, Re-framing the Conceptual Change Approach in
Learning and Instruction, pages 123–143. ELSEVIER.

Fazey, J. and Marton, F. (2002). Understanding the space of experiential variation.

Active Learning in Higher Education, 3(3):234–250.

Fincher, S. and Petre, M. (2004). Mapping the territory. In Fincher, S. and Petre,

M., editors, Computer Science Education Research, pages 1–8. Routledge.

Finlay, L. (2002). ”Outing” the Researcher: The Provenance, Process, and Practice

of Reflexivity. Qualitative Health Research, 12(4):531–545.

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L.,

and Zander, C. (2008). Debugging: finding, fixing and flailing, a multi-institutional

study of novice debuggers. Computer Science Education, 18(2):93–116.

Fleury, A. E. (1999). Student conceptions of object-oriented programming in Java.

The Journal of Computing in Small Colleges, 15(1):69–78.

Fleury, A. E. (2000). Programming in Java: Student-Constructed Rules. In Proceed-
ings of the 31st SIGCSE technical symposium on Computer science education, pages
197–201, Austin, Texas, United States.

Fleury, A. E. (2001). Encapsulation and Reuse as Viewed by Java Students. ACM
SIGCSE Bulletin, 33(1):189–193.

Fung, P., Brayshaw, M., and du Boulay, B. (1990). Towards a taxonomy of novices’

misconceptions about the prolog interpreter. Instructional Science, 19(4-5):311–
336.

Goldman, K. J. (2004). A concepts-first introduction to computer science. In Pro-
ceedings of the 35th SIGCSE technical symposium on Computer science education,
pages 432–436. ACM.

71

Goldweber, M., Clark, M., and Fincher, S. (2004). The relationship between CS

education research and the SIGCSE community. In Proceedings of the 35th SIGCSE
technical symposium on Computer science education, pages 147–148. ACM.

Graneheim, U. and Lundman, B. (2004). Qualitative content analysis in nursing

research: concepts, procedures and measures to achieve trustworthiness. Nurse Ed-
ucation Today, 24(2):105–112.

Gross, P. and Powers, K. (2005). Evaluating assessments of novice programming en-

vironments. In Proceedings of the 1st International Computing Education Research
Workshop, ICER, Seattle, Washington, USA, pages 99–110.

Gugerty, L. and Olson, G. (1986). Debugging by skilled and novice programmers.

In CHI ’86: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 171–174, New York, NY, USA. ACM.

Hazzan, O. (2003). How students attempt to reduce abstraction in the learning of

computer science. Computer Science Education, 13(2):95–122.

Hoepfl, M. C. (1997). Choosing Qualitative Research: A Primer for Technology

Education Researchers. Journal of Technology Education, 9(1):47–63.

Holland, S., Griffiths, R., and Woodman, M. (1997). Avoiding object misconcep-

tions. In SIGCSE ’97: Proceedings of the twenty-eighth SIGCSE technical sympo-
sium on Computer science education, pages 131–134.

Holmboe, C. A. (1999). A cognitive framework for knowledge in informatics:

The case of object-orientation. In Proceedings of the 4th annual SIGCSE/SIGCUE
ITiCSE conference on Innovation and technology in computer science education,
pages 17–20.

Hsieh, H.-F. and Shannon, S. E. (2005). Three approaches to qualitative content

analysis. Qualitative Health Research, 15(9):1277–1288.

Kahney, H. (1983). What do novice programmers know about recursion. In CHI ’83:
Proceedings of the SIGCHI conference on Human Factors in Computing Systems,
pages 235–239, New York, NY, USA. ACM.

Katira, N., Williams, L., Wiebe, E., Miller, C., Balik, S., and Gehringer, E. (2004).

On understanding compatibility of student pair programmers. In Proceedings of the
thirty-second SIGCSE technical symposium on Computer Science Education, pages
7–11.

Kirk, J. and Miller, M. L. (1986). Reliability and validity in qualitative research.
Sage Publications.

Kölling, M. (1999a). The problem of teaching object-oriented programming, part 1:

Languages. JOURNAL OF OBJECT-ORIENTED PROGRAMMING, 11(8):8–15.

Kölling, M. (1999b). The problem of teaching object-oriented programming, part 2:

Environmentss. JOURNAL OF OBJECT-ORIENTED PROGRAMMING, 11(9):6–

12.

72

Kölling, M. and Rosenberg, J. (2001). Guidelines for teaching object orientation

with java. In ITiCSE ’01: Proceedings of the 6th annual conference on Innovation
and technology in computer science education, pages 33–36, New York, NY, USA.

ACM.

Krippendorff, K. (2004). Content Analysis: An Introduction to Its Methodology.
Thousand Oaks, Calif.: Sage.

Lincoln, Y. S. and Guba, E. G. (1985). Naturalistic Inquiry. SAGE Publications.

Lister, R., Adams, E., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney,

R., Moström, J., Sanders, K., Seppälä, O., Simon, B., and Thomas, L. (2004). A

multi-national study of reading and tracing skills in novice programmers. ACM
SIGCSE Bulletin, 36(4):119–150.

Lo, M. L., Marton, F., Pang, M. F., and Pong, W. Y. (2004). Toward a pedagogy of

learning. In Marton, F. and Tsui, A., editors, Classroom Discourse and the Space of
Learning, pages 189–225. Lawrence Erlbaum Associates, Mahwah, NJ.

Lopez, M., Whalley, J., and Lister, R. (2008). Relationships between reading, trac-

ing and writing skills in introductory programming. In Proceedings of the forth
International Computing Education Research Workshop, pages 101–111.

Marton, F. and Booth, S. (1997). Learning and Awareness. Lawrence Erlbaum Ass.,

Mahwah, NJ.

Marton, F., Hounsell, D., and Entwistle, N. (1984). The Experience of Learning.
Scottish Academic Press.

Marton, F., Runesson, U., and Tsui, A. (2004). The space of learning. In Marton, F.

and Tsui, A., editors, Classroom Discourse and the Space of Learning, pages 3–40.
Lawrence Erlbaum Ass., Mahwah, NJ.

Marton, F. and Svensson, L. (1979). Conceptions of research in student learning.

Higher Education, pages 471–486.

Marton, F. and Tsui, A. (2004). Classroom Discourse and the Space of Learning.
Lawrence Erlbaum Ass., Mahwah, NJ.

Mayring, P. (2000). Qualitative content analysis. Forum: Qualitative Social Research

[On-line Journal], 2000, 1(2) Available at: http://www.qualitative-research.net/fqs-

texte/2-00/2-00mayring-e.htm.

McCartney, R., Eckerdal, A., Mostrom, J. E., Sanders, K., and Zander, C. (2007).

Successful students’ strategies for getting unstuck. SIGCSE Bulletin, 39(3):156–
160.

McCormick, R. (1997). Conceptual and procedural knowledge. International Jour-
nal of Technology and Design Education, 7(1–2):141–159.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.-D.,

Laxer, C., Thomas, L., Utting, I., and Wilusz, T. (2001). A multi-national, multi-

institutional study of assessment of programming skills of first-year cs students.

SIGCSE Bulletin, 33(4):125–180.

73

McCune, V. and Hounsell, D. (2005). The development of students’ ways of thinking

and practising in three final-year biology courses. Higher Education, 49:255–289.

Meyer, B. (1988). Object-oriented Software Construction. International series in

Computer Science. Prentice Hall.

Meyer, J. H. and Land, R. (2005). Threshold concepts and troublesome knowledge

(2): Epistemological considerations and a conceptual framework for teaching and

learning. Higher Education, 49(3):373–388.

Molander, B. (1996). Kunskap i handling. DAIDALOS.

Molander, B., Halldén, O., and Pedersen, S. (2001). Understanding a Phenomenon

in Two Domains as a Result of Contextualization. Scandinavian Journal of Educa-
tional Research, 45(2):115–123.

Mostyn, B. (1985). The Content Analysis of Qualitative Research Data: A Dynamic

Approach. In Brenner, M., Brown, J., and Canter, D., editors, THE RESEARCH IN-
TERVIEW Uses and Approaches, pages 115–145. ACADEMIC PRESS INC. (LON-

DON) LTD.

Newman, I., Daniels, M., and Faulkner, X. (2003). Open ended group projects, a

’tool’ for more effective teaching. In Proceedings of the fifth Australasian conference
on Computing education, pages 95–103.

Pears, A., Seidman, S., Eney, C., Kinnunen, P., and Malmi, L. (2005). Constructing a

core literature for computing education research. ACM SIGCSE Bulletin, 37(4):152–
161.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin,

M., and Paterson, J. (2007). A survey of literature on the teaching of introductory

programming. In ITiCSE-WGR ’07: Working group reports on ITiCSE on Innova-
tion and technology in computer science education, pages 204–223, New York, NY,

USA. ACM.

Posner, G., Strike, K., Hewson, P., and Gertzog, W. (1982). Accommodation of a

scientific conception: toward a theory of conceptual change. Science Education,
66(2):211–227.

Powers, K., Cooper, S., Goldman, K., Carlisle, M., McNally, M., and Proulx, V.

(2006). Tools for teaching introductory programming: What works? In Proceedings
of the 37th SIGCSE technical symposium on Computer science education, pages
560–561.

Powers, K., Ecott, S., and Hirshfield, L. M. (2007). Through the looking glass:

teaching CS0 with Alice. In SIGCSE ’07: Proceedings of the 38th SIGCSE technical
symposium on Computer science education, pages 213–217, New York, NY, USA.

ACM.

Ragonis, N. and Ben-Ari, M. (2005). A long-term investigation of the comprehen-

sion of OOP concepts. Computer Science Education, 15(3):203–221.

74

Randolph, J. (2007). Computer science education research at the
crossroads: A methodological review of the computer science educa-
tion research: 2000-2005. PhD dissertation: Utah State University

http://www.archive.org/details/randolph_dissertation Retrieved November 19,

2008.

Roberts, E. and Engel, G. (2001). Computing Curricula 2001: Final Report of the

Joint ACM/IEEE-CS Task Force on Computer Science Education. IEEE Computer

Society Press, December 2001, http://www.acm.org/sigcse/cc2001/.

Robins, A., Rountree, J., and Rountree, N. (2003). Learning and teaching program-

ming: A review and discussion. Computer Science Education, 13(2):137–172.

Rumbaugh, J., Jacobson, I., and Booch, G. (1999). The Unified Modeling Language
Reference Manual. Addison Wesley Longman, Reading, Massachusetts.

Runesson, U. (2006). What is it Possible to Learn? On Variation as a Necessary

Condition for Learning. Scandinavian Journal of Educational Research, 50(4):397–
410.

Sanders, K., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., , Thomas,

L., and Zander, C. (2008). Student understanding of object-oriented programming

as expressed in concept maps. In SIGCSE ’08: Proceedings of the 39th SIGCSE
technical symposium on Computer science education, pages 332–336.

Sanders, K., Fincher, S., Bouvier, D., Lewandowski, G., Morrison, B., Murphy, L.,

Petre, M., Richards, B., Tenenberg, J., Thomas, L., Anderson, R., Anderson, R.,

Fitzgerald, S., Gutschow, A., Haller, S., Lister, R., McCauley, R., McTaggart, J.,

Prasad, C., and Scott, T. (2005). A multi-institutional, multinational study of pro-

gramming concepts using card sort data. Expert Systems, 22(3):121–128.

Sanders, K. and Thomas, L. (2007). Checklists for grading object-oriented cs1 pro-

grams: concepts and misconceptions. In ITiCSE ’07: Proceedings of the 12th annual
SIGCSE conference on Innovation and technology in computer science education,
pages 166–170, New York, NY, USA. ACM.

Simon (2007). A Classification of Recent Australasian Computing Edcuation Pub-

lications. Computer Science Education, 17(3):155–169.

Spohrer, J. C. and Soloway, E. (1986). Alternatives to construct-based programming

misconceptions. SIGCHI Bulletin, 17(4):183–191.

Stamouli, I. and Huggard, M. (2006). Object Oriented Programming and Program

Correctness: The Students’ Perspective. In ICER ’06: Proceedings of the second
International Workshop on Computing Education Research, pages 109–118, Can-
terbury, United Kingdom.

Séré, M. (2002). Towards renewed research questions from the outcomes of the

european project Labwork in Science Education. Science Education, 86(5):624–
644.

75

Tenenberg, J., Fincher, S., Blaha, K., Bouvier, D., Chen, T., Chinn, D., Cooper, S.,

Eckerdal, A., Johnson, H., McCartney, R., Monge, A., Moström, J., Petre, M., Pow-

ers, K., Ratcliffe, M., Robins, A., Sanders, D., Shwartzman, L., Simon, B., Stoker,

C., Tew, A., and VanDeGrift, T. (2005). Students designing software: a multi-

national, multi-institutional study. Informatics in Education, 4(1):143–162.

Thuné, M. and Eckerdal, A. (2009). Variation Theory Applied to Students’ Con-

ceptions of Computer Programming. European Journal of Engineering Education,
Accepted for publication.

Trigwell, K., Prosser, M., and Taylor, P. (1994). Qualitative differences in ap-

proaches to teaching first year university science. Higher Education, 27(1):75–84.

Valentine, D. (2004). CS educational research: a meta-analysis of SIGCSE technical

symposium proceedings. SIGCSE Bulletin, 36(1):255–259.

VanDeGrift, T. (2004). Coupling pair programming and writing: Learning about

students’ perceptions and processes. In Proceedings of the 35th SIGCSE technical
symposium on Computer science education, pages 2–6.

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P., Ajith Kumar, P. K.,

and Prasad, C. (2006). An austalasian study of reading and comprehension skills in

novice programmers, using the bloom and solo taxonomies. In ACE ’06: PProceed-
ings of the 8th Australian conference on Computing education, pages 243–252.

Winslow, L. E. (1996). Programming pedagogy—a psychological overview.

SIGCSE Bulletin, 28(3):17–22.

Zou, L. and Godfrey, M. W. (2008). Understanding interaction differences between

newcomer and expert programmers. In RSSE ’08: Proceedings of the 2008 interna-
tional workshop on Recommendation systems for software engineering, pages 26–
29, New York, NY, USA. ACM.

76

Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 600

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through the
series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-9551

ACTA
UNIVERSITATIS
UPSALIENSIS
UPPSALA
2009

Paper I

Novice Java Programmers’ Conceptions of “Object” and
“Class”, and Variation Theory

Anna Eckerdal
Department of Information Technology

Uppsala University
P.O. Box 337, 751 05 Uppsala, Sweden

Anna.Eckerdal@it.uu.se

Michael Thuné
Department of Information Technology

Uppsala University
P.O. Box 337, 751 05 Uppsala, Sweden

Michael.Thune@it.uu.se

ABSTRACT
Problems with understanding concepts, so called miscon-
ceptions, have been investigated and reported in a number
of studies regarding object-oriented programming [4], [3].
In a first programming course using an object-oriented lan-
guage, it is of great importance that students get a good
understanding of central concepts like object and class at
an early stage of their education. We have, with a phe-
nomenographic research approach, performed a study with
first year university students, investigating what an under-
standing of the concepts object and class includes from a
student perspective. By applying variation theory [8] to our
results we are able to pin-point what the students need to
be able to discern in order to gain a “rich” understanding
of these concepts.

Categories and Subject Descriptors
K.3.2 [COMPUTERS AND EDUCATION]: Computer
and Information Science Education—Computer science edu-
cation; D.1.5 [PROGRAMMING TECHNIQUES]: Ob-
ject-oriented Programming—Java
; D.3.3 [PROGRAMMING LANGUAGES]: Language
Constructs and Features—Cla-sses and objects

General Terms
Human Factors, Theory

Keywords
Conceptions, misconceptions, phenomenography, variation
theory

1. INTRODUCTION
Java is an often used first programming language in intro-

ductory programming courses for university students. There

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’05, June 27–29, 2005, Monte de Caparica, Portugal.
Copyright 2005 ACM 1-59593-024-8/05/0006 ...$5.00.

are many reports on problems with teaching Java [6], point-
ing out difficulties to understand central concepts in the
object-oriented paradigm [3]. The study reported in this
paper has a focus on students’ different understandings of
some central concepts in object-oriented programming. We
identify different understandings of the concepts expressed
by the students in the group. These understandings are
critical from the students’ perspective [10]. They also cover
most of an expert understanding [9]. We claim that it is
possible to establish general guidelines on how to organize
the teaching and learning environment in such a way that
students can get a good understanding of the concepts in
question, and thus avoid misconceptions. We first give a
theoretical background for the study and the analysis per-
formed. The study and the results will then be presented,
and after that we discuss implications for teaching following
from the results from the study. The general implications
for teaching are well in line with the results from other stud-
ies, and give a theoretical basis for explaining these results
and how to generalize them.

2. PREVIOUS RESEARCH
There are many studies on misconceptions of object-ori-

ented concepts. The studies by Fleury [3] and Holland, Grif-
fiths, and Woodman [4] are good example of this line of re-
search. Fleury performed a study on student-constructed
rules in beginning programming courses, where Java was
taught, pointing out misconceptions among students. Hol-
land, Griffiths and Woodman reported on misconceptions
observed among students in a distance course where Small-
talk was taught. Our study differs from these, since it fo-
cuses on students’ conceptions rather than misconceptions.
We have found very few studies of this kind in the litera-
ture on how students learn to program. Fleury’s construc-
tivistically based study of students’ understandings of objet-
oriented programming [2], is an example. Another is Booth’s
phenomenographical investigation of how students’ experi-
ence functional programming [1]. Our study, as Fleury’s,
has its focus on object-oriented concepts. However, like
Booth, we use a phenomenographic approach (see below).
The rationale for considering conceptions instead of mis-
conceptions is the following. The conceptions found among
students typically correspond to different aspects of a cor-
rect understanding of the concepts of interest. Since these
are the conceptions actually formed by the students, they
reveal ways to understand the concepts, that are of decisive
importance from the students’ perspective. We argue that

89

focusing on these crucial aspects in the teaching can help
the students to gain a good understanding, and thus avoid
different kinds of misconceptions.

3. RESEARCH APPROACH

3.1 Phenomenography
Variation theory is a tool to support and give guidelines

in different educational settings. Variation theory has devel-
oped from Phenomenography [8]. Phenomenography aims
at describing the variation of understandings of a certain
phenomenon found in a group of people. Marton and Booth
discuss the idea of phenomenography:

The unit of phenomenographic research is a way of
experiencing something, [...], and the object of the
research is the variation in ways of experiencing phe-
nomena. At the root of phenomenography lies an
interest in describing the phenomena in the world as
other see them, and in revealing and describing the
variation therein, especially in an educational con-
text [...]. This implies an interest in the variation
and change in capabilities for experiencing the world,
or rather in capabilities for experiencing particular
phenomena in the world in certain ways. These ca-
pabilities can, as a rule, be hierarchically ordered.
Some capabilities can, from a point of view adopted
in each case, be seen as more advanced, more com-
plex, or more powerful than other capabilities. Dif-
ferences between them are educationally critical dif-
ferences, and changes between them we consider to
be the most important kind of learning. [8, p. 111]

And later:

[...] the variation in ways people experience phe-
nomena in their world is a prime interest for phe-
nomenographic studies, and phenomenographers aim
to describe that variation. They seek the totality of
ways in which people experience, or are capable of
experiencing, the object of interest and interpret it
in terms of distinctly different categories that cap-
ture the essence of the variation, a set of categories
of description [...] [8, p. 121-122]

The object of interest in a phenomenographic study is thus
how a certain phenomenon is experienced by a certain group
of people. A fundamental assumption in phenomenography
is that there exists only a limited number of qualitatively
different ways in which a certain phenomenon can be under-
stood.

Phenomenography is an empirical, qualitative research
approach. It is often used in educational settings. Data
can, like in the present study, be gathered in the form of
interviews. The interviews are transcribed and analysed.
Researchers, often more than one, analyse the data in or-
der to find qualitatively different ways to understand the
phenomenon expressed in the data. The researcher formu-
lates the essence of the understandings found with his or
her own words as categories of description. It is important
to state that the analysis is on a group level, not aiming at
presenting individual students’ understandings, but the dif-
ferent understandings found in the group. This is done by
reading and rereading the interviews, in context, but also by
decontextualising excerpts and comparing them and group-
ing them together in different categories of understandings.
The resulting description of qualitatively different categories
of understanding constitutes the outcome space of the phe-
nomenographic analysis.

3.2 Variation Theory
According to the phenomenographic tradition, the learn-

ing process is a question of discerning new aspects of phe-
nomena. A specific aspect cannot however be discerned
without experiencing variation in a “dimension” correspond-
ing to that aspect. These dimensions are characteristic for
the specific aspects, and the variations make central features
of these aspects visible [10, p. 146].

With the phenomenographic outcome space as the start-
ing point, the results can be applied in education, by using
variation theory. When the empirical data is studied it is
possible to discern the focus of each understanding expressed
in the categories of description. In the phenomenographic
analysis we identify aspects of the understanding of the phe-
nomenon, critical for the understanding from the students’
perspective. Learning requires discernment of new aspects of
the phenomenon, and the teacher can create the conditions
for such discernment with the judicious use of variation. By
varying examples and problems and holding the critical as-
pect of the phenomenon invariant, that critical aspect is
lifted out of the surrounding ”noise”. We speak of opening
a dimension of variation, in which taken-for-granted ways
of understanding are now brought into focus. Identifying
these dimensions of variation corresponding to the critical
aspects, gives a basis for finding implications for teaching.

4. THE STUDY

4.1 The Interviews
A study has been performed where 14 first year university

students were interviewed on their understandings of the
concepts object and class. The students had just finished
their first programming course, a compulsory course giving
4 credit points. (At Swedish universities one credit point
represents one week’s full-time study.) The programming
language used in the course was Java.

The interviews were semi-structured [7] with the aim to
encourage the students to demonstrate as much as possible
of their understandings and experiences within the theme of
the interview. The interviewer had prepared a small num-
ber of questions, intended to approach the phenomena of
object and class in different ways, to give the opportunity
for the students to express as much of their understanding
as possible.

Let us emphasize once again that our study is qualitative.
Thus we are not aiming for statistically significant results.
The objective in selecting persons to interview was to get
as broad a coverage as possible of different conceptions. For
that reason, most students taking part in the course filled
in a questionnaire about previous programming knowledge,
education, work experiences and gender. On the basis of
these answers, we selected interviewees that represented as
broad a coverage as possible of the factors mentioned.

4.2 The Phenomenographic Analysis
The interviews were transcribed and analysed. Two re-

searchers independently read and analysed the interviews,
looking for qualitatively different ways to understand the
concepts object and class expressed in the data. Our results
were very similar. We agreed upon three different ways to
understand the concepts found in the data.

The different understandings of the concepts object and
class found in the data are presented in Table 1 and Table 2

90

respectively. The understandings are inclusive. This means
that an understanding expressed in one of the latter cate-
gories includes the understandings expressed in the former
categories. Below, the categories in Table 1 and Table 2 are
illustrated by excerpts from interviews. In the quotes, the
interviewer is labeled I, and the students A, B, C etc.

4.2.1 The Concept of “object”
The different comprehensions of the concept object found

in this study, can be formulated in three categories of de-
scription presented in Table 1.

Object is experienced as a piece of code.
As above, and in addition object is experienced
as something that is active in the program.
As above, and in addition object is experienced as
a model of some real world phenomenon.

Table 1: Categories describing the different ways
to understand the phenomenon object found in the
group.

In the first category, the understanding of the concept is
limited to focus on the code as text. Student C says about
objects:

I imagine that it is a piece of code with all the vari-
ables piled under

When the interviewer asks the student how he/she would
explain to a friend, who does not know anything about pro-
gramming, what an object is, student N answers:

I’d just say that it is a part of the program.

In the second category the comprehension is extended to
include the results of the program execution, and the task
of the object. It can be illustrated by the following answers.

Student H says:

the object is a kind of, what is doing something [..]
because it is all about that something is going to
happen.

Student J says:

If you think of the Java program, that it is built of
different objects and it is the objects we modify so
that we can get what we want from it.

The third category describes an understanding that an
object is a model of some real world phenomenon. This is
expressed in the following quotes:

C: Yes an object, you can have a rather physical im-
age of it....
I: What did you say, physical?
C: Kind of, you can think of a car and then it has
one variable for how many wheels it has, one variable
for the size of the engine like that.

The three categories express an increasing complexity.
The first category shows an understanding that all students
express in one way or the other, objects as they appear in
the code. A few students express only this understanding.
This category expresses a poor understanding, while the last
one shows a rich understanding including fundamental ideas
behind the object-oriented paradigm.

4.2.2 The Concept of “class”
When looking for the different understandings of the con-

cept class expressed in the study, a pattern similar to the
understandings of the concept object is found. There are
comprehensions focusing on the code and the task of the
programmer, but there are also comprehensions where the
reality the program is supposed to model is present. The
categories of description are presented in Table 2 and illus-
trated by quotes below.

Class is experienced as an entity in the program,
contributing to the structure of the code.
As above, and in addition class is experienced as a
description of properties and behaviour of the object.
As above, and in addition class is experienced as a
description of properties and behaviour of the object,
as a model of some real world phenomenon.

Table 2: Categories describing the different ways
to understand the phenomenon class found in the
group.

Many of the students express an understanding belonging
to the first category. Student H says:

A class is, well I figure a class is like a small program,
that’s how I think of it, a small program inside the
whole big program, if you say that the big program
is the main program, then the class is like a small
program doing certain things.

The understanding has its focus on the program structure
and the programmers task and describes the class-concept
as a help for the programmer when structuring the code.
It deals with the code and the programming task, and the
description of the class reminds of a description of modules,
even if no student explicitly uses this formulation. Some
students emphasize this module aspect:

C: Then the class should be something reasonable,
containing what you detach [...] But the class I sup-
pose, is only a diffuse collection of, what I belive be-
long together in some way.

The second category is the most common understanding
expressed in the group. Even if none of the students explic-
itly uses the expression “abstract data type”, the descrip-
tions point in this direction.

Student O says:

Eh, when you write a class [...], you write what you
want the objects to look like, and that’s how I under-
stand a class, that you are able to create an object
and something about what you want to do with this
object in the different methods [...]

In the third category in Table 2, the close relationship
between the class definition and the reality the class depicts
is pronounced. This category includes the understanding
expressed in category two. Only a few students express this
kind of understanding.

I: I mentioned class. How do you understand classes?
C: It’s a bit more diffuse actually. Class, it is I can
imagine that a class contains, can contain a number
of objects or only one object and different operations
you can do in an object or between objects. So you

91

can also imagine what it would represent in the real-
ity.
I: Okay.
C: Yes well, you can think of a workplace and a person
working there, then you have two objects and then
they can kind of interplay with each other through
different operations sort of, what do I know. The per-
son gets coffee and then the coffee variable decreases
in the workplace like that.

4.3 Dimensions of Variation
The phenomenographic analysis of the data has revealed

understandings found among the students. These are critical
understandings from a student’s perspective. Each aspect of
the concept, expressed as categories of description in Table 1
and Table 2, require focal awareness of a specific dimension
of relevance for the understanding.

There is a close relationship between the concepts object
and class, and Table 1 and Table 2 show similar patterns for
the understandings of the concepts. In the empirical data
collected for the present study, most students express un-
derstandings of the concepts in corresponding categories. If
a student for example expresses an understanding of object
corresponding to the second category in Table 1, he or she
also expresses an understanding of class corresponding to
the second category in Table 2. There are few, if any ex-
amples where students show an advanced understanding of
one concept, and a poor understanding of the other concept.
The understandings found in the three categories in the two
tables, will now be grouped together and discussed in terms
of focal awareness found in the empirical data. The focal
awareness of the understandings are then analysed in order
to find dimensions of variations necessary for discernment of
these aspects of the concepts. In this way we have identified
the variation necessary for learning to take place.

In the first categories in Table 1 and Table 2 the stu-
dents have experienced class as ’an entity of the program,
contributing to the structure of the code’, and object as ’a
piece of code’. The focal awareness of this understanding
of a class is the appearance of the structure of the program
text. The focal awareness of the understanding of objects
is on the program text. To be able to focus on this aspect,
students need to discern that in different programs objects
and classes appear in different ways. In that sense, the tex-
tual representation of programs constitutes a dimension of
relevance for the understanding of object and class. Dif-
ferent, specific program texts constitute values along this
dimension.

In the second category, class is experienced as ’a descrip-
tion of properties and behaviour of the object’, where object
is understood as ’something that is active in the program’.
The focal awareness in these categories is on what happens
during execution of the program, in particular on the ob-
jects created and how they contribute to different events at
run-time. The objects are the active parts of the program,
accomplishing the task given. To be able to discern the
understanding expressed in the second categories, the stu-
dents need to focus on the objects the program creates and
events happening at execution of the program. Here, the
relation between class description, object action, and result-
ing events during the execution of the program constitutes a
dimension. Different specific cases of such relations provide
values along this dimension. The variation between these
values can enhance an awareness of object and class corre-

sponding to the second category of understanding, according
to Table 1 and Table 2.

In the last categories in Table 1 and Table 2, class is ex-
perienced as ’a description of properties and behaviour of
the object’, where object is understood as ’a model of some
real world phenomenon’. The focal awareness is still on the
class’ description of the active objects, but now with an em-
phasis on the reality aspect of the class description. In this
case, the relation between class, object and real-life phenom-
ena constitute a dimension. Different specific cases of such
relations constitute values along this dimension.

5. IMPLICATIONS FOR EDUCATION
Our results can shed new light upon and give explanation

to other research and discussions in the field. The following
paragraphs show some examples of this. Holland, Griffiths
and Woodman list some misconceptions noticed at distance
courses where Smalltalk was taught, in one introductory un-
dergraduate course, and one postgraduate course [4]. One
misconception mentioned is ”object as a kind of variable”.
Students with previous experience of procedural program-
ming may, if the examples they first come across have only
one instance variable, develop the misconception that ob-
jects are in some sense mere wrappers for variables. It is
trivially easy to avoid this misconception by ensuring that
all the classes showed as an introduction, have more than
one instance variable. Another misconception that can ap-
pear is if the data aspect of objects is overemphasized at the
expense of the behavioural aspect. This misconception can
be avoided by using introductory object examples where the
response to a message is substantially altered depending on
the state of the object. Both the misconception ”object as
a kind of variable” and the overemphasizing of the object’s
data aspect is an indication of the importance to attain a
conception according to the second categories in Table 1 and
Table 2. The second category in Table 1 emphasizes that
objects are active during execution of the program. This
points to the behavioral aspect of objects. The second cate-
gory in Table 2 explains classes as a description of both data
about the object, and methods explaining the behaviour of
the object. As explained in section 4.3, the relation between
class description, object action, and resulting events during
program execution constitutes a dimension where variation
is needed. This implies, e.g., variation in values of several
instance variables, caused by several method calls. This is
according to the recommendations from Holland et al.

A common problem among novice programmers, also men-
tioned by Holland et al, is to understand the difference be-
tween class and object. This is obviously a problem if sev-
eral examples are presented in which only a single instance
of each class is used. To avoid this, good practice is always
to work with several instances of each class. As explained
in section 4.3, the textual representation of programs con-
stitutes a dimension of variation. This implies variation in
the sense of presenting more than one instance of the class
in the code, as recommended by Holland et al.

In the light of the present study, the recommendations
from Holland et al can be summarized as: variation in di-
mensions corresponding to critical aspects of the understand-
ing is of great importance. These dimensions of variation are
not only pinpointed here, but also explained in the theory
of phenomenography and in the analysis of the data by ap-
plying variation theory on the results of the study.

92

Holmboe [5] performed a study where a few people of dif-
ferent background were asked to describe in their own words
what object-oriented programming is. He asked students
who had just finished an introductory course on object-
oriented programming, senior students tutoring the same
course and professors of Computer Science or System Engi-
neering. He made a qualitative analysis of the answers, and
comments that some types of knowledge are more suitable
as a basis for further knowledge construction than others.
When analysing the results from the study he writes about
understandings which include the world outside the com-
puter itself: “A person with holistic knowledge relates the
implementation and design of a computer program to the
real world being simulated.” Holmboe emphasizes the im-
portance that “[...] more students will experience the con-
nection between reality, model and implemented program,
and thus reach holistic knowledge of object-orientation sooner
in their learning process.” The third categories in Table 1
and Table 2 capture an understanding of classes and objects
that includes the world outside the computer itself. The di-
mensions of variation found and discussed in section 4.3 are
valuable as a basis for teachers to facilitate for the students
to reach this understanding.

In Fleury’s study on students’ constructed rules [3], she
stresses, with a reference to Holland, Griffiths and Woodman
[4], the importance of carefully constructed sample programs
to avoid misconceptions of concepts. Our study stresses the
importance of designing the education so that the students
can discern the critical aspects of the understanding. Care-
fully constructed sample programs in this sense means vari-
ation of dimensions corresponding to these critical aspects.
This is applicable not only on sample programs, but in all
different aspects of the learning environment.

6. CONCLUSIONS
For the Java educator, one challenge is to construct an ed-

ucational environment which facilitates for students to reach
a rich understanding of the concepts object and class. To
this end it is important to know the different ways in which
students (as opposed to experts) typically experience these
concepts. Our phenomenographic study has given such in-
sight. Next, the educator needs to identify what variation
the students have to discern in order to become aware of
aspects belonging to a rich understanding of these concepts.
Here, variation theory can be a useful tool, as demonstrated
in the previous discussion.

By using dimensions of variation, discussed in the previ-
ous section, implications for teaching are found. Teaching
is here defined in a wide sense. By teaching we mean ev-
erything that supplies resources for learning. Examples of
such resources could be programming assignments, software
tools, lectures, Internet and fellow students, anything the

students choose to use in their learning. The whole organi-
sation of the learning environment is in this sense teaching.

A general implication for teaching is to make resources
in the learning environment available that help students to
discern the aspects mentioned Table 1 and Table 2 and de-
veloped in the previous section. These are resources that
point out the corresponding dimensions of variation of the
aspects.

The results in Table 1 and Table 2 can be implemented
in the teaching and learning environment offered to the stu-
dents, in a number of ways. There is a great freedom and
possibility to adapt the results to the preferences of each
teacher and student group.

7. REFERENCES
[1] S. A. Booth. Learning to Program. A

phenomenographic perspective. Number 89 in Göteborg
Studies in Educational Science. Acta Universitatis
Gothoburgensis, Göteborg, Sweden, 1992.

[2] A. E. Fleury. Student conceptions of object-oriented
programming in java. The Journal of Computing in
Small Colleges, 15(1), November 1999.

[3] A. E. Fleury. Programming in java:
Student-constructed rules. In Proceedings of the
thirty-first SIGCSE technical symposium on Computer
science education, 2000.

[4] S. Holland, R. Griffiths, and M. Woodman. Avoiding
object misconceptions. In ACM SIGCSE Bulletin ,
Proceedings of the twenty-eighth SIGCSE technical
symposium on Computer science education, Volume 29
Issue 1, 1997.

[5] C. A. Holmboe. Cognitive framework for knowledge in
informatics: The case of object-orientation. In
Proceedings of the 4th annual SIGCSE/SIGCUE
ITiCSE conference on Innovation and technology in
computer science education, 1999.

[6] M. Kölling. The problem of teaching object-oriented
programming, part i: Languages. JOURNAL OF
OBJECT-ORIENTED PROGRAMMING, January
1999.

[7] S. Kvale. InterViews: An introduction to qualitative
research interviewing. Sage, 1996.

[8] F. Marton and S. Booth. Learning and Awareness.
Lawrence Erlbaum Ass., Mahwah, NJ, 1997.

[9] B. Meyer. Object-oriented Software Construction.
International series in Computer Science. Prentice
Hall, 1988.

[10] M. F. Pang. Two faces of variation: on continuity in
the phenomenographic movement [1]. Scandinavian
Journal of Educational Research, 47(2), 2003.

93

Paper II

Putting Threshold Concepts into Context
in Computer Science Education

Anna Eckerdal
Department of Information

Technology
Uppsala University
Uppsala, Sweden

Anna.Eckerdal@it.uu.se

Robert McCartney
Department of Computer
Science and Engineering
University of Connecticut
Storrs, CT 06269 USA

robert@cse.uconn.edu

Jan Erik Moström
Department of Computing

Science
Umeå University

901 87 Umeå, Sweden

jem@cs.umu.se

Mark Ratcliffe
Department of Computer

Science
University of Wales
Aberystwyth, Wales

mbr@aber.ac.uk

Kate Sanders
Department of Math and

Computer Science
Rhode Island College
Providence, RI USA

KSanders@ric.edu

Carol Zander
Computing & Software

Systems
Univ. of Washington, Bothell

Bothell, WA, USA

zander@u.washington.edu

ABSTRACT
This paper describes Threshold Concepts, a theory of

learning that distinguishes core concepts whose character-
istics can make them troublesome in learning. With an eye
to applying this theory in computer science, we consider this
notion in the context of related topics in computer science
education.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer Science Education

General Terms
Theory

Keywords
Threshold Concepts, Education research, Constructivism

1. INTRODUCTION
As educators, we are aware of topics that are difficult for

our students to learn, yet necessary for their development
as computer scientists. Meyer and Land [25, 26] have pro-
posed using what they call “Threshold Concepts” as a way
of characterizing particular concepts that might be used to
organize and focus the educational process. These are con-
cepts whose achievement is necessary to making progress in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’06, June 26–28, 2006, Bologna, Italy.
Copyright 2006 ACM 1-59593-055-8/06/0006 ...$5.00.

the discipline, that transform the way a student looks at a
discipline, but are also places in the curriculum where stu-
dents get stuck, unable to make progress until they become
unstuck.

In this paper, we look at the defining characteristics of
Threshold Concepts in general, then place them in the con-
text of related work in the computing discipline.

1.1 Characteristics of Threshold Concepts
Threshold Concepts are a subset of the core concepts in a

discipline. Core concepts are building blocks that must be
understood; Threshold Concepts, in addition, are [25]:

1. transformative: they change the way a student looks
at things in the discipline.

2. integrative: they tie together concepts in ways that
were previously unknown to the student.

3. irreversible: they are difficult for the student to un-
learn.

4. potentially troublesome for students: they are concep-
tually difficult, alien, and/or counter-intuitive.

5. often boundary markers: they indicate the limits of a
conceptual area or the discipline itself. Students who
have mastered these Threshold Concepts have, at least
in part, crossed over from being outsiders to belonging
to the field they are studying.1

These criteria are all closely related: if something truly
transforms the way you look at your discipline you are un-
likely to forget it; if something integrates concepts in pre-
viously unknown ways it transforms the way you see those
1In listing the criteria for Threshold Concepts, some have
used the term “bounded” for the concepts themselves.It
seems clear, however, that what is meant is that the dis-
cipline, or part of it, is bounded by the Threshold Con-
cept, and the concepts are boundary markers. For example,
Davies states, “[A] threshold concept is bounded. That is,
it helps to define the boundaries of a subject area.” [8, p. 5].

103

topics; and the process of understanding something that is
alien or counter-intuitive may well require a mental trans-
formation.

These concepts, then, are thresholds that our students
must cross, but where many of them get stuck. They are
both conceptually difficult and lead to a broader (and nec-
essary) understanding of the discipline. If we can identify
these concepts, they can provide focus points within the cur-
riculum: places where we might place extra effort to help
students avoid getting stuck, and thus continue to make
progress.

Particular Threshold Concepts have been suggested in a
number of disciplines: limit in Mathematics, opportunity
cost in Economics, irony in Literary criticism, depreciation
in Accounting, e.g. Identifying such concepts in different
disciplines may indicate whether this is a generally useful
approach or one that applies only to fields with certain
characteristics. We are interested, naturally, in computer
science.

While the notion of Threshold Concepts is new to com-
puter science[23], it relates to a number of other CS educa-
tion research areas. In this paper, we consider some related
areas of research, and show how these relate to (and dif-
fer from) Threshold Concepts. In particular, we discuss the
following:

• constructivism, particularly in CS education;

• mental models;

• student misconceptions;

• breadth-first approaches to introductory computer sci-
ence, an approach built around important computing
concepts;

• Fundamental Ideas, an alternative organizational frame-
work based on concepts that develop and persist through
the curriculum; and

• two specific concepts, abstraction and object-orientation;
specifically why they are good candidates for computer
science Threshold Concepts.

2. CONSTRUCTIVISM
Constructivists interpret student learning as the develop-

ment of personalised knowledge frameworks that are con-
tinually refined. According to this theory, to learn, a stu-
dent must actively construct knowledge, rather than simply
absorbing it from textbooks and lectures [9]. Students de-
velop their own self-constructed rules, or “alternative frame-
works”[1]. These alternative frameworks “naturally occur
as part of the transfer and linking process”[7]. They rep-
resent the prior knowledge essential to the construction of
new knowledge[32]. When learning, the student modifies or
expands his or her framework in order to incorporate new
knowledge.

Constructivism is a theory of learning; Threshold Con-
cepts are points where students have difficulty learning. In
constructivist terms, Threshold Concepts are distinctive parts
of a student’s knowledge framework, parts that make a com-
puter scientist’s knowledge framework different from that
of someone who has not studied computer science. They
connect other parts of the framework together, and they

are parts of the framework that are particularly trouble-
some, or difficult to build. The difference between students’
and instructors’ knowledge frameworks, like Threshold Con-
cepts, help to explain the “knowledge barrier” that exists
between students and instructors. Threshold Concepts are
core learning outcomes about which there is some general
agreement in the discipline, so they may be more objec-
tive than knowledge frameworks; on the other hand, it may
well be that some students experience a given concept as a
threshold, and others do not.

Threshold Concepts, as developed by Meyer and Land,
are closely tied to the constructivist tradition. Indeed, their
use of “troublesome” follows from Perkins [28] discussing
challenges that constructivists must face.

3. MENTAL MODELS
A theory of how our brains work when we reason about

the world, well known in cognitive psychology, is that we
form mental models [19]. Briefly, a mental model is one per-
son’s internal model of a system’s properties and behavior.
The use of a mental model makes it possible to predict the
system’s response to various actions and thus makes it pos-
sible for an individual to select the best possible action [20].

The consequence of this is that a “faulty” mental model
can lead to “faulty” actions. A classic example: to increase
the temperature in a room as fast as possible a common
action is to turn the room thermostat up as much as possible,
based on the expectation that a thermostat works the same
way as a water tap. However, since a thermostat works like a
switch, the temperature increases at the same rate as long as
the setting is above the temperature of the room. Similarly,
a faulty model of how various programming constructs work
will cause problems when developing software.

Ben-Ari [1] argues that the lack of mental models plays an
important part in why students find it difficult to learn how
to program. His argument is that, having no previous mod-
els to build on, programmers are forced to construct their
own mental models from scratch. Wiedenbeck [34] investi-
gated how novice programmers’ mental models of their pro-
grams depend on whether a procedural or an object-oriented
language was used. Similarly, Yehezkel et al [35] describe
the importance of forming a mental model of a system in
order to understand it. Wiedenbeck et al [33] claim that
the ability to form mental models is a predictor for course
outcome.

In these terms, Threshold Concepts are points at which
students may have trouble forming their mental models.
Mastering the relevant threshold concepts may make it pos-
sible to form a mental model, or change one mental model
into a new one. For example, a possible Threshold Con-
cept could be the difference between “pass-by-value” and
“pass-by-reference”, understanding this difference will have
a profound impact on how a person would understand the
semantics of a programming language and model the data
flow in a program.

While there are similarities between threshold concepts
and mental models – both can for example be transforma-
tive – there are also major differences. Threshold Concepts
are troublesome to learn while some mental models can be
learned without much effort, for example modeling the com-
puter screen as a desktop. Threshold Concepts are accepted
concepts within a discipline, while mental models are sub-
jective and individual.

104

4. STUDENT MISCONCEPTIONS
Research into misconceptions, like Threshold Concepts,

focuses on the ways in which students fail to learn. Over
the past almost 30 years, this work has had considerable
impact [32]. According to constructivist theory, misconcep-
tions naturally occur as students modify and extend their
knowledge frameworks to learn new topics. For example, an
individual’s previous understanding can lead to misconcep-
tions when familiar terms are used in unfamiliar contexts.
Bonar and Soloway [3] use the while statement to demon-
strate the problem of linguistic transfer. In common lan-
guage the while can imply continual testing of the condition
(e.g., “hold your breath while underwater”). In program-
ming loops the time of the test is limited: it occurs once only
on each iteration. Students who interpret the test as con-
tinual have a misconception. The overloading of language,
mathematical symbols and previous programming experi-
ence, taking information from one context and using it in
another have all been demonstrated to cause misconceptions
[7].

Misconceptions can be integrative, like Threshold Con-
cepts (although the integration is not necessarily correct),
but can also result from failing to integrate knowledge. As
Eylon and Lynn [14] have observed, students deal with ap-
parent contradictions by keeping their knowledge isolated.
This might explain why students often fail to transfer knowl-
edge from one course to another.

Misconceptions, like Threshold Concepts, can be hard to
forget. As students familiarize themselves with new top-
ics, their partial knowledge leads them to develop their own
rules [15]. Unfortunately because the knowledge is incom-
plete these self-constructed rules may result in misconcep-
tions, which once established are difficult to change. These
premature generalizations are then used to filter and distort
new information often compounding the misconception [18].
In order to realign such robust ideas, significant effort is
required, undertaking radical reordering of the concept [24].

Unlike Threshold Concepts, misconceptions are certainly
not core concepts that we want our students to learn. More-
over, we can speculate that they are not troublesome to
learn. Especially if the correct (threshold) concept is dif-
ficult or counter-intuitive, the misconception may be much
easier to learn.

5. BREADTH-FIRST INTRODUCTION
Threshold Concepts are a subset of the core concepts in

the discipline. Thus, a list of the core concepts would be a
good starting point in identifying the Threshold Concepts.

One source for such a list is the breadth-first approach
to teaching computer science, since such courses are of-
ten based on important ideas or topics in computer science
The concepts covered vary from course to course, but can
include decision trees, number representation, patterns in
programming, divide-and-conquer, recursion, the Church-
Turing thesis, the von Neumann architecture, time com-
plexity, intractability, types and values, classes and objects,
design, encapsulation, inheritance, polymorphism, program
correctness, iteration, recursion, conceptual and formal mod-
els, levels of abstraction, reuse, and tradeoffs.[2, 5, 10, 30].

The only criteria for these concepts is that they be, in
terms of the definition of Threshold Concepts, core concepts
in computer science. While most computer scientists would

agree on the general importance of these concepts, they are
probably not all Threshold Concepts. A concept such as
“divide and conquer,” for example, integrates many areas
of computer science, but it does not appear to be trouble-
some for students to understand. Similarly, the idea of reuse
is an easy one to grasp (even though it may be harder to
implement consistently). The concepts on the breadth-first
courses’ lists may not be transformative, and some of them
are probably all too easy to forget. Which, if any, of them
qualify as Threshold Concepts is a question for empirical
investigation.

6. FUNDAMENTAL IDEAS
Schwill[31] has proposed organizing the computing cur-

riculum around another set of core concepts, the Funda-
mental Ideas, a set of ideas that are central to the discipline.
This follows from the work of Bruner [6], who proposed that
science teaching should be organized around the structure
of science, as expressed by its fundamental ideas. These
are ideas with broad applicability, and that can be taught
at multiple levels within the curriculum, from early to ad-
vanced, at increasingly sophisticated levels.

Drawing on work applying Fundamental Ideas to mathe-
matics, Schwill proposes four criteria for these ideas in com-
puter science (paraphrasing):

Horizontal criterion The idea is applicable or ob-
servable in multiple ways and multiple areas of CS; it
organizes and integrates multiple phenomena.

Vertical criterion The idea can be taught at every
intellectual level, at different levels of sophistication.

Criterion of time The idea is clearly observable in
the history of computer science, and will be relevant
for a long time.

Criterion of sense The idea also has meaning in ev-
eryday life, and can be described in ordinary language.

These can be used to organize and relate subjects in com-
puter science. Fundamental Ideas are taught throughout
the curriculum, and when new concepts are presented, they
are related to the appropriate Fundamental Ideas that the
students know, thus providing context. Moreover, relating
new concepts to these ideas should further develop the ideas,
so the learning process can be seen as gradually gaining a
greater understanding of these Fundamental Ideas.

There is some obvious overlap between Fundamental Ideas
and Threshold Concepts. Both are integrative, and both
include topics that should be understood by any compe-
tent computing professional. But the Fundamental Ideas
are likely not transformative, in that they are gradually de-
veloped from common-sense understanding of everyday phe-
nomena. Threshold Concepts, on the other hand, may not
be teachable at every level. Finally, Fundamental Ideas are
clearly not boundary markers, given the Criterion of sense,
as these ideas have everyday out-of-discipline meanings.

Overall, these approaches seem to be orthogonal. Thresh-
old Concepts are based on transformative events, while Fun-
damental Ideas are based on long-term development. It
seems likely that any given Threshold Concept could be de-
scribed in terms of the related Fundamental Ideas, and that
there are Threshold Concepts that appear at points in the

105

development of a given Fundamental Idea. Threshold Con-
cepts identify the discontinuities in a student’s development,
while Fundamental Ideas identify different ongoing threads
in this process which may or not have such discontinuities.

7. PARTICULAR CONCEPTS
For illustration, we consider two particular candidate Thresh-

old Concepts, abstraction and object-orientation, in relation
to the criteria for Threshold Concepts.

7.1 Abstraction
The ability to abstract, and more than that, to move flex-

ibly from one level of abstraction to another, is a key skill
in computer science. As noted in Section 5, abstraction is
a core concept, and and it has been widely studied. If one
searches the papers available through the ACM Digital Li-
brary (which includes over 200 computing journals) using
the keyword “abstraction”, 63% of all articles are found.

Or-Bach and Lavy [27] construct a cognitive task analysis
taxonomy regarding abstraction and inheritance. They find
that abstraction is key with relation to object-oriented pro-
gramming and determine that it is a higher order cognitive
skill difficult for students to conceptualize.

Similar findings about students’ use of methods and at-
tributes with regard to abstraction were found also by De-
tienne [11] who claims that one of the main difficulties ex-
perienced by novices is the articulation between declarative
and procedural aspects of the solution. While an object can
be thought of as an abstract data type, in object-oriented
design it seems appropriate to consider the abstraction in-
herent in object orientation as behavior abstraction. This
understanding is seen in advanced OO designers, but not in
novices.

Box and Whitelaw [4] argue that abstraction helps explain
the relative difficulty of learning object-oriented technology.
In this technology, the learning of new concepts include sev-
eral steps, and abstraction is both the last and most difficult
step. Significant parts of this abstraction are the decisions
as to which entities are to be grouped together and which
attributes are to be ignored or parameterized.

Hadjerrouit [17] writes about students’ learning of the
object-oriented programming language Java:

...to understand Java concepts properly, problem solv-
ing should begin at the conceptual level, not at the
code level where programming becomes the main is-
sue. Furthermore, substantial attention should be
devoted to the meta-level process required to develop
solutions.

Hadjerrouit expresses a constructivist perspective, and a
clear emphasis on the importance of gaining an understand-
ing of the abstract concepts as well as the concrete.

7.2 Object-orientation
Much has been reported on experiences with teaching the

object-oriented paradigm. It is widely acknowledged that
Object-oriented programming is difficult to teach [21].

Here we consider Object-orientation at its most basic:
including objects, classes, and encapsulation, but ignoring
such things as inheritance and polymorphism. Even at this
simplified level, it is a core concept in computer science, the
first one learned by many introductory students, and nec-
essary for students to understand. Holland, Griffiths and

Woodman [18] claim that misconceptions of object concepts
can be hard to shift later. Such misconceptions can act as
barriers through which later all teaching on the subject may
be inadvertently filtered and distorted.

The literature suggests that this satisfies the requirements
for a Threshold Concept. We consider these requirements
in turn.

There is much evidence in the literature that students find
basic object-orientation troublesome to learn. Eckerdal and
Thuné [13] interviewed first year students who had just fin-
ished their first programming course on their understanding
of the concepts object and class. Many students stated that
they found the concepts troublesome to learn despite great
effort to understand them. Ragonis and Ben-Ari [29] stud-
ied high-school students in a first programming course in
Java. They found that one of the major difficulties is to un-
derstand the creation of object by constructor. Fleury [16]
has investigated Java students comprehension of encapsula-
tion and reuse of code. One result she reports is that many
students consider reducing the number of lines of code and
reducing the number of classes to be more important than
encapsulation. Many students are annoyed by the “jump-
ing around” necessary when reading programs with multiple
classes.

There is also evidence that object-orientation is transfor-
mative. Luker [22] argues that learning the object-oriented
paradigm, “requires nothing less than complete change of
the world view”. Eckerdal [12] reports that some students,
who had used other programming paradigms before, could
use the concepts object and class in a way that made pro-
gramming more efficient.

Luker [22] furthermore discusses how encapsulation ties
together the concepts object and class. Eckerdal [12] found
that students had problems separating the concepts object
and class. These suggest that basic object-orientation in-
tegrates these concepts, and gives some justification for our
considering them together.

8. CONCLUSIONS
In this paper, we discussed the idea of Threshold Concepts

as a possible way to organize and focus learning in computer
science. Moreover, we tried to put it in context with other
areas of computer science education. Summarizing,

Constructivism seems to be assumed by Threshold
Concepts: learning these concepts are particularly in-
teresting places in the process.

Mental Models: Threshold Concepts are places where
fundamentally different mental models are developed,
often with difficulty.

Misconceptions The transformational nature (and
difficulty) of attaining Threshold Concepts make them
obvious places where misconceptions can be formed;
observed misconceptions suggest places to look for Thresh-
old Concepts.

Breadth-first introductions involve teaching a broad
range of “important” core concepts; as Threshold Con-
cepts are also a subset of the core ideas there may be
overlap.

Fundamental ideas seem to be an orthogonal orga-
nization principle, emphasising the long-term develop-

106

ment of central ideas rather than just the transforma-
tional points.

Abstraction and Object-orientation are two pos-
sible concepts that may be Threshold Concepts; cer-
tainly evidence exists that they have the appropriate
characteristics.

Threshold Concepts may prove to be useful in CS Edu-
cation once we identify them. Previous work in Computer
Science Education suggests places that we might reasonably
start to look.

9. REFERENCES
[1] M. Ben-Ari. Constructivism in computer science

education. J. Computers in Mathematics and Science
Teaching, 20(1):45–73, 2001.

[2] A. Biermann. Great Ideas in Computer Science: a
gentle introduction. MIT Press, 1990.

[3] J. Bonar and E. Soloway. Preprogramming knowledge:
A major source of misconceptions in novice
programmers. In E. Soloway and J. Spohrer, editors,
Studying the Novice Programmer. Lawrence Erlbaum
Associates, 1989.

[4] R. Box and M. Whitelaw. Experiences when migrating
from structured analysis to object-oriented modelling.
In Proceedings of the Australasian conference on
Computing education, pages 12–18. ACM, 2000.

[5] J. G. Brookshear. Computer Science: an overview.
Addison Wesley, sixth edition, 2000.

[6] J. Bruner. The process of education. Harvard
University Press, Cambridge, MA, 1960.

[7] M. Clancy. Misconceptions and attitudes that
interfere with learning to program. In S. Fincher and
M. Petre, editors, Computer Science Education
Research. Taylor and Francis Group, London, 2004.

[8] P. Davies. Threshold concepts: how can we recognise
them. 2003. Paper presented at EARLI conference,
Padova. Downloaded from http://www.staffs.ac.uk/-
schools/business/iepr/docs/etcworkingpaper(1).doc.

[9] R. Davis, C. Maher, and N. Noddings. Constructivist
views of the teaching and learning of mathematics.
J. Res. Math. Teaching, Monograph No.4, 1990.

[10] P. Denning. Great principles in computing curricula.
SIGCSE Bull., 36:336–341, 2004.

[11] F. Detienne. Assessing the cognitive consequences of
the object-oriented approach: A survey of empirical
research on object-oriented design by individuals and
teams. Interacting with Computers, 9:47–72, 1997.

[12] A. Eckerdal. On the understanding of object and
class. Technical Report 2004-058, Dept. of Information
Technology, Uppsala Univ., 2004.

[13] A. Eckerdal and M. Thuné. Novice java programmers’
conceptions of “object” and “class”, and variation
theory. In Proc. ITiCSE ’05, pages 89–93, 2005.

[14] B. Eylon and M. Linn. Learning and instruction: An
examination of four research perspectives in science
education. Rev. Educational Research, 58(4), 1988.

[15] A. E. Fleury. Programming in java: student-
constructed rules. SIGCSE Bull., 32(1):197–201, 2000.

[16] A. E. Fleury. Encapsulation and reuse as viewed by
Java students. SIGCSE Bull., 33(1):189–193, 2001.

[17] S. Hadjerrouit. A constructivist framework for
integrating the java paradigm into the undergraduate
curriculum. SIGCSE Bull., 30(3):105–107, 1998.

[18] S. Holland, R. Griffiths, and M. Woodman. Avoiding
object misconceptions. SIGCSE Bull., 29(1):131–134,
1997.

[19] P. N. Johnson-Laird. Mental models: towards a
cognitive science of language, inference, and
consciousness. Harvard University Press, 1983.

[20] D. E. Kieras and S. Bovair. The role of a mental
model in learning to operate a device. Cognitive
Science, 8:255–273, 1984.

[21] M. Kölling. The problem of teaching object-oriented
programming, part I: Languages. J. Object-oriented
Programming, 11(8):8–15, 1999.

[22] P. A. Luker. There’s more to OOP than syntax.
SIGCSE Bull., 26(1):56–60, 1994.

[23] R. McCartney and K. Sanders. What are the
“threshold concepts” in computer science? In
Proceedings of the Koli Calling 2005 Conference on
Computer Science Education, page 185, 2005.

[24] M. McCracken, W. Newstetter, and J. Chastine.
Misconceptions of designing: a descriptive study.
SIGCSE Bull., 31(3):48–51, 1999.

[25] J. Meyer and R. Land. Threshold concepts and
troublesome knowledge: Linkages to ways of thinking
and practising within the disciplines. ETL Project
Occasional Report 4, 2003.
http://www.ed.ac.uk/etl/docs/ETLreport4.pdf.

[26] J. Meyer and R. Land. Threshold concepts and
troublesome knowledge (2): Epistemological
considerations and a conceptual framework for
teaching and learning. Higher Education, 49:373–388,
2005.

[27] R. Or-Bach and I. Lavy. Cognitive activities of
abstraction in object orientation: an empirical study.
SIGCSE Bull., 36(2):82–86, 2004.

[28] D. Perkins. The many faces of constructivism.
Educational Leadership, 57(3):6–11, 1999.

[29] N. Ragonis and M. Ben-Ari. Teaching constructors: A
difficult multiple choice. In 16th European Conference
on Object-Oriented Programming, Workshop 3, 2002.

[30] G. M. Schneider and J. L. Gersting. An Invitation to
Computer Science. Brooks Cole, second edition, 1998.

[31] A. Schwill. Fundamental ideas of computer science.
Bull. European Assoc. for Theoretical Computer
Science, 53:274–295, 1994.

[32] J. Smith, A. diSessa, and J. Roschelle. Misconceptions
reconceived: A constructivist analysis of knowledge in
transition. J. Learning Sciences, 3(2), 1993.

[33] S. Wiedenbeck, D. LaBelle, and V. N. R. Kain.
Factors affecting course outcomes in introductory
programming. In 16th Annual Workshop of the
Psychology of Programming Interest Group, 2004.

[34] S. Wiedenbeck and V. Ramalingam. Novice
comprehension of small programs written in the
procedural and object-oriented styles.
Int. J. Human-Computer Studies, 51:71–87, 1999.

[35] C. Yehezkel, M. Ben-Ari, and T. Dreyfus. Computer
architecture and mental models. SIGCSE Bull.,
37(1):101–105, 2005.

107

Paper III

Threshold Concepts in Computer Science:
Do they exist and are they useful?

Jonas Boustedt
Department of Mathematics,
Natural, and Computer

Science Högskolan i Gävle
S80176 Gävle, Sweden

bjt@hig.se

Anna Eckerdal
Department of Information

Technology
Uppsala University
Uppsala, Sweden

Anna.Eckerdal@it.uu.se

Robert McCartney
Department of Computer
Science and Engineering
University of Connecticut

Storrs, CT USA

robert@cse.uconn.edu

Jan Erik Moström
Department of Computing Science

Umeå University
901 87 Umeå, Sweden

jem@cs.umu.se

Mark Ratcliffe
Department of Computer Science

University of Wales
Aberystwyth, Wales

mbr@aber.ac.uk

Kate Sanders
Department of Math and Computer Science

Rhode Island College
Providence, RI USA

ksanders@ric.edu

Carol Zander
Computing & Software Systems
University of Washington, Bothell

Bothell, WA USA

zander@u.washington.edu

ABSTRACT
Yes, and Yes.
We are currently undertaking an empirical investigation of

“Threshold Concepts” in Computer Science, with input from
both instructors and students. We have found good empir-
ical evidence that at least two concepts—Object-oriented
programming and pointers—are Threshold Concepts, and
that there are potentially many more others.
In this paper, we present results gathered using various

experimental techniques, and discuss how Threshold Con-
cepts can affect the learning process.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computers and In-
formation Science Education—Computer Science Education

General Terms
Measurement, Experimentation

Keywords
Threshold Concepts, learning theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’07, March 7–10, 2007, Covington, Kentucky, USA.
Copyright 2007 ACM 1-59593-361-1/07/0003 ...$5.00.

1. INTRODUCTION
Computer science is a young, rapidly changing discipline;

we have had relatively few years to study the ways in which
students learn and how to help them most effectively. Meyer
and Land [13] have proposed using “Threshold Concepts” as
a way of characterizing particular concepts that might be
used to organize the educational process. The idea has the
potential to help us focus on those concepts that are most
likely to block students’ learning [4]. A subset of the core
concepts in a discipline, Threshold Concepts are defined by
Meyer and Land [13] are:

• transformative: they change the way a student looks
at things in the discipline.

• integrative: they tie together concepts in ways that
were previously unknown to the student.

• irreversible: they are difficult for the student to un-
learn.

• potentially troublesome (as in [15]) for students: they
are conceptually difficult, alien, and/or counter-intuitive.

• often boundary markers: they indicate the limits of a
conceptual area or the discipline itself.

This paper describes an ongoing project aimed at empir-
ically identifying Threshold Concepts in computer science.
In a multi-national, multi-institutional study, we have gath-
ered data from both educators and students. The paper
outlines experimental techniques, issues raised, and results
to date. Information about how Threshold Concepts fit with
other learning theories and how they can be put into context

504

with other ways to organize computer science concepts can
be found in [5].
Section 2 describes the techniques we have used to gather

data about potential Threshold Concepts from the perspec-
tive of both instructors and students. In Section 3 we present
the results of a preliminary analysis of the data, including
the identification of two Threshold Concepts in computing
with some associated evidence. Section 4 looks at implica-
tions for educators and finally, in Section 5, we present our
preliminary conclusions and discuss the future directions of
this research effort.

2. DATA GATHERING AND ANALYSIS
The study began by gathering data from instructors in

computer science. This was followed by a brief analysis and
a much more in-depth study of graduating seniors.

2.1 The instructors: informal interviews and
surveys

In June 2005, at the Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE), 36 in-
structors from nine countries were interviewed and asked for
suggestions of concepts that meet the criteria for a Thresh-
old Concept. These interviews were unstructured and done
in a fairly conversational style.
From these, we gained much insight. First, the idea of

Threshold Concepts is compelling: nearly everyone we spoke
with was immediately interested. In total 33 concepts were
suggested, with the most popular being: levels of abstrac-
tion; pointers; the distinction between classes, objects, and
instances; recursion and induction; procedural abstraction;
and polymorphism. Second, while some concepts came up
again and again, there was no universal consensus.
In November 2005, we gave a poster and had discussions

with researchers at the Koli Calling 2005 Conference on
Computer Science Education in Finland [12] and used a
questionnaire and interviews to gather data more systemat-
ically from conference participants. The results were similar
to those collected at ITiCSE but it was quite apparent that
instructors focus on “difficult to learn” more than any other
aspects of the concepts they discuss.

2.2 The students: semi-structured interviews
Given the tentative list of concepts derived from instruc-

tors and the literature ([1, 2, 3, 17, 18] e.g.), we began to
investigate the question of whether these—or any—concepts
are experienced by students as thresholds.
We chose to initially interview graduating students, since

they were more likely than novices to have mastered the
relevant concepts, and to have developed some perspective.
So far we have completed 16 interviews with students at
seven institutions in a total of three countries. The script
for these interviews is given in Figure 1.
We started by addressing the troublesome criterion, ask-

ing students for concepts they found difficult at first (places
where they were initially “stuck”). From these, we selected
one concept to pursue in depth and addressed the transfor-
mative, integrative, and irreversible criteria in that context.
We did not examine the boundary marker criterion, as it
is related more to disciplinary boundaries and less to indi-
vidual experience. The interviewers agreed in advance on a
list of five Threshold Concept candidates (control structures,
thinking sequentially, parameters, objects, memory model)

1. Could you tell me about something where you were
stuck at first but then became clearer? (Subject an-
swers <X>.)

The rest of this session will now focus on <X>.

2. Can I start by asking you to tell me your understand-
ing of <X>?

3. Assume that you were explaining <X> to someone
just learning this material, how would you do it?

4. Tell me your thoughts, your reactions, before, during
and after the process of dealing with <X>.

5. Can you tell me what helped you understand <X>?

6. Can you describe how you perceived/experienced
<X> while you were stuck and how you per-
ceived/experienced it afterwards?

7. Based on your experience, what advice would you give
to help other students who might be struggling with
<X>?

8. Please tell me what other things you need to under-
stand in order to gain a good understanding of <X>.

9. Can you tell me how your understanding of <X> has
affected your understanding of other things?

10. Was your understanding of <X> something that you
had to keep reviewing or having learned it once were
you OK with it?

11. Describe how and in what context you have used <X>
since you learned it?

12. Is there something more you want to tell me about
<X>?

13. To finish the interview, can you tell me whether there
are any other things where you were stuck at first but
then became clearer? I promise I won’t ask you about
them in detail!

Figure 1: Script Excerpt for Student Interview

that had come up repeatedly in instructor interviews. If the
student mentioned one of those, that concept was chosen.
The aim of this deeper investigation was twofold. It en-

abled us to gather evidence as to whether specific concepts
met the requirements for Threshold Concepts (Questions 1,
4, 6, 8, 9, 10 in Figure 1). In addition, it gave us data for an
analysis (in progress) of graduating students’ understanding
of central concepts (Questions 2, 3, 5, 12 in Figure 1).
For analysis, the student interviews were transcribed ver-

batim and where necessary, translated into English by the
interviewer.

3. THRESHOLDCONCEPTS INCOMPUTER
SCIENCE

Of the concepts discussed in depth by the students, we
selected two that seemed promising based on the interview
content and closely examined the interviews regarding those
concepts. For both concepts – object-oriented programming
(OOP) and pointers – we found evidence that they satisfy
the criteria for Threshold Concepts.

505

3.1 Object-oriented programming
Object-oriented programming is experienced as difficult

both to teach [8, 16] and to learn [9, 19]. When Eckerdal and
Thuné [6] interviewed first-year students after their first pro-
gramming course on their understanding of object-oriented
concepts, many students stated that they found the concepts
troublesome despite great effort to learn them.
The interviews give further evidence of OOP as a Thresh-

old Concept. One student subject discussed OOP as trou-
blesome to learn:

Subject8: Stuck at first – I would have to say the
initial object-oriented programming. Knowing how
classes communicate, how you communicate between
classes and really understanding how objects work...

The researcher performing the interview asks the sub-
ject about the integrativeness of OOP later in the interview
by asking if once they understood OOP, were there other
things they then understood. The subject discusses a multi-
threaded programming course.

Subject8: Well, for instance, the class we did for soft-
ware engineering, what we did right now, the server
that I wrote, each client that connects to the server, I
thought of it almost as an object, which it is basically.
And then that client connection would be held on to
while waiting for other connections. And then there’d
be this huge array of connections. And then, I mean,
that wasn’t that difficult for me to grasp that concept
just because we’d kind of went over it in class, but
I just think understanding object-oriented program-
ming helped me to understand that there was this
group of objects, group of threads, group of clients,
whatever.

Interviewer: That they were all working together?

Subject8: That were all working together, exactly.
And understanding object-oriented programming, I
think, made that easy to learn; easy to understand.

This subject learned about OOP, then later learned about
multi-threaded programming, and perceived a real connec-
tion at a fairly abstract level.
Another student also indicated that object-oriented pro-

gramming is troublesome to learn:

Subject6: [...] object oriented programming was one
thing for example that took a long time before ... it
clicked. Why and how it should be used.

The researcher later seeks to find out from the same stu-
dent if object-oriented programming is irreversible by asking
if the student had to review the OOP material.

Subject6: Yes, I need to review sometimes, this is
completely clear [...], often it’s just syntactical de-
tails, [...] basic stuff is there, I’ve mainly used Java
so, sure I’m a little bit stuck in those tracks but I can
usually bring everything with me and just transfer it
to C++ for example, [...]

Interviewer: The big stuff is there so to speak

Subject6: Yes, I can get, sometimes it can take, or
yes some mistakes before I remember that, “right,
those”, [...] I can forget, to make some mistakes in the
beginning but as long as I’ve once known and done
it correctly some time then it usually comes back.

The student explains that some syntactic details might
be forgotten in a specific object-oriented programming lan-
guage, but “the basic stuff is there” (the object oriented
paradigm) and “it usually comes back”, implying object-
oriented programming is irreversible.
The quote also shows the close relation between the irre-

versible and the integrative aspects of this Threshold Con-
cept. The student explains that he/she can use the knowl-
edge gained from programming in one language and transfer
it to another language.
Later in the interview the researcher discusses the trans-

formative aspect of learning object-oriented programming
by asking about the difference in how the student looks at
problems and their solutions before and after:

Subject6: Yes, it’s like day and night, before I came
here I had ... I couldn’t ... abstract the problems on,
well to a very small extent perhaps, but today it’s ...
I can identify the problems usually in a very short
time, unless it’s very complex and difficult to under-
stand but today I only see small sub-problems and
... usually simple solutions to them. Before it was
just one large program that ... I solved sequentially
in some way and the programs looked like that ...

Discussing the same topic the interviewer later asks about
problem solving, about what role OOP played:

Subject6: It simplifies it, even if I don’t use an OO
language the OOP way of thinking can help a lot in
... in some way ... well, you can give a lot of data, you
can give it some kind object status even if it doesn’t
have its own methods etc, in that way...

The student explains that he/she looks at programming
in a completely new way after learning object-oriented pro-
gramming. The knowledge has transformed how the student
looks at problems. This is consistent with Luker [10], who
argues that learning the object-oriented paradigm, “requires
nothing less than [a] complete change of the world view.”

3.2 Pointers
The second concept identified as a potential Threshold

Concept was the use of pointers, particularly when used as
parameters. That this concept can be troublesome is illus-
trated by the following excerpt:

Subject13: And so when you implement pointers and
see then you’re like okay I need to figure out how I
modify that and it affects the memory. And then if
I reference the memory I get what back. And then
you start passing the arguments. And you have to
understand passing by reference or passing by value.
And a lot of those were definitely big hurdles right in
the beginning because I didn’t – it was just – I guess
too theoretical of a concept for me to really put in
practical sense.

The student describes the difficulties in understanding point-
ers in general and how they work with parameter passing.
Another student affirms that pointers can be troublesome:

Subject3: I know that pointers are something that a
lot of students have trouble with. [...]

Not only can we see that this student found pointers trou-
blesome, but also that they are integrative and transforma-
tive:

506

Subject3: And I think once you’ve realized that a
pointer is just pointing to a place in memory, it’s
just pointing to a location, that’s all it is. Then
I think everything will flow from that. Yeah, be-
cause you realize then that the object itself is
just a place in memory too.

Interviewer: So before you weren’t even thinking
about memory so much.

Subject3: Exactly. I didn’t at all. Like in Java,
I didn’t think about memory nearly so much. I
mean I knew that certainly memory was allo-
cated, that memory was allocated with its vari-
ables and attributes and that kind of stuff. But
I didn’t ... when I was writing a program, I
didn’t ever think about what was happening un-
derneath. Especially garbage collection.

Once the student understood how pointers work he/she was
able to use this knowledge to explain how objects and ref-
erences are implemented, thus getting an improved under-
standing of how Java works.
In another part of the interview the same student de-

scribed how the understanding of pointers has helped in
other subjects:

Subject3: Well, as I was saying, in the hardware class
and in Operating Systems, we definitely discussed
pointers and I used it both conceptually and also in,
well not in in Operating Systems, but in the hard-
ware class in assembly language, we definitely used
pointers.

We definitely were dereferencing all the time in as-
sembly language, so when we were, for example, writ-
ing to an address register, we would have to derefer-
ence it in order to get at the address to find out what
was going on at that particular address in memory.
So, definitely I used it again and again.

The clearest statement that the concept of pointers is un-
forgettable comes from an interview with Subject13 when
asked if the understanding gained needed to be reviewed to
be remembered:

Subject13: The syntax I would have to review, guar-
anteed. The syntax is –it’s a little – it’s syntax. But
the basic idea of passing by reference or value; no,
once I understood that I – every time it’s mentioned
I immediately know and understand – I can see a pic-
ture – a diagram in my head of what I’m supposed to
do. What – how the effect will work. So the concept
was not lost at all.

4. IMPLICATIONS FOR EDUCATORS
By their nature, Threshold Concepts have a number of

implications for educators. These are key concepts that stu-
dents must understand to make progress in computer sci-
ence: failing to gain this understanding and the associated
lack of progress can lead to frustration, a poor understanding
on how the discipline fits together, and increased attrition
of students. It is important, therefore, that we understand
these concepts, and how they are learned, in detail. It is
useful to know that students tend to become stuck on a par-
ticular concept, but the deeper understanding of the student

experience—how students get unstuck, and why some stu-
dents get unstuck (or perhaps never get stuck at all) while
others remain stuck—should provide ideas on how to help
students to make progress toward understanding that con-
cept. Knowing what concepts a particular Threshold Con-
cept integrates can provide the instructor with a context in
which the concept might effectively be taught.
Davies suggests that when teachers proceed on the in-

correct assumption that students have learned a Threshold
Concept, it may cause students to go forward with surface-
level learning:

In the absence of this understanding students can
only resort to learning surface routines and lan-
guage in the hope that they can pass this off as
real understanding.[4]

More interesting still, a result found in economics ([14], as
reported in [13]) was that teaching Threshold Concepts in
simplified ways can have similar bad effects: the simplified
version may be treated as “ritualized” knowledge–a superfi-
cial understanding–that makes it more difficult for the stu-
dent to ultimately learn the concept. What these results
suggest is how important it is that teachers accurately mon-
itor the level of understanding of these concepts by their stu-
dents, expecially if “going through the threshold” (in a deep-
learning sense) is necessary for their students to progress.
Looking on the bright side, however, Threshold Concepts

can provide positive opportunities to instructors. First, they
may help us manage the ever-growing curriculum. For ex-
ample, Computer Curricula 2001 (CC2001) [7] included 63
core units, each made up of several topics. If we can iden-
tify a relatively small number of Threshold Concepts within
the curriculum, instructors will be able to focus their efforts
on helping students with those concepts. Second, because
Threshold Concepts are integrative, an instructor can use
them to help students see connections within the discipline
that transcend individual course boundaries.
In some cases, it will be necessary to revisit the same

Threshold Concepts over multiple courses. We saw evidence
of this for both OOP and pointers. In object-oriented pro-
gramming, we saw a student’s understanding develop from
seeing objects as a simple encapsulation mechanism to an
appreciation for design patterns; for pointers (and the as-
sociated memory issues), the basic understanding learned
in introductory programming became richer in subsequent
courses. The students reported that crossing the thresholds
for them was a gradual process, not necessarily an “aha”
moment.
One more observation from the interviews that applies

more generally than to Threshold Concepts, is that stu-
dents (in retrospect) appreciate the value of individual work.
Nearly all, when asked to give advice to other students who
are having problems with a particular concept, included
things like “you need to work on your own”, “you need to sit
down and think about what you’re doing”, and “sit down and
work it out on paper and really understand what happens.”
Our own teaching experience is that this understanding is
not shared by all novice students.

5. CONCLUSIONS AND FUTUREWORK
In this paper, we describe Threshold Concepts. These are

a subset of the core concepts in a discipline that are trans-
formative, integrative, irreversible, and potentially trouble-

507

some. If instructors don’t take care in introducing these
concepts to our students and monitoring their understand-
ing, students may fail to move on, or move on with only
surface knowledge of the concept.
We also describe our initial empirical investigations into

Threshold Concepts. We used both informal interviews and
questionnaires to obtain data from instructors and scripted,
semi-structured interviews to obtain data from students.
Based on these investigations, we present evidence that

Threshold Concepts do exist in computer science. We have
identified two Threshold Concepts, or perhaps broad areas
within which thresholds exist: pointers and object-oriented
programming. These were the terms our subjects used for
concepts they identified, but these concepts – object-oriented
programming in particular – are very broad. A close reading
of the interviews suggests that more specific Threshold Con-
cepts might include the way in which objects work together
(i.e., concurrency), or the ability to see large problems as
composed of a set of small sub-problems.
In future work, we plan to investigate these more spe-

cific concepts, and also some of the other candidate Thresh-
old Concepts that have been mentioned in our data. One
particularly intriguing example is the notion of translation
from one representation to another – it is certainly perva-
sive within computer science, but only one of our instructor
subjects (and none of the students) mentioned it as a can-
didate.
In addition, we have not yet analyzed the variations in

understanding associated with the concepts discussed here.
This analysis will provide an outcome space with qualita-
tively different ways to understand a certain concept (as in
[11]), information that should be immediately useful to in-
structors.
An area that we will be investigating is whether the learn-

ing of a Threshold Concept is an identifiable stage that all
learners go through, or whether it is more of an individual
phenomenon. Some of our data suggest that the Threshold
Concepts that a student identifies are strongly influenced by
his or her learning experiences–e.g., the only two subjects
who suggested “How a processor control unit works” had
taken a course where they were required to design one. In
addition, it is possible that a Threshold Concept may seem
to be universal if the concept is overly broad, as mentioned
above regarding to object-oriented programming: subjects
may agree on the broad concept, but this may be due to their
experiencing different more-specific concepts as thresholds.
We will address these issues by undertaking interviews with
a finer-grained focus on particular concepts.
We are also planning to interview novices, to see how

their perspective compares with the graduating students’.
Finally, once Threshold Concepts have been precisely identi-
fied, the next step will be to design curricula and assessment
tools to help student cross these thresholds more easily.

6. REFERENCES
[1] ACM/IEEE-CS Joint Curriculum Task Force.
Computing curriculum 1991. Report of the IEEE
Computer Society and ACM, 1990.

[2] A. Biermann. Great Ideas in Computer Science: a
gentle introduction. MIT Press, 1990.

[3] J. G. Brookshear. Computer Science: an overview.
Addison Wesley, sixth edition, 2000.

[4] P. Davies. Threshold concepts: how can we recognise
them? 2003. Paper presented at EARLI conference,
Padova. http://www.staffs.ac.uk/schools/business/
iepr/docs/etcworkingpaper(1).doc (accessed 25
August 2006).

[5] A. Eckerdal, R. McCartney, J. E. Moström,
M. Ratcliffe, K. Sanders, and C. Zander. Putting
threshold concepts into context in computer science
education. In ITiCSE-06, pages 103–107, Bologna,
Italy, June 2006.

[6] A. Eckerdal and M. Thuné. Novice Java programmers’
conceptions of “object” and “class”, and variation
theory. In ITiCSE-05, pages 89–93, 2005.

[7] Joint Task Force on Computing Curricula. Computing
Curriculum 2001, computer science volume. Report of
the IEEE Computer Society and ACM, 2001.
http://www.sigcse.org/cc2001/ (accessed 25 August
2006).

[8] M. Kölling. The problem of teaching object-oriented
programming, part 1: Languages. Journal of
Object-Oriented Programming, January 1999.

[9] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen.
Early programming: A study of the difficulties of
novice programmers. In ITiCSE-05, 2005.

[10] P. A. Luker. There’s more to OOP than syntax.
SIGCSE Bull., 26(1):56–60, 1994.

[11] F. Marton and S. Booth. Learning and Awareness.
Lawrence Erlbaum Ass., Mahwah, NJ, 1997.

[12] R. McCartney and K. Sanders. What are the
“threshold concepts” in computer science? In
T. Salakoski and T. Mäntylä, editors, Proceedings of
the Koli Calling 2005 Conference on Computer
Science Education, page 185, November, 2005.

[13] J. H. Meyer and R. Land. Threshold concepts and
troublesome knowledge (2): Epistemological
considerations and a conceptual framework for
teaching and learning. Higher Education, 49:373–388,
2005.

[14] J. H. F. Meyer and M. Shanahan. The troublesome
nature of a threshold concept in economics. 2003.
Paper presented at EARLI conference, Padova. (As
reported in [13]).

[15] D. Perkins. The many faces of constructivism.
Educational Leadership, 57(3):6–11, 1999.

[16] E. Roberts. The dream of a common language: The
search for simplicity and stability in computer science
education. SIGCSE Bull., 36(1):115–119, 2004.

[17] G. M. Schneider and J. L. Gersting. An Invitation to
Computer Science. Brooks Cole, second edition, 1998.

[18] A. Schwill. Fundamental ideas of computer science.
Bull. European Assoc. for Theoretical Computer
Science, 53:274–295, 1994.

[19] L. Thomas, M. Ratcliffe, and B. Thomasson.
Scaffolding with object diagrams in first year
programming classes: Some unexpected results. In
SIGCSE-04, 2004.

508

Paper IV

European Journal of Engineering Education

�����������	
���

�
��
�����	�� �
����

�������	
���
��	���	����	��������	�

��������	
��	�
�����
�
�	�
�������
�
��������������������	������������������

��������

��	�������	����	���	���	�����	��	����������	�����	�����������	���������	��������	����	��	���	������	��	�����	��
��������	�������	���	�����	����	��	����	�	���������	�����������	������ 	!��������������	���	"��������

�����	���	�������	��	���������	����	����	�	�����	��	��������#	�����������	��	��������	����������� 	�
����������������	�������	�����	��	���������$	����	����	%������������	���������	����������	��	�����������	��

��������#	����	��	������	��������	����������� 	��������$	����������	��	���������	�������	��	�����	����������
���	���������� 	&����	��	����	����������	��	��	���������	���	��	���	��������	��	���������	��	�����	��	�������
��������#	��������	��	��������	����������� 	'������$	�������	����	�	�����	�����	�����������	����������

�����������	��	���	��������	��	���������	��	�	��������	���	����������

!��"����#	���������	������(�������	��	���������(���������������(��������	�����������

�)������������	������	�����*	������� �����+�� �� ��

	

����������������������������	�
����
�����������������	������	������	�����������������������	�

$%	
������������

)�������	�����������	��	�	���������	�������	��	����	����������	�����	�����������	���������
�������� 	,�������	�-��������	����	��	��	�	���������	������� 	.�	���	���������	��	�	���	�����/
��������	�����	����	����������	��������	�����/����	����	������������	��	������	��������
�����������	0��)������	��	�� 	12234

�������	����	����������$	�����	��	��	������	����	��	����	����	��	�������	�����
���������	��	�����������$	���	������	�������	��������	������� 	5�������	��	����	���������	���
������	��������	��	��������#	��������	���������	��	����������	���	������	�������	��������	��
��������	����������� 	'��	�	������	������$	���	5�����	��	�� 	012264 	.�	�����	�������$	���
�������	�������	��	�����������	���	�����	���	�������

.�	���	�������	�����	��	����	��	���	�������	����	�	���������	�����$	��	����������	���
���������	%��������*

� ���	������
������	����	����
����	�
���
���

��	�����
���

���

� !
���������������������������	���	����	��	����������
�	��	����	���������������
������
�
�������	�����
��	��
�	
���������	�
�������	�����
���

��	�����
���

���

�	�������	���	�����	%�������$	��	�����������	����������	��������	��	���	���	��	��	������������
�����������	������ 	��	�	������	��	��������	���	���������	��	���	�����	��������	�-�����	�����
�-���������	��	����	��	�����	��	������� 	7���$	��	����	���������	����	���������	��	�	�������
������	��	%������������	���������	����������	��	����������� 	
�	�������	���	������	%�������	��
����	�����	���������	������	��	�����	����������	��	����������� 	
��	����	��	��	������	���	���
�������	��������#	�����������	���	��������#	������������	��������������	��	����������� 	

&%��
��
�����
��
�'��������
���� �
�����
����

8��	��������	����	���	"����	�
�����
��	��	��������	���	��������	0������	���	&����	399:$
������	���	
���$	122;4 	'����$	�����	��	�	%����������	���������	��	���	����	��	�����	���������
<�������	��	���	������	��	��������<���	�-���������	��	�������� 	
���	�����������	��	���	�����
���	#���

��
������$	��	�����������	�����$	%����������	��������	�������� 	�
����������������	�����	����	��	��������	���	���������	��	���	����	������	�-��������	��	=���#	�
���������� 	'��	�-������	���	����������$	���	������	���	&����	0399:4 	
��	����	���	�
����������������	�����	���	���������	���������	���	����������	����	����������� 	
��	����	���
��������	��	�	����������	�����$	����	���	���	��	����	���	���	$����	�	��������������		����	��	������
���	����������	����	���	�-�������	��	���	������������ 	
����	%������������	���������	����	��
������	���	�������	����������	��	���	�����������	��	����������	��	��
�����
���������	�
������	����
���	
�	�

�������	��	���	����������������	��������

��	�������	�����	����	�������	����	�	������������	���������$	�����	����	����������
���������	���	��������	��	���	����������$	��	����������	����������	������	��	������	����	��
������$	������������	�������	�������� 	
��	�������	%�������	���	���	��������	��	���	��	����
��������	��	�������	����	����	��	������	���	����������

�������
��		���	�����	�
�	���	���	�����	��	������	����	%������� 	���������	��
"��������	������	�	���������<���	���	����������<�����%������	���	����������	�	�������$	��	��	���
���	�����������	��	�-��������	���������	��	�	��
����
�	�������������	��	����	������� 	'��
�-�����$	��	#��>�#	���	#������#	���	���	��������	��	�	����������	=�������	���������#$	����
�����	��	�	#��>�#	���������	���	�	#������#	���������	��	���	�������������	�������	����� 	�
����������	��������	��	=�������	���������#	���	��	�����������	��	���	������	��	�����	����������$
� � $	��	���	����������	��>�	���	������

.�	�������$	���	����������	��	���	������	���	��������	�-�����	�����	����	��	������	�
���������� 	��	�	������	����$	�	����������������	��������	��	���	����������	����	����	��	���
�����������	��	����������	��	�����������	��	�	�������	������	��	%������������	���������	����	��

Michael Thuné and Anna Eckerdal

�����	��������	���	���	���������� 	'������$	�����	�����	����������$	��	����	��	��������	��	����
���	����������	��	���������	���	��	�������	���	��	�����	���	���������	�����	����	�����	������
��������	��	�������	������	����	��	������	���	���������� 	&����$	��	��	�������	�����	�����
�����	���	���	����������	����������	��	��������	��	���	�������	�����$	� � $	��������
�����������

(%�	����
�
������������

8��	�����	��	�����	��	����������	����	�����/����	��������	��������	��	�	�����	���������	��
�%�����	���	�������������	�����������	��	?������	?���������$,����� 	
���	��	�	�����������$
������	�����������	����	���	�	����	����	���������$	�������	��	��	� 	,� 	������ 	�����
����������	���	��������	���������	���	����������	��	%��������	�����������	��	�����	�����	��
�-������� 	
���	���	�	�������	�-�����	��	�	�����	��	����������	�����	�����������	��������	���
���	��������	��	�����	���	������	��	��������	�����������$	���	���	���	�-������	��	����	���
������	�������	��	�����������

��	����������	����	����/����������	0@����	399A4 	
���	�����	����	��	���	����	�����
���	�	���������	��	���	����	��	=����	%��������#	��	����	��	���������	������	��	��	�������	���	��
���	�����	����	����	����	%�������	���	����$	��	����	���	�����������	�������������	��	������
�-�����	���B���	��������������	���	�-��������� 	
��	�����������	�����	������/��	%��������	��
���������	���	��������	��	����	�����	�����	�-���������	����	���������	������������	���	����
����������	����������� 	
��	����������	����	���������	����	���	��������	����	��	���	���	��	���
������������	�����������	������$	����������	������/��������	�����������	���	���
�����������	��������	C��� 	'�������	��������	����	����������� 	,����	���	���������	���	���
���	����������	��	�-�����	���	���������	��	���	�������	�����$	���	������������	����	��������	����
���	���	����	����	������������	������	�����	��	�����	�	�����	��	��������	���������������	��
��������*	���$	������$	���	��������	�����������$	������������$	���	�����	�-���������	��
��������	����������� 	
��	������	��	��	���������	���	���������	������	���	���� 	����
���������	���	��������	��	����$	���	����	�����������	�������� 	
��	��������	��	���	����	��	�����
��	���	����������� 	

)%�
��������
�������������������*����������

D�	���������	���	��������	���	��	�����������	����	��	�	����������������	�������� 	
���	��	��
���������	�������$	�����	���	�����������	����������	���	����	���	��/���� 	,���������	����
���������	����������	����������	�������	����	��	������	���	�-�������	����	�����	�����-��	���
�������	��������$	��	����	���������	����������	��	����	��	������ 	

��	�����	������	��	���	����������������	��������	��	�	���	��	����	����������	��
�����������	��	��������#	%������������	���������	����	��	������	��������	����������� 	
����
����������	��	�����������	���	�������	����������	��	
����	3 	E���	����	����	��������	��
�����������	��	�����	��	�	�����	��	�-������	�-�������	����	���������	���������� 	�
�������������	�������	��	���	����������	��	�����������	���	�����	���������	�����	��	������	���
�����	�����������	���	���	�������	������� 	
��	����������	������	��	��������	��	��������	0122A4	���
��������	���	&�������	0122F4$	�����	��������#	�����������	��	��������	��	�������	����	��
�����$	�����	��	���	����	����	��	���������	���� 	
��	����������	��	�����������	��������	�����	���
����	�������	��	���	����	�����	��	���	�������	��������$	�����	��������#	�����������	��	��������	��
�������	������	���	��	��	��������	�������	��	�����	�����������	��	��������	�����������

��	����	����������	��	�����������	���	���������	��	�	���������$	�����	���	����������	���
����������	��	����������	�����	��	��������	��	����� 	����	��������	��������	���	�������������

	

����������������������������	�
����
�����������������	������	������	�����������������������	�

�-�������	��	���	���������	����������	��	�����������	���	��	%������������	���������	����	�����	��
���������	��	����������	�������	��	��������	�����������

)�������	3	���������	��	�������������	����	��	��������	�������	���	�����������
��������$	��	����������	���	�����-$	��	����	���	���	�����	��	����� 	'��	�-�����$,������	E3

����*

E*	D���	��	��	���	�����$.	�����	��	��	���	�����	��������$	������	���	��������$	�����������
��������	.	���$.	����	��	��������	����	G H	

.�)�������	1	�����	��	���������	��	���	��������	�������	���	�������	��-�	���	���	�������	����
����	�����	����	���	�������	��	�-������ 	���������	��	���	�������������	���������	��
)�������	1$	���	��������������	�������	��-�	���	������	��	���������	��	�������	���	�����������
��	��������	��	��	������	��������	���	��	��������	����	���	����	��	��������	��	�����	���	����
����������	����	�������� 	,������	I	����*

I*	GJH	���	���	������	���	���������	������	��	�	�������	GJH	��	�����	��	����	������	����
����������	�����������$	��K�	���������	���� 	���	.	����	�����	����	����	������	���	����
����	�����������	������	����	��������	�������	��	�����	����	���� 	

.�)�������	6$	���	������������	��	�����������	���	����	�������� 	
��	���������	���������	��
�������	&	�����������	����*

&*	GJH	���	��	��	���	����	�����	���	�	���	��	������	���	�����	�� 	
���	��	��	���	����	.K��
����������	�	���	��	������$	���	����	��������	����	���	����

��	�������������	���������	��)�������	;	��������	���	����	��������	��	�����������	��	���
��������	�����	����������$	���	���	���	�������������	��	���	��������	�������	��-�	���	������	��
�������	���	���	��������	��%�����	��	�������	��	����	��	�	����	��	����������	�������	�������
,������)	����*

)*	GJH	.	�����	��K�	��������	��	�����	�	�������	����	��	�������$	��K�	������	����	���	����
������� 	
���$	��������	���������	�������	��	�����	����	��	���������	����

'������$)�������	F	��������	���	���	��������	����������	���	����	���	�������	����	��������
�����������	���	��	����	�������	���	�����������	������	���	���	�����	��������	����
����������� 	8��	������	��	����	��	�-�������	��	,������	�*

�*	L��	���	��K�	����	���	����	���	����	�����	���������	���	����	���������	��	������	���K��
��$	����	��

,������	%��������	��	���	����	�����	��	���	�����$	����	����	���������	��	�����
�����������	��	���	����������������	��������� 	.�	����������$	
����	3	������	��	���	����
���������	��	���	�������	������	��������	��	&����	039914$	���	&����	��	�� 	0122;4$	������������
��	����	��	�	������	�����$	&����	������������	��������#	�����������	��	��������	��	������� 	7��
�������	�����	���	����	����������$	�����	��	�����	���	�������	��	���)���������	3$	1	���	; 	7��
������	��������$	=��������	��	�������	��	��������	����	��	���	�����������	���������#	����
���	������	��	���	���� 	����	������$	����	��	���	��	���	����	����	&����	�����������	��������
�������	������$	�����	���	��������	��	���	�����	����	���	�������	���	�������	��	���	��������
�������� 	
���	����������	��	��������	����	���	������	���	���)�������	6	���	���	������	��
&����#�	�������	����� 	,������	��������	���	��	����	����	������	��	���	�����	��	&����	��	��
0122;4 	D�	��	���	��	����	�	��������	����������	���� 	
��	���������	�������	��	����	
����	3
������	��	���	����	���������	��	���	�������	������	��	&����$	���	&����	��	�� $	������������

����	�����	�������	������	�����	���	����	�����	�������$	�����	����	�������	�����	����	������
���������	�������	��	�� 	
��	����������	������������	����	�����	��������	��	�	�������	��������	��
���	�������	�����	����������	��	
����	3$	����	���	���	��	�������	�-�����	���	����������	��
���������	�������	��	��

3	
�	�������	���	���������	��	���	�������������	��������$	����	�������	��	��������	��	��	�	������	�����	��	����������
���������	��	���	�������#�	����	����

Michael Thuné and Anna Eckerdal

����	3	����������	���	�����	������	��	��������	0������	��	�� 	122;4$	����	��$	���	���
��������	��������	����	����	��	���	��������	�����������	�����	������	�����	��	������������
����������	������	��	����	������� 	'���	��	�����������	�����	��	����$	��	��	��	��������	���	�����
����������	��	�������������	������	��	���	��������	������	��	��������	0������	��	�� 	122;4$	��
���������	��	��������� 	��	�������������	������	��	�����������	����������	���	��������	������
��	��������	��	������������	��������	�����������	�������	��	��������	��	%

��	���
%���������&''()%

��	����������	0))	1223$	���	�����	���	5������	12234 	.�	��	�������	��
))	1223$)������	: 1$	����	�	���������	����	���	��	������������	�����������	������	��	����
��������	������	���	�������	��	M�����	��	���������	�����	��	��������	���	�������/�������
�����-��N	��	���	������ 	
���	�����������	������	����	��	���	�������������	��	��������
�����������	���������	��)�������	F$	�������	��	����	���	���������	���������	��	���	����
����������	��	�����������

+%��
��
���������,�����������

��	�������	�����	��	
����	3	������������	�	����	����	�������	���������	������	�����������
���	����	�����	���	����	������������	�����������	������ 	
��	����������������	��������
���������	���	����������	�����$	���	��	��	���	��������	��	��������	���	�����������	��	���������� 	

D�	������������	�����	����	�	��������	��	���	������������	���	���	�������	���	����
��������	����	��	������	�����������	��	���	������	����������	��	�����������	��	
����	3
��������	���	�����������	�����	��	�����	��	���	������������	���	������/��	%��������$	����
��������	���	���	������	��	����	��	�����������	��	���	��������	��	���	����������

��	���������	��	��	������	��������	����������	����	������	��������	��	���	����������
��������	��	��������	����������� 	���������	��	���������	������$	��������	����	��������
����������	�����	��	������	�������������	���	��������	��	�-��������	���������	��	����������
�������	��	���	�������� 	�-����������	����	���������	��	�	���������$	������	���	����������
���������	���	����������	���	��������

D�	����	���	�-�����	���	����������	����������	��	
����	3$	��	�����	��	�����������
����������	��	���������	����	�	�������	��	��	������������	�����������	������	�����	��	�������
.�)�������	3$	�����	��	��	���	����������	�������	��	��������	�����������*	����	�����������
��������	�������	�������		�*	 	.�	����	�����$	���	��-����	��������������	��	��������	�����������	�
���������	��	���������	��	���������	���	���	�������������	��	��������	����������� 	I��������$
��������	�������	��-��	�������	������	��	����	���������

.�	�����	��	�-��������	��������	�����������	���������	��)�������	1$	���	�������	����
�����	��	�����	��	����	�������	����	���	�������	��	�-������)����%������$	���	���������	��
�������	������	������	�-�������	��	��	���������	���	�������������	=��������	�����������#	��
���������	��	����	�������� 	I��������	��������	�����	��	��������$	����	���������	�������$	�������
������	��	����	���������	��	���������

)�������	6	������	��	��	����������	���������$	������	����	��������	�����	��	��������
���� 	
��	���������	��	���������	��	���������	��	����	�����-�	��	���	������������	��	��������
�������� 	5���/����	�����������	��������	���	���������	������������	�������	������	��	����
���������

.�)�������	;$	���	�������	�������	������	��	�����������	�����	����	����� 	
��
���������	��	���������$	����$	��	�����������	��	�����������	��
���
�	��	��	������	��	�����	��
��������	�������� 	I��������	��������	�������	������	��	����	���������	��	��������� 	

'������$)�������	F	����������	��������#	�-���������	��	�-����������	��������
�����������	��	���������	����	�������	����	��	�������	��������� 	!����������	��
�-���������	��	�	�����	����	���	�������	���	�������	��	��	���	������$	���	����	����	��	����������

��	�������������	���������	��	���������	��	=
��	�������	�����-��	��	�����	�����������	������
���	��	��	����������	��������# 	

	

����������������������������	�
����
�����������������	������	������	�����������������������	�

-%���"����.��� �/
��
�����
.����

.�	�������$	���	��������	����������	���	��	��	��������	����	����������	��	���������	����	�
�������	�����	��	�������	��	�����	��	���	��������	�����������	��	���	���	����	��	���������	��
)�������	F	��	
����	3$	���	��������	����	��	�������	��	���	��������	������	��	�������� 	
����
����������	���	����������	��	
����	1

��	�����������	�����������	��	����	���	�������	������	����	����������	��������	��	������
�������������	���	���	��������	��	������	�������	�����	��	���	����������	��	
����	1 	"��������
������	����	����	�	���������	���������	���	�	�������	��	�������	�	�������	���������<���	���
�������������	�������<��	����	���	�������	����	���	�����������	��	�-��������	���������	��	����
��������� 	7��	���	����	��	����O

����	��	��	���%��	������	��	����	%������� 	���	�-���������	�����������	�������	���
�����	��	���������	����	��	�-������	���	��%�����	��������� 	8�	���	�����	����$	��	��	��������
����	���	�����	����	��	��	���	����������	����	����	���	��������� 	.�	�����������	���������	��	��
������	�������	��������	��	����	����	�������	�-������	��	���	�������� 	���	���	�����
����������	��	���������	�����	��	��������	��	�������	��	���������	���������	�-������
E�����������$	���	����	���	��������	�������	���� 	
���	��	��	����	����	���	��������	����	�	�����
������	��	���������	�������	�����	���������	�����	��	���������	����	�����$	��	�������	�������
�����	��	���	����	������	�����	0������	���	
���$	122;4 	�	�������	����������	����	�����
�-���������	��	����	M��	��	���������	��	���	�����	���������	��	����	������	���	����	��	���������	��
�	��������	���������$	��	�����	��	����������	����	��	��	��������	��	�����	��	����	���������N	0������
��	�� 	122;4

��	���	�����	��	����	�	�

����	�
�	��	���������	���	����������	����	��	��%�����	��	�����
��	������	����������	����������	���	��������#	��	�������	�	�������	��������� 	������	��	�� 	0122;4
���������	���	�������	��	��		�����
�������	�
�	��	�����	��	����	��	��������������	���������
���������	���	����������+	
���	�������	����	����	��������	����	����	����	����������*	�
�	���	$
��������,�	�
�$	������	�
�$	���	����
�$	������������ 	&������$	���	�
�	���		�������	�����	��
��������	�	����������	#	��	�����	�������	���������$	��	����	��	��������	��	�������	#	��	�
����������	��������	����	�����	��������� 	
��	��������,�	�
�	�������	�����	��	�-�����
�������	��������	�����������	��	#$	��	�����	��	����	���	�����������	��	�������	���	�������
�������	��	# 	
��	������	�
�	�������	�����	����	�����	��	���������	��	���������	���	���������$
��	������	���	�����������	��	�������	����	����������	���������$	�������	���	�����	����������
��������� 	'������$	���	����
�	�������	�����	��	�-�����	���������	��	�������	����������
��������������$	��	����	���	�����������	��	�������	���	���������	�������	�����	����������

0%��
��
����������� �
���� �����
�����

D�	����	���	����	�*�
����	��	�������	���	���	�������	�����	���������	�����	�����	��	�������
��	�	������	�����������	������ 	.�	,������	:	��	����	�������	�������	����	����	��	�����
���������	�����	��	�����������	��������� 	�	������	��	���	�����������	����	����	��	�������
�����������	��	,������	P

Q��	��	�����	��������	���	��	������	�������������	���	��������	��	������	�������	�����	��
���	������	���������	������	��	
����	1$	� � $	M�������	������N 		
��	�����������	��	������
�������	���	��������	����	������	����	��������<���	����	����	������	��	��	���������	��
��������<��	���	��-����	����������	�������	���	��������	��	����	����� 	D�	�������	���	������
��	�����
�������	�
�	���	����	����������	����	��	���	������	�������	��	��������� 	.�	���	�-�����$
���	�������	��	������	����������	�����	��	��	����	���	��������	�	�����������	��	�������	�������
������	��	�	��������	���������	��	��������	���	�����������

Michael Thuné and Anna Eckerdal

8���	���	��������	����	���������	����	���������$	���	������	������	�������	���	��	����
���	�������	���	�������������	��	�-�����	���	����	�
�	�������	�������	��-�	���	�������	������

���	���	��	���������	��	�����	��������	�����������	�����	����	�����	���	������������
�����������	��	������	����	���	�������	������	��	���	����

E�-�$	��	�������	���	������	���������	������	��	
����	1 	7��	���	��	���	��������	��
���������	��	����	�������������	���	��������	��	�������	���	�����	���������	��	����	��	���
�����������	������	��	�������� 	D�	�������	��	���	���	��������>�����	�������	��	����	��� 	
��
����	�����	��	��	�-����	���	��������	��	���������	�����	��	�������	������������$	���	��	�������
�����	�����	����	������������	�����	���	�������	��	��	���������	�	��������	�������	���	��
����������� 	
���	���	����	���	�����������	���	��������	��	���	���	����������	�������	�������
������������	��	�	�����������	�����-�	���	�����	�������	������������$	���	����	���	�����
������������	���	�������	��	���	�������	��	=�������#

�	�������	����	���	�������������	���	��������	��	�-��������	�����������	���������	��
���	�����������	��)�������	;	��	
����	3$	��	��	���������	����	�

�	����������	��������	��
�������	�����������	��	����������	��	���	�������� 	.�)������	: 1	��))	1223	0�����	���
5������	12234$	��	��	������	����	���	�����������	������������	�����������	������	�����	M���	������
������	��	������$	��������	���	�������N	���	����	M�������������	��	���	�����������	�������	��
�����������	����������	�����	������	��������	��	������	���	���	���������	���������	��
�����������	�������	��	����
�	�������	��	�����	���	�����N 	
�	����	��	��������	���	������
�����������	��������	��	���	���	������������	��	����������	�������	�������	��	�	����������
���$	����	�������	��������	���	�������	������$	���	��������	�������	��	���������	�����	��
������ 	��	�-������	�����	����	����	��������	��	�����	���	����	�����������	����	�����$
�����	�����	��	��	���	��������	���	��-�	�	����������	���$	�����	����	��	������	��	���	���
��������������	���������������	��	�	����������	�������� 	7���$	M����������N	������	��
�����������	����	���	������	����������#�	�����������*	������	��	����������	��������	��	���
�������	���	���������	�	�������	������	������	���������	��	�����	�������	��-�

1%���������������

D�	�������	���	�	�����	�����	�����	��	����	���	��	���	�����������	����	��	���	��������
���������� 	�	��������	���	����������	���	��������	��	�������	���	������	����������	�������
���	���	������	�������	��	���������$	��	����	��������	��	�����������	��	������	�����	��	���
������	���������	��	
����	1<M���	������	��	�	�������N<���	��	���	��	�������������	��	���
��������	�������	���	���	�����	����������	��	����	�����$	M��-����	��������������N	���	M������N

I�����	���	���������$	�������/����������	���	�������$	���	��������	������	����	�	�����/
����	C���	�����	Radio$	������������	��	��	����� 	
��	������	����������	�������	���	����	��

���	����	��	���	���	������� 	
��	��������	���	������	��	�	�������	�����	RadioTest 	
���

����	��%�����	��	����	�������	��	����	�������	���	��	�������	���	�������	��	�������	������
'��	�-�����$	����	������	������	���	���������	r1.switchChannel(2,time) ��

r1.switchChannel(1,time) 	
���	�����	������	��	���	�������	��-�	���	�	�����������

������	��	�������	������$	������	����	���	�����	r1	�����	��	��	�	����	�������	�������	��	��

�����	�����	������� 	D�	�����	����	����	�����	����	��������	��	�-��������	�������	��-�	���
�������	������	��	���	��������	����������

��	���	����	���������	�	����	��������	���������	��	���	������	������� 	
��	��������
����	��%�����	��	���	�	��������	����	����	�-������	RadioTest 1	
���	������	���

�����������	���	���	��������	��	���	�	������	�������������	��	���	��������	�������	�������	��-�
���	�������	������	��	������	��	������	���	����	�����������	��	���	�������	��-�	��������	���
������	��	�������	����	��	�-�������

1	�-���������	���	���/),	�-�����*	
��	��������	��	�	��������	����	����	������	���	����	��	����	�-�������	��
�������� 	�����	����	����	��	��	��������	��	�-�����	���	������	��	���	����	������	��	���	�������K�	�������	������

	

����������������������������	�
����
�����������������	������	������	�����������������������	�

�	������	���	������$	��	�����	���	��������	��	�����	�	�����	����������	�����	�����	���	���
������� 	
��	%�������	��	������	���*	M7��	���	����	�������������	��	�����������	���������
��	�	������	��	����	���	������	������	���	���	�������ON	����������$	11	��������	������	��	��
�����

�	��������	��	�����$	3;	��������$	��������	��	��������	������������� 	E������$	�������
��������	�-�������	����	���	���	���	������	����	��	���	�	������	�������������	��	���	��������
�������	���	�������	��-�	���	����	�������	����	���	�������	��	�-������

'��	�-�����$	���	�������	��������*	M�����	�����K�	���	������� ��	�������	�����/����
������	����	.	����������	������	����	���	�������	����	��	��	������N 	�������	�������	�����*	M.�
����	����	���	�����	����	���	������	�-�������	�����	����	����	���	�������	���N 	��	�	�����
�-�����$	���	�������	�-���������	����	M���	G������H	�����	���	���	����������	��������
������	�	���	�������	������	���	���	�������N

��	���������	P	��������	�������	���	��	����	���������	����	���	���	������� 	
.�	����������$	���	�������	��	���	�����	�����	��������	����	���	���	�����������	������	�

�����	��	��������	�����	���	���	����������	M�������	��-�N	���	M�������	������N	�����	��
���������$	��	����	��	���������	�������	�����	���������� 	
��	��������	��	���	��������	��	���
�����	�����	�-���������	����	���	���	���	��������	�����	������������� 	.�	��������$	��
������������	��	���	%���������	�����	�������	��������	�������	�����	��������	�-��������	��
�����	����������	����	����	��������	����	��	���	���	���	����������	���	�����	���������	������	��
��	������	��	���	���

2%�������������

�	���	�	�������	�������������	��	������	��������#	�����������	��	��������	�����������$	��
���������	����	���	����������	��	���	���	��	��	������������	�����������	������ 	�
����������������	��������	��	�����	����	��������	��	���	����������	��	�����������	����������
��	
����	3

.�	�	������	����$	��	�����������	���	����������	��	
����	3$	��	��������	���������
����������	��	��������� 	
����	1	����������	���	�������	��	����	����

'������$	��	���������	���	���	��������	��	���������	����������	��	������	��	�� 	0122;4
�����	��	����	��	��������	��	��������	�����������$	��	�����	��	����	�������������	���	��������
��	�������	���	����������	���������	��	
����	1 	
��	�������	��	���	�����	�����	��������	�����	���
�����������

.�	����������$	���������	������	��������	�������	����	���	��	����	��	���������	���	����������
����	�����	���	�������� 	'����$	
����	1	��	��������	�������	���	��$	�����	��	�����	���	�������	��
�����	���������	����	�����������	��	�����	����������	����������

,�������$	���������	������	���	��	����	��	�	��������	�����	���	��������#	������	��
�����������	���������� 	
����	��	�	����������	��	��������	��	���������	����	��������	���	������
����$	���	�����	��	�����	���	�����-��	���	����������� 	7���$	��	����	���������	�

�	����	��
�����	��������	��	���������	��	�����������	��������� 	
��	�����	�����	��������	�����$	����
���������	�������	���������	��	���	���$	����	�����������	������� 	
��	���	�������	������	��������
��	���	���������	��������	��	�����������	���	��	�������	�����	���	��������	�-���������	��������
��	���	��������	����	��	���������	����	���	��������	�����	���	���	���������	�������������	�����
������	��	���	���	����������� 	
�	���������	��	����	�-����	���	���������	��������	�����������	��
���	��������	������	�����$	��	�����������	��-�	����	�����	��	��	��	������	���	�����	�����	���
�������	�	����	�������������	���������	����	��	�����	�����	��	���	����	��	�	Q�������	,����	0��
Q�	��	�� 	122;4 	
���	����	��	������	��������	���	����	��	���������	��������	�����	�����������
���������

Michael Thuné and Anna Eckerdal

5���������

&����$, 	� $	3991 	-��������	
���
���
 	
�����0!�I4 	R���������	?���������$,�����

&����$) $	&���������$	Q 	7���$	C $	�������$) $	5���������$	� $	���	,�������$. 	122;
D���	��	�-����������	���	���	��	��������	��	������� 	.
������
�����
�
�	�
�
�����
�
���/����	�
�$	6$	3;6S3A2

��������$	� 	���	&�������$	� $	122F 	D���	I���	.�	
���	��	Q����	K!����������	
�������KO	��0
#�
���������
��	���(�	���	����	�
����%

��	����/����	�
��1���������
�2��
� 	E��
L���*	�)�	!����$36FS3;6

�����$	R 	���	5������$	� $	��� $	1223 	'����	5�����	��)��������)��������	1223<)�������
,������ 	3%4�.
������
��/����	�
����1��
���������%

��	���$	3064

Q�$	� 	Q $	������$	' $!���$	� 	' $	���	!���$	D 	L $	122; 	
�����	�	��������	��	�������� 	��0
������	���	
���	0122;4$	3P9S11F

������$	' 	���	&����$, 	� $	399: 	-��������������������� 	������$	EC*	Q�������	�������
����������

������$	' $	5�������$? $	���	
���$	� 	& 	� $	122; 	
��	�����	��	�������� 	��0	������	���	
���
0122;4$	6S;2

������$	' 	���	
���$	� 	& 	� $	��� $	122; 	%�����

�����
���������	���������
����������+
������$	EC*	Q�������	�������	����������

��)������$	� $	��������$	" $	I��>$	I $	R�>����$	� $	7����$	I $	@�������$	L 	& /I $	Q�-��$
) $	
�����$	Q $?�����$. $	���	D����>$	
 $	1223 	�	�����/��������$	�����/�������������
�����	��	����������	��	�����������	������	��	�����/����),	�������� 	��5%�/�6����	��
660;4$	31FS3P2

5�����$	� $	5�������$	C $	���	5�������$	E $	1226 	Q�������	���	��������	�����������*	�
������	���	���������� 	%

��	�����������/����	�
�$	36014$	36:S3:1

	

����������������������������	�
����
�����������������	������	������	�����������������������	�

3)�������	�����������	��	�-���������	��	��	���	����	�����������	��������	���	�������
�������	��-��

1)�������	�����������	��	����	�	���	��	��������	����	�������	������������	��	���	�����������
��������	��	����	����	������	����	���	�������	��	�-������

6)�������	�����������	��	����	��	�	���	��	��������$	��	�����$	���	��	��������	��������
�����������	��	�-���������	��	���������	��������	��������	����	��	�����	����	������	��
��������	����

;)�������	�����������	��	����	��	���������	�����	����	���	��������	����	��������
�����������	��	�-���������	��	�	M������N	��	���������	����	�������	�������	������� 	

F)�������	�����������	��	����	��	�	���	��	��������$	��	������	��������$	�������	��	���
����������	��	��������	��������	����	��	�����	����	������	��	��������	���� 	.�	��������	��������
�����������	��	�-���������	��	�	�����	����	���	��	����	�������	���	�����������	������$	���	���
�����	��������	����	��������	�����������

����	3*	,������	��	����������	��	�����������	��	��������#	%������������	���������	����	��	�-����������	��������

�����������

Michael Thuné and Anna Eckerdal

��	��-����	��������������	��	�	�������	

��	������	��	�	�������

��	�����������	���������	��	�	�������

��	�������	��	�����	���	�������	��	�	��������

��	�������	�����-��	��	�����	�����������	������	���	��	��	����������	��������

����	1*	'���	����������	��	���������	�������	��	��������	�����������

	

Paper V

What Does It Take to Learn ’Programming Thinking’?

Anna Eckerdal
Department of Information

Technology
Uppsala University

P.O. Box 337, 751 05 Uppsala,
Sweden

Anna.Eckerdal@it.uu.se

Anders Berglund
Department of Information

Technology
Uppsala University

P.O. Box 337, 751 05 Uppsala,
Sweden

Anders.Berglund@it.uu.se

ABSTRACT
What is ’programming thinking’? In a study, first year
students were interviewed on their understanding of what
learning to program means. Many students talked about
learning to program in terms of learning a special way to
think, different from other subjects studied. Many of these
students had problems in describing what this special way
to think included. The analysis of the interviews revealed
some features of this thinking, as expressed by the students.
In this paper we discuss and analyse ’programming thinking’
using phenomenography as our research approach [7]. Our
results are coherent with Hazzan’s research on the learning
theory ’process-object duality’ [4], but points to problems
in learning of object-oriented programming not indicated in
’process-object duality’. In comparing the results form our
own study with this learning theory, we discuss what this
might mean in learning object-oriented programming.

Categories and Subject Descriptors
K.3.2 [COMPUTERS AND EDUCATION]: Computer
and Information Science Education—Computer science ed-
ucation; D.1.5 [PROGRAMMING TECHNIQUES]:
Object-oriented Programming

General Terms
Human Factors, Theory

Keywords
Phenomenography, process-object duality, levels of abstrac-
tion

1. INTRODUCTION
What is ’programming thinking’? When interviewing stu-

dents about their experiences of learning to program, many
of them expressed that programming includes a different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICER’05, October 1–2, 2005, Seattle, Washington, USA.
Copyright 2005 ACM 1-59593-043-4/05/0010 ...$5.00.

way of thinking. This ’programming thinking’, as some of
the students said, seemed to have an almost magic charac-
ter. The students had difficulties to describe and get a grip
on how to apply this kind of thinking. The present paper
discusses this and related issues.

In our study, first year students taking an object-oriented
programming course were interviewed on what it means to
learn to program. Through our analysis we found that there
are certain levels of understanding that seemed necessary
for reaching a level of abstraction where concepts can be
used for analysis and design in object-oriented programming
tasks. We argue that some understanding scaffolds this level
of abstraction, and that there are ways for educators to fa-
cilitate for the students to reach such understanding. These
may include problem solving and standard methods in pro-
gramming.

The understanding gained from this study is important,
since object-oriented programming languages are used in
university courses at all levels throughout the world. Much
has been reported on the experiences of teaching on the
object-oriented paradigm. Object-oriented programming is
experienced as complex and difficult to teach [5] [8]. One
important aspect of learning the object-oriented paradigm
is that it is built on some fundamental abstract concepts,
and there is a need for students to reach certain levels in
their understanding of these concepts.

Section 2 gives a theoretical background for the study and
the analysis performed. The study and the results are then
presented in section 3. In section 4 we relate our results
to previous pedagogical research [4] and discuss implication
for teaching. We show that our results and the pedagog-
ical research illustrate the same progression in learning of
abstract concepts. The current project, as well as the work
of Hazzan, report about the same phenomenon, but using
different approaches. This strengthen the conclusions. Our
results however put a searchlight on problems not indicated
in the research mentioned. There are students who seem to
have problem to discern the methods and procedures avail-
able when solving problems in object-oriented programming.
We argue that these procedures can act as bridges to more
abstract understanding of concepts in object-oriented pro-
gramming. It is thus important for educators to facilitate
for students to discern such procedures. This discussion is
closely related to the question what does the students’ expe-
rience of ’programming thinking’ mean when learning object-
oriented programming? which is the main focus in the study
presented here.

135

2. RESEARCH APPROACH

2.1 Phenomenography
Phenomenography aims at describing the variation of un-

derstanding of a particular phenomenon found in a group
of people. Marton and Booth discuss [7] the idea of phe-
nomenography:

The unit of phenomenographic research is a way of
experiencing something, [...], and the object of the
research is the variation in ways of experiencing phe-
nomena. At the root of phenomenography lies an
interest in describing the phenomena in the world as
other see them, and in revealing and describing the
variation therein, especially in an educational con-
text [...]. This implies an interest in the variation
and change in capabilities for experiencing the world,
or rather in capabilities for experiencing particular
phenomena in the world in certain ways. These ca-
pabilities can, as a rule, be hierarchically ordered.
Some capabilities can, from a point of view adopted
in each case, be seen as more advanced, more com-
plex, or more powerful than other capabilities. Dif-
ferences between them are educationally critical dif-
ferences, and changes between them we consider to
be the most important kind of learning. [7, p. 111]

And later:

[...] the variation in ways people experience phe-
nomena in their world is a prime interest for phe-
nomenographic studies, and phenomenographers aim
to describe that variation. They seek the totality of
ways in which people experience, or are capable of
experiencing, the object of interest and interpret it
in terms of distinctly different categories that cap-
ture the essence of the variation, a set of categories
of description [...] [7, p. 121-122]

The object of interest in a phenomenographic study is thus
how a certain phenomenon is experienced by a certain group
of people. An empirically based insight in phenomenography
is that there is a limited number of qualitatively different
ways in which a certain phenomenon can be understood.

Phenomenography is an empirical, qualitative research
approach, often used in educational settings. Data can, as
in the present study, be gathered in the form of interviews.
The interviews are transcribed and analysed. Researchers,
in this case two, analyse the data in order to find qualita-
tively different ways subjects understand the phenomenon
uncovered. The researcher formulates the essence of the
understanding as categories of description. It is important
to state that the analysis is on a collective level, not indi-
vidual students’ understandings. This is done by reading
and rereading the interviews, in context, but also by decon-
textualising excerpts, comparing them and grouping them
together in different categories. The resulting description
of qualitatively different categories of understanding consti-
tutes the outcome space of a phenomenographic analysis. In
this way we thus identify aspects of the understanding of the
phenomenon, from the students’ perspective.

3. THE STUDY

3.1 The Interviews
A study has been performed where 14 students were se-

lected for a one-hour tape-recorded interview. The students
participated voluntarily in the study, but got one movie

ticket each as a sign of recognition. The students enrolled
were in a program called Aquatic and Environment Engi-
neering. This educational program was selected because
programming is not the main focus for the students, and
the students are thus representative for a large number of
students studying programming. The students had just fin-
ished their first programming course, a mandatory course
giving 4 credit points. One credit point at Swedish uni-
versities corresponds to one week full time studies. The
programming language used in the course was Java.

Most students taking part in the course filled in a ques-
tionnaire about previous programming knowledge, educa-
tion, work experiences and gender. On the basis of these
answers, we selected interviewees that represented as broad
a coverage as possible of the factors mentioned.

The interviews were semi-structured [6] with a small num-
ber of pre-prepared questions, intending to approach the
phenomena of interest in different ways to give the opportu-
nity for the students to express as much of their understand-
ing as possible. The primary question asked to the students
was:

• What do you think learning means (involves) in this
course?

Other questions were:

• What do you experience this course to be about?

• What has been most important to you in this course/
Why has this course been good for you?

• What do you think was the aim for you when learning
to program?

• What has been difficult in the course?

3.2 The Phenomenographic Analysis
One researcher read and analysed the transcribed inter-

views, looking for qualitatively different ways to understand
the phenomenon what does it mean to learn to program ex-
pressed in the data. The second researcher studied quotes
from the students and the categories identified by the first
researcher. Five different ways to understand the phenomenon
found in the data were agreed upon. (A discussion on trust-
worthiness in phenomenography can be found in [1].)

These categories are presented in Table 1. The categories
are inclusive. This means that an understanding expressed
in one of the later categories includes the understanding ex-
pressed in the former categories. The categories are further-
more hierarchical in the sense that the new understanding
expressed in the later categories are more advanced.

Three of these are directed towards the computer, the
programming language, and programming in general, while
two are directed outwards, towards the society with its pro-
grammed artifacts and the world of the programmer. Each
category is described and illustrated with excerpts from in-
terviews. In the quotes, the interviewer is labeled I, and the
students A, B, C etc. The table and the comments serve
as a background for the discussion in this paper. We will
focus on categories two and four. The results are then com-
pared with the learning theory ’process-object duality’ from
mathematics. A more elaborated work on the results on stu-
dents’ understanding of what it means to learn to program,

136

1. Learning to program is experienced as to understand
some programming language, and to use it for writing
program texts.
2. As above, and in addition learning to program is
experienced as learning a way of thinking, which is
experienced to be difficult to capture, and which is
understood to be aligned with the programming language.
3. As above, and in addition learning to program is
experienced as to gain understanding of computer
programs as they appear in everyday life.
4. As above, with the difference that learning to program
is experienced as learning a way of thinking which enables
problem solving, and which is experienced as a ”method” of
thinking.
5. As above, and in addition learning to program
is experienced as learning a skill that can be used
outside the programming course.

Table 1: Categories describing the students’ differ-
ent understanding of the phenomenon What does it
mean to learn to program?.

including the other categories in Table 1, will be presented
in later work.

Before describing these categories, let us note that stu-
dents’ experiences of what it means to learn to program has
been investigated in some previous studies [2, 3]. In partic-
ular, category two and three have not appeared explicitly
in the previous studies. Since our focus is on category two
and four, the other categories will be only briefly described
in this paper.

3.2.1 Learning is to understand some programming
language, and to use it for writing program
texts

The first category summarizes an understanding that is
directed towards the programming language itself, to un-
derstand it and to be able to use it. It is expressed in such
a way that students’ description of learning the details of
syntax gives the feeling of knowing how to program. Other
students focus on the ability to write short pieces of pro-
grams, ’program chunks’, as characterising what learning
means. To sit by yourself and code is desirable and appre-
ciated. The skill to code in Java and to remember details
in the language summarize this understanding. This un-
derstanding is presupposed in the other understandings the
students express.

Student N emphasizes the importance of detail knowledge
of the syntax, and learning by heart. Answering the question
what it means to learn in this course, student N answers:

N: (giggle) Yes, but to learn must mean to un-
derstand and... but it doesn’t mean that, be-
cause we have done the mandatory assignments
in pairs, so it doesn’t mean to sit beside and look
when the other person does it, of course. Yes but
to pick up what it’s about, to understand what
it’s about and hopefully remember something.
I: What is it about then?
N: Well (giggle), don’t know... difficult to say.
I: [...] what is your opinion of what it is all about?
[...]
N: What it is all about, I think it is all about

learning, partly the commands, fundamental com-
mands I use, I have to remember them [...]

Student B emphasizes learning by coding on your own.
The aim with the studies is expressed as being able to code
on your own without any help:

I: What do you think it means to learn in this
course?
B: It probably means that I’ll be able to sit and
do small simple things on the computer by my
self. That I’ve learned that I think. [...] Eh, but
otherwise it’s that I’ll know the foundations and
that I’ll kind of be able to try myself I suppose.

3.2.2 Learning is a way of thinking, which is experi-
enced as difficult to capture, and which is un-
derstood to be aligned with the programming
language

A common way to express what it means to learn to pro-
gram, or what is missing in their understanding of program-
ming, can be described as ’programming thinking’. Approx-
imatly half of the students in the study talk about the actual
thinking behind programming as something specific, an abil-
ity one has to acquire to be able to program. Many of these
students seem to have problems identifying what ’program-
ming thinking’ involves. Some express themselves as if it is
something magic, difficult to catch.

Category two in Table 1, Learning to program is experi-
enced as learning a way of thinking, which is experienced
as difficult to capture, and which is understood to be aligned
with the programming language, summarizes this understand-
ing. This second category includes the first one, Learning to
program is experienced as to understand some programming
language, and to use it, but is more developed. An exam-
ple that illustrates that the first category is included in the
second is when student D says: “you’re supposed to get an
understanding of the actual thinking when you program.”
The student discusses programming, but the focus is on the
special thinking that is required. The understanding is, like
in the first category directed toward the programming lan-
guage but also toward the logic and thoughts behind the
language. In this spirit some students discuss the differ-
ences between human beings and computers as something
crucial to grasp in the learning of programming. Student C
talks about what is most important in the course:

C: ...it’s probably the way of thinking, that is
when you program, how you are supposed to
think and computer code and how it is inter-
preted, that’s the difference to how human be-
ings think.

Some students use the word ’logic’ when they discuss how
to think when they learn to program. This ’logic’ is dis-
cussed by student A when he/she is asked what is most
important in the course:

A: It is the understanding of how the program-
ming language is built rather than the specific
command, if you want to do this, it’s more the
thinking itself, the logical thinking. Everything
you need to know you must think of when it
comes to programming. It’s kind of, yes, it’s very

137

exclusive, everything is simply very detailed and
you’ve kind of got a small insight into what it’s
like to program and how the computer works like
that, or the software.

Student A articulates that the problems with logic are
the precise demands of the syntax of the programming lan-
guage. Student A also connects this special thinking to how
the computer itself works, not only the features of the pro-
gramming language. It is interesting to compare this with
another statement from student A:

A: Yes, okey. Well, it’s a little bit interesting.
I can, you kind of get an eye-opener, [...] when
you kind of sit with the computer, that you re-
alise how terribly much you can do, that you can
do yourself with the help of a keyboard and this
I have got an understanding of in the same way
as I really understand those who are kind of con-
firmed programmers and think this is so much
fun.

Student E expresses ’programming thinking’ as different
choices to reach a specific goal. He/she answers the question
what it means to learn in this course:

E: Well it’s like thinking programming I think.
Understanding things, puting together and how
you make things work sort of and accomplishing
what you want yourself. There are also many
roads to take yourself to the goal.

Student D, who is enrolled in the program Chemical Tech-
nology Engineering, describes this special way of thinking as
making it difficult to know how to construct a program, to
understand concepts, and that it also causes problems in
knowing how to go about studying. Student D talks about
programming thinking in a way reminiscent of magic. On
the question what has been difficult in the course student D
says:

D: Yes, I think it has been difficult with con-
cepts and stuff, as to understand how to use dif-
ferent, how one should use different things in a
program. And I actually think that most of it
has been difficult, but this very thought behind,
it feels as some people just understand program-
ming, it’s something they... but I also think that
some people who have been programming before
have probably learned to think like that. But I
still think the course, it’s difficult for a novice to
sort of get a grip of how to study when you im-
plement the programs and like that. (Giggle)...

Student D also discusses the reputation the course has
among the students in his/her own program, and compares
programming with other subjects studied.

I: Where do you think the problems lay?
D: I don’t know. I guess, I think everyone has
kind of a dread of programming (laughter) it’s
kind of, in my class...
I: Really...
D: ...no but... (laughter)
I: ...more than math?

D: Yes really, much worse. No but it’s kind of,
in my class...
I: Chemistry is it there...
D: Yes my class is chemistry, those who are doing
the second year now, it’s this very course that
most of the students haven’t passed. More than
all courses. Everyone just goes, poor you, are
you taking programming, like! (Laughter from
both). So I’ve been scared by them.
I: But you have studied chemistry.
D: No then you get so scared and just Oohh. I
guess, it’s just a rather different way of thinking.
I: Now that you have taken this programming
course could you put your finger on something
you think is different than than chemistry... or
you must have taken math too I suppose.
D: Sure, I’ve taken many math courses but math
is kind of logical and you understand it but this
is... no I don’t know (laughter). No but I kind of
think it’s easier to study math. Then you often
have something creative to base it on, or you
don’t, but you learn more methods and kind of,
there is some theory behind. Here you feel as
if you only learn a lot of examples. You know,
we’ve gotten so many examples of everything, in
some way it feels as if you don’t understand the
base from the beginning [...]

Student D experiences a lack of method and theory when
learning to program compared to when learning mathemat-
ics. Mathematics is thus experienced as an easier subject to
study.

Student C also makes a comparison between how to think
in programming and how to think in other subjects:

I: Yes. You mentioned something about ways to
think.
C: Mm. Yes, that, what should you say about
this? But exactly this kind of, that you have to
be so precise in everything you describe to the
computer that you want it to do. It’s not very
open for interpretations. [...]
I: Do you think it’s a different way of thinking
compared to what you’ve met in other courses?
C: Yes we have mostly done math until now ac-
tually and there it’s quite different. Then you
think on you own, kind of, it’s enough to have
a way of thinking just for me. Now it must suit
a way of programing as well, it’s more like I get
shaped into it, thinking like the computer, or like
Java is written, but in math it’s enough kind of
that it works.
I: Does it mean that you feel more free kind of
to think in math?
D: Yes I definitely think so.

3.2.3 Learning is to gain understanding of computer
programs as they appear in everyday life

Some students talk about the programming they come
across in everyday life. Category three in Table 1, Learning
to program is experienced as to gain understanding of com-
puter programs as they appear in everyday life, summarizes
this understanding.

138

Student D answers the question what was most important
in the course:

D: [...] You just think of things like when you
withdraw money from a cash point, kind of, then
you start to think, okey, it’s these steps, figures
and the sum and kind of... if there is money
in the account and so on. No but those things
that one starts to think a little about how certain
things are built and exactly, yes, such things as
when you’re going to withdraw money or differ-
ent games or such.

Student C answers the same question:

C: Yes, no I don’t know. It probably will be use-
ful perhaps now and then or the understanding
of how devices work in general. And machines.
[...] No but there are many things that are run
by computers today undeniably so that, it’s some
kind of understanding how things work. It’s in
cars, computers, lifts and everything. So that,
yes, no, a good overview.

The quotes from the students above express a vague and
shallow understanding of programming as something they
meet in everyday life that might be of some use, because
of the wide spread of computer programs. The third cate-
gory includes the first two categories in Table 1 because it
discusses computer programs and the thinking used when
building programs. Despite its superficialness it bridges to
the last two categories found in the data when reaching
out beyond the programming language and the course itself.
The last two categories in Table 1 express understandings
that are richer than the understandings expressed in the first
three categories.

3.2.4 Learning a way of thinking, which enables
problem solving, and which is experienced as
a "method" of thinking

The category expressed in category four in Table 1, learn-
ing a way of thinking, aligned with the programming lan-
guage which enables problem solving, talks about learning
to program in terms of problem solving. It is closely related
to the understandings expressed in categories one and two.
Programming knowledge is more or less presupposed, and
’programming thinking’ is connected either to the course and
course context, or to a need not limited by the course itself
with its specific language learned. By taking the discussion
outside the course context the understanding expressed in
category four reaches beyond the first two categories and
includes and builds upon the third category which discusses
programming as it is met in everyday life. ’Problem solving’
is discussed as an ability useful both within the course and
outside of the course context.

Student G discusses what it means to learn in the present
course:

G: To get to try, like, you learn to think in a
special way, you learn problem solving. [...] It’s
problem solving. With the mandatory assign-
ments, that is the difficult part, this you can say
at least I think so.

Notice that student G mentions problem solving at the
same time as he/she talks about learning a certain way to
think. Problem solving is seen as part of ’programming
thinking’.

Student K discusses problem solving as an ability sepa-
rate from the programming language learned in the course.
When answering the question what it means to learn in the
present course student K says:

K: [...] You know, it’s good to have this kind of
courses because you get to kind of exercise prob-
lem solving. That’s actually really good. You
have a problem that you solve in different ways
and then you perhaps find the best way. That’s
one of the central parts I think. Then that you
must write in some programming language, that
you can perhaps do in any language. But exactly
the problem solving, the way to handle problem
solving, that’s what I important think is impor-
tant.

Student C answers the same question. He/she focuses
on problem solving as meaning certain types of problems
appearing in the course. Student C also discusses problem
solving as an ability which might be useful after the present
course:

C: I don’t know... I guess it’s actually to solve a
certain type of problem, it’s rather like the math
courses. Then learning different methods to solve
them in different ways. Much like that, if you
look back at the course it’s not much actually but
very, very fundamental. So to... get an overview
and a basic idea of what it’s about and that you
can read on your own whenever you need.

3.2.5 Learning is a skill that can be used outside the
programming course

The last category in Table 1 is Learning to program is ex-
perienced as a skill to use outside the programming course.
This understanding presupposes the understandings in the
previous categories. The ability to know and use a program-
ming language, as expressed in categories one, two and four,
are clearly expressed, but no longer the focus. The focus has
moved outside the course and course context. The purpose
of learning to program is not vaguely expressed as in cate-
gory three. The students can clearly discuss why they want
to learn to program and how they will use this knowledge
after the course. Whilst this understanding is expressed in
different ways by different students, what is common in the
students’ expressions is that the knowledge acquired is seen
as something the student believe will prove useful later on,
in further studies or in working life. Programming is expe-
rienced as a tool that will be beneficial for the student even
after the course.

Student C focuses on the use of Java knowledge when
learning other programming languages. Student C answers
the question what he/she thinks the course is about:

C: [...] But it feels as if you get a better grip on
most languages, if you want to study C it will be
easier after this course.

Student E also emphasizes the importance of indepen-
dence. Knowledge is clearly described as a tool for his/her

139

own success, to be used to manage the working life bet-
ter. Student E answers the question what he/she thinks the
course is about:

E: [...] I guess, it’s ... learning to think like a
programmer

Later in the interview:

I: What’s the point of learning to program [...]?
E: Yes but it’s that the more you know about
computers the less dependent on others you’ll be,
sort of.
I: I see.
E: I don’t know, if you work somewhere later and
have some insight into things, then I think it’ll
open a window so that you know what it’s about
at least even if you don’t, I mean, it’s the pros
that will deal with the real things.

Students who express an understanding belonging to cat-
egory five, have managed to place the course and the course
context in their own world and thinking about their future.
Learning to program is experienced as meaningful for them-
selves, even though the reasons for this vary.

4. DISCUSSION
Table 1 presents the results of the study as qualitatively

different ways of understanding of what it means to learn to
program. We argue that it is crucial that the students reach
category four, Learning is a way of thinking, which enables
problem solving, and which is experienced as a ”method” of
thinking. In the understanding described in category two,
the students have noticed that a special way of thinking is
required, but not what that is. In category four, on the
contrary, the students have realized that it has to do with
problem solving and a systematic way of thinking. The in-
terview excerpts indicate clearly that students who express
an understanding corresponding to category two feel con-
fused about programming.

Before we continue to discuss our results we want to point
at the relation between the categories of understanding iden-
tified by us, and the discussion by Hazzan concerning ’process-
object duality’ [4]. This duality goes back to work by Piaget,
and was developed in mathematics education to discuss the
idea of reducing abstraction. Hazzan discuss this in terms
of a passage from the ’process conception’ to the ’object
conception’ 1:

Process conception implies that one regards a
mathematical concept “as a potential rather than
an actual entity, which comes into existence upon
request in a sequence of actions.” (Sfard, 1991,
p. 4). When one conceives of a mathematical no-
tation as an object, this notation is captured as
one “solid” entity. Thus, it is possible to exam-
ine it from various points of view, to analyze its
properties and its relationships to other mathe-
matical notations and to apply operations on it.
[4, p. 107 - 108] [9]

1When refering to our results, we will use the term ’cate-
gory’, while when refering to Hazzan’s research, we use the
term ’conception’ to be consistent with her original termi-
nology.

She concludes that according to these theories, “when a
mathematical concept is learned, its conception as a process
precedes - and is less abstract than - its conception as an
object”. It is thus a natural process when learning abstract
concepts to start at the ’process conception’. The learning,
in terms of process-object duality assumes however a passage
from ’process conception’ to ’object conception’. This is the
desirable development also when learning computer science,
including object-oriented programming.

Hazzan speaks of ’canonical procedures’. These are ways
for the students to reduce abstraction level when dealing
with concepts in different subjects. She writes:

A canonical procedure is a procedure that is more
or less automatically triggered by a given prob-
lem. This can happen either because the pro-
cedure is naturally suggested by the nature of
the problem, or because prior training has firmly
linked this kind of problem with this procedure.
The availability of a canonical procedure enables
students to obtain a solution without worrying
too much about the mathematical properties of
the concepts involved. It seems that this techni-
cal work gives students the assurance of follow-
ing a well-known, step-by-step procedure, where
each step has a clear outcome. In contrast, rely-
ing on abstract reasoning, for example by explor-
ing properties of concepts or by relying on the-
orems, may be shaky mental approach for the
students. Using the process-object duality ter-
minology we may say that solving a problem by
relying on a canonical procedure is an expres-
sion of process conception of the concepts under
discussion; solving a problem by analyzing the
essence and properties of concepts is an expres-
sion of object conception of the concepts under
discussion. [4, p. 108]

The present study has its focus on students’ understand-
ing of what it means to learn to program, and more precisely
to learn object-oriented programming. The process-object
duality is of immediate interest in a course where we in-
troduce abstract concepts like object and class early in the
teaching, and where the understanding of these and other
object-oriented concepts are fundamental for the rest of the
course and for the ability to learn to program. Programming
is a skill, but requires also a deep understanding of abstract
concepts. ”[A]nalysing the essence and properties of central
concepts” in object-oriented programming is very much in
line with the analysis and design phase in a programming
problem. Analysis and design are abstract skills that belong
to an ’object conception’ that requires a good understanding
of central concepts.

In object-oriented programming as in mathematics there
are standard solutions to certain type of problems, ’canon-
ical procedures’ to learn and discover. They are used by
experienced programmers, and necessary for the simplifica-
tion and speed up of the work. It is thus desirable to help the
students to discern such procedures. In this discussion we
want to compare the students’ discussion on ’programming
thinking’ when learning object-oriented programming, with
a discussion on ’canonical procedures’. Many students men-
tioned ’programming thinking’ as something specific, differ-
ent from other subjects they had studied. Student D is an

140

example of this. He/she compares programming with other
subjects studied.

D: [...] I guess, it’s just a rather different way of
thinking.
I: Now that you have taken this programming
course could you put your finger on something
you think is different than than chemistry... or
you must have taken math too I suppose.
D: Sure, I’ve taken many math courses but math
is kind of logical and you understand it but this
is... no I don’t know (laughter). No but I kind of
think it’s easier to study math. Then you often
have something creative to base it on, or you
don’t, but you learn more methods and kind of,
there is some theory behind. Here you feel as
if you only learn a lot of examples. You know,
we’ve gotten so many examples of everything, in
some way it feels as if you don’t understand the
base from the beginning [...]

Compare this when student C discuss what it means to
learn in the present course:

C: I don’t know... I guess it’s actually to solve a
certain type of problem, it’s rather like the math
courses. Then learning different methods to solve
them in different ways. Much like that, if you
look back at the course it’s not much actually
but very, very fundamental.

Student C, who expresses an understanding belonging to
category four has on the other hand obviously discerned
’canonical procedures’, and has less problems in his/her learn-
ing. Student C has obviously reached the level of ’process
conception’, and seems to have reached further in his/her
understanding.

Student D on the other hand has not even reached the
level of ’process conception’. He/she explicitly finds it sim-
pler to study mathematics because there they learn methods
to use, which he/she obviously not has been given, or dis-
cerned in programming. Student D furthermore discusses
how troublesome it is to know how to study programming.
”But I still think the course, it’s difficult to for a novice
to get a good grip on how to study”. This points to that
student D is looking for ’canonical procedure’ as a study
technique, but has not found such to the extend he/she asks
for. Student D also explicitly express that he/she founds it
problematic to understand concepts within the subject and
connects this to the ability to program ”Yes, I think it has
been difficult with concepts like that, as to understand how
to use different, how one should use different things in a
program. And I actually think that most of it has been dif-
ficult, but this very thought behind, it feels as some people
just understand programming”.

In the understanding described in category four the stu-
dents have realized that is has to do with problem solving
and a systematic way of thinking. Using Hazzan’s termi-
nology, category four corresponds to ’canonical procedures’,
important in the learning process to reach the desired ’ob-
ject conception’. It is not until category four that the stu-
dents express an understanding of programming in terms of
methods to use. This is therefor an important stage to reach.
From the educators perspective, it is important to support

students who have problem to reach ’object conception’, to
discern this understanding.

In our study some students do not even reach the level
of ’canonical procedures’. Altough with different starting
points Hazzan’s research and the results from our study
point to the same problem, but our study indicates that
in learning object-oriented programming there are students
who do not even reach a level of ’process conception’. Our
main question is:

• How can we help students to reach a level of
’object conception’ in object-oriented program-
ming?

The present study indicates however that an earlier ques-
tion educators need to ask is:

• How can we help beginning programming stu-
dents to discern ’canonical procedure’ when
learning object-oriented programming?

Both Hazzan’s results and ours emphasize that students
might need ’canonical procedures’ as a heave to reach the
higher level of abstraction, the ’object conception’.

5. CONCLUSIONS
A study has been performed on beginning students’ un-

derstanding of what it means to learn to program. The
students were interviewed when they had just finished their
first programming course. The phenomenographic analysis
of the data identified what beginning students called ’pro-
gramming thinking’. This is described e.g. as understanding
of concepts, but also as methods and study techniques nec-
essary when learning to program. The study indicates that
some students have problems to discern the study techniques
required when learning object-oriented programming, and
this is also by the students connected to the learning of con-
cepts. Some students commented that it is harder to discern
such techniques in programming than in subjects like math-
ematics and chemistry.

By comparing our results with research on ’process-object
duality’, developed in mathematics education, we found that
it is of great importance that students reach an understand-
ing expressed as learning to program is a way of thinking,
which enables problem solving, and which is experienced as a
”method” of thinking. This corresponds to ’procedure con-
ception’, necessary for students to discern. Such a concep-
tion scaffolds for the more abstract level of understanding,
the ’object conception’. This level of abstraction is described
as “solving a problem by analyzing the essence and proper-
ties of concepts” and might be needed when central con-
cepts in object-oriented programming are used in e.g. anal-
ysis and design. Both our results and Hazzan’s point in the
same direction, although from different starting points. This
strengthen the discussion that students may need ’canoni-
cal procedures’ for the passage to ’object conception’. Our
study goes further in that it puts searchlight on the problems
some students have to discern such ’canonical procedures’
when learning object-oriented programming. As educators
we need to become aware of the problems indicated, and
facilitate for students to discern ’canonical procedures’ in
object-oriented programming. These can act as heaves to
a more abstract understanding of central concepts within
object-oriented programming.

141

6. REFERENCES
[1] A. Berglund. Learning computer systems in a disributed

project course. The what, why, how and where. PhD
thesis, Uppsala University, Department of Information
Technology, 2005.

[2] S. A. Booth. Learning to Program. A
phenomenographic perspective. Number 89 in Göteborg
Studies in Educational Science. Acta Universitatis
Gothoburgensis, Göteborg, Sweden, 1992.

[3] C. Bruce, C. McMahon, L. Buckingham, J. Hynd,
M. Roggenkamp, and I. Stoodly. Ways of experiencing
the act of learning to program: A phenomenographic
study of introductory programming students at
university. Journal of Information Technology
Education, 3:143–160, 2004.

[4] O. Hazzan. How students attempt to reduce
abstraction in the learning of computer science.
Computer Science Education, 13(2):95–122, 2003.

[5] M. Kölling. The problem of teaching object-oriented
programming, part i: Languages. JOURNAL OF
OBJECT-ORIENTED PROGRAMMING, January
1999.

[6] S. Kvale. InterViews: An introduction to qualitative
research interviewing. Sage, 1996.

[7] F. Marton and S. Booth. Learning and Awareness.
Lawrence Erlbaum Ass., Mahwah, NJ, 1997.

[8] E. Roberts. The dream of a common language: The
search for simplicity and stability in computer science
education. In Proceedings of the thirty-fifth SIGCSE
technical symposium on Computer science education,
2004.

[9] A. Sfard. On the dual nature of mathematical
conceptions: Reflections on processes and objects as
different sides of the same coin. Educational Studies in
Mathematics, 22:1–36, 1991.

142

Paper VI

Successful Students’ Strategies for Getting Unstuck

Robert McCartney
Department of Computer
Science and Engineering
University of Connecticut

Storrs, CT USA

robert@cse.uconn.edu

Anna Eckerdal
Department of Information

Technology
Uppsala University
Uppsala, Sweden

Anna.Eckerdal@it.uu.se

Jan Erik Moström
Department of Computing

Science
Umeå University

901 87 Umeå, Sweden

jem@cs.umu.se

Kate Sanders
Department of Math and Computer Science

Rhode Island College
Providence, RI USA

ksanders@ric.edu

Carol Zander
Computing & Software Systems
University of Washington, Bothell

Bothell, WA USA

zander@u.washington.edu

ABSTRACT
Students often “get stuck” when trying to learn new com-

puting concepts and skills. In this paper, we present and
categorize strategies that successful students found helpful
in getting unstuck. We found that the students reported
using a broad range of strategies, and that these strategies
fall into a number of recognizably different categories.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computers and In-
formation Science Education—Computer Science Education

General Terms
Measurement, Experimentation

Keywords
Learning strategies, stuck places, Threshold Concepts

1. INTRODUCTION
Learning does not always occur at a constant rate of in-

creasing knowledge and skills. While learning new concepts
and skills, students sometimes encounter epistemological ob-
stacles [11]—that is, they get stuck and are unable to make
progress toward learning and understanding.
In this paper we look at strategies that successful comput-

ing students reported using to become unstuck and make
progress in learning these concepts and skills. These stu-
dents are successful in two ways: one, they successfully
learned particular computing concepts after being stuck,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’07, June 23–27, 2007, Dundee, Scotland, United Kingdom.
Copyright 2007 ACM 978-1-59593-610-3/07/0006 ...$5.00.

and two, they have been successful in their educational pro-
grams: the students we interviewed were within a year of
graduation, all due to finish their degree programs by the
end of 2006.
The goal of this investigation is twofold. First, we would

like to identify strategies that students use successfully in
their computing studies. Second, we would like to cate-
gorize these strategies in ways that make them useful for
future students and instructors. We have approached this
investigation from the student perspective, focusing on what
students report about their learning.
Section 2 describes the techniques we have used to gather

information about getting unstuck from the student’s per-
spective, the student strategies we identified, and a hierarchy
into which those strategies can be organized. In Section 3 we
provide examples from interviews that illustrate the range
and depth of the students’ use of learning strategies. In
Section 4, we compare our results to those reported in the
general and computing education literature. In Section 5,
we give some overall impressions of the way that students
used these strategies, and how we might use this information
in making instruction more effective. Finally, in Section 6,
we present our conclusions and discuss the future directions
of this research effort.

2. DATA GATHERING AND ANALYSIS
The data used here were gathered using semi-structured

interviews, as part of a larger investigation into Threshold
Concepts in computing [2, 4]. Fourteen students (total) were
interviewed at six institutions in Sweden, the United King-
dom, and the United States. For analysis, the student in-
terviews were transcribed verbatim; where necessary, they
were translated into English by the interviewer.
Some of the interview questions dealt explicitly with the

idea of being stuck and becoming unstuck—these were used
to identify possible threshold concepts to pursue in depth.
The parts of the script dealing with these topics are given in
Figure 1 (for a more complete script, see [2]). The students
provided a surprisingly rich list of strategies they used to
get unstuck, along with advice for other students in similar
situations.

156

1. Could you tell me about something where you were
stuck at first but then became clearer? (Subject an-
swers <X>.)
The rest of this session will now focus on <X>.

2. Can I start by asking you to tell me your understand-
ing of <X>?

4. Tell me your thoughts, your reactions, before, during
and after the process of dealing with <X>.

5. Can you tell me what helped you understand <X>?

7. Based on your experience, what advice would you give
to help other students who might be struggling with
<X>?

13. To finish the interview, can you tell me whether there
are any other things where you were stuck at first but
then became clearer?

Figure 1: Interview script excerpt: parts concerning
stuck places, getting unstuck, and strategies.

Impressed by the students’ responses, we examined this
portion of our data from a new angle. After extracting the
quotes relevant to this topic, we proceeded inductively, iden-
tifying and naming 35 distinct strategies, grouping those
into 12 more abstract categories, and finally grouping those
12 into four super-categories, all of which in turn are ex-
amples of Get unstuck/learn. We worked individually, dis-
cussed with the group until we reached agreement, and re-
ferred back to the original quotes as needed.
The 35 basic strategies, the 12 categories, and the 4 super-

categories are shown in Table 1; the top levels of the hier-
archy (from Get unstuck/learn on down) are shown in tree
form in Figure 2.

3. WHAT THE STUDENTS SAID
Space does not permit inclusion of all the interesting quotes,

or even quotes illustrating all 35 of the basic strategies. In
this section, we give some of the most interesting quotations,
illustrating each of the four super-categories.

3.1 Inputs/interaction
Many students talked about getting help from elsewhere.

Not surprisingly, subjects read, looked information up on
the Internet, and used tools. Subject12 says

... instead of basically doing it I would sit there
and read trying to figure out how to do it ...

Subject9 demonstrates a common tendency to rely on tools:

... helped in Java doc and API on the Internet.

Subjects frequently learned from other people. Subject11
discusses getting the information needed to figure out prob-
lems from a variety of sources:

Like either be it peer or, you know, another fac-
ulty member that, you know, understands the prob-
lem.

It was suggested by Subject7 for instructors to give step-
by-step instructions that students can follow until they are
comfortable with the material:

Table 1: Identified strategies and their abstractions
Strategy Abstract strategies
Discuss

Learn from other
people

In
pu

ts
/i
nt
er
ac
ti
on
s

Learn from peers
Listen to professor
Get help (from a person)
Read Learn from tools or
Use a tool written materials
Get and follow step- Get and follow step-
by-step instructions by-step instructions
Remember things

“U
se

th
e
Fo
rc
e”

Be persistent/don’t stop
Avoid the problem / work
around
Walk away and come back
later
Reflect/sit and think
Write programs

Gain experience

C
on
cr
et
e/
do

st
uff

Learn by trial and error
Learn from your mistakes
Practice/drill
Visualize/see a diagram

VisualizeDraw diagrams/pictures
Connect diagrams with code
Use examples (in general)

Learn from examplesUse varied examples
Use sequence of increasingly
complex examples
Trace Trace
Break into parts Divide and conquer

A
bs
tr
ac
t/
un

de
rs
ta
nd

st
uff

Use incremental development
Model real world Relate to real worldUse analogy to real world
See context/reason/

Look for the
bird’s eye view

use for something
See the larger picture
See patterns
See a large system
Transfer from language

Make transfers/
connections

to language
Connect to mathematical
formalism
Relate to something already
learned
Relate different levels of
abstraction

So you could as a teaching tool, you could say,
now we’re going to do this and these are the steps
to putting these things together, just like you did
with recursion. Step one, write out what you are
going to do. Step two, write out what the defining
check, whatever - those things. In this program
we’ll do this, this, this and this. Just trust me.
It’s going to work.

3.2 Concrete/do stuff
Often a single quote showed multiple strategies. Practic-

ing and learning from examples was a common combination
with getting help from others. Subject3 discusses the in-
structor, learning from examples, and practice:

157

Get unstuck / Learn

Inputs / interaction

Abstract / understand stuff

"Use the Force"

Concrete / do stuff

Learn from tools/written materials

Learn from other people

Get and follow step-by-step instructions

Trace
Gain experience

Learn from examples

 Visualize
Make transfers/connections

Divide and conquer

Look for the bird's eye view

Relate to the real world

Figure 2: Hierarchy of abstract strategies from Table 1.

Go to your instructor, get plenty of examples.
And do a lot of, again, do a lot of little programs.
And don’t be afraid, jump right in.

Subject7 learns from discussion with peers and lots of vi-
sualization:

I can’t tell you how many dry erase markers we’ve
gone through over there covering entire boards
with drawings and drawings and drawings and ar-
rows, this constant sort of thing in getting proce-
dures and taking the procedure and drawing the
picture from it.

Recommending lots of practice comes up in relation to
many different kinds of problems. Here, Subject6 recom-
mends practice when discussing object-oriented program-
ming and concurrency:

I would say, deviate from the assignments on
your own time and write programs that you think
are completely useless and stupid. You think of
these programs, no one’s going to use them. ...
Just do it anyway because you’ll understand. You’ll
run into problems and you’ll find the solutions to
that problem. [...] And then, when the school
project does come, you’ll have had the experience
from what you’ve done on your own. But I think
it’s important that you don’t just do the schools.
You’ve got to do it on your own.

3.3 Abstract/understand stuff
In contrast, some subjects discussed learning and getting

unstuck at a higher level. Many quotes relate concepts to
real world examples, relate pointers to a television remote
control or a leash, relate objects to different rooms in a
house. And, while Subject1 talks about examples, it is the
idea of putting it in context that stands out:

But to see all of those different [examples]—that
same idea in all those different contexts and to

figure that out on my own really just taught me
like critic-like thinking skills.

Several subjects talk about breaking problems down into
smaller parts, and Subject10 discusses the upward view, the
larger picture in object-oriented design:

Once you do it enough you stop thinking about
that and you think about it in a bigger view if
that makes sense.

Furthermore, Subject4 addresses the importance of seeing
patterns:

I think if a person can see the pattern, I think I’m
no different from anyone else. If I can see the
pattern, I can generally, I can take a technique
and I can go home and figure it out if there’s a
pattern to it. I understand the pattern, why the
pattern fits, and I can see how to figure out the
exceptions to those patterns.

And, Subject1 demonstrates the importance of making
connections and formalism:

And it wasn’t until I took really functional pro-
gramming after discrete math that I realized so-
lutions could be simpler if I used recursion, less
lines or just easier to code or easier to reason
about.

3.4 “Use the Force”
A number of strategies involve the students using their

willpower or character: telling themselves to remember things,
to be more persistent, or to sit and think. For example, the
following quote from Subject4 illustrates the value of remem-
bering things:

And then you just, you know, you get that little
nugget in your head and you carry that on to the
next time. So, the next time you have something

158

with a pointer that isn’t working, you go, Okay, I
need to do this. And if it still isn’t working, then
it’s something else.

Subject11 talks about the value of being persistent:

And just by just staring at it and continually like
trying to grasp it, I eventually got like a small
piece of it and understood it.

These are generalized strategies that can be applied on
top of other specific strategies. The name reflects the as-
pects pertaining to personal characteristics, an allusion to
the movie Star Wars, where the main character is admon-
ished to “Use the Force”—to trust his intuition or inner
strength.

4. RELATED WORK
Perkins [12] discusses three different sorts of learners—

active, social, and creative—and how they might respond
to different forms of constructivist learning. These groups
match up fairly well with our abstract strategies: Con-
crete/do stuff for the active learners, Inputs/interaction for
the social learners, and Abstract/understand stuff for the
creative learners. Work on “learning styles”[5] indicates that
different students may prefer different strategies; for exam-
ple, visual learners are more likely to draw diagrams, and
verbal learners, to read. In any case, our data suggest that
successful students often apply multiple strategies to learn-
ing a given concept. McKeachie et al. [10] found that the
teaching of learning strategies in a course provided benefits
to students in their other courses.
Biggs [1] stresses the importance of student activities (as

opposed to instructor activities) in learning. Ramsden ([14],
p.155) agrees: “Passivity and dependence on the teacher [...]
provide an excellent basis for surface approaches” and “deep
approaches are associated with activity and responsibility
in learning.” The strategies seen used by these students are
nearly all centered on student activities: even the Learn from
other people strategies tend to be driven by student actions,
such as seeking out peers or others to learn from. Trigwell
et al. [16] discuss the role of “students’ intentions associated
with their strategies”; the students interviewed here seem to
have been motivated to learn, at least in their retrospective
explanations.
A number of studies consider the relative value of deep

vs. surface approaches to learning, see e.g. [9], generally
with the assumption that deep is inherently better. This
view is not exactly supported by work of Hughes and Peiris
[7], who investigated students’ approaches to learning pro-
gramming in terms of deep, surface or strategic approaches–
the strategic approach being to “plan their work according
to an awareness of tutor’s expectations.” The results showed
that course performance had a strong negative correlation
with taking a surface approach, no strong correlation with
taking a deep approach, but a strong positive correlation
with using a strategic approach. Further, Kember and Gow
[8] found cultural differences in the relative effectiveness of
surface and deep approaches. We saw a range of successful
strategies from surface (Practice/drill) to deep (Connect to
mathematical formalism); we did not see Hughes and Peiris’s
strategic approaches, but we did not discuss general moti-
vation in our interviews.

Debugging is one area of getting unstuck which has been
studied in depth. In particular, Vessey [17] identified a
hierarchy of goals used by programmers while debugging.
Novices stated more hypotheses than experts and tended to
stick with their hypotheses so that they failed to understand
the program structure.
In addition to work on learning strategies, there has been

a good deal of work on student strategies used in program-
ming, program comprehension, and problem solving.
Robins et al. [15] identify lack of programming strategies

as a cause for problems for novice programmers. Davies [3]
reviewed “studies that have addressed the strategic aspects
of programming skill”, and suggests that “the strategic ele-
ments of programming skill may, in some case, be of greater
significance than the knowledge-based components.”
Fitzgerald et al. [6] identified 19 strategies used by novice

programming students when solving examination questions
that involved reading and understanding code. They found
that success was determined both by the strategies chosen
and how well they were employed.
There is quite a large literature on problem-solving strate-

gies, most notably Pólya [13]. Wankat and Oreovicz ([18],
chapter 5) summarize a large numbers of studies comparing
novice and expert problem solvers. Although problem solv-
ing and concept learning are quite different, we see some
similarities. The stated expert responses to being stuck
are given as “Use heuristics”, “Persevere”, and “Brainstorm.”
While the first of these was not seen in our data (except
perhaps Use analogy to real world), the others are seen as
Be persistent/don’t stop and Discuss.

5. DISCUSSION
None of the strategies mentioned by any student was sur-

prising in itself. The group of interviewed students, how-
ever, supplied a surprisingly long—and thoughtful—list of
suggestions. Much of what they suggested was social: sev-
eral of the students pointed out that it was with the help
of their friends, or by asking their instructor or another fac-
ulty member, that they actually learned. They mentioned
how important it is to relate new knowledge to something
you already know. They said that they like step-by-step in-
structions when learning something new. They stressed the
value of persistence and practice, even inventing tasks above
and beyond the assigned work.
Some immediate implications for teaching are that we can

give the students what they (or some of them) find helpful:
the opportunity to discuss their work with their peers, good
examples that relate to what they already know, step-by-
step instructions, optional extra tasks, etc.
But experienced instructors already do these things. This

study provides a deeper understanding of student experi-
ence, and a list of possible ways to get unstuck. Just as
we might teach debugging—what to do when your program
doesn’t work—we can also explicitly discuss how to debug
your own learning.

6. CONCLUSIONS AND FUTURE WORK
We have investigated graduating students’ successful strate-

gies for getting unstuck when learning new concepts. All
but one of our students recalled getting stuck at one point
or another—it is unlikely that a student makes it through
a computing degree program without this experience! But

159

the successful students, it seems, have strategies for learning.
Although they get stuck, they find a way to get unstuck.
Altogether we found 35 strategies which we have catego-

rized into groups. The result shows that all students used
several strategies, and that the strategies are surprisingly
diverse. The importance of social interaction, and the ac-
tive responsibility taken by the students are striking. This
is consistent with previous research emphasizing the impor-
tance of students taking responsibility for their own learning.
Many strategies discussed by the students can be used ei-
ther with a surface or a deep approach. The data show that
our successful students have used the strategies with a deep
approach, actively striving for learning.
It may seem obvious but we think it is worth pointing out

that the students experienced and overcame their problems
in different ways. It is important for us as teachers to not
only acknowledge this but also plan our courses with this
in mind. We do not think there is a “one-size-fits-all” recipe
for how to learn computing concepts; instead teachers should
be aware of strategies students use and regard as successful,
and be prepared both to encourage the students to use the
strategies they prefer, and to help them to learn new ones.
The results so far suggest a number of areas for future

study:

• Learning strategies that students use when they are
not stuck. Are other successful strategies used in more
“routine” situations that were not considered in this
study?

• Learning strategies used by unsuccessful students—
either strategies used unsuccessfully, or by students
who fail to complete their degrees. Do these students
use different strategies? Do they attempt to use the
same strategies without success?

• The use of strategies by students at various points in
their degree programs. Do the use of strategies develop
as students gain experience, or do they gain experience
using strategies they always knew, or a mix?

• Applicability of strategies. Are there correlations be-
tween the strategies used and either particular con-
cepts being learned, or the preferred learning style of
the student?

We think that a better understanding of the learning strate-
gies that students use (and could be taught to use) could
lead to improved learning and teaching. We (the authors)
have found that what we know so far has already affected
how we teach in a positive way.

Acknowledgments
The authors would like to thank Mark Ratcliffe and Jonas

Boustedt, who participated in the design, data collection,
and initial analysis of the Threshold Concept interviews.
Thanks also the Department of Information Technology at
Uppsala University for providing us with workspace and fa-
cilities in Uppsala, and to Sally Fincher, Josh Tenenberg,
and the National Science Foundation (through grant DUE-
0243242) who provided workspace at the SIGCSE confer-
ence in Houston. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation or Uppsala University.

7. REFERENCES
[1] J. Biggs. Teaching for Quality Learning in University.

Society for Research in Higher Education and Open
University Press, Buckingham, 1999.

[2] J. Boustedt, A. Eckerdal, R. McCartney, J. E.
Moström, M. Ratcliffe, K. Sanders, and C. Zander.
Threshold concepts in computer science: do they exist
and are they useful? In SIGCSE-2007, pages 504–508,
Covington, KY, March 2007.

[3] S. P. Davies. Models and theories of programming
strategy. Int. J. of Man-Machine Studies,
39(2):237–267, 1993.

[4] A. Eckerdal, R. McCartney, J. E. Moström,
M. Ratcliffe, K. Sanders, and C. Zander. Putting
threshold concepts into context in computer science
education. In ITiCSE-06, pages 103–107, Bologna,
Italy, June 2006.

[5] R. Felder. Reaching the second tier: Learning and
teaching styles in college science education. J. College
Science Teaching, 23(5):286–290, 1993.

[6] S. Fitzgerald, B. Simon, and L. Thomas. Strategies
that students use to trace code: an analysis based in
grounded theory. In ICER ’05: Proceedings of the
2005 international workshop on Computing education
research, pages 69–80, Seattle, WA, USA, 2005.

[7] J. Hughes and D. R. Peiris. ASSISTing CS1 students
to learn: learning approaches and object-oriented
programming. In ITiCSE-06, pages 275–279, Bologna,
Italy, June 2006.

[8] D. Kember and L. Gow. A model of student
approaches to learning encompassing ways to influence
and change approaches. Instructional Science,
18:263–288, 1989.

[9] F. Marton, D. Hounsell, and N. Entwistle. The
Experience of Learning. Scottish Academic Press,
Edinburgh, 1984.

[10] W. J. McKeachie, P. R. Pintrich, and Y.-G. Lin.
Teaching learning strategies. Educational Psychologist,
20(3):153–160, 1985.

[11] J. H. Meyer and R. Land. Threshold concepts and
troublesome knowledge (2): Epistemological
considerations and a conceptual framework for
teaching and learning. Higher Education, 49:373–388,
2005.

[12] D. Perkins. The many faces of constructivism.
Educational Leadership, 57(3):6–11, 1999.

[13] G. Pólya. How to Solve It. Princeton University Press,
Princeton, NJ, 2nd edition, 1957.

[14] P. Ramsden. Learning to Teach in Higher Education.
Routledge, London, 1992.

[15] A. Robins, J. Rountree, and N. Rountree. Learning
and teaching programming: A review and discussion.
Computer Science Education, 13(2):137 – 172, 2003.

[16] K. Trigwell, M. Prosser, and P. Taylor. Qualitative
differences in approaches to teaching first year
university science. Higher Education, 27(1):75–84,
1994.

[17] I. Vessey. Expertise in debugging computer programs:
Situation-based versus model-based problem solving.
Int. J. of Man-Machine Studies, 23:459–494, 1985.

[18] P. C. Wankat and F. S. Oreovicz. Teaching
Engineering. McGraw-Hill, New York, 1993.

160

Paper VII

Categorizing Student Software Designs:

Methods, results, and implications

Anna Eckerdala*, Robert McCartneyb, Jan Erik Moströmc,
Mark Ratcliffed and Carol Zandere
aUppsala University; bUniversity of Connecticut; cUmeå University; dUniversity of Wales

Aberystwyth; eUniversity of Washington Bothell

This paper examines the problem of studying and comparing student software designs. We propose

semantic categorization as a way to organize widely varying data items. We describe how this was

used to organize a particular multi-national, multi-institutional dataset, and present the results of

this analysis: most students are unable to effectively design software. We examine how these designs

vary with different academic and demographic factors, and discuss the implications of this work on

both education and education research.

1. Introduction

A fundamental goal of computer science programs is that their graduates be able to

design software systems. This suggests that it is important to assess whether this goal

is being met. However, no method is agreed upon to do this.

A fairly direct approach would be to analyze student-produced designs for a

common set of tasks. If students are allowed to design as they wish, however, the data

produced will be very rich and varied, even in controlled settings. Although this is

positive in that it can illustrate the range of approaches that students take, the

complexity and variability of the designs makes them difficult to analyze and compare.

In this study, we worked with written designs produced by near-graduating

students under stringent interview conditions. These designs were collected as part of

a larger study, the ‘‘Scaffolding’’ experiment; a multi-national, multi-institutional

project looking at the approach students take to software design.

The Scaffolding study (Blaha, Monge, Sanders, Simon, & VanDeGrift, 2005;

Chen, Cooper, McCartney, & Schwartzman, 2005; Tenenberg et al., 2005) looked at

two different groups of students, novices and near-graduates, as well as their

educators. Each subject performed two tasks, a design task, in which they designed a

software system from its description, see Figure 1, and a design criteria prioritization

task, in which they ranked software design criteria by importance under different

*Corresponding author. E-mail: Anna.Eckerdal@it.uu.se

Computer Science Education

Vol. 16, No. 3, September 2006, pp. 197 – 209

ISSN 0899-3408 (print)/ISSN 1744-5175 (online)/06/030197-13 � 2006 Taylor & Francis

DOI: 10.1080/08993400600912376

design scenarios. These tasks were performed one-on-one with a researcher who took

notes, answered questions, and made an audio recording of the session. In addition,

academic and demographic information was collected for each subject: age, gender,

Figure 1. The design brief that was given to the subjects

198 A. Eckerdal et al.

grades, number of CS courses taken, knowledge of different programming languages,

and so forth. The overall focus of the study was developmental—so its questions were

largely comparative, as in ‘‘How do beginning students, finishing students, and

educators differ in the way they design software?’’

By contrast, we are specifically interested in students at the end of their academic

training, when they are presumably prepared to work professionally. The overall

question is: Can students near graduation design software systems? In order to

address this and other related questions, it is necessary to characterize the designs for

evaluation and comparison. We did this by grouping the designs into categories that

were meaningful for our purposes, and then correlating the categories of the designs

with academic and demographic information about the students.

The structure of this paper is as follows. First, we describe the processes by which

we categorized and analyzed the designs, and present student design results. Then we

discuss these results in light of other design research. Finally, we consider the implica-

tions of thiswork for educators and researchers, and provide suggestions for future study.

2. Categorization Methods

The goal of the present study was to examine students’ abilities to design software,

using their written designs as the primary data. To organize and simplify these data

for analysis, we categorized them into groups of similar designs. We chose a data-

driven approach for this categorization, with the intention that the categories reflect

similarities that we observed in the data. Moreover, we intended that the observed

similarities and differences be meaningful relative to the design task.

2.1. Categorization and Classification

We categorized, as opposed to classified, these designs. As in Jacob (2004) we define

categorization as an assignment of items to categories based on semantic similarity in

context (design in our case). Category members can be more or less typical, so

categories can meaningfully be based on prototypes and have fuzzy boundaries.

We grouped designs based on their semantics, that is what they communicate

rather than how, and how well they met the stated requirement in the design brief that

the design be something that ‘‘someone (not necessarily you) could work from’’.

Based on this approach, we developed six categories of designs, shown in Figure 2,

ordered relative to the degree to which the stated requirement was met.

These category descriptions have a distinctive characteristic: they include a

description of category members in general, and refer to a typical example, or

prototype1. The descriptions include qualitative terms without clear boundaries. For

example, ‘‘add a small amount’’ in Skumtomte2 and ‘‘include some significant work’’

in First step both refer to amounts of added information; the prototypes provide

examples of these amounts. Choosing the closest prototype allows artifacts to be

placed in categories even though the boundaries are inexact, but suggests that it may

be difficult to precisely categorize some of the artifacts.

Categorizing Student Software Designs 199

2.2. Developing the Categories and Tagging Designs

The processes of developing the categories and assigning the designs to categories

were data-driven—both the category descriptions and the previous design assign-

ments changed as the category assignment, or tagging, progressed.

The initial categorization was based on examination of 20 randomly chosen

designs. After a number of attempts based on syntactic features, one researcher

proposed a categorization based on semantic design content. This first attempt had

five categories.

Based on these descriptions and prototypical designs, each researcher individually

tagged a group of 70 designs. Considering all pairwise researcher comparisons,

around 60% of the tags agreed. To reach agreement on the categories, four of the

researchers met and considered the designs in detail. The categorization was revised

Figure 2. The six categories used for design artifacts

200 A. Eckerdal et al.

as the differences were resolved, so that the categorization would best reflect observed

patterns in the data. For more details on the categorization process, see Eckerdal,

McCartney, Moström, Ratcliffe, and Zander (2006b). The resulting distribution of

designs in categories is shown in Figure 3.

In terms of analysis, categorizing the designs was quite time-consuming, even after

the categories were defined, as it required extracting the meaning from the artifacts,

many of which are poorly organized and nearly illegible. Gaining complete agreement

between raters required extensive discussion for designs that did not closely match

the prototypes or were difficult to read. Having placed designs in these categories,

however, gave us useful information about the communicated design content, and

allowed us to easily compare designs on that basis.

2.3. Syntax and Semantics

Extracting meaning from a design, which is necessary to categorize it, is difficult as it

requires a global understanding of the artifact. Recognizing syntactic features, by

contrast, does not require such deep understanding as they are visually apparent. We

examined the relationships between our semantic categories and the recognizable

syntactic features.

Before and during the categorization, we identified a number of candidate syntactic

features that might be used to characterize designs. Listing these and collapsing

similar features, we agreed to use the set in Table 1.

We then re-examined all of the designs relative to this feature set, determining for

each design, whether each feature was present. (We did not attempt to count how

Figure 3. Frequencies of observations in each of the design classifications (based on 149

observations)

Categorizing Student Software Designs 201

many of each feature were present.) We compared the number of different features

present in each design for each of our semantic categories. We summarize this in

Table 2. This table shows that the feature count increases as the designs become

more complete. The designs in higher categories tend to be syntactically richer, in

part because they tend to include some of the formal structures like UML and Use

case diagrams. As the table further indicates, however, there is a large range of feature

counts in each category.

If the number of features measures the syntactic richness of the design, the overall

length of the design is a measure of the syntactic quantity of the design. As seen in

Table 3, the higher category designs tend to be longer. As with the feature count,

Table 1. The syntactic features considered

Algorithm A step-by-step description.

Block Box with text in it, usually a single word.

Bulleted list A bulleted, numbered, or labeled list of short items.

Class A class, represented in code or in a diagram (not counted separately

if in UML diagram).

Code Code snippets, for example, assignment statements.

CRC CRC cards explicitly represented.

Database A detailed representation of the database.

Event-action The design is described as ‘‘when X happens the system should do Y’’,

more elaborate than single sentences.

Flowchart A graphical flowchart.

Methods A method (function) is described. Not counted separately if included in a class

description or in a UML diagram.

Other diagram Miscellaneous drawings (not counted elsewhere).

Overview diagram A diagram showing an overview of the main design parts.

Running text More than a couple of sentences of text.

Simple UI A simple drawing of the user interface.

Text outline A hierarchical outline of short items.

User Interface An elaborate drawing of the user interface.

UML A UML diagram.

Use case A use case description.

User picture The users of the system are explicitly drawn similar to stick figures.

Not counted if part of a Use case.

Table 2. The average, minimum, and maximum number of features counted per design, by

category

Number of

features Nothing Restatement Skumtomte First step Partial design Complete design

Average 1.20 1.30 2.57 3.30 4.20 4.67

Minimum 1 1 1 1 2 4

Maximum 2 3 6 5 6 6

202 A. Eckerdal et al.

there is a great deal of variance, however, as illustrated by the minimum and

maximum values for each category.

In summary, semantic content does correlate with syntactic richness (number of

features) and syntactic content (as measured by length). However, these syntactic

measures are quite variable within categories, so they make relatively poor predictors

of category. If the meanings of the designs is what is important, a semantic

categorization should be more valuable.

3. Student Design Results

The distribution of the designs among the categories is shown in Figure 3. Given that

the categories can be naturally ordered relative to the communicated design content,

we can describe the overall performance:

. 21% of the designs were simply restatements of the specification or less—no value

added at all.

. 41% of the designs were Skumtomte: those that added an insignificant amount

beyond the specification, and, in particular, did not produce any usable ‘‘design

content’’.

. 29% of the designs were in the First step category, showing some progress toward

a design—a partial overview, or significant progress toward the design of one part

of the system.

. 9% produced Partial or Complete designs: those including an understandable

system architecture/overview, with parts and their interactions explicitly stated. Of

these, less than one third produced Complete designs, with explicit part

responsibilities and inter-part communications.

All in all, a poor performance from students who are near graduation: over 20%

produced nothing, and over 60% communicated no significant progress toward a

design.

As part of the overall study, we collected academic and demographic background

data on the students and made other observations during the design task including:

Table 3. Length of designs by category. Entries are in number of pages except for last row, where

entries are percent of designs at least three pages long

Number of pages Nothing Restatement Skumtomte First step Partial design

Complete

design

average 1 1.9 2.9 3.7 5.2 5.0

minimum 1 1 1 1 2 2

maximum 1 4 9 9 10 9

�3 0 18.5% 54.8% 66.7% 90% 66.7%

Categorizing Student Software Designs 203

their age and gender; their academic background (grades in computer science

courses, number of computer science courses taken, number of programming

languages known, number of programming languages known well), and the time

they spent on the design task. For example, Figure 4 plots the average number of CS

courses taken versus the design categories produced, showing a positive correlation

between the completeness of the design and the number of courses taken.

To measure the correlation between these factors and the categories, we assigned

the numbers 0 (Nothing) to 5 (Complete) to the categories and calculated Pearson’s r

as a correlation measure. We used a t-test at a¼ .05 to check whether that correlation

was significant. We observed the following (values for r and the attained significance p

at 147 degrees of freedom are in parentheses):

. The number of courses taken (r¼ .362, p5 1075), the time spent on the task

(r¼ .420, p5 1077), and the number of programming languages known well

(r¼ .179, p¼ .0289) were significantly (positively) correlated with the design

categories.

. Grades in CS courses (r¼ .040, p¼ .6307), age of participant (r¼ .097,

p¼ .2394), and the number of programming languages known (r¼7 .030,

p¼ .7153) were not significantly correlated with the design categories.

. There seemed to be qualitative gender differences (females had relatively more

designs in the top three groups, and fewer at the extremes), but the number of

females was quite small (15%).

More details can be found in Eckerdal, McCartney, Moström, Ratcliffe, and Zander

(2006a).

Figure 4. Average number of CS courses completed

204 A. Eckerdal et al.

4. Comparison with Related Work

As described above, we have not tried to put the designs into some pre-defined

categories. Instead we let the data speak for itself. Comparing our results with

previous work suggests that this has been a judicious approach.

While there has been much research over the years into student coding (Robins,

Rountree, & Rountree, 2003), there is far less available on design. Results from both

of these areas, however, are consistent with what we have seen here.

Of particular interest to student design is recent work by McCracken (2004) which

focuses on the learning of design skills. He contrasts design and programming, and

suggests techniques for studying design behavior: in-situ observation, Retrospective

interviews, and Protocol analysis. The Scaffolding data collection was an example of

in-situ observation in his terms. The big difference between his approaches and ours

is that he concentrates on the process of designing as opposed to the results. We chose

not to use the collected process data from the Scaffolding study: differences in

experimental technique among the researchers make these data difficult to compare,

and the extracting of the subject behaviors is too labor intensive for the size of the

dataset.

DuBoulay comments on novice programmers’ inability to grasp the whole program

and the relation between the main parts: ‘‘This ability to see a program as a whole,

understand its main parts and their relation is a skill that grows only gradually’’

(DuBoulay, 1986, p. 59). This is consistent with our conclusions that overview of the

parts and relations between parts are important features found only in the more

advanced designs.

In terms of techniques used, Atman, Chimka, Bursic, and Nachtmann (1999) pro-

vides a good contrast. In this study, Atman and her collaborators compared the

design process between freshman and senior engineering students using verbal protocol

analysis: students were observed and recordedwhile ‘‘thinking aloud’’ as they performed

a design task. To capture and analyze the design process, they did the following:

. Transcribed the tapes.

. Segmented the transcripts (that is, separated the transcripts into units of one idea)

with multiple raters, then resolved differences.

. Coded each segment with regards to four variables: in what stage of design did

this happen (10 possibilities); what activity was being done (5 possibilities); what

type of information was being addressed (48 possibilities), and which object in

the design was being considered (48 possibilities). As above, done with multiple

raters followed by difference resolution.

Given these coded segments, they examined the emphasis on each activity (total and

relative time spent on different activities); the pattern of the effort—how the designer

moved from one activity to the other; the amount and kinds of information gathered

by the designer; and the number of alternative designs considered. They also rated

the quality of the designs using multiple measures.

Categorizing Student Software Designs 205

The obvious difference between this work and ours is the amount of effort required

to do the analysis. They had extremely rich data: audio and videotaped design

sessions up to three hours long, plus all of the produced design artifacts. They were

able to compare the design processes as well as outcomes, and found interesting

differences between their two participant groups. Getting the data into the form

necessary to make process comparisons, however, was extremely expensive, which

puts practical limits on the applicability of this approach. One other big difference,

not surprising given their emphasis on process, is how they expressed the outcomes.

Their quality measure was a complex formula based on many factors, but all of these

factors were ultimately combined into a single number between 0 and 1—possibly

providing less information than a categorization would.

5. Implications and Future Work

This work has implications for both computer science educators and researchers

studying design. It also raises questions that merit further study. We address these in

the following sections.

5.1. Implications for Educators

What significance do these results have for us as educators? The most important

lesson learned is that our students might not understand design as well as we would

like to think. While there are a number of possible explanations for the observed

results, two possibilities are that students have insufficient experience with open-

ended problems and with communicating designs. These suggest two practices that

educators might do differently.

. Give more open-ended or underspecified assignments. Part of the task would be

for the student to deal with ambiguities and determine what (and at what level of

detail) is appropriate to deliver.

. Give students the experience of producing designs, and then implementing other

student-developed designs. The feedback between designers and implementers

would give students practical experience on how to communicate design

information.

Both of these would teach students what is important, and what is not, in developing

and communicating designs.

Additionally, the academic factors that were most highly correlated with the design

categories were the number of CS courses that a student had taken and the time spent

on the design task. Grades in Computing Science (CS) courses, on the other hand,

were not significantly correlated with the design categories. Given the importance of

software design in the computing field, it suggests that software design receives

insufficient emphasis in computer science programs.

206 A. Eckerdal et al.

5.2. Implications for Researchers

These results also have implications for researchers studying design. Primarily, they

suggest that a semantic categorization – one that is meaningful in the context of

interest—can be used effectively. This work also suggests that much can be learned

about design from the produced artifacts, independent of the process. They also

suggest that some information can be easily extracted—as with the feature counts and

length here—but that getting other useful information requires fairly close analysis of

what has been produced.

5.3. Future Study

This work suggests a number of questions to examine further.

Are these results due to inadequate design skills, or a mismatch between the subject and

researcher expectations? One author teaching a senior-level Object-Oriented Program-

ming and Design course gave this design brief on an exam without further

instructions. All 16 students produced designs in the top three categories, perhaps

because they knew what was expected in the context of the course. This suggests a

follow-up study could involve a similar design task, where students are given

information about how the designs will be evaluated, or other information about what

is expected in a ‘‘good’’ design.

Are these perceived shortcomings (quickly) cured by experience? Another possible study

would involve recent graduates who are working as software developers. Anecdotal

evidence suggests that it takes some real project experience for developers to

understand the value of proper documentation and formal techniques.

Is it possible to effectively work from particular artifacts and avoid the difficulty of

extracting information from free-form text and diagrams? One could give a design task,

asking that the produced design include certain thing (such as UML class

diagrams)—then base the analysis on the formal artifacts alone.

Are there institutional differences in how students design? Informal examination suggests

there are differences here (as were seen in Lister et al., 2004), but making formal

comparisons would require more observations per institution (in this study, the

average was around 7.5 observations per institution), so that other factors (such as the

number of courses taken) might be isolated.

6. Conclusions

The results of this study show that a semantic categorization is both possible and

practical in studying designs. Such an approach has one fundamental strength: the

categories developed are consistent with the information desired from the data. These

categories can be relatively insensitive to stylistic differences, which makes them

practical in studying designs from different institutions with different cultural and

linguistic traditions. Additionally, these results suggest that useful design data might

be extracted from the design artifacts alone. Although categorizing these artifacts can

Categorizing Student Software Designs 207

be somewhat labor-intensive, it is far less so than the alternative of extracting process

information, which larger datasets might practically be examined.

In terms of software design, the results of this study show that the majority of

graduating students cannot effectively design a software system. Their level of

performance is significantly correlated with the number of computer science courses

taken, but not with overall performance (as measured by grades) in computer science

courses. There seemed to be a lack of understanding about what sort of information a

software system design should include, and how to effectively communicate that

information. These results suggest possible interventions in practice, as well the need

for closer examination of how software design is learned and practiced by students.

Acknowledgments

The authors would like to thank Sally Fincher, Marian Petre, Josh Tenenberg, the

Scaffolding workshop participants, and the National Science Foundation (through

grants DUE-0243242 and DUE-0122560) for their support and encouragement.

Additionally, thanks to the reviewers and participants of Koli Calling, for their

questions and suggestions before, during, and after the conference.

Notes

1. These prototypes are actual designs from the dataset, not general descriptions.

2. The Swedish word Skumtomte refers to a pink-and-white marshmallow Santa

Claus, a traditional Christmas confection. It looks like there is something there,

but it is only shaped and colored marshmallow fluff.

References

Atman, C.J., Chimka, J.R., Bursic, K.M., & Nachtmann, H.L. (1999). A comparison of freshman

and senior engineering design processes. Design Studies, 20, 131 – 152.

Blaha, K., Monge, A.E., Sanders, D., Simon, B., & VanDeGrift, T. (2005). Do students recognize

ambiguity in software design? A multi-national, multi-institutional report. Proceedings of the

27th International Conference on Software Engineering (ICSE 2005) (pp. 615 – 616).

Chen, T., Cooper, S., McCartney, R., & Schwartzman, L. (2005). The (relative) importance of

software design criteria. Proceedings of the 10th Annual Conference on Innovation and Technology in

Computer Science Education (ITiCSE 2005), June, Monte da Caparica, Portugal (pp. 34 – 38).

DuBoulay, D. (1986). Some difficulties of learning to program. Journal of Educational Computing

Research, 2, 57 – 73.

Eckerdal, A., McCartney, R., Moström, J.E., Ratcliffe, M., & Zander, C. (2006a). Can graduating

students design software systems? Proceedings of 37th ACM Technical Symposium on Computer

Science Education (SIGCSE 2006), March, Houston, TX (pp. 211 – 215).

Eckerdal, A., McCartney, R., Moström, J.E., Ratcliffe M., & Zander, C. (2006b). Comparing

student software designs using semantic categorization. Proceedings of the 5th Koli Calling

Conference on Computer Science Education (Koli Calling 2005), TUCS General Publication

No. 41, Turku, Finland (pp. 57 – 64).

208 A. Eckerdal et al.

Jacob, E.K. (2004). Classification and categorization: a difference that makes a difference. Library

Trends, 52, 515 – 540.

Lister, R., Adams, E., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R.,

Moström, J.E., Sanders, K., Seppälä, O., Simon, B., & Thomas, L. (2004). A multi-national

study of reading and tracing skills in novice programmers. SIGCSE Bulletin, 36, 119 – 150.

McCracken, W.M. (2004). Research on learning to design software. In S. Fincher & M. Petre

(Eds.), Computer Science Education Research. London: Taylor and Francis group.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: a review

and discussion. Computer Science Education, 13, 137 – 172.

Tenenberg, J., Fincher, S., Blaha, K., Bouvier, D., Chen, T., Chinn, D., Cooper, S., Eckerdal, A.,

Johnson, J., McCartney, R., Monge, A., Moström, J., Petre, M., Powers, K., Ratcliffe, M.,

Robins, A., Sanders, D., Shwartzman, L., Simon, B., Stoker, C., Tew, A., & VanDeGrift, T.

(2005). Students designing software: a multi-national, multi-institutional study. Informatics in

Education, 4, 143 – 162.

Categorizing Student Software Designs 209

Paper VIII

From Limen to Lumen:
Computing students in liminal spaces

Anna Eckerdal
Department of Information

Technology
Uppsala University
Uppsala, Sweden

Anna.Eckerdal@it.uu.se

Robert McCartney
Department of Computer
Science and Engineering
University of Connecticut

Storrs, CT USA
robert@cse.uconn.edu

Jan Erik Moström
Department of Computing

Science
Umeå University

901 87 Umeå, Sweden
jem@cs.umu.se

Kate Sanders
Mathematics and Computer

Science Department
Rhode Island College
Providence, RI USA
ksanders@ric.edu

Lynda Thomas
Department of Computer

Science
University of Wales
Aberystwyth, Wales
ltt@aber.ac.uk

Carol Zander
Computing & Software

Systems
University of Washington, Bothell

Bothell, WA USA
zander@u.washington.edu

ABSTRACT
This paper is part of an ongoing series of projects in which
we are investigating “threshold concepts”: concepts that,
among other things, transforms the way a student looks as
the discipline and are often troublesome to learn. The word
“threshold” might imply that students cross the threshold in
a single “aha” moment, but often they seem to take longer.
Meyer and Land introduce the term “liminal space” for the
transitional period between beginning to learn a concept and
fully mastering it.
Based on in-depth interviews with graduating seniors, we

found that the liminal space can provide a useful metaphor
for the concept learning process. In addition to observing
the standard features of liminal spaces, we have identified
some that may be specific to computing, specifically those
relating to levels of abstraction.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computers and In-
formation Science Education—Computer Science Education

General Terms
Human Factors

Keywords
threshold concepts, liminal space, learning theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICER’07, September 15–16, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-841-1/07/0009 ...$5.00.

1. INTRODUCTION
This paper is part of an ongoing series of projects in which

we are investigating “threshold concepts”: concepts that,
among other things, transform the way a student looks at
the discipline and are often troublesome to learn. [13] We
are interested in identifying these concepts in computer sci-
ence, understanding how students experience the process of
learning those concepts, and designing better ways to help
students with this process.
In previous work we describe the theory behind thresh-

old concepts and research related to the theory [6], compar-
ing them to constructivism, mental models, misconceptions,
breadth-first approach, and fundamental ideas. Two partic-
ular threshold concepts candidates, abstraction and object-
orientation, are discussed. With evidence from the literature
we argue that these concepts are likely to fullfil the criteria
for threshold concepts.
We describe the studies which provide data for the empir-

ical investigation of threshold concepts in computer science
in [2]. We used data collected from in-depth interviews of
computer-science majors nearing graduation. A preliminary
analysis of data from educators provided a number of thresh-
old concept candidates which served as a guideline for the
study with the graduating students. This study, described
in detail in [2], aimed at identifying possible threshold con-
cepts and we provide evidence of two threshold concepts,
object-orientation and pointers.
During the analysis we also found that students report us-

ing a wide variety of strategies to make progress in learning
these difficult concepts. The re-analysis of the interviews to
identify and categorise students’ strategies is presented in
[11].
The word “threshold” might imply that students cross the

threshold in a single “aha” moment, but often they seem
to take longer. Meyer and Land [14] introduce the term
“liminal space,” borrowed from anthropology. Limen is the
Latin word for threshold, so this literally means “threshold
space.” Roughly speaking, in our context, the term refers to

123

the transitional period between beginning to learn a concept
and fully mastering it.1 Meyer and Land’s formal defini-
tion, discussed below, helped us to formulate the questions
that guided our analysis of the data. Our analysis revealed
several interesting aspects of how students experience this
liminal space.
In Section 2, we give the theoretical background for this

work. We present our research questions in Section 4, review
some additional related work in Section 3, and describe our
methodology in Section 5. In Section 6, we present our
results: the different ways in which students experience the
liminal space, as shown in our data. We discuss these results
in Section 7, and close with our conclusions and future work.

2. THEORETICAL BACKGROUND
Meyer and Land [14] have proposed using threshold con-

cepts as a way of characterizing particular concepts that
might be used to organize the learning process. They further
develop a theoretical framework, the liminal space, which
specifically focuses on the process of learning such concepts.

2.1 Threshold Concepts
Threshold concepts are a subset of the core concepts

within a discipline, and are characterized as being [14]:

• transformative: they change the way a student looks
at things in the discipline.

• integrative: they tie together concepts in ways that
were previously unknown to the student.

• irreversible: they are difficult for the student to un-
learn.

• potentially troublesome (as in [17]) for students:
they are conceptually difficult, alien, and/or counter-
intuitive.

• often boundary markers: they indicate the limits of a
conceptual area or the discipline itself.

The idea has the potential to help us focus on those concepts
that are most likely to block students’ learning. [4]
In our interviews, we have so far found evidence that

pointers and object-oriented programming fulfill the criteria
for threshold concepts. [2]

2.2 Liminal space
The term “liminal space” was originally used in anthro-

pology to describe the time during which someone is passing
through a rite of passage. [21] When borrowing the term,
Meyer and Land list the following defining characteristics.
[14] The liminal space is a space in which someone

• is being transformed
• acquires new knowledge
• acquires a new status and identity within the commu-
nity

The process of being in this liminal space and crossing the
threshold may
1Lumen is the Latin word for the light that we hope students
find when they have fully crossed the threshold.

• take time, and may involve oscillation between old and
new states

• involve emotions, of anticipation, but also of difficulty
and anxiety

• involve mimicry of the new state
The period of adolescence, for example, has all of the char-

acteristics of a liminal space. In adolescence, an individual
is being transformed and acquiring the identity of an adult.
This process takes time, involves acquiring new knowledge
– how to earn a living, for example – and is often a difficult
time emotionally. Adolescents, especially in the early stages,
can behave like children one moment and adults the next,
oscillating back and forth between the two states. And they
learn to be adults, in part, by mimicking the adults around
them.
In educational settings Meyer and Land emphasize the

transformative character of threshold concepts as the main
reason for the liminal space: “owing to their powerful trans-
formative effects” [13, p. 10], and in [14, p. 380] the authors
explain: “we see the threshold as the entrance into the trans-
formational state of liminality.”
In the learning of threshold concepts mimicry can “in-

volve both attempts at understanding and troubled misun-
derstanding, or limited understanding, and is not merely
intention to reproduce information in a given form.” [14,
p. 377] The authors further relate both mimicry and emo-
tions of difficulties and anxiety to “stuck places.” Identifying
such stuck places in the learning process can lead to a fuller
understanding of the transformation student undergo.
The characteristics of the liminal space given by Meyer

and Land, applied to our empirical data, served as starting
points for an analysis on conceptual learning in computer
science. This research has the potential to shed light on why
some students get stuck at the threshold in the process of
becoming computer scientists. Meyer and Land write: “lim-
inality, we argue, can provide a useful metaphor in aiding
our understanding of the conceptual transformations stu-
dents undergo, or find difficulty and anxiety in undergoing,
particularly in relation to notions of being ‘stuck’.” [14,
p. 377]

3. RELATEDWORK
This work fits squarely within the constructivist tradition.

Constructivist theory holds that the learner actively builds
knowledge. Different theories propose different models for
the learner’s knowledge: a hierarchy of anchoring ideas [12],
schemas [12], and mental models. [8] In each case, how-
ever, learning involves adding to or modifying some cog-
nitive structure. To continue the construction metaphor,
threshold concepts are keystones, critical parts of the struc-
ture that hold the rest together, and the liminal space is the
construction site.
No work has specifically addressed the liminal space in

computer science. There is a substantial literature on con-
cept learning in general, however. We will restrict ourselves
to the work that is most closely related to the defining fea-
tures of a liminal space.
Perkins and Martin found that students were hindered

by what they called “fragile knowledge,” that is, when the
student “sort of knows, has some fragments, can make
some moves, has a notion, without being able to marshal

124

enough knowledge with sufficient precision to carry a prob-
lem through to a clean solution.” [18, p. 214] Shymansky
et al. found support for oscillation – “a punctuated, saw-
toothed, conceptual growth process” – in a study of a group
of middle-school teachers. [19, cited in [20]] In a later study
of students, they found that while oscillations were not re-
flected in the mean ratings, 10 of the 22 individual students
did show patterns of progress and regression. [20]

Mimicry is generally considered to be negative – the stu-
dents are said to be “just mimicking” or “only mimicking”
what they have seen. And it can be negative if the student
does not progress beyond this point. Hughes and Peiris [7],
for example, found a strong negative correlation between
course performance and a “surface apathetic approach” to
learning to program, in which the students memorize and
reproduce what they have seen without any deeper under-
standing.
On the other hand, if students persist in seeking a deeper

understanding while they mimic what they have seen, the
practice may be helpful. Muller’s work with pattern-
oriented instruction suggests this may be the case. [15]
In some non-Western educational traditions mimicry is con-
sidered to be an important step in learning. [9, 10] In a
comparative study of Chinese and Australian students of
accounting, Cooper found that “While surface approaches
to learning can be associated with mechanical rote learn-
ing, memorization through repetition can be used to deepen
and develop understanding and help achieve good academic
performance.” [3, p. 306]
Murphy and Tenenberg address the general question of

whether computer-science students know what they know.
[16] They asked students to predict how they would do on
a data structures quiz taken in courses that required data
structures as a prerequisite. They found that the students’
estimates correlated moderately with their performance, and
(interestingly) the accuracy of their estimates improved af-
ter the quiz. This was consistent with, or slightly better
than, the estimating ability of students in other fields.
Mead et al. propose a method of organizing a curriculum

around what are essentially threshold concepts, plus some
additional “foundational concepts.” [12, p. 187] They mod-
ify the definition of threshold concepts, requiring only that
a concept be integrative and transformative. It seems likely,
however, that the other defining features of threshold con-
cepts follow from these two. If a concept integrates other
ideas or causes you to see the field in a new way, it may well
be troublesome to learn, and you are not likely to forget it.
Thus, the set of concepts they focus on likely include all the
threshold concepts.
They suggest creating a directed graph with the thresh-

old and foundational concepts as nodes, showing the order
in which concepts should be presented in a curriculum. Con-
cept A should be taught before another concept B if it “car-
ries part of the cognitive load in learning it.” [12, p. 187] By
presenting the concepts in the right order, we may be able
to make it easier for our students to learn each of them.
Meyer and Land note that there are inherent conflicts be-

tween the use of threshold concepts, particularly as artic-
ulated above by Mead et al. as steps in a logical passage
through a curriculum, and the more fluid and unordered as-
pects of liminality on which we will focus here. [14, p. 379-
380]
Vygotsky’s discusses the zone of proximal development,

defined as “the distance between the actual development
level as determined by independent problem-solving and
the level of potential development as determined through
problem-solving under adult guidance or in collaboration
with more capable peers”. [22, p. 86] In other words it is the
space from where a student is to where he/she can go next.
The student may or may not be in the middle of a transfor-
mative learning experience. The zone of proximal develop-
ment focuses on what is attainable for a student, whereas
the liminal space focuses on the transformative aspects of
the learning experience.

4. RESEARCH QUESTIONS
This paper addresses two research questions.

1. Can the liminal space as discussed by Meyer and Land
serve as a “useful metaphor in aiding our understand-
ing of the conceptual transformations students un-
dergo” [14, p. 377] in computer science?

2. What specific characteristics do we observe in com-
puter science students when they are in the midst of
learning a threshold concept, and do these satisfy the
requirements of a liminal space?

By addressing these questions, we hope to gain better in-
sights in the complicated process of conceptual learning in
computer science. Furthermore we hope to shape the frame-
work for our specific discipline.
We looked for evidence of the different features of a limi-

nal space given in Meyer and Land’s definition (above). It
follows from the definition of a threshold concept that by
learning it, the student is being transformed and acquiring
new knowledge. Because threshold concepts are core con-
cepts within a discipline, students learning them can also
be said to be acquiring a new identity, that of an insider,
someone who understands the central ideas of a field.
We focused, therefore, on the remaining aspects of the

definition of a liminal space, looking for answers to the fol-
lowing questions in our interviews:

• Does the process of learning threshold concepts take
time? Do the students appear to oscillate between
the old and new states (i.e., not understanding and
understanding)?

• What emotional reactions do students express?
• Does the process of learning threshold concepts involve
mimicry?

We also formulated some questions that are not explicitly
addressed by Meyer and Land, but notwithstanding seem
to be important for a rich description of the learning of the
threshold concepts studied.

• What kinds of partial understandings do students pos-
sess within the liminal space?

In the interviews we found that students made a clear dis-
tinction between different aspects of the concept they were
learning. Most students discussed one or several aspects as
troublesome to learn, but different students struggled with
different aspects. Each of these aspects is a place where
students might become stuck.
The second question we added was:

125

• Do students know that they have crossed a threshold,
and if so, how?

Whether students can tell when they have crossed a
threshold is relevant, since the liminal space seems to be
accompanied by emotions of frustration or desire to pass
through it. If a student thinks he or she has crossed a
threshold in learning, even though he or she hasn’t, what
are the consequences for the motivation to learn?

5. METHODOLOGY
The data used were gathered during a previous study

of threshold concepts [2, 6, 11],using semi-structured inter-
views with 14 students at six institutions in Sweden, the
United Kingdom, and the United States. For analysis, the
student interviews were transcribed verbatim; where neces-
sary, they were translated into English by the interviewer.
During the analysis of the data we identified two thresh-

old concepts: object-orientation and pointers. [2] This paper
continues the analysis by looking into how the idea of a lim-
inal space relates to these threshold concepts. The authors
once again read through all the interviews looking for quotes
related to liminal space, the resulting selections were then
discussed among the authors and related to the discussion
of liminal space as described in Section 2.2. The result of
this analysis is reported below.
In our interviews we specifically asked the students about

concepts they found troublesome to learn. In the present
study we have re-analyzed those interviews where stu-
dents entered deeply into discussions on pointers or object-
oriented programming.

6. RESULTS
The analysis was inspired by the goal to investigate the

usefulness of the liminal space metaphor in computer sci-
ence. We call our analysis a triangular conversation, that
is an ongoing conversation and negotiation between the re-
searchers, the data, and the liminal space as it is described
by Meyer and Land. The questions we asked are inspired
by the characteristics of the liminal space, but also by the
data, the observed characteristics from the quotes. The an-
swers we found are shaped by the research questions, the
data, and our lengthy experiences as teachers in the subject
domain.

6.1 Partial understanding
Since the liminal space for a concept is the time when the

student is trying to attain a concept but has not yet suc-
ceeded, it should be characterized by partial attainment of
a concept. When looking at the quotes relating to partial
understanding, theoretical as well as practical, we see a num-
ber of common themes emerge. Students identify a number
of different sorts of understanding including abstraction of
the concept, concrete implementation of the concept, and
the ability to go back and forth between the two. The ob-
served understandings could be placed into these general
categories:

• An abstract (or theoretical) understanding of a con-
cept;

• A concrete understanding—the ability to write a com-
puter program illustrating the concept—without hav-
ing the abstract understanding;

• The ability to go from an understanding of the abstract
concept to software design or concrete implementation;

• An understanding of the rationale for learning and us-
ing the concept; and

• An understanding of how to apply the concept to new
problems—problems beyond those given as homework
or lab exercises.

Abstract understanding
Some quotes showed that the abstract concept was not yet
attained. This quote showed a confusion between the no-
tions of class and object:

Subject 9: I can still remember that I tried to
do operations on the classes that I think I can
really remember, but I think I was trying to let
the lamp shine or don’t shine by doing something
with the lamp class instead of with the lamp ob-
ject.

Another showed the difficulty of learning pointers was tied
in with other unlearned concepts:

Subject 4: You know, and I’m not sure what I
didn’t understand, because there was plenty of
other things that we were doing at the same
time, like recursion and inheritance, that also
used pointers. Recursion was another huge stum-
bling block for me. And so taking a pointer and
throwing it in with a recursive function - [laugh]
- I felt like I was, you know when you stand in
front of those mirrors in a dressing room, the ones
that are in front of you and on the sides, and you
see reflections and reflections and it never ends?
That’s what I felt like with pointers and recur-
sion.

Some showed that some understanding had been successfully
attained:

Subject 6: But now I can ... I’m able to see
how the classes are related, I guess. How they’re
related and which classes share information.

Some students were knowingly striving for a deep under-
standing:

Subject 5: Why and how it [OOP] should be used.
I have a background that is very much procedu-
ral imperative ... programmed Basic, Assembler
and Pascal since the middle of the -80s ... so
it was a rather high threshold to, not to learn
how to use it, to get it to work, but to use it the
right way ... I thought it was very elegant but
it took probably several years before I saw the
really elegant solutions ...

Concrete understanding without abstract
Some students were able to work with object-oriented con-
cepts at a concrete level without a theoretical understand-
ing:

Subject 9: ... I’m pretty good at Java, but the
interface concept is little strange. Abstract class

126

and interface and stuff like that, ehh, is rather
complicated. Ahh, specially interface [giggle].
And to explain that to someone, I don’t think
I can do it, but I can use the term and I can use
interfaces.

Relating the abstract concept to implementation or de-
sign
Students commonly mentioned that they had a theoreti-
cal understanding, but were unable to translate that un-
derstanding to something less abstract. Specifically, many
students discussed their inability to use their abstract un-
derstanding to produce a concrete implementation:

Subject 7: There’s just some aspects to it that
just seem to remain kind of mysterious to me at
the programming level. Not the concept level,
not the theory level, not the technology level but
at the kind of code nuts and bolts level ... It’s
not that I don’t understand what I’m trying to
accomplish it’s just getting the syntax of the de-
tails right ... I’m a lot better in Java because I
don’t have to deal with the syntax of the details.
I can only deal with the concepts.

Subject 8: the abstract understanding is some-
thing you learn by education, by reading, you
can learn that in class, but the understanding of
actually applying it to programs you can’t, you
must, you must learn it by, by, by using it ...

Other mappings proved difficult, such as the application of
the abstract understanding to design, which is less concrete
than implementation:

Subject 8: ...but the harder thing is actually to
create what should be an object and what should
not be an object and, what classes should I have
for these things and, and that is the most ...

A similar observation is the following:

Subject 9: ... So it wasn’t like a big struggle to
understand the difference between class and ob-
ject for me actually. But it can be when you’re
designing a program ... To know where to stop
doing the classes and start doing the objects.
That ... that’s actually something you can think
about today, as well.

Rationale
Another aspect of understanding a concept is understand-
ing its rationale–why you would want to know and use this
concept. Students reported feeling the lack of this under-
standing as they were learning:

Subject 3: My thoughts were that I didn’t un-
derstand why we needed pointers when refer-
ences worked perfectly well beforehand. I didn’t
understand the power of pointers and I guess I
just didn’t see the purpose of declaring variable
int*2.

2int* is a reference to how a pointer to an integer is declared
in C-like languages

Subject 5: I found it difficult during the first ...
the first course when I encountered it, I couldn’t
see the use of it, except that you could get some
kind of encapsulation.

Application
Another way of understanding a concept is to understand
how to apply it to new problems, not just in the related
assignments.

Subject 2: You understand how a theory works
but how do you take that theory and how it
works and apply it to a practical sense? I think
that is one of the hardest leaps to make.

Subject 8: ... it took a long time to under-
stand how object oriented programming works,
but then once I understood it more or less, the
basic concept, I still couldn’t use it, it wasn’t us-
able because I didn’t know what to apply to my
problems.

6.2 Temporal Aspects and Oscillation
We examined how long students spend in the liminal

space. Since we started our discussions by asking students
about places where they were stuck, it is not surprising that
all of our students emphasized the prolonged process re-
quired to learn threshold concepts.
Students and faculty alike will often talk about having an

“aha” moment. While this might imply a sudden insight,
this moment frequently is preceded by either a long time
in the liminal space or a depth of understanding in a re-
lated area. Subject 7 implies a lengthy journey through the
liminal space:

Subject 7: It unwound or wound it printed out
statements but I still didn’t understand it very
well. It really honestly wasn’t until I got to your
class that the light kind of came on and the idea
of doing the checks up front and sort of assuming
it’s going to do what you tell it to do.

Subject 5 describes a deep understanding before the “aha”
moment:

Subject 5: A friend that showed me some kind of
interpreter for some small little ... well, a model
of a computer, where he [...] took the instruction
object and told it ‘run’, [...] then I got some kind
of small aha-experience, ‘perhaps you can do it
that way instead of doing it in some more tire-
some way’, the way I should have done it myself.

Many students mentioned a prolonged time in the liminal
space. Across the board, the time to gain understanding
was lengthy:

Subject 13: I think there was definitely a
point where I definitely got the understanding,
whether I was still confident in doing it, that
probably took a lot of time.

Subject 2: ... when I finally did make the under-
standing, which actually took about two to three
years.

127

Subject 6: I think it is something that takes at
least a couple of semesters. I mean, unless you’ve
had prior experience, I just don’t see.

Subject 5: Object oriented programming was one
thing for example that took a long time before
... it clicked. [...] It took ... perhaps two years
before it was completely in-place ...

Students seemed to not only spend time learning the con-
cepts, but they also demonstrated understanding that the
prolonged process was necessary for learning. Subject 4
knowingly gives a lot of time to the learning process, while
Subject 7 implies it was natural to not understand yet :

Subject 4: So, I had a lot of time to spend,
you know, brain resources to spend understand-
ing, you know, stuff that’s pointing and how you
dereference it.

Subject 7: So everybody - it was just sort of like
they were talking a language I wasn’t fluent in
yet.

Students also implied oscillation in their learning. They
describe the nature of going back and forth between knowing
and not knowing, thinking that they know it, but realizing
they’re not there yet:

Subject 4: It was clear to me, it just seemed like
while I was in the thick of it I would forget. I
spent a lot of time lost in the - it was that forest
for the trees. I don’t know. Lost in the jungle.

Subject 6: ... with object-oriented [...] I think
you understand the basic - you have the concept
of it. But I ran into certain things with classes
where I didn’t have access to that particular class
and I’m thinking, What’s the problem here? [...]
So I did understand but I have run into problems
and it did kind of go back to objects and how
they’re relating.

Subject 9 nicely summarizes the oscillation between the
knowing and the not knowing:

Subject 9: ...most of the time it’s just iterates
on the outside of the knowledge spiral. [...] I
have to refresh the knowledge I learned recently
more often, but some things I have to go back
and refresh maybe the real basics of what it’s all
about. Not that I have forgotten it but to get a
deeper understanding.

6.3 Emotional reactions
Meyer and Land refer to the liminal space as “problem-

atic, troubling, and frequently involv[ing] the humbling of
the participant.” [14] They also warn that students may
experience “difficulty and anxiety” in relation to learning
threshold concepts. We examined our student quotes from
this perspective, to see if we could find evidence of emotion-
ally laden terms.
Students frequently mentioned that they found that learn-

ing threshold concepts was frustrating:

Subject 3: Felt? I think I felt frustrated. My
thoughts were that I didn’t understand why we
needed pointers when references worked perfectly
well beforehand.

Others referred to feelings of depression:

Subject 13: During ... well if I found it difficult
then I would probably mope slightly for a while
and then got down to it.

There was evidence of students feeling humbled:

Subject 2: Another thing that was very frustrat-
ing. I’m usually quick to understand things.

Subject 7: It just seems like it’s been such a long
and horrible road over pointers and that object
oriented thing. That’s just been my nemesis the
whole way through and I don’t remember any-
thing else being that difficult.

Students themselves note that there was a certain mys-
tique around becoming a programmer or understanding a
concept:

Subject 7: The class idea was just really myste-
rious.

Subject 4: ... it seemed like something really
hard. Like if you’re extremely smart then you
can program, you know. All computer geeks are
really smart and they can program. That’s my
sort of opinion of it before I started. Something
that was magical and hard.

When students eventually grasped a concept, they were
transformed and excited:

Subject 4: While I was stuck they [pointers] were
a nightmare and I hated them. After I figured
them out, they were very cool and useful. And I
could see why you would want to have them.

Subject 6: And then when I do get it to work,
it’s almost like these people that run a 25-mile
marathon just for, like, that high or whatever.
I get that when I solve the problem. I get real
souped, screaming in my room.

Confidence can be seen as an emotion with a fairly com-
plex relationship with liminal spaces–being stuck can lower
it, but having it can make it easier to get unstuck. Student 9
describes his or her feelings about the importance of having
some prior knowledge in programming:

Subject 9: I got the aha experience again and
that just was like if I know a little then I can, eh,
jump in everywhere and catch up from there. [...]
And that’s really important to know, or to feel,
that you can catch up. [...] it’s not impossible.

The same student also emphasizes the importance of
knowing "how to study” in terms of be able to use differ-
ent online resources and IDEs:

128

Subject 9: That helped in Java doc and API on
the Internet and the, aha experience again, that
how to use it [...] that you could actually go
there and see how you should do with any ques-
tion you have and also seek information on other
eh on Google for example on the Internet how
to solve a specific problem, problem in program-
ming. Eh, that have really helped me a lot, Ahh,
the confidence that I can do it with, eh, help of
Internet. [...] when I hear of a new concept it’s
just to see on the website to see what they mean
and how they, how you should use it and you use
it. Ah, and that’s a really big threshold to come
past.

6.4 Mimicry
During the interviews some of the students mentioned

that in beginning to learn a subject they ”imitated” someone
or some existing code. Subject 9 discusses starting object-
oriented programming:

Subject 9: And then ... when ... to learn some-
thing from an example, for example, it had to
be exactly almost the same example as the thing
you are trying to solve. You are trying to find ex-
actly the information how to solve this problem
in the textbook always search in the textbook.

and:

Subject 3: I think if a person can see the pattern,
I think I’m no different from anyone else. If I
can see the pattern, I can generally, I can take a
technique and I can go home and figure it out if
there’s a pattern to it.

Others indicated that it was a big help in the beginning to
have step-by-step instructions to follow:

Subject 7: I think the idea - and one of the things
in your teaching - one of the things about your
teaching is that you tend to give a procedure and
I think I don’t believe in - you actually in some
cases give a list of things. Step one, step two
like on recursion. I don’t think in other classes
that we’ve been that procedure oriented. Maybe
we’ve talked more about the idea and the concept
and the whatever, but it really helped.

Even if a behavior like this might seem counter-productive,
“the students are here to learn how to do things themselves,
right”, it is important to realize that for the interviewed
students the “mimicry” seemed to be just a stepping stone in
their further learning. Here is another example of a student
who started by mimicking and then progressed:

Subject 9: In the beginning I tried to look it up in
the textbook and find the exact example how to
solve this instead of, eh, while during the process
I found that an IDE can help me when I, when I
press the point it gets a list of everything that’s
possible to do with that object, and if you write
the class name, you, you get some sort of error
message, it probably meant that instantiation of
this object. Ah, so it helps ...

Interviewer: So, in this way ... are you using
this IDE. Your understanding of these concepts
changed?
Subject 9: They improved, yes.

In some cases, however, students did not progress beyond
mimicking:

Subject 7: I have so much trouble with that over-
load asterisk and there’s that – is it asterisk am-
persand symbol or whatever. Never got that.
Never had a clue. I just copied it. Yeah, it really
gave me trouble. Just looking at would just sort
of freeze me.

6.5 Crossing the threshold
Students in the interviews discuss object-oriented pro-

gramming and pointers from an illuminated perspective of
having passed the liminal space. This is expressed in differ-
ent ways. Sometimes the descriptions of the experience of
passing through the liminal space is emotional:

Subject 2: It took a lot of just practicing and just
repeating. It’s to the point where when you see it
you wouldn’t be kind of intimidated. You would
already say okay I know what I can do with this.

One student discusses the emotions that characterizes his or
her conviction of having passed the liminal space, and the
previous emotional conviction of not having passed:

Subject 6: But I just remember at that moment
like it just kind of made, I don’t know, made
sense, I guess. I don’t know what about it made
sense. [...] I mean, I did get it before. I saw what
was going on. But I just didn’t feel like I had the
control, I guess, till I saw it.

Some students describe their conviction of having passed
the liminal space as being able to visualize their understand-
ing:

Subject 2: But the basic idea of passing by ref-
erence or value; no, once I understood that I –
every time it’s mentioned I immediately know
and understand – I can see a picture – a diagram
in my head of what I’m supposed to do.

Subject 7: I remember in the final I looked at a
problem that you wrote and I saw recursion ... I
remember it was a tree and I remember looking
at it and as I said some people see black and
white, some people see color. It was like I saw
color. Oh, you can solve this with recursion. It’s
a tree. I can solve this recursively and here’s this
relationship. [...] That was kind of like, "Whoa."
I actually saw it and that was pretty exciting.

Other students describe their conviction of knowing the
concepts on the foundation of mastering the handicraft of
programming:

Subject 13: And after ... its like you said before
it was one of those things like riding a bike, isn’t
it.

And another student says:

129

Subject 2: And then after it’s almost like it’s a
tool and you don’t even think about using it. You
say I need to do this. Okay, done. [...] And it’s
a seamless integration. It’s just there it is. And
you don’t - it’s almost like you don’t even think.
Like when you - right now I have to declare an
integer. I don’t think about how I do it or how
to syntax. I just type it away. It’s almost like a
memory response.

The same student contrasts his or her experience to how it
was before the passage of the liminal space:

Subject 2: So I think it comes from a point of
being completely lost and just randomly guessing
and hoping your guessing is good. To a point
where you’re confident with using that and you
may not want to use it as much as you would
something else you’re more confident with ...

Having passed the liminal space does not always mean
that there is never a need for going back. The students dis-
tinguish however between not understanding and practicing
for a better understanding, and between understanding but
still needing to practice syntactical details of the program-
ming language:

Subject 3: After a certain length of time, yeah,
sure, I have to review stuff.

Interviewer: Well, you review it to program, but
conceptually?

Subject 3: No, I understand it. It’s something I
do get.

Similarly:

Subject 2: I would have to look up the syntax and
possibly get a very brief example just to remind
myself that’s how the pointer works. Okay, done.
Then the memory jog hits me and I’m good.

An interesting question arises when studying students who
claim they have passed through the liminal space. Are
the students’ views are in line with the educators’ view of
what is required for a “good” understanding of the concept?
Are there students who believe they have passed the limi-
nal space, when they, according to the course requirements,
have not? And, on the other hand, are there students who
believe they have not passed the liminal space, while educa-
tors would say they have? Students from our study illustrate
this:

Subject 9: So then, and still, I, I mean that I’m
pretty good at Java, but the interface concept is
little strange. Abstract class and interface and
stuff like that, is rather complicated. ’specially
interface. And to explain that to someone, I
don’t think I can do it, but I can use the term
and I can use interfaces.

And later in the interview:

Subject 9: I think I should know why information
hiding is important but I can’t think of it now ...

It can be questioned whether the student has passed the
liminal space or not since the concepts the student fails to
understand are central to the object-oriented paradigm.
Another student demonstrates his or her understanding

of object-oriented programming, and yet says

Subject 5: object oriented programming was one
thing for example that took a long time before...it
clicked. [...] It took...perhaps two years before it
was completely in-place...and it’s really nothing
that I’ve really understood even today.

Reading the transcript as educators, we believe the student
has a good understanding, and still he or she is not convinced
of having passed the threshold.

7. DISCUSSION
Students certainly describe the features that define liminal

space according to Meyer and Land. Our analysis has raised
a number of interesting observations and questions.
First, we saw different partial understandings of students

during the liminal space. Students, at least in retrospect,
show an appreciation that full understanding includes the
theoretical and the practical: an abstract understanding,
the concrete ability to implement, being able to go from the
abstract to the concrete, the underlying rationale, and how
to apply the concept. The need to attain all of these some-
what independent understandings explains why students get
stuck at different places, and why the path through this
space is not a simple linear progression. That we commonly
observed the particular partial understanding of not being
able to translate from an abstract understanding to concrete
implementation or design may be specific to computing as
a discipline, a question worth deeper investigation.
This observation in the data seems to be in contradiction

to some well-established taxonomies, e.g., Bloom’s taxon-
omy. [1] Bloom’s taxonomy defines goals for learning in
levels. We, on the other hand, have observed that the dif-
ferent aspects of understanding occur in parallel. In fact,
the need to go back and forth between the theoretical and
the practical seems as important as the parts themselves.
We want to emphasize that the identified partial under-

standing, the parts or aspects, refers to the whole learning
process including both the theoretical and practical under-
standing. These parts are often developed in parallel. Mas-
tering a concept requires an abstract understanding, a con-
crete ability to implement it, the rationale behind using it,
and an understanding of how to apply it in practice. The
different “routes” students take correspond to different pat-
terns of development: some students claimed that they had
no problems with the theory, but struggled to see the ratio-
nale behind the concept, while others had difficulty applying
the concept to new problems.
Second, when considering the question – “Does the pro-

cess of learning threshold concepts take time?” – the answer
seems to be a clear Yes. All of our subjects at some point
discuss the lengthy process of learning. What we found in-
teresting here was that whether acknowledging that learn-
ing occurs as a spiral action or as feeling lost in a jungle, all
of our graduating students admit and accept that learning
computing concepts takes time. Some students take time
with the theoretical aspects, while others spend more time
learning how to implement the concept. This may be a ma-
jor roadblock to first-year students who typically have not

130

yet learned about the time-consuming nature of learning,
particularly in a technically demanding field such as com-
puting.
If so, then one thing educators can do is to support stu-

dents during the experience that learning takes time. While
many of us attempt to do this indirectly with our assign-
ments and labs, is there something we can directly do about
this? How can we instill the notion that the time-consuming
nature of learning is normal?
This should also be taken into consideration by educators

when they meet novice students. The insight that these stu-
dents lack the experience that learning takes time might help
educators to better understand and cope with the difficulties
novice programmers demonstrate.
Third, we found that there was no lack of emotional reac-

tions while learning threshold concepts. As our interviews
show, students exhibit very strong feelings. This presence of
strong emotion in students discussing the field of computing
is rarely mentioned in the literature, but as CS educators,
many of us have had the experience of students telling us
that they “hate programming.” Despite purists’ belief that
computing concepts should not be anthropomorphized [5],
our students personalize threshold concepts, and say they
hate or fear them. They also exhibit feelings of euphoria
when they emerge on the other side of the threshold.
We suggest that instead of dismissing students’ emotional

reactions, as teachers and professionals we should recognize
that they are normal and desirable. We need to consider how
we can create a learning environment where the feelings that
programming is hard, magical and frightening are handled,
and students move through them rather than give up.
Fourth, many students state that at some stage during the

learning process they mimic what others have done with-
out exactly understanding what they are doing. For some
teachers mimicry is an undesirable action; students are sup-
posed to always understand what they are doing and to “just
mimic” someone is a failure. We suggest that teachers look
at mimicry in another way. Although some students do not
progress past mimicry, it can be a step to gaining a full un-
derstanding of the subject. Meyer and Land acknowledge
this when they write

...students might well adopt what appears to be
a form of mimicry as a serious attempt to come
to terms with conceptual difficulty, or to try on
certain conceptual novelties for size as it were.
We would not want to belittle or dismiss such
responses as they may well prove to be success-
ful routes through to understanding for certain
learners. [14, p. 383]

Our original interviews did not pursue the idea of mimicry
in depth, but the mixed results here suggests that further
study of the role of mimicry in learning programming (and
computing in general) is warranted.
Fifth, the question “Do students know that they have

crossed a threshold, and if so, how?” has no clear answer.
We have identified different ways students express their be-
lief that they have passed through the liminal space. The
descriptions are often vivid and illustrate the students’ ex-
periences of a transformation. Yet, while students express
that they understand a subject, the evidence suggests that
they might be wrong. What are the consequences if students
think they have passed through the liminal space, when they

have not? And, on the other hand, how does it affect stu-
dents if they believe themselves not to have reached desired
understanding, when the educator judges that they already
have passed the liminal space?

8. CONCLUSIONS
In this study, we examined Meyer and Land’s notion of

liminal spaces in the context of learning concepts in com-
puter science. We applied the theory to our interview data,
as a grid to highlight certain aspects of the learning expe-
rience. The result of the analysis revealed a broad and rich
picture of the students’ learning experiences. The picture in-
dicates a transformative experience when learning threshold
concepts. The learning process is experienced as a complex
whole by the students, and therefore difficult to fully under-
stand. Using the idea of liminal space as an analytic tool
provides a way to separate out several important aspects of
the learning process. Each aspect is individually interesting
as is their complex interaction.
Addressing our research questions, we found

1. Liminal spaces provide a useful metaphor for the con-
cept learning process, at least for transformative con-
cepts. The absence of a single path through, the fact
that these changes can take time, the emotional reac-
tions of the students, and the students’ use of mimicry
as a coping mechanism: these characteristics seem to
capture much of the learning experience.

2. In addition to observing the “standard” features of lim-
inal spaces, we have identified some that may be spe-
cific to computing. The kinds of partial understand-
ings observed—specifically those relating to levels of
abstraction—are closely tied to what computer scien-
tists do.

The particular students’ emphasis on the difficulty in go-
ing from the abstract to the concrete is quite interesting, and
seems counter-intuitive given the way we teach computing.
The emphasis in computer science education is on teaching
students to abstract away from the details, but the problems
observed here are in moving in the other direction.
The most important practical observation from this work

may be that different students take different routes through
the liminal space, with the possibility of getting stuck at
multiple places. This suggests that there is no fixed order
of topics that best serves all students, rather instruction
should be flexible enough to accommodate individual stu-
dents. Knowing what aspects of a concept are necessary to
gain full understanding, particularly those concerning differ-
ent abstraction levels and the mappings from more to less
abstract, could help here.
This work suggests a number of questions that deserve

further investigation. Would we get similar results if we in-
terviewed students while they were still in a liminal space,
rather than after they have attained understanding? Would
we see differences if we interviewed novices rather than
graduating seniors? Would other transformational concepts
in computer science—those less tied to programming, for
example—show similar partial understandings? How do stu-
dents use mimicry when trying to learn, and when might it
be effective?

131

ACKNOWLEDGMENTS
The authors would like to thank Mark Ratcliffe and Jonas
Boustedt, who participated in the design, data collection,
and initial analysis of the threshold concept interviews.
Thanks also the Department of Information Technology at
Uppsala University for providing us with workspace and fa-
cilities in Uppsala, and to Sally Fincher, Josh Tenenberg,
and the National Science Foundation (through grant DUE-
0243242) who provided workspace at the SIGCSE 2006 con-
ference in Houston. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation or Uppsala University.

9. REFERENCES
[1] B. Bloom(Ed.). Taxonomy of Educational Objectives,

the classification of educational goals - Handbook I:
Cognitive Domain. McKay, New York, 1956.

[2] J. Boustedt, A. Eckerdal, R. McCartney, J. E.
Moström, M. Ratcliffe, K. Sanders, and C. Zander.
Threshold concepts in computer science: do they exist
and are they useful? In SIGCSE-2007, pages 504–508,
Covington, KY, March 2007.

[3] B. J. Cooper. The enigma of the Chinese learner.
Accounting Education, 13(3):289–310, 2004.

[4] P. Davies. Threshold concepts: how can we recognise
them? 2003. Paper presented at EARLI conference,
Padova. http://www.staffs.ac.uk/schools/business/
iepr/docs/etcworkingpaper(1).doc (accessed 25
August 2006).

[5] E. Dijkstra. On the cruelty of really teaching
computing science. Commun. ACM, 32(12):1398–1404,
1989.

[6] A. Eckerdal, R. McCartney, J. E. Moström,
M. Ratcliffe, K. Sanders, and C. Zander. Putting
threshold concepts into context in computer science
education. In ITiCSE-06, pages 103–107, Bologna,
Italy, June 2006.

[7] J. Hughes and D. R. Peiris. ASSISTing CS1 students
to learn: learning approaches and object-oriented
programming. In ITiCSE-06, pages 275–279, Bologna,
Italy, June 2006.

[8] P. N. Johnson-Laird. Mental models: towards a
cognitive science of language, inference, and
consciousness. Harvard University Press, 1983.

[9] D. Kember. Misconceptions about the learning
approaches, motivation and study practices of Asian
students. Higher Education, 40:99–121, 2000.

[10] F. Marton, D. Watkins, and C. Tang. Discontinuities
and continuities in the experience of learning: An
interview study of high-school students in Hong Kong.
Learning and Instruction, 7(1):21–48, 1997.

[11] R. McCartney, A. Eckerdal, J. E. Moström,
K. Sanders, and C. Zander. Successful students’
strategies for getting unstuck. In ITiCSE-07, pages
156–160, Dundee, Scotland, UK, June 2007.

[12] J. Mead, S. Gray, J. Hamer, R. James, J. Sorva,
C. St. Clair, and L. Thomas. A cognitive approach to
identifying measurable milestones for programming
skill acquisition. In ITiCSE-WGR ’06: Working group
reports on ITiCSE on Innovation and technology in
computer science education, pages 182–194, New York,
NY, USA, 2006. ACM Press.

[13] J. Meyer and R. Land. Threshold concepts and
troublesome knowledge: Linkages to ways of thinking
and practising within the disciplines. ETL Project
Occasional Report 4, 2003.
http://www.ed.ac.uk/etl/docs/ETLreport4.pdf.

[14] J. H. Meyer and R. Land. Threshold concepts and
troublesome knowledge (2): Epistemological
considerations and a conceptual framework for
teaching and learning. Higher Education, 49:373–388,
2005.

[15] O. Muller. Pattern oriented instruction and the
enhancement of analogical reasoning. In ICER ’05:
Proceedings of the 2005 international workshop on
Computing education research, pages 57–67, New
York, NY, USA, 2005. ACM Press.

[16] L. Murphy and J. Tenenberg. Do computer science
students know what they know?: a calibration study
of data structure knowledge. In ITiCSE ’05:
Proceedings of the 10th annual SIGCSE conference on
Innovation and technology in computer science
education, pages 148–152, New York, NY, USA, 2005.
ACM Press.

[17] D. Perkins. The many faces of constructivism.
Educational Leadership, 57(3):6–11, 1999.

[18] D. N. Perkins and F. Martin. Fragile knowledge and
neglected strategies in novice programmers. In Papers
presented at the first workshop on empirical studies of
programmers on Empirical studies of programmers,
pages 213–229, Norwood, NJ, USA, 1986. Ablex
Publishing Corp.

[19] J. A. Shymansky, G. Woodworth, O. Norman,
J. Dunkhase, C. Matthews, and C.-T. Liu. A study of
changes in middle school teachers’ understanding of
selected ideas in science as a function of an in-service
program focusing on student preconceptions. Journal
of Research in Science Teaching, 30:737–755, 1993.

[20] J. A. Shymansky, G. Woodworth, O. Norman,
J. Dunkhase, C. Matthews, and C.-T. Liu. Examining
the construction process: a study of changes in level
10 students’ understanding of classical mechanics.
Journal of Research in Science Teaching,
34(6):571–593, 1997.

[21] V. Turner. From Ritual to Theatre: the human
seriousness of play. Performing Arts Publications,
New York, 1982.

[22] L. Vygotsky. Mind in Society. Harvard University
Press, Cambridge, Mass., 1978.

132

Paper IX

���� �� ��	
�	
� �

 �����	�	
� 	

�
���
������ ��������	
�

���� �����	�

��
����� �� ��������� ����������

���������� �� ����������� ������
����

�����
� ���
������� �����
�� ���	��

���������	
���
�������

��������

�� ������	
 �
��
���
�� 	�����
��
�
� �	�	
���� �������	��	� ����

����	��� �	�
� �
���
��� ��
��� ��� ����	��� ��
�	�� �� �
���
�
��� �� ���

�
�
��
�
� �
�	��
	��
�	� ���� ���� ����	��� ���	 �
	�� �
�����
	�
�

��	

 �	�
�
��� �	��
�	 �
	�� 	��
�� ��

�� ���� �	���	� ��
��
��	 �
��

�
���
�� 	�����
���

��	 ���	

��	��
���	� ��� �
�����	� ��	
	���
�� �	��		� ���
�	 ����

���	
 �
��
���
�� ����	���� ����	����� ��� �
���
��� �	�
�
��� �� ��
�

	�� ��	 �
	�	��
	�	�
�� ��	� ���� �� ��
��
�� ���
���
�
��� �� ��

� ����	����� �
��	��
�� �� ��	 �
	�	��
	�	�
�� ��
��
��
� �
�����	�
�

�	
�� �� ����	���� �	�
�
�� �� ����	���� ��
�	
���
�
��
� �
�����	� ��

������ ���
�	 ����	���� �
��
���
�� ���
�
�
	��

!��	� �� ��� 	��

��� ����
	�
�
� �
��	� ���� ��	
	 	"
��� � ���

���� ��� �����	" �	�	��	��� �	��		� ����	����� �	�
�
�� ��� �
���
�	

� ����	���� �	�
�
�� �
��	��� ��
� ��
� �� �	�
� ��	 �
����� ��	 ���	
�

��� 	
��	
 �� ��	� ��� �	���	 �� �������	 ���� �
��	
� ��
��	
 �	�
��

��� #��

��� $��
��� ��
�� �� ��	 �		� ��
	�	�
�� ��	
	���
����
�

�	��		� ����	����� ���	
�����
�� ��� �
���
�	 �� �	��	
 ���	
����� ����

�	���� �	�
�
�� �
��	���

��	 ���	
 �	�����
��	� � ��� ��
	�	�
�� ��� ����	���� �	�
�
�� ��

�
���
�	 ��� ����	��� �
	
	���	�� %	����� �
�� � ��	���	���
���
� �����

��
� �� ���
�	 �
��
���
�� ����	���� ���	
�����
�� �� ���	 �	��
�� ����

�	��� �
	 ����
�	� �
�� �� ������
� ���	� �� 	�	�	��� �
�� ��

��
��

��	�
� �� ��	 ����	���� �
��
���
�� ���
�
�
	�� ��
� ����� ���� �
�	
�

	�� �	�	�� �� �
�$�
	���
� �
��
���
�� ���
�
�
	� �� �	�� �� &���
���
�	��

�
�	
	�� �	�	�� �� ����	����� ���	
�����
��� �
	
	���	� �� �
�	��
��� ��

��

��
��� ��	 �
�	��
��� �� ��

��
�� �	
�	 ��
��	
���	� �	��		� ��	 ���

�
�
�
	� ��� ����	����� ���	
�����
���� �� � �
�	��
��
� �
��	
�	�� ��
�

��� ���
�
���	 ���
�� ��

��	
 ����	����� ���	
�����
��� ��� �	�
�
��

���
�
���� ���
�
�
	��

�

� �������	�
��

�� � �������	
��� �� �

�� ��������� ������ ��� �� ���������� �����	 � ����
������� ��� �������� ����� ������� ����� �������� ��� ���������
����� ����

�������� ���� �� ��� ��
� �� �� ��������
�������	 �� �������� �� �� ����
������� ���������
� ������ ��� ���������
� ��������� ������ ������ �� �����
����� ��� ���
���
������ �� �������� ��
�������

�� ����
�
�� � ����������� ��� �������� �� �����
��� ��� �������� ��
�������
��� ������� �� ������
���������� ��������� ��������� ������� �� ��������� ��
����
�
�� ���� � ����� �� �������� �� ��
�������	 ����� �������� �������
���!
���� �� ��������� ������ �� �
���������� "�� ������������� ��
���� �� ����
���� ��� ��
������ �������� ���
����
� ���� ������� #������ �� ��� ����	 ���
�������� $�������
���� ��%

��	
�� ��
�����
� ��
�
�
�

� ��
����� ���
��� �
 �����
���
� �����
���

��
�
�
� ��������

�� � �����
���� ��������� � ��� &��� �� "������� ��� ���������	 &" 	
�� ���������� �� ��� '"(
��)���� *'��������	 +,,-. ��� ������� ������
��
�
/�0��� ��� 1������� *+,,2.� &" ���������� ��� ���� ���� ���
������ ��
� ��
)��� ���� �������� ��� �
����� �� ������ ������� ��
)���!�
���#� ���� ��
"�������

� ���������� &" ����� ��� ��������� �� ��������� �������������
��� ������ �� ��� ����� "���� ��� ��
���� ��� ���� �

����� �� ��� ��
)��� ����
�� ���
����
����������	 ����� ���� �����
���� ������������� ���
��������
������������ ��� ����������
���� �� ��� �������� ������

� ���� ���� �
�����������
��� �

����� */����� ��� 3����	 4556. ��
����� ��������� ������������� �� ����������� �����
�� �� ������������
��!
�������� *��� 7������ 2�4 ��� �������.� "��
�����������
��� �������� �������
$������������ ��8����� ���������� �� ���� �� ����� ��� �������� ���������� �����
�����
���

�� � ��
��$���� �������� �� ���
������� � ���� ���� �������� ���� ���������
������ */����� ��� "���	 +,,9. �� ����� ��������� �������� �� ������ ��

���������� *��� 7������ 2�+ ��� �������.�

"�� ��� �������� ���� ��
����
�� �� ������ $������������ ��8����� �����
!
���� ������������� �� ��
����
�������� ���������� �������� �� ������ ���
����

����������� /� �������� ����� ���� ���������� �� ��8����� ������ ��
��#!
������ ������ �� ��8����� ���������� �� ������������� �� ��� �����
�� �������
����
���
� �� �
��
���
	 ����� ����� ���� ����������
������ ��8����� �����
!
���� �������������� ���
�������� �� ��������� ���������

�� ���������� ����� ��
��
����	 ����� ��� �����
� ���������� �� ���������
�� ���� ��� ���� �� �������� �� $������������ ��8����� �����
���� ��������������	

�� ���� �� �������� �� ��8����� ������ ��
��������
��#��������� �� ���� ��� ���

�� ���� ����� �	 ��
����� 	�
	�
����
� ���������	 	��
����
�� �������
����� 	�
	�
����

� ���������	 ��
�
����
��� �� ��� ���� 	� ��� �
����

����	��
��	�
�	�� ��� ��� ��	��
�� ���
�
��� ��

�������
����� �����	������ �� ���
�����
��
�� �	������ �� �	���
� ����� ����������
����

��! "#�������� $%%&�'$�$()

+

����������� 	
� ��
�����������
�� ��� ��������� ������ �
 �������� �� ����	��

��� ���� �����
�	�� 	����
�������
� �	� ��
� ���
�����
�� ���

���������� ���

���
� ������ �� ��� ��������
����

� ���
��
��� ��
�������� ��
�� ��
����� ����

����	��
 �� � ������ 	����
������� �� ��� ���
��� �������� ������� �����
�	��

	����
�������
 ��� ���������
 �� ������	�����
����������
�	����
� ���������

��� �	����� �� ���
�
�� �
 �
 ������
� ��� �������	�� �� ��� ��
����� �

��
����� �� ������� � ���
 ����	��
 � ��
�	

��� �� ���� !�" ����
 �� ���

���������� ��
��
����� � ��
���
���� �� ��� ��
������
�	���
� ��� ������� �����

������� #
��
���
 ��� ��
����� �

������
 	
�� �� ���
��
��� ��
������ �����

��� ��
������ ���� 	����
������ ��� ��
����� ��� ��
�	

�� �� ������� $� �������

%
��
�
�
 �� ���������� ����� ����
���
 ����� �� ��� ���
��� �������� �������

�������� ��
�����
� ��� �������� �� �����
�
� ������� &
��
���
 �����	
���
 ���

�	�	�� �����

� �������	
�

��� ���� �� ���
��
���
�	�� �
 �� ��
���� ��� ����
 �� ��� �������� �������

�������� ��� "�����
��� �� ������
����������
�	����
� ��������
����

� ��

���
 ���
���
������ ������
 ���� ��� ��
������
�	���
 ��� ����������� ��

����
 �� ��� �����
�	�� ��������� !�"� ���

������ ��
� ��
�	

�
 !�" �

�� ��� �

�� �� ���
���������� ��
��
����� ���� ��� ��
������
�	���
 ���� ���

��
����� �	���
 	
��� ��� ������ ��
����� ������� �� ���
��
��� �����

��� ���� �	
��
��
� �
� ��������
� �
 ��� ���������
�

��������
�

!��� ���
 !�" ���� ��� ������� ���� �

���� �� ���
���������� ��
��
����'

!�" �
 � ���� ���� ���������� (� ��
 ���� ��
������ ��)�*	�� ��� +�	�
���

�� ��� ��������� ����

��� ��������	
���� ��

���
�� �� ���� ���
���� ����� ����� �������
���������� ���� � ����� ��
���� ���� �� � ������� �������� ���� �����
�����
�	 ��� �������	 ������ �� ����� ���� ���������� ��
������
����	
����� ��
��������	 ������ �� ���� �� ������ ����� ��� �����
�
 �� �������
�� ���
���������� ������� �� �
��������� �� ��
���� ����� ����� �� ���
����������� ��������� �������� ���� ���
���� ����� ����� ����� ���� ��

������ � ����� �� ���� �� ����� ���� ��
� ���� �� � ����������
�����
������� ��������� !"�#��� ��
 $�������	 %&&'	 �� %'()

)�*	�� ��� +�	�
����
 ��
�	

��� ��
���
 ���� ��� !�" ��������� �������

� �����
	�,����

����� �	��	��� ���
��
��� ��
����� ���
 ��� ��� �� �	���

����� !�" �� ���
���������� ����	�����
� ���� �

���
 ���� �� ��
�	

���

��� ���
� �

���
 ���� ����� �� ������� ��
��� �

���
 �� !�" ��	�� �� ���

��
������ �����

#

��� ���� �� ���	
�	� �	 ���
��������	� �����
��	�

������ ��� 	
������
����� ������� �������� �� ��� ��� ������
�� �� �����

� ��������� �������� �� �������� !���
��� ���������� ���� � ��"�� ��#$��� ����
�� � � ���%� �
�����& ����� ����� ������� �
� ���� �� !�
���� �
 ����� ����
 ��������� ��������������' �
���
� ����
����' "�����&
������ ��� 	
������'
����' (��)�(�
��� ���� ������������� ��
�� �� ���
� !�
���� �
 �����
���� ��������� ��������������& ��� ���� #� ��� �
���
� ��� ������ ��������
�

� �������� �� �
� ���� �
��������(

*
��
� ��� ������� �
��� �� ������ ��� �
�������� ����� ���� ��� �
�+
�
��, ����
����� ����, �� �
�������� �������
� ��� ���, �
"��� ��������
%�� ���� ��-���� �
 �����
.�������' ���/�(

��������' �� �� �� ��������� �#
"�' � ���� �� ��� �����
� �
������ ��+
"��
 ���� �
� ���� �� �
#��� ����,���' �
������ ������' �� ���������
� ���
�������(���� ����
��� �

� �������������
� ������,��� �
��� ��(0�
#$���+

������� �
��������' ����,��� ��� ������ ��"
�"� �
� ���� �� �������,���
#+
$���� �� ��� �
#��� �
����' ����� �� ���������
� ����� �
���� ��� ������ ��
� �
�������� �������� �
 �� ���� ��� ������,��� �
��� ��' ��� ������� ��
��

���� ������ ��"
�"�� �������� ��� �
������ ���� ��������� �
 ����� �
��� ��(
�������� �� ���� �
����� ���� ����� ��� ��, �
 �����
� ��� ���������� �
�+
�� �� ���� ���#��� ����,���' ������' �� ���������
� ��� �����(

��� ���� �� ��������	� �	 ���
��������	� �����
��	�

��� �������� ����
� �
�������� #��
��� � ����� ���� �
������ ��"��
 +
���� �� ���������(*
������ ��"��
 ���� �� � ����
� �
#��� �
�"��� �
����'
�������
����, ��"���� ���
 ��"���� �����1 �
#��� ����,���' �
������ ������' ��+
 ���������
� ��� �������(��
��������
���� �
�� �������"��, ��
�� �����
 �����' �
��� #��� ��� �
��� �� ��� �
�� ��"�����(2�� ����� ��"� #
�� ���+
����� ��� ���
������� �� ����' ��� �
��
� ��� �������� �� ���� ���� #� ���������
����(

��� �
#��� ����,��� ��� ������ ����� �� ���
� ��� ���������
� ���
 �
#���' ��� ��� �
����� ����� ��� �
���� ���� #� ����(��� ������� ��+
"
�"�� �� ����,��� ��� ������ ��3����� ������ �� ���� ��"���� ����� �� �
����+
���� �������� ��� ���������' �,�������� � �
����� �
 ����,��� ��� ������'
��
������
� ������ ��������� ���� 4�5� ���� � ���%� �
������ �
 �
���� ����
������' ��� �������� ��
������ ��� �
��(

��� �� ���������
� ��� ������� �����
� �
������ ��"��
 ���� ��3���� �
�
���� �� �������� �� ������� �� ���
� ��"���� �
�������� ��������� ���� � +
 �
 ����� 06.��(��� �#����, �
 ����' ����� ��� ���� �
��' ��� ��
������ �#
��
�7����"� �
#��� �
�"��� ����������' ���
���� ����������� �� ����
� �������
��
����� �
� � �
������� �
 ������(

����� �����	 �
	����� �
���
�� ���
 ��
�	
�	���	 �������
��
� �
���
�� �
�
�����
�
	������ ��� ��
 �����
������
�� �
	����� �
���
�� ��
� �����	��
 ��
����
� �
�
��
�
���	 �
 ���
��
�
����
�� �
	��
�
 ������� �������	 �

�
 ��� �
	���� ������ �	 !""#�
$"�"% ��
� ����&''���(�)���	�
�
���

�*+,� *�����
��	 +� ��
����� ,� ��
������
�� �
��(
�� �

�� ���	 �
� ��
��
����� 	��
 ��
������
���� ������
���� �
� �-
���� �	��
�� �
�������
�	 	��������

8

�� ���� ���	
 � ����
���� �� �	
���� ���	��� �
 �
��������
	�	����
�
 �����	
����	����

�������� ��� 	
����
��� �
 ���
 �� ��
�
��� � �
�����

���� �� ��	� ��	 ��
	 �
 ���

�� � ������	
 ���	��	 �	
��	����	� �
 ��
	
�
	���	��� ��� ��	� � ������	
 ���	����� ���
���� � �
��
������ �
���	��
� ������	
 ���	����� ������ �� �	
�� �
 ����������	� !
��	
� "##$%� ��	�	
����
������� �
	 �
�	� �
 ��� ������
��� ���������� �
	 ����
��� ���	�� �

���	������ ����	 ��
	������ �
 ����
	�	 �� ��	 �	��	 ���� ��	� ����	
� ������
	&��	�� ���� �� ���
	 ���� �� ������	
 �	��
�� ����
������ �� ����
	'��
	� ��
�
�������� 	(�
	��	�
�
 	(����	 ��
���� ����
�� ��
����
	�� ��	� � ������	

���	����� ���
����	� � �
���	�� �	 �
 ��	 ���� ����������� �	��		� �� ��	 ��	
���� ���� ��� ���� ��
����
	�� ��� �� ��	 ���	
 ���� ��� ��	�	 ��� �	 ��	� ��
����
����� ���� ��	 �	�� �
 ����
�� ��
����
	�� �� ���� ��� �
���	� ������� �� ��

�
�����	 ����
����)
	�	������ ����	����� �
��	��
	�� ��	
	 � �
���	� �� ��)
��
���	� ���� � ������	
)�
�	��	� ��������� ����
������ �� ��

�	� ��� ��
����
��������� �� �	��
��	� ����	� ��� ��	
	����� �
 ��	 �
��	�� �
 ����
������ �
	
����
	���	� ��
���� �
�����	� ������� �
�����	� ��
���
	 �	�	����	�� ����
)
���� �����	 �� ��	 ��
� ��� ������� ����� ����	����� ���	
��������� 	&��	��
�
��
������ ��������� �
	 ��
��� �������	 �� ����������� �
�����	 ��� �����)
��� �
	 ���� ���	

	���	� ��� ��	������� ���	
���	� �� ��	 �
��	�� �
 ����
������
��� ����	�	����� � �������� �� � �
��
������ �
���	��

��� ��� ���	
��

�� �
�	
 �� ����� ��	
��	 �
 �
�����	 ��� �������� �� �����	 ������	
 �
��
��)
���� �	�
����� ��� 	���
���� �����	� ���	 �		� ��

�	� ���� �� ��	
���������
��	� ���� �	
	
	

	� �� �� *���� + ��� *���� "�
	��	����	���

��	 ��,�
��� �
 ��	 ����	��� ��� ���	 �� ���
������
� �
��
������ ���
�	
�� -������ -���	
���� �
	 ��� ������	
 ���	��	 ��,�
�� ����� �� *���� +
��
)
�		� .
�� �	�
 ����	���

�� � ����� �
��
�� �� �'����� ��� /���
���	����
/����		
��� �	
	 ���	
��	�	�� ��	 ����
���� �
 *���� + ��� �� ����	���0 ��)
�	
�������� �
 �	��
�� ����	���� ��	 ���	
��	�� �	
	 �
����
��	� �	
����� ���
�
������	� �� /������ ��	
	 �	�	���
�� ��	 ���	
��	�� �	
	 ������	� ������
���� � ��	���	���
�����
	�	�
�� ���
���� 1�
��� ��� 2����� +33$%� 4)
����� �
 ������	� �	

�
�	� �� ����

�� ���� ����� �
	
	��
�	� �� /��	
���
��� ����5 "##6%� /��	
��� ��� 2	
����� "##6%� /��	
��� "##7%� ��� ����5
��� /��	
��� "##3%�

*���� " ��� �����)�������� ��� �����)�������������� �� ���	� �� ���	���)
���	 ��
	����� ����	��� 1	�	
 ��� 8���� "##6% �� ������	
 ���	��	� *	�	�

	�	�
��	
�

�� ����	
����	� �� *�	�	�� ��	 -! ��� ��	 -*� �	

�
�	� �	��)
��
����
	� ���	
��	�� ���� � ����� �
 +7 �
�������� ������	
 ���	��	 ����	����
��	 ���	
��	�� �	
	 �
����
��	� �	
������ ��� �	
	 �
������	� �� /������ ��	
	
�	�	���
�� ��	�	 ���	
��	�� ���	 �		� ������	�

�� ��
		 ��9	
	�� ����	�� ��	
.
�� �������� ���	� �� ��	���
� ��
	����� ����	��� �� ��	 ���������	� ��	 �	����
����	� �� ��	 ��
�� �
 ��	 ���	
��	�� ��	
	 ��	 ����	��� �������	� ��
��	��	� ��

6

��� �������	
�� �
��
�
����� ����
 ���������
� ��
�������	
�� ��������
�
����
���� ��
�
���� ��
� ������� ����	 ������
�� �
��� ����� ��
��
��
�������� �� �������� ��������
�� ���� ��
����� �� �������� � �����
� ��
��

���������
������ � ���� ��
����� �!��������	 "������ ��� �����
�
�����
��
�������� �� #������� ��
�	 ����$�� ��%
����� ����$��
�� &�����
� ����$�	

'������� (���)���� *
��)���� � ����� ����������� �� ���� �� ��������+
��
�����
�� �������
����� � ��������� ��� �������� �� (��� ������� �
����
����
(��� ��� ���� � ��
����� �� ����� ��
�����	
��� �� ��,����� �� ��� ��(�
���
����� ����� ��%
����� ��
�	 ����$� ������� ��
����� �� ����� � ��������+
���
������ �� ��� ��������
�� ����� &�����
� ��
�	 ����$� ������� ��-�����
���������
�
�� ��
����
� �
��� � ��������+ ��
����� �������	

��� ������	
��

.� ��� �������� ������� ��������� �� �� �����
���
����������� ��
� ��
�����
�� �����
� ��/����� ��
����� ��������
� ����
� ��
�����	 .� ����� �� (�����
�������
�� ��� ������! ���
�������� (������ ��� ���� ���
��� ���� ��� �����
�
���
���
��
� �
� (��� ��������
���	

�� ���
���� (������
�� �
���� �
������� ����������
�� 0�
������� ��
��
����� �
� ���� (��� ��(
���
�� ����
����� (� ������������
�� ������� ���
����
��� ����
����
������ ���������� �� ��
�����
�� ��
����� ��
��)�� ���
��
��� �*112�
�� �� ������� �������� ��
� �������� ��� ���
��
 � ����������	
)���� �� ����
��� �������� �� �� �������� ������� ����
����� ���� ������� ���� ����

� ���
��� ���� ��� ����
����
� ����
��� ���������� ��������
�
�� ��
����
�
��
�����)������ �	3	* ���� ������ �� ����
��� �� ��������
� ��
������)������
�	3	� ��������� ����
��� �� ��� ���� � ��
����� �� ��
������ �����)������ �	3	3
������� ����
��� ��
� ���
��� ��������+ ��
����� � ��������
�� ��
�����	

����� ����	
	� �
� ��	�����

4����� ����
����
�� ����
����
� ����
��� �
�� ���� �
�
� ����
��� �� ����
�����
�� ��������
� ��
������
�� �����/������ ����� �!����
 ���� (��� �
����
��� �� ����
��
	 .� ��� �������� . ���� ������� ����
��� �� ��������
� ��
���
��� ����
 ���� �� �����������
���� ����� �� �� �
�� ����
���
����
���
��
���� ����
��� ��� ��� ��������
� ��
��� ����
��� ��
������	

�����������	
��

����
��
 ���(�� � �����������
���� ������� �������� �� �������� �������
����� ��� ���� �� �� ��������+ �������
����� � ��������	 .� *11�)������
#���� ��(������ ��� ��,�����
� ������ 5��
����� �� 0����
�	 ' ����������
��
���� �����������6 ����� ��� �
�� ����
��� /������� �
� 57�
� ���� �� ��
�

�� ��
� ���� �� �
�� �� ��
�� �� �����
�86	 &!
����� � ����� ����������
��
���� ���� ���
��� �� �����
����� ����
����
�� #������� ������� ����� ���

����� ��������� ������ �������� ������� ��������+ ��
����� � �������� �������
��
 ������(���� ���9��� ������	 &�����
� ����2� ������� ������ �����
�����
��������+ �������
����� � ���� �����
� �(9������������ ���������
�� ����� ���

2

�� ���������� 	
���
������� ������ ������� ������ �������� ������� ��������
	������ 	��
 � ����� ����	��� ������� ���
�	 �
� �������� �� �
�� ���������
���������� ���� �������� ��������������� �������� !"������ �� ������� �
��
���� �
� �������� ������� ����
���# ����������� ��� $������ �� �� ������� 	
���
����
���# ������������� �� ���������� ��� ������������ ����
��� �� �������������
��� %���� �� �� ������ 	
��� �
� ����� �� �� ����
���# �"��������� �� ��������
�� ������� ��� �
� ������ ������� �
�� �������� �
��

��������	
 ��	���

&������� �� �� ����'� ������� �
�� (� ������� �������
�� ���� �� ������� ���
�
� ���������� ���������� �
� ������� �� ���������	 �
����) �� ''*� +��������
�� �
� ���
���� �
�� �
����
�� (���� �������� �� �� ������ ��,��������� ����
��� �����������) �� ''*� &������� �� �� ����� �� %����� �� �� �'-.�� � 	
��

�
�� ���� �� (��/������� �������) %����� �� �� ������� � �
���� �� ����������
�
����0

�������� �� 	
�	����� ��
� ������
���� �
��	
��� ���
�� ������	� �
�

���� ����� �� ������� �
 �
��
��
��
 ��������� ���� �������� �� ���
 ������
�� � ��
	���
� 	
�	��
��� 	������ ��� ����	 ����
�
� 	
�	���� �
� �
��
���
� 	
�	��
�
�� 	����� �����
�� ����	

� ��� ����� ��� ��� ����
���	�� !"
���� �
 ���� #$%&� �� &#&'�

1����� ��� &����� ������ ������� ���������� �
���� �� �������� ���������
�� �������� �� �
���
��� �������� �&���� ��� 2���� ���*� ��� 34%0 (5�
���
���
��������6 ���
� ���� �� ���� �� � 	�� �� �������� 	
��
 ���� �
������ ���
�������� �� � ����������)

+ ������ ���������� �� ���������� �
���� �� �� ������� �� �������� ��� ���
��������� �� ����� �� 7�������� ������� 	
����� !��	����� ������ �������� �
����� �����	 �� �������
 �
�� ������� �� ���
�� ����������� �� �
� ����������
�
���� ��������

����� �����	�
 ���
����	��

%������� �� ��������� �������� �� �
� ���� ��������� ����� �� ����
 �
� ��������
����� �� �������� ������� ���������� ��� ���� ��������� ������ ��� ���� �� �
�
���� ��������� �������� ���� ������ ���� ���������� ���	�����

!"������ ���� �������� ������� ��������� �������
 �� �
� ���� �� ��������
��� ������� �� ��������# ��� �� ���
������ ����� ��������� ���� �
� ��������� ����
������� �������� ��� ��8����� ����� �� ����	��� ����� 4
��� �"���� � ������������
���� �� �������
 �� ���
 ��������� �� ����������� ��������� �7��������� ���9�
4
�� �������
 �������� ����������� �� �
���� �� ����������� �������� ��� ����
������ �
� ����������� �� ����	��� ������
�	 �������� ���������� �
��� ���
�"�����
�	 �������� ���������� �������� �������� ��� ���������� ���
�	
�������� ��� �
�� :�� �� �������	 �� �
�� ���� �� �������
� ��� !������� ����;�

<���� ��� %�	��� ����*� ������� ������ �����������# �������� ��=�������
������ �
�� ����
��� (
��� ��������� � ������ �� ����� ��
��� ������� ����� ��
������� >������������� ��� ������ �� ���	� ����� �
� ����������� ������ ��
�
��� ������������)

�

��������� 	
����
 �� ������ ��	�� 	�� ��	�� ���� �� ����	����� �� ���� ������
�	����	�� �����������������	� �������� ����	���� �� 	�� ������� ����� �� 	��
����!�� 	�� ����� �� 	�� ����"�� ��������� 	
����
 �� ����#� �� ��$����� ��
	 �������	����	�� �����������������	� ����

 %�����	� �� 	�� ����"�� &����
$	$��� 	�� $���� �� �	�#� ��'�������� �� ��������� $�	����	� �������

����� �����	
� �
	
�	
� �
� �����	�	
�

&���� �� ������ ����	��� �� ��� ���	����
������ �����$��	� ��	����# 	�� $�	��
���� ������ ��� ��
(��� 	��	 �) ���$���� �������� *� ��� 	��	 ��	� +�
��� ��
	�� ����,� �	�� -$�
�����#��	�.����	����	� ����
 �) $��#�	����#/� ��� ���$��0
���	�������$
������ �����$��	� ��	����# 	�� $�	����� �	� ����1��
��� ����#�
��2��

 �� 3���	
 ��455� ��� ��������� ���	��� ��	� $��#�	����# ��������
���� ��	�� �� �	����� &���� ������� ��� �
��	0 	�� ���	����� �) 	 $��#�	����#
�	�#�	#� 	�� ��6����� $��#�	����# ������� �� 3���	
 �������

���� �� ������ 	��
�� ��� ���	��
� �������
� ���� ���� ������� ��� �
��
�� ��� ������� ����� �� ��� ���� ��� ����
����� ������� ���
������ ��� ���
������ ��� �����
���� �� ��� ��
������ ������� �� ���
 �	�� �

 �����
�	������ �	��� �� �	��

�� �� ����� ��
 ��
��� !""� �� #"$%�

+�#	���� 	�� �	���7	
 ��44�� ������

&�'
	�	�(��� ��)�
��	�(����
��(� ���
� ���(����	�(� � �	(�
� ���*
�
�+ �������� ����� ,)�� �� ���
�)�
 �� ����
���
	������� 	� ��'
	���
������
��	�� �� �������
�
 ����
��(�� ��� ��� ���
��
�	�(�� ���	� �����*
�	��� ��
�� ��
����� ����	�	���
 ����������� ����% 	��� ������� ��� �
����
�-�(�
��	 ��� .��
�/��� !!0� �� 10%

*� 	������� �� ��� 	
�1� ��������� ����	���)��� ���$���� �������� * �	1�
������ 	� ����	����	� ����	��� �� �������� �	����	����� 	�� ��������#
 �����
$�	����	� �0������� 	�� �	
 ���� $�	
 ��#��'�	�� ����� �� ��� ����	����� 	��
����� ��� ���� �) $�	������ 	�� ��� ���	����
������ $�	����� 	�� �����$��� �	1�

��� ����	����� 	�� ��
	���� * ���� �$���'�	��
 ������� ����	���)��� ��� ����
��$��	�.$�������	� �������#� ����	��� ��	������ 	�� ����	��� �� ��������� $�	��
���	� 	�� �����$��	� ��	����# �� ������� �	
 ����� ���
 ���� ����� �� ��	� * ����
�

��������	
 ���
�
 ��������	
 ����
����

*� �	����	���� ����	���� ����	��� ��	� �	�
��� ���$����

 ��#����1� $�
�����
�#
� ����� �0���� 	 ��������	
��
��
 �) ����	��� ����� �������#� �� �	�#��

��1���� ���� ��� �
$��� �����$��	� 	�� $�������	�� ����� �	1� �����	������ ����
��� �����������
������ &������# 	�� 8�	������# �	�� �� ��� $������ ����	����
&��� ��	���
 #���
	�� �� ����

 9��
��� 	�� �)�1�� ��45"��
�� �	�
���
�0$	���� �1�� ���
�	���

3	����
� :	�� 	�� ;������ ����<� #�1� 	
���) �1��1��� �) ��� ����� &��

������
�� ���� ��)������ �� ��	� ����=�� ��� ��� �������#� �
$��� ����� -�	��
�
$� �) �������#� � $�������	� 	�� �����$��	� � �	� ������ �	1� 	 ��$��'��	� ��
���$ >�	���
�/ �$� ��=�

5

�� �������� ���	
	� ���������	
���	��
� ��
�	������� �� ��	����� ��
��
	�
����� � �� �	������� ����
	������ �����
�	� �� ��		���
�	� ���� 	��
	�������
�� �
�� �	���� �� ���	�� ���������	
���	��
� ��
�	������� ��
����������� �	� ���� ���������	
���	��
� ��
	����
	�
��������	�
�	�
 �!
�
�
��� �	� ��
�
��� "�����	� �	� #��$ �
��
	�� ���� ���� ����
��� ��%
����� ��� �	������� �� ��	������ �
�
��� � &&'�
���
��
	 ��
�
	���

������� �� �	
 ��

�� ������� ����� ���� ��������� �� ������� ��

���

�������� ������
����� �������
�� ���������� �	� ��	������� �	������� ���
�!
�� ������
�����
	����	��	���� ������
����� ���� ���������� �	�������
��		�� �!
�� �
����� ������
����� ���� ��	������� �	������� �� �
�� �����
��� &()�

���� ��������� �� ��� ���� ���������� ������ ��

�� ��������� ��� ��� ������
�� ������� �!"��� ���	��� ��� !� ���� �� ���	��� ��������# ������������$ ��
�������� ������� ��������

%&���	�� �� �������� �� ������	�$� ��������� �������� !� ��� ���� ���������
�� '�(�����) �*++��
 �� ������� ,������	�$� ���������� �� !���$ ���������
���� !��� ��� ��������	 ��� ��� ����		�����	� �-��� ���		��$�� �� 	������$ ��
���������
. ��
 */�� �� �	���� ���� ����� �� � ���� ��� ����������� �� ,���� �����
���������� �� ��� ��0�	������ �� ������$��� ��� �������$ ���!	�� ��	0��$ ���
����$�. !�� ,1�2��� ����	�& ���		� ���� ���� ���� ��� ���������)���	��$�
��	���� �� ����� ����������
. ��
 *33�

���������	 ��
 ����
��	 �� ��� ���

�������� ��� 4������ ��

�� $�0� � ,�������	 ��0��� �� ��� �������� �� ��� �����	
������� 	�!�������.� ����� ��		��� �� � ����	�� ������ ��������� ��� 4�������
*+5��
 6�� ������� ������� ,��� �-����0����� ��� ��� ��	� �� 	�!������� ���).�
���� �� ��� ,�� ��	� �0����� �� �� ������. ��
 �5�
 7� ����� ������ ���� *+5�
���� ������ ,6�� �������� ��� ���	�� �� ���� ����	����� ��	���������� !������
�&��������� �� ��� 	�!������� ��� ������� 	������$
. ��������� ��� 4�������
*+5�� �
 �*��

89�9 ��

�� ������� �� � ���"��� ���� �������� ,�� ������� ��� ���!	�� ��
��� �-����0����� �� 	�! ���). �� !��	�$�� �������� ��������� ��� �����������

:������� $����� ���� ��0�� %������� ��������� ������������� ��� � ���!�� ��
���� ������� ���� ������� ��� �� ��� ����� ��������� ��� �����$������� 	�0�	�

�������� ��� 4������� �� ��		 �� 89�9� ������� ��� ���������� �� ��������#
	������$ �������� ��� ���������� �����$� 	�!������� ���)� ��� !��� �������
����� �� �������� ���!	��� ���� 	�!������� ����0������ �������� �� ��� ��������
�	� 	���� �������� �� ��� �&���� �������� �&���� ��� ����� ��� ��� ����������
��� ��������	 �����	� ����� ���!	���
 ���� ������� �	�� ����� �� � 	��) �� ��
������ �� ������� ��������� ���������$ ��� ��	� �� �������� �� 	�!������� ���)

89�9 �	���� ���� ���� �� 	��� ���������� ���� ���������	 	������$ �� 	�!
 89�9#�
������ ��� ��� ����� �� ��� ����	�& ����������� !������ �������� ��� ��������
�� 	�!������� ���)� ��� ���������� ��� ��������� ��	� �� ����������
 8�� ���
����� ���� ���� ����	�&��� ,�&�	���� �� � ������� �&���� ��� ���������	 	������$

+

�� ��� �� ��������	 ���	��
 �� ��
 ������ ��� ���� �����
�� ��� ���
��� ���

�������� ��
�
�� ��	�� �� ��
�� ���� ���� !"�"� #�
�� ��	�� �� �� ��
 �����$
���	
 �� 	��	
����� �
������% ���� �����

 ����
� ��
� ��
 ����
������� ��
�� ���	
���
� ��� �
&
	�� ���������
��

!"�"'� 	��	������ �� ���� (#� ��� ��� (�� �
��� �� ��� �� �� ��������� ��
(�� ���
������� ��� (�� �
���� ��� ��)�� �����
�� ��� ���
���
������*
 ����
�
�	�
�� (�

� ��

 �
�
 ��
��
�
 ����
��� �� ���
��	� �������������	 �� �
��
��
�	������	% ��������� �����$�� ���
��������� ��� �����$�� �
+
	����� ��� ,-%
�����	� �� ����������

� �������� �		�
�����

.� ���
� ��

��
� ���
������ ��
 	����
/ �
������

��

� #������� ��� 0��	$
������ �� �����������
��	�����% . ���
 �
$������
� ��

�����	�� ���� ����
!���� 1 ��� !���� 2% ����� 3#0 �� �� ��
���	���� ����
����� .� ���� �
	����
. ���� ��
�
�� �� �
�
��	� ������	�
� ��
/����
 #������� ��� 0��	�������

��� ������	
��
 ��������� �������
 �� �
�����

#� �
�
��	� ��
 ���
 �� #������� �� �����������
��	����� . ���
 ��	��
� ��
��
 �����	���� ���
	� �� #�������% ���
�� ����
���' ���
��������� �� ��� 	
�$
���� 	��	
���%
����� ��� ������ #� ����
��% . ���
 ��
� ��
���
��������
�4����� ��� 5����% 1--6� ��� ��������� ��
��� �4����� ��� #���% 2��,�� 0�
$
���
�������� �� � 7���������
 �
�
��	� ������	� ���	� ��	��
� �� ��������� ���
�
�	��
��� ��
 ��������� �� ��� �
���

/�
��
�	
 ��
���
�� �� ��
 ������� 8
������
���� ���������� �� ��
���
�������� �� ���� ��� � ���
� ��
���
���
��
�
 �� � �����
� ���

� �� 7���������
�� ��
�
�� ���� �� ���	� ���� ��
$
���
��� 	��

/�
��
�	
� �� � 	
����� ����������

4����� ��� 5���� �1--6� ����
 �
��� ��������� �� �
���
�' 	���
�����
� ���

/�
��
�	��� ��
 �����9

����� �����	
	�	�� ���
 �� � ��
�
 �� �	������	��

� �������� ���� �����
�	
	�	�� ���
 ���� � ��	�� �� �	�� ������� 	� ���� ����
 �� ���� �� ����
��������
 ���� ����
��
 �� ���� �������
 ���� ����� �����	
	�	��� �	��
�������� ������� ���� ��� ������	���

� ��	�	��
 �	��������
 ��� �������
������� ���� �� ����	��� �� �� ��� ���� 	�������� �	�� ��
����	���
� ����� ��� !����
 "##$
 �� """%

#�
 �
���� �� � ��
���
��������	 �������� �� �� ���	��
 ���	
% ���� � ���$
��
� ���

� �� 	��
����
� �� �
�	������� ���	� ���� � (��
���	��	�� ����	���

�� ��	�
����� 	����
/���% ��	��������% �� ��
	�:	���� ��
��� �� 12��� #�
 	��
$
����
� �
�	��

 ��
 7���������
�� ��
�
�� ���� ��
/�
��
�	��� ��
 ��
���
���

�� ����������	
����
�

���� �
� ��
� 	���

 ��� 	���
	���	�� ����	�	��
���� �� ���������

���	����� ����������� ��
 ����������� �� ��� ��

����� ���� � ��

 ��� 	�
������
��

�

����	��
���
�
� ���� ���������� ����� ��� �	����� 	���
	�� ��������� ��������� ����	��
������

�� ���������

1�

���� ��� ���������� ��� �	�
����	 �
 ��� 	����
�����
� ���������� ������ 	�����
�
� �����
����
� �� �������� �� ��� ���
���
�
 ����� ��� �����
� �
 ��� �����
�����
��� �� � ���������� ���
� �
 ���� ����	� �� ����� ����
�
� �� �
	������	
�� �� 	� ���� ������ ��!� �� ��� ��� ���
���
�
" �� �������
��	 �
 ��� ����
�	 �
��	 ���������� �� ��� ���
���
�������� ������� ������

��������� �
	 ��	
������� ��� ��� #�! ���	� �
 ���� �������� $����	�
� ��
 �������
 �����!" ����� �����
���� ���� ���
���
������!" �
�������! ���
��
��%���
� ��
	����
 ��� 	�����
�
� � ������� ������� �� � ���
���
�
 �� ����
��� ���	�
� ���� ��� �������
��! �� �&�����
�� �������
 �
 � �����	��� ������
���
	�
� �� ���� �������� '
 (��
) �
	 *�#��	�� ��++,� �� �&����
 	���
���
�
�� �������
 �
 ��� �������
� ��!-

��� �����	�
 ��
����
 ���
��	���
 ��� ��� �������� �� � ����������
�������

���������

 ���� ����� �� �
����
 ��������� ��� �
��	���
 ��������� �� ���

������������� ������� ������ � �������	�� �������� ��
������� ���������

��� �� ����������� �� ��� ��	��� �� ����� ����������
 ���� �� ��� �������	��

���� ��� ��	����

(���� �� � �������� 	���
���
 �� �������
 ��� ���� ������� �� � ���
���
�

���� ��
 ��#� 	�����
� ������ (���� ����� ���� ��
������� � 	���
���
" ������
���
	�
� �� ��� �������� '
 � ����
�
� ��
��&�" ���� �� ����� �������� �
	 �����
�������
� ��� ���� �������� �� 	�����
 ���
 ������� $ ���
���
�������� �
��!���
��
 �	�
���! �	������
���! �������� �������� �� ��� ���
���
�
 ���	��	�

$����	�
� �� �������
 �����!" ����
�
� ���
� 	� �����
� ������ ��!� �� ����
�
� � ���
���
�
" �! ������
� ����� �� �		����
�� �������� �� �� �
	 �� �����
���
� ������
 ��� ��������� (���" �
 ���
" ��.����� 	�����
�
� ��� 	���
���
� ��
 �������
 ��������
	�
� �� ����� �		����
�� ���������

��� ������	
��
 �������� �� ���	���� �� �������	����

���
������
 	������

��
��	� �� � ��	� ���� ���� ��
 �� ���	 ���� ��
! 	�����
� ���
�
�� 	���
	�
�
� �
 ��� ��
��&�� (�� ����� �� ��� �����
� �������� �� ����
�
� �� �� ��������
������ ���
 ����
�
� ������� ���������

(�� ���	�
�� �
 /��	! � ��	� � ����� 	����
����
 ������
 ��������� �
	

�
���������� ����
�
� �����" ��� /�����
 0��� (��! 	�������	 ����
�
� �� ����
������
� ��
����� �
 ����� �� ����� �
� ��	���
� ��� ��������
��� �����	�������"

��
���� �����	�������	 ���� ������! �� �������� ���������
� �������
��������
��! �
	�����
	�
� ��� �
	���!�
� �������� �
	 ��
������" ��� ������! �� �� ����
�� �����	������� �� ��� ��	���
�
��
��� �� 	������� ��	��� ��
��
���� ������
���������" �
 �
	�����
	�
� �� ��� ��������� ��� ����
�
� �
	 ���
� ��� ��
����"
�
	 �
 �
	�����
	�
� �� ��� �� ����� ���
��
��� �� ��� �������	� ' 	������
�������� �
 ����� �� ���
��
���� �����	�������" ��� ������! �� �� ���� �� ������
	������� �� ��� ��	���
�
��
��� �� 	������� ��	��� ��
��
���� ��������������"
�
	 �� �� ���� �� �����
��
���	 �� ��� �������	�

' ���� ������� 	����
����� ������
 ����
�	�	" 	����	" �
	 �
�������	� *&�������
��� ���� 	�������	 �
 ����� �� ��������� ����� ��� ���	�
�� ������ ���� �� ����

��

�������� ����	
������
	�
�	�� �� ��� ������	� ���	����� �	� ���� ����
���� ����

��� ����	 ���� ����� ���� 	�
	����� ���	���� ������� ��������	

����� ��� ��������� �
������� �����
�� ��� �������� �� ������� ����
� �����

��������
	 ������� ���������
� ������
����� �����
�� ��� �������� �� ����

��� �� ����� �� ������ �
� �� ����� ������ �������� ������� ����	 ���� �����

�� ��
������� �
 ��
� ������
� ���������� ���� ��� �����
�� ��� �������� ��

����
� �
� ����� ���������� ����
� ������
� ������ �� �������
�� �� �� ����

���� ���������	
�������
��� �
 ���������
� �������� ��
� �������
�� �
� ����

����������� �
������
��
�	

!�� ��� �
����������
 �� "�������
� �
 ��� �����
� ������ # ���� �
������ �����

������ ���� ��� ����
 �
�������� ����� �
 ��� ��������
$ �� ����� �� ������ �
� ��

���� �
� ����� ����	 ����� ������ ��
������� ���
�����
�� �
 ��� �������
��
�

�
� �����
� ����� �� �������� ���������
�� ���
�����
 %	&	

��� �
������ �� ��� �������� ���� �� �������
� �������� ����� �� ���������� ����

��'��� ��� ����� ������ ���� ��� ����� �

����� �����
��	 (� ��� ���� ���� ����

�
������ ������� ��� ���� �����������
 �� ������ �� �������
�� �
����
� �
 ����

�����	

��� ���� �� ���������� ���� ���
 ���
����� �
 ��� ����� ��� ��������
���

���� ���������� ��������� ���
� �
 ���� ������ ���������� ��������� �� ������� ���

��������	 ��� �����
 �� ���� ��� �������
����� ���������� ������� ��� ���� ��

�������	 !�����
������ �� ��� ��� ������� ��� �
 �������� �
 ����
�
� ������

����� ����� ����� ��� ���������
 �
 ���������� ���
� �
 ��� ����	
���
�� ��
�

���������� �
 ���������
� ��� ����� �
� ��������� � ��
� �� ����
 ��� ���
���

�
������� ���� �� ������ ���������� ���������	 ��� ���������� ��
 ������� ��

���
����� �� ��� ������� ����� �����
����
 �� �������� �
� ������ �
 ���� �����

�����
��
� ��)��� ����
��� ���������
� ���
������	

� ��������	
����
�

*����� # �����
� ��� ������� �� ��� ���
���
�������� �
������ �
� ��� �
���

��� �

����� ���������
� ����������� ������������� ���� ��������� �
��
�� ���

�����
��� �� ��� ������	 ��� �������
� ������ ���� �
�������� ���� �����
��

��� ����
���� ����
� ��� ���
����� ������ ���� ���� �����
� �
 ��� ����	 ����

����� �� ��������� ���� � ��� ������
� ������� ���� ������� ���� ��� ���� �
�

������
��� ��� ������	

��� ���� ������ �����
� �
 ���� ������� ��� ��������� �

���� &� �� ���� ����

���� ����� �
 �������
� ��� ����������� ���� �
 ���������
� �����
��+ ����
�
�	

��� ���� ����� �����
�� ���� ����
�
� �� ��� �������� �� �� �������
� �� ��������

�� ����
�
� �� ��� ��
�����	 ���� �� ��������� �

�����
 ,	&	

��� ����
� ����� �� ��� ������� �������
 ������
 �������� �
� ��
�������

����
�
� �
 ��� �����
��+ ����
�
� �������� ����� ��� ����������� ������
� �

���� %	 ���� �� ��������� �

�����
 ,	%	

#
 ���� ��� ���� ������
 �������� ��������� �����
�� ���� �����
��+ ����
�
� ��

��
����� �
� ��������
��� �� �� ���������� �������
������	 -�
�����
��� ���

��������
�
�����
 . ����
������� � ��� �� �������� ���� �������
 �� �����
�
�

&%

��� ����������	
���� 	�
���

�� ��� 	�
���
 �� ���
�
��
�
 �� ������ ������

������
�
��������
�

���
������
 �	�� ����� � ���� �� ��� ���������
������ �� 	���		�� ��

������� �� ������� �� ������� � ��� �� � ���� ���� �� 	���	���� �� ����	 	�
�
�
��
� ����� ���
������
 �� ����� ! ���� �� 	���		�� ��

 ������� �� ������� !�
������� " ���� �!� �" ����

��� ��� ��	
��
�� ��� 	�
����
��� �
��
� ��
����� �� 	�
�

��
����� ����
��
�

��	��

����
 �� ���
 ����� ���� �� ��
��

��� #�	
� �� �
�
���
� ��
� �	
���
�
�
 ��� ��	���
 ���� �� 	�
�� ��� ��������
� ��
	���� ��
�
� ��� �
 �
	� �� ���
��
	���� ��
�
� ������� �	
���
�� �� ��	�
 �� �$�	��
�
� �
 ��� ����	
���
��������

�� ����� �	�
����
��� �
�� 	�
� �� ��
	���� �	��	
����� �� �������	
������
����
����� ���	�� �
�
 �	�� ����� �
�� ����� ! �����
�� ��
�
������
 �� ���
��
	� ��	���� ��� �$�	��
�
 �� ��� �$���� ����
	� �$������ ��� ���

�����

���� �� ��� ��������
�
�� ��� �	
����
� ��
	�����

����� ����	�
 ���	���� �� ���� �
 ��� �������� �����

���	� �

�	������ �� ����
�	�
��
���� ����
��	
 ��
� �	������ �	
����
�
%�������� �

 ����	
� ��
� �� �	��	
����� ����
�����
�� ��
� ���
 ����� 	�&
'��	�
 �
�� ��
	
 �� �
��
&�� �	
������ ��� ������
������
 �� ����� �
�� ���

����	
������
 �� ����� !
	� ����
�
	� �� ��� ����	�
�� 	��� �� ��� �	
���
��

���
������
 �� ����� � ��	�

%��
���� ��
� ��
	���� �� �	��	
� ��
�
�
���
������
 �$�	�

�� ��
� ��
	���� �� �	��	
� �
 �$��	������

 ��
	���� ��
����	
�
��
��� �	��	
����� �
���
���
�� �
��� �� ��	 �	����� ����� ���

����

�
�
 ��� �	
����
� �
� ��
 �	��	
����� �
���
��� (�
�������� �������
) ����

�
�
 ���
������ �� 	�
�� �	
��
�� ����� ����*

������� �� �		
 ���
�
�
�� �		 ��
�� ��
�� ���� ���� �
��	�
�� ���� ��
��
� ��	 ������	� ���� ��� ���� ���� �	 �	�����	�� ��� ��	�
��� �� �		
��
��� ����
 �� ��	 �
�
�

	� �� ������	� 	����� ��	� ��� ���
�
�
��
�� �		 ��
� ���� ���� ��� ���� �	�
��	 ���� �
��� �	 �����	� ���	 ��
��

��	��� ����	�
 ���	���� �� ����� �� ���	� ��� �������� �����

+	
���
�

 �
� �� ��
	� �
 ����

�
�� ��
������
 �� ����
�����
� ������� ,
�� ����� ! ����

�
�
 ��� ����	�
��� �� ��
	����
���&��&
��� �	�����	�
� �	
-�����
��
. ��	 ����� �����
� ���
 -��&��
��/�
. ��� �������
�� ����
 ���

������ �� 	�
��
 �����	 ����	
�
������ ���
������ ��
��

�
 ������	
 �����
�
 ����	
��� 	��
	���

 �
	� ������� �� ��
	�� ����
 ��	�
���� �������*

� � ����� ��	� !
�� ��	 ��	
 �� ���� ����
�� ���� �	���
�	 ��� ��	
���

���	�
�� ���	 �
�
�
�� ��� ��	� �
�
� ��
	��	�
�� ���� ��
 ��	�
�� ��	� ��	� �� �	"�����#	� ��
���
���� ! �
� �		 �� ! ����	�
 ��	�� $%��
������ ��� ���
�� �� ���� ��	�	 ��� ��
	��	��&
�� �
��	 ��
��� ��
�
��
 ��� �� ���
�
����
 ���� ��
����	 ��� �	��
���
	� ��	�	 ��	�� �� ����
�����

�"

����� ���	
��
����	�� ���� ��	 ���
���	 ����	� �����	� �	������

��� ����� �	
���� 	�
���� �� ��� ���� ���� ���� ����� � ��� ����� �� ����
����	
���
���
������ ��
� ��
�����	� �� 	������	�
�������� �� ��� 	������	 ����

���
��	 ����
������� �������
�����	�� �����
���

������� �	 ��

 �	
�������
�� ��
�����	� ����� �� ��������� � ��� ����

�	 �� ���	 ��� 	���� ��
���
������� �� ����� � ��	���	 ��� !��	���� ���� ��	 ���� ��"��
� �� ���

����	�� �� ��� !���� ��
�� �� �� 	�� ��
��		�	
���
��	 ��
������� �����
�	
�	 ��

 �	 �� ��	������ ���
�����	�� #�� �����	���� $���% ��� ��� 	���
� �	�
��&����� �����	 �� �
������' ��� #��� �� 	����� ���� ��� ��

����� ���

������	'�

�� ���� � �	
��
� 	
� ���� �
����� �
�	 ��������
�� �����
� �� ���
�����
�� 	�� �� ��� �
������� 	�� ��� �	���� ��� �
������ �	
���
�

�����
�� ��� �
���
��� �	
�� �	
� ���� ��
� 	
� ���� �
����� ���! "��
� ��
�� �	
�� �	� �������
�#� �
����� ���
 ��$
�� �� ���� �� ���
 ��
� ��
	�� �� ������ �	�� ���
�������� �	� �����
��
�� �
�� �	
��

������� ������� ��	��		�	 ��� ������	� �������
������� ����������	 ���

������� ���
����
����������(

�� �#$� �
��� �
�� �
�	 ������� ��� �
�	
� �
�� �� ���
�
�
�� ���
�������
��
� ��� �	
�
���� �� � ���#� ����� ���! %��� ��� ����
�
� ���
���� ��
��
 ��� �� �&
������ ��� ����� ��#$� ������ �� �
�� �&
�����
�� �$����	
���
� ���� �
�
� �����
�
� ��� ���#� �������
�� �	� �
�
�
���� �	� ���
��
�� ���!

��� ����

�	 	������ ��
)	 ����� ���
������� �� ��� ������� ��� ������
�� 	��� 	��� �� ��� ��	��
�����	�	 ���� ��� ������ ��
����������(��� ��
	�������� �
������� ��� 	��� ���� 	��������	 ��� ��

������� ��� �	�� ��
�
�������	 ������� ������
 	��������	 ���� ���

 ��� 	������ ��	 ��� ��	������
���
�����	� 	�"�����
� ��)��� #��� �� 	����'� �	 �� �� 	��
��	 �� �� ��� !����
������

����� ��	 �������� �
	� �� ����� � ���� ���
�����	� ��� �� � ��*�� ��	���
�
��
������� ��
������� ������� + �� ����� � ��
��	�	�	 ���� �� �	 ���
�����	�
���� �	 ���
���
�� �� ���
�������(

'(�)	���#� *��� ����
������ ��
� �	
� *��� ���� �� ���

� �
�� ��
������
��� �� ��
� �	� �����
��
�� ��$��� +�� �	� ������� ��$��� ���
�	� �	���� ��$��� ��� �	� ���	������ ��$�� ���
� �	� �
�� �� ���� ����
��
����� ��$���

,�����	� �	� ��������� �� ���� 	������	� ��� ���� ���� �� ������� ����
�������
������� ��
����������� -��
������� �������
���������� ������	�	�
��

��	 �� �������	 ����������
�
�������
 ��� ������
�����
 ���

���� ��� ����
������ 	������	� �� ����� ��� .�	� ����	��
� ������ 	������	 ����� ���������
����
��	 � ������� �� ��&����� 	���	 ��
�����	�� ��� �������)���
���� �� ���
�� ��	��� ���
�����	�� ����� ����� �� �� ��� ���� �������
�������� �������
�����
���
 ���
�������
� ,�����	� �	 ��� ����
� ��� ��
���
������ ���� �� ���
���� �������� �����
���
 �����	��������

�/

��� ��� ��	
���
������� ������� �������� ��� �
������

��� ��

��
�		��� ��������� ���
����

�������� 	
��� �� �
	������ ��� ����� ��������
� ��
� �� �����	���

��������
���� ������� ��������� ��� ������ ���
� ����� �� ��� ���� ����� ���
� ���� ���
��
	
�� ��
����� ������� 	������� ��� �����	���

������� �� ���������
�������
�� 	�����
� ����� ��	���� �� ��� ���
� ��� ���������� ��� ���� ��	��� 	�����
�� ��� �
��� ��
����� ������� �����	�� ��� 	������� �� ���
������� �����
����
��� ������� �������
������� �� 	�����
 ��
������� � ��� ��� �� ��������� ���
������ ��	��� ����
����� ��� ������ ��������� ������	����� ����� �������� �	�����
�� ���
������� 	������ ���� ���� ���������� ��� ����� ��	��� ����� ���� �����
�� ��� ���
����� ����� ������� ���
������� 	������� ����� ��� ������ ���������

������� ����� �� ����� �������� ��� ����� �� �� ����� 	
�����

����� ����	�
 ���
���	 �������

��� ���������

!� ���� ������� ����� ��� �������� ���� ������ �������� �����
������� �� 	��"
���
 ����� #�
� �������� ���� ��	�������� 	�����

��� �� �
������ �� ����
������������ �� ��� ��������� �� �����
��������

#�������
�
��� ������ �������� �� #���� $ ���������
������� �� 	�����
 ��
���
� ��
������� � �	����
 ��� �� ��������� !��	���� �� ��� ����� �� ����������
��� ���
 ����������� 	
������ �� �������� ���� 	����
����� �� ����� ���
�
��� ���
��� ������ �������� ���� �����
���
���
� ��������� ����� �������� ��
����� ���%���� ���� ����� ���� ��� 	������� ��	������� &'������
 ��� (���
����
)**+,�

- .���� ���
 #������ / �� #���� $� ����� ��� ����� �� #������ 0�$� ��
��
����� �
�� �� ���� �������� ��� ������� ��
�� ����� ��� �� ��� 	���
�
 ��

���� �� 	�����
1

�� ���� � �	
��
� 	
� ���� �
����� �
�	 ��������
�� �����
� �� ���
�����
�� 	�� �� ��� �
������� 	�� ��� �	���� ��� �
������ �	
���
�

�����
�� ��� �
���
��� �	
�� �	
� ���� ��
� 	
� ���� �
������ ��� �	
�
 ��� �	���	� ��	
���
� �����
� ���� ������ !��� �������
�� �����
��
��

#������ - ��	������ ���� ���� ��������� ��� .������� ���� ��
��� �
	��"
���� �� ��� ������1

�� ��"� ���� �	� �	
��
��
������ �	� ���
�
� �	
��
��� # ����	
�� ��� ����
�� ���� ��� ���� �	
�� �� �	��
� ����� �� �����
��
��� $���% ���" �
�
�� �� ���
 ��
��
��
�	�
��� �	
�
�"� �
�� �� �����
�
�� 	�� �	�
�������� ����� �
�� �	
�� �� �	� �����
���

#������ / �������� ��� 	���
�
� ���������� ���� ���� ��� �� �������� ����
�����	���

������� �� ��

 �� ��� 	������� ���� ��� ����
� ��� �� ����� ������
�� � 	�����
�� #������ -
������� 	����� �� ��� 	���
�
 �� ������������� ���
��������� ��� ��
	���� ����
�� ���� ��� ��
	���� �������

��� ������ ��������� ������	����� �� �	�����

��� ��������� �

������� ���

������� �� 	�����
 ����
��� ���� �����	���

������� ��� 	�������� 2������"

��� ���� ���� ��� �
���
� ��
����� ��� ��� ��	������ �� ���� ����� ��� ���

$+

������� ���� 	
� ���� �� �

� ����
�� �
�� ����� �� �
� ���
�� ��������
� ����� ��

������ ��	��
� ��

� ��
�� �����	
��� ��� 	
��
���� ���
���� �	���

�� �
� ���
���� �
� ���
�� �������� �
������� �
� ������� �����
�� ������� ����
����� ��� �����
�� �
�� �����
�� �� �������� ��� ���
�� �
� ���
��� �
� ���
��
�������� ����� ���
������ ���
 �����
�����
� ����
�� ��� ���� ���
�� ���������
�
� �����
�� �����
���� ��� ���
�! ��� ����������� �

�� ���� ���
�� ��������
����
�
��� �����
��� ����
�� �����! �� �
� �����
�� ��������

"������� �� ��� #�$$%& �������� �
� ���� ���� ����� �
� ����� ��
����
��
����
'� �
�������
��
�� ��� �������� ��
���� �������� �
� ���
� �
� �
��� ��
�����
�� � �
���
��� ������� #(���� ���)���� �$$*&� 	
� ������
� ���
���
���
�� (���� ���)���+� �����
��
�� �� �
� ������� ����	 �

�

� � �����
� �

�

�������
� ������������ ��,�
��� ��� ���������� ��� ��,�
��� � ��� ������ ���

����
�� �
�

� � ������
��� -� ����� �
�� �
� �������� �
������� �
� �����
��
������� �� �
���
��� ��������
� ����� �� ��,�
�
�� �
.����� �
��
��� ����� �� �
���� ����������
��� 	
� �
.����� ����
�� ����������
��� ����� ���/

� �������� #�� �
�����
���& ����������
��

� �������� ����������
�� #�
� ��
�
�� �� �����
�� ��������
�� �
�
��� ����
�����
�� ����������
�� �
� �������
�� ��������&

� �
� ��
�
�� �� �� ���� �� ����������
�� �� �
� �������� ������� �� ��������
���
�� �� ��������
����������
��

� �� ����������
�� �� �
� ���
����� ��� �����
�� ��� ��
�� �
� �������

� ��� �� ����������
�� ��
�� �� ����� �
� ������� �� ��� ���������

	
� ���
�� �������� ������� ��
���� �� �
�����
��� �� ���� �� �����
��� �����
��
������

� ��� ,����� ���� �
� �������� �
��
��������� ���� �� �
� ����������
���
��������� ������

������� 0 ��������� �
� �

�� ����������
��� �
� ���� �� ���
 �� ��������
����������
�� �� � ������� ��� �
� ��
�
�� �� ������
� ��
����������
��� �

�

��,�
��� �����
��/

��� �������	
���

�� ���	
��
����� �� ���	����� ��� �	

� �� 	���
�����
��
	
����� ��� �
� �	

� ��
� �� ��
��� ��� ��	 ���	
��
����� ��
���
���

������� �� �� �
��

�� ��� �
���� ��� ����� ��� ���� �	

� �� ��� ��� ��
����� ��

	
� ���� ����������
��
� �
� �
�� ������ �� ����������
�� ��
�� �� �����
�
� ������� �� ��� ��������!� �
����� �
�� �������� �
��
���
�
 �����
�� ���
������ �������� ��
����������
�� �� ����
�� ��������� ��� �����
�� ��������
�� �	
 ��������� 	
� ������
� �����
����� �� ����
'����� ���������
� ��� ����
��������� 	

�
� ��������� �� ������� �/

12

��� ��� ���	
��
�� ���
 ��	�
� ��
�� ��� ��� �� ��� �
�	 ��
� ��	�
�

�� ��� �� ��
��
��
���� �� ��
 �

����
� �	��	� � ����� ��
� �� ��	 ��

��	 �

�	�� �	
�� �� �
�	�

����� ���	
��
��������� ����	� �� � ���
��
�� ��� ��	��	��
�� �	������

���
	

�� ��� �����	
	 �� 	�
����	
� ��� �
�
��� 	���� ��������� �� ���� ����� �� ��
��
���� ��� �
������ �����	� �� ��� �����
� �����		 ���� �
	�
		�� !� ��� 	�
����	
�	
�	�����!�� �����	 �� ��� ��� ��� 	��� �����
� �"���
����� #
������ 	�
����	
	��
 ��� �
�� �
������ ����	� ������
� ��� ��� �"������ !��� ��
�� �����$
�� �� %��� 	�
����	 �"���		�� ���� ���� &�	� ������� ��� ������ !��
�� ���
�������	� ��� ���� ��� ��
	� ����� ��
�� ����� 	�
����	 �"���		�� ��� ����$
	
��� %��� �
	�
		�� ���� ��� ��'�� ���!��� ��	 ��
����	���� ��� ���
�����
!��
�� 	��� �������	� ��
�� ����� 	�
����	 �
� ��� ����
�� ���� �	���� �� ����
(�� �!	��)�� �
�������	
� ��� 	�
����	* �����
� �����		�	 ���� ����)�� �� !�
�
����� ��	������� !����� �� ��� ���� ��� ������
��������	 ���� �����

(�� ���� �������
��
����� ���� �����
	 �� ������ ��
�� ��� ��� 	�
����	
����
 � ��� �����
� 	����� +����� � ������" ������� ��
��
)
�
�� �����
�
��
��	 ��������� %�
��� !��� �������	 ��� �����
	� 	���
��������� ��� !���
��� ��
	� ���!���
� ��� �����
� �����		�

(�
	 	���
�� ��	 �
	�
		�� 	��� 	��
��� �����	
� ��� ���
�
��� ����, �����
	�
��� �������	 ��� !��� ����	 �� ��� �����
� ���	 ��� ��������� �� ���� �����

� ��� �����
� �����		� (��� �
�
���� 	
����� ���� �����
� ��� �����
� � !
�
�� ��� 	��� �
�� �
���� �� ���� ��� !����� �� �!	����� ��� �
����� �����
� �
(��� ��� ������"��
������)��
� ��� �����
� �����		� ��� ���� �
������ ����	
������
� �� ���
��
)
�
��� -�� 	��� ��)
�� 	�
����	 ��
	 ��	 �"���
����� �	
�� ��
�� ��� ��
� ���� ����
� ��
��
� � ��
�� ��	 �
.�
�� �� ��	�� (��
	��
�� 	�
����	 ��
�� ���
�
���� � ������" �����
� 	���� ����� !��� �������	
��� �����
	� ������
�������� ����	� �� ��� ������
� 	���
��� ��� ����
	 ��$
�����	�� �� �� � !�����
����	����
� �� ��� (�
��
� ��� /����
	
� ������

� 	�
����	* �����
� �� ����
��� ��� ����
� �

� ���� �� �	
��
�
 ��� �����
�
�
 � �� ������
�

�����

� �
�� ��� ����
�
� �
�� ��
�$����� �����	
	 �� 0(/	 ���� ��� ��)
�� ���$
 ����
� 	�
����	* ���	����
)�
	
� ���� ��
��� ���� %�
�� 1� (�� �
�
	
�� �����	� ��� (�
��
� � ���� �
	�
		�� �	 	�
����	*
����	����
� �� ���$
����	� ��� /����
	
� � ���� �
	�
		�� �	 ������ ��)
�� 	�
����	* ��� ����
�
���
)
�
�	� ��� �������� -
�	� ����)��� (�
��
� ��� /����
	
� ��� �
	�
		��
	���������� 2�	�� �� ���	� ��� �
	�
		
��	� � �
�� ���� �����	����� ���)��
�$
�
�� ������ ��� !�
	�� �� �����	� ��� �
	���� ��� �����
�� !������ (�
��
�
��� /����
	
�
� ��� ����
� 	�
����	* �����
� �����		�

1�

��� �������	
����
��
� �� ����
���� ���
��������	 ��

����
���

�� �������	
�� �������	 �� ���
��� �
 ��������
� �������
����	� �� �
��

 ���������	�
����
�
����� �
 ������ ��������� �������
����	 �
 ��� �����
�
�������� ������
�� ���		� �
��� �� �
�

��� ����� �� ��� ��� �������� ������

�� ��
��
�� ������� ���
����
�� ���
�
����� �������� �� ��� ���������	�
����
������� ��
��� ��� �
��� �� ��� �
��	����� �� ��� ������� ��
��
�� ������������
�
 ��� ��
���
������ �������� �
�� �� ����� ��� �������� ������
�� ��
��
�� ����
�� ��� 	���� �
 ������������ ��
 ���������� ������ ����� �
��	�����
�� ���������
����� ��
�� ��
� ��� �������
����	� ��������� �� ��� �
���� �
��	����� �������
��� �������
����	� ��������� �� ���
������ ��� �
���� �
��	����� ���� �� ���
������ �
�� �� �������
�� ��� ���������

!
���	
�����
��� ��� ���������	�
���� ������� ��
�� ����
����� �� �
"
��� �� �� �
��
 ����������
�
����� �� ������
� ���������� �
 �
��
���� ���
���
�� ��� ��� �������� ���������� ����� #� ��������� �� ������� $��� �������� �
�"
��� �

 ����
��
�
���� �

 ���������� ����������
 ��������� �
 �
��
����
��
���� ����������� %� ����� �� ������
� ���������� �
 �
��
���� �� ������������
��"�&
����� ��� �
��	����� �
 ����������� �� �
��� �� �� '�� ��
�
�
����� �
 ���
��� �������� ��
�
�� ��
���� �� ��� �������� �������
����	� �&�������� (��

 ���� ������������� �������
���� �
 ��� ���������	�
����
�
����� �����
��� ���������� �
 �
��
����
�� ������'��� ���)�����
�
�� ����* +,--./
��
)�����
� +,--0/�

1����� �� �&���������
�
 ����� �
 ���	�
� ��&��
�� ��
��
�
� ������ �

��� ���	�
� ��
� ���������� ��� ����
�� ��������� ��� �������

1�����
�� ��
��
�� �&���������
� �&������� �� ��� �������� �
��	���� %�

�������� ��
�� �� �&���������
�
 ����������� �
 ����������
�� ���
���� �

��������
�� ������
� ��������	 ��
� ��
����� ���� ��� ���	�
� �� �&�������

1�����
�� ��
��
�� �&���������
� �&������� �� ��� �������� �
��	���� %�

�������� ��
�� �� �&���������
�
 ����������� �
 ����������
�� ���
���� �

�������� ����� ��� ������ ��
 ����� �
 ���� ��
� ����� �����������

�
��� �2 � ����������	
���� �
����� ��
�� �� ������ ��
������
���	��
����� ��
��� �������� ������
�� ���		� ��	 ���
���� ��� ����	�
�
�� ��
�� �����
�� ����	�
�
����! �

3���� % �������
�� �
��� ��� �������� ���������� �
 �
��
���� ������'���
%� ��� '��� �
��	��� �
 ����������� �� �
��� �� ���
�
���� ��
���� �� ��� ��&"

��
� ���������
���� �
 ��� ��������� % ���� ��
�� �� ��� ������������	 ���������

�4

�� ��������� �	
��

�� ��� 	����� ��������� ��� ��� ������� ����� �	 ��� ������ ��������� ����

��� ������� �	 ��������
 � ���� ����� �� ��� �����	������� �����	��� �� ���������
�	 ��
��

�� ��� ������� ��	������ �� ��� ����� �������� �	 ��� �������� �	����	 �� ���

�������	� ��� � ���� ����� �� �����	������� �����	��� �� ��������� �	 !�"�#

��� �����	
	��
��	��
��� 	� ��

��
������
� ���	�	�	�

��	 	������ ���	 �� �����	��� ��� ���� �� ������	� �� ������ ����������� 	��$
����	% ��������

�� �����	�	 �� ��� ������	� �	 ��� � ����������� ���������$
������� �����	�	� ��� �� �����	�	 ��	�� �� �������	 ���� ��������� ������ ��
������ ��� ��������� ������ 	������	% ����������� ���������	

�� &���� ' ��� &���� (�� ����� 	������	 ��	��		��� ��)����� 	*���	 ����

��� ��������� ���� �������� �� �������
 �������	 �� 	��� 	*���	� ������� ���
������ ����������� ��� �� ����� ����� ���� ����� ��	� ����� ����� ����� ��	���
	�������� ��� �	� �������� ��������� ��	�����	� ��� ������� ��)����� �"�	

�� ���	 	������ � ���� ����	 �� � ��� �� ���	� 	*���	 ������ �� ����� �� ������

��� �� ��	� ��� ����� ����

� ��	� ��� ����� ���� ���� �� ������� �	 ��� 	*���
	���� ���� ��� ���	��� ���������

�� 	*���	 ����	�� �� �� ��� ���	��� ��	��		���
��� ����� 	��� �	 ��� ��	� ����������� 	*���	 �� ����������� ��� �		������ ���
������ ����������� 	������	 �� �����

�� 	*���	 ��� ������	��� �� 	������ ���� �� ��		 �������� ���������	
 ������

�� �������� ��� ���������	 ��� 	������	% �����	������� �� �������	� � ���� +�	�
��	� 	��� ���������	 ���� ��� ��������� ��� ���,������ ��������� �� ������ ���$
�������� ����	�	� 	��
���� (
 �� �������� �� ��� ���������	 ��������� �� ���
	������	 �� ��� ���� ���� &���� ' ��� &���� (� ���������	 �������� ����� ��
���� ���*	 ��� �����

�������� 	��� ���������	 �� ��� ���	� �������	 ��� ��	� 	������	� ���� ���

	���� �������� �� �����	����� ��� ������� �� ��� ���������	 ��� ����	 ������
	������	 ���� ��� ��� �������� �� ����� ��� �	� �� �� ����� 	���� �� �����
���������

�� �������� ��	� �	 �� ���� ���� 	����	����	 ���� 	������ ���������
��	������ ����� &-�- �����	. /� +�	� 	��� �� ��	����� 	����� ��� �� �� ��	�����
���� ������	 ������ ��� ���* �	 �����	������ �	 ��		����
0 1&-�-� (22(� �
 3(45

� �������� ��	� ��������	�	 ���� ������	� ����	 �� ������ 	������	% �����������

�� ��	� ����� �����	 ������ ������ ����������� ���������	 ���	������ ���� ���
��� ���	��� ��	��		���

6�� �� 	��� 	������	 ���� 	��� ��� �������	 �� ���������� 	��� ���������	7

���������	 ����� ������� ��� �� �	 ��������� ���� 	������	 ��	���� ���	 ����$
���
 8���		�� 1(2235� ���� ��������� �� &���		�� 1'94:5� ��	��		�	 ������� ��
�������� �� ��������.

��������� �	
��	���
��� �	 � �������� ������� ��� ����
� �� ���
� � ����
�
�� �������		 ��� ��� ��� 	
���
�� ��� ������� ������	 �	 � ����
� ��
�������		 �� ��� ����
�� ��
��		��� ����� �� ��!

'9

���� ����� �� ������	
��	 ����� �
 ����� ������
�� �� ���� ���� �	� �����	���
��� ������ �� ���� ���� �	� �	������	� ���� ���� �����	 ���	 ��� �	��������	�
��� ��������� �� ���� �	� ������ ���� �� ��� ����������	 �	� ��� ������
 ��
��	�

��	
� ����� �� ��� �	 ������ �� �
������ ��� ��������� �
 � ������
 ��
��	�
�
 �	��	��� �
��� ��	�� ����� �� ����� ��

�	 ������

�	� ������	� ������ �	 �
��	���������� ������� ���� �� �����	 � ����� ��������
� �� ������� � ����� ��������

�	 ������ ����� �� �
���
�	� ������ ���� �	 � ������

�	� ��	������ �� �����	 �
�������	 �� � ����� ������
 �	� ���	�
�� ��� �����	 �� ������ ����� ���	� ��

�	
������

�	� ������	� ������� �� �
���
�	� ��� �������	 �� � ������
 �������	� ��
����� ��
����� ������� �������
�	���

���
 �
� ����� ����� �� ��� � ��
����� �� �	� �	� �������
�	�� ��	��� �������
�� ��� ��� ��
����� �� ������� ���� �� ����
� �������� ������� �� ��� � ��
�����
�� ��� ���������� ����� �� ���� �	� �	������	� �����
������� ����� ��
��� ��	���
������� ���� ��
����	� ��
�����	� �� ������� ��
��� ��	��� �������
�� ���
���

����	� ��
�����	� �� ��	� ������� � ������
 �	 ����� ��
��� ����	�� �� ����	���
��
�	��� ������ �	 ��� ����� �� ���� ���� �	 �������	 �� ��� ������
 ��
��	 �	�
����������

����� �� ��

�	 	����� ������

�	� ������ ���� ���������� �����������

�	
����

����� �	��������� ������
� ��� �������
 ������
 ���
�
� �
�
����
���
� �� ��������
�

���
��	�	� �� �����	 ��
����	� �� ��	�������� �� � ������	 �
 ��
�����
	������ ������	�� ��
�	���	� �
 ��������	� !�	����	� "##$� �� %#&'

�
 �� �
�����������
 �� �������� �
 �������� �� ��� ��!��� ������� ����� ���
�����
��� �� ��������" �� ������
 ��� ���
�
� �� � ������
 �������� ��� ��	��
�
��	� ��� �� ���	���
��	��� �� ������� ����� �� ������
 ����
���
� �� ��������

������� �� ���� ��������"

�� ��������� �
 ���� ���	��
� � ���� ����	�� ��� ���������� ���� ��� �������
�� ��� �#��� ���� �
� ����� �� ��� ������ �� ����������� ��� ����	����
 �� ���
���������� ������� �� ��� ����� �#����" ��� ���������� $�� ������
 ���
 ����� �

����� ��������% �
� $�� ���� ���� �
� �����
�&� #�� �����% ������ �� ��� ����'
�������
�����
 �� ��� ����" �� ������
 ��� ���
�
� �� ����� ���������� ���
��	��
��
��� �� ������ ����� �� ��� �()� ����
���
 �� ��������
 ����	����
�
 ��� ������	� ������
" *
 ��� ����� ��
� �
 ����� �� ������ ��� �������� $��
���� ���� �
� 	
������
� ���� ���� �����
 ���
 ��� �
���	����
� ��� ����	���%
��� ��	��
��
��� �� ������ ����� �� ��� +,��*- ����
���
 �� ��������
 �

�������
 �� ��� �()� ����
���
" .�
���� ��� �������� $�� ���� �
� ������ ����
�� ��� ����������
 �
� ��� ������� �����
% ��/	���� ���� ��� ��	��
�� ������

�� �
�� ��� �()� �
� ��� +,��*- ����
���
� �� ��������
 �	� ���� ���

��

����� ���	
���

 �� ��
	�	����� �
 ���� ���������
 �� ��� ���� ��	�	 �����
�	 ���	� ���	
���
� �� ��������
 �	���	� �� ��	 ��������	� �	
���
	� ���� ���	

�� ���	 �� ��	 ���	����
� �
 ���� �
������� ��� � ����� ���� ��	 ����	
��
		�
�� ����	�
 �� �	��� ��	�	 ���	
���
�

���������� ��	
��� �� �
� ���� ��������� �� �
��
����

������� �
�� �
��� �� �
��� �����
��� ��
� ����
�� ��������� ��� ������ ���
�

������ �� ���

���� �
� ���������� ��
 �����
� �� ��
�� �� �������� ����� 	����

����� ��� �
� �������� �� ������� ���� �� ������ �������� ������� ����� ������

�����
����� ���	���� �	���� ��
 ����
����
		� ������� �
�� ���
 �����	�� �� ��

�� ������� ����� ����
� ������� ���
 �����	�� �� ��� ������
�	� ����

���������� ��	
��� �� �
� ����
�� �!�"#$ ���������� �� �
��
����

��
� ����
�� �������
�� �

� ��		

���� �
�� �
� ������������
�� ���������

������
 �
���
	�����
�� �������
 �
���
	�����
� �� ������ ����� ���	�����

������ ���� ��
 �����
����� 	
���
���

�� �������
 �����
� �� �
��� ������

������� ��
����� ���
���� ������ �� �
� ����

���������� ��	
��� �� �
� ����� �!�"#$�
�� %#&�' ���������� �� �
��
����

��
�
�� ��	
�� ���� �� �
�
��	��
����
�� �
� ����	�� ���
��� ���� ���� �� ��	
(

���� �� �
� ����	�� ���
��
�� ��
��	���� ������
 ��	����� ��
 �
�	� ����	��
��

��
����� �
� ������ �� ������ ����� ����� ������ �����
����� ���	���� �	�����

���	����� ����
�������� �� �
��� �����
��)�
	��� ��)���������

����	 �� !����� ������ �����
�����
���������
� ��*����� 	���	� �� ��� ������� �
�

��������� �
� �� �����������
� ��
������	 �
�� ��	
��� ���������� �� �
��
����
��

����������

���� ���������
 ��
 ��
������	 �� 	� ���
 ����	
��! ����	�� "��� �	���
�
���	 �� �	 ���	� �� ����	� 	� ��
 #$%%&'
 ��	� ��
����	 ���� ����	
��
		�
�� �	 ���	 �� ��� 	��� �	 ��
����� ����	 ���	� "���� �	(���	� ���� ��	 ��)�
�
� ��	 *+���, ���	
���
� ���	 �		
 ����	�
	�� �������
� �� ��	 ����	 �	�-
��
�
�
 ���� �� ��"	�	�
�� ��.��	
� /�� ��	� ��	 �� �	�	�� �� �������	��
0
#����

 1$$'
 ��	 ����	
�� �����	����	
		� �� �	 ���	 �� /�	�� �	�	��� ��
	� ��
���	 �
� �
�	����	 ��	� �
�� � ���	�	
� ��������	 - �� �		 ��	 ���	���
�� 2��� ��	
��		�
0 #����

 1$$'
 ��	 �������� �	�����	� �
 ���� (���	 �		� �� �	(���	 ����
��	 ����� ���	
���
� �� "	�� �� ��	 *+���, �
� ��)� ���	
���
� ���	
�		
 ����	�
	�� �
� ��
�
����	 ����	
�� ���	 ����	�� �	����
� ���� �	�	� ��
 ��3��	
��
 4������ ���������
� ��
 �	 ���	 ��� ��� ��������	� �
 ����	 $

�
 ����	 � ��	 ��������	� ��	 �	-���� 	� �������
� �� ��5	�	
� �����
����
�
�� ���	
���
� �� ��������

 4���	
�� ��
 �	���	 �"��	 �� ��	 �	�
�
� 	�-
�	��	� �
 �
 �������� �� ��	 ���	
���
� �� ��������
 �	���	� �� ��	 �������� ��	
����	�
	�
 6� ������
� ����	 � �� �	���	� ������	 ���� ��������	� ���� �	���	 ��

$1

���� ���������� �	
��������
��������� �� � ������ ����� 	
 ��	�
���
� ����
��� �
��
����� ���� ������ �� 	���� �����������

��� ������	
��
�
�
���
�
� ����� ��� ���
�
�� ��
��
��

�� ��
��
�
��

��� ���
������� �� ��
���� ��� ��� ��
���� ��� ���� ���� ����
��
������ ���
������������ ��� �
��
����� ��� ������� �� ���������� �	
��������� ����� ���
���������
��� ���� ��
��
�� ���� �� ���������� ���
��
���� ���� ������ ��
���� ���������� �	
��������� �� ������� ���� ����� ��� �
��
����� �� ������ ��
��
�	 ����
���
� ���
� ������ �� ���� ���������� �	
��������� ����� ������
����� � ��� ����� ! ��� ����������� ���� ��� ���������� �	
�������� ��� �� ���

����� �	 ��� ��������" ��������
��
������ �������������� ��� �
��
����� �� ��
�
������

��� ����
���� �	 ����� � ��� ����� ! �� ��#�
��� �� ����� � ��� ��	�
�����
��
����� ���
��������� �	 ��� ���������������
 ���
��� ���
� 	��� ����� ��
��� �
��
����� ������ �� ����� ! ��� 	���� �� ��� �����
������ �� ��� ������

����� ��� ��� ���������� �	
��������" ������� �� ��� ���������
��� ��$�����

��
������ �������������� �� ���� �� �� ��� �
��
����� �� ��$����� ��
��� �	 ����
�
���
��

��� ��������� ���
����� �� ����� ������� ��� �
��
����� �� ��$����� ��
���
�	 ����
���
� ��� ��� ��$����� �������������� �	 ���
��
���� 	���
� ���
����

��� �%������ �	 ��� &��
���� ��� ����'��� ��� �������" ��� � ��$����� �%�����

���� ��
� ����
����� �� ��'� �� ������ ��� ������
��� �����
����� �� ����
�	�� �� ���
��� �
������ 	������ �	 �
��
��� ��� �� ��'� �� �
��
��� �������	��
������� ����
������ ���������� �	
�������� �� ��� �������� ���
� �� ������ 	��
��� �������� �� �� ��� ���������� �	
�������� ���� ��� �� ���
����� �	 ����
���
�������

��� ������
�� ������� ����
��� ���� ���� �������� ��
� ���
��� �
������
��
�� �	 ���
��
�� ����
���
�" ����
�� ���� ���� �� ����� �������� �	 ���
���

����" ��� ���� ������������� �	
��
����
�� ���� ���� �� ������ ��� ���
����"
��� ��
���� ��� ����� ������
�� ������� ��� �� ���� ���� ����� ����� ��� ���
�������� �	
�������� ��� �� ���
������ ��� �������� �	
��
���� ��� �
��
�����
����������� ���� ������� ���������� ��� ���
������ (�
� � ��������� �	
����
����� �� ���
�����" ����
�� ���� ��� �������� �� ���������� �������
��
����
)*����� ��� ����" �++ , ��� �� ����� ������� �
��
������

����� ����������� �� �������
�� ����� ����� ��� ���������� �	
�������� ���
�� ���
����� �	 ��� ���
������ �� ��������- ��������� .����� � �� � ���� ������
�
��� ������� ������������ �	 ��� ������ �� ����� ���� ��
���� �
��
����� �� ���� ��
��
����
��
����
�� �� ������� �� �
������ ��������� �	
��������� ���� ������
�� �%���
���� ����� �� ����� � *����
��" .����� � ����� ���� �
��
����� �� ����
��
��
����
�� �� ������� �� ���� ���� ��� ��������� �	
���������

/� �%����� �	 ���� �� ���� �� 	���� ���� ��� �01� ��� ��� /2��(3 ���
�������� �� ��� ���������������
 �������� �	 ��� ��������- �%������
�� �	 ����

������� ����������� �����)����4 ��� 0
'�����" �++5,� ����� ����������
��� ���� 	���� �� ��� ������� �������� �	 ��� ���� ��������- ������������� �	 ���

��

����������	�

����� ���
��
���� ��

�	����
�	
��
�
���	��	
�

���	����� �
�	�� ��������� ���	�	�	�� ���� ��� �����
����
� ��� ��	��� ����� ��	��� ��� ���� ��� ����
 �
��

������ �	��� �!"� � �	����� ��	� �����
� ��
�� ��

����

� ��

��� � ���� �
�� ��� ���

�	#� ��� �
���
����$ %���� � ��� �� ��	�
� �
 ������	#� ��� ���������
� �
���	��
� ��� ��

��� �� �����
� 	������� ����� �	��� ���$
��

��� ���� � ������� �
�� �
 ���	�� ��������
�����
���������� � ��	�� �
��
� ��

����	�
 ��	��	�
 ��
���
�
�� ��� 	� � �������	����� �
����� ���
�����	��� � ��� � �
��	��� &�� ��� �
����� �	�
� ������ ���
��
���
�����$ � ��� � �
��	��� �

�� ���������� �
��
'� ���	�	
�� �!"� � ���� �
�� ��� ���������� ���� �	�� ������

����� ���	�� ��� ���� ��� 	�������	
�� ��� ��������
���	�
 ������ (%�'�) � ���	
� � ��
�� ��

�	���
�	
�$ %���� � ������� � ��
�� ��

�	��� 	� �����
 �
��
�����	�� ��
� � 	�������� �����
 �
�� 	� ��

����	�
 ���
��
�
����	�� ��� � ���� ������� ��

���
� ����� ���
�� �
�	�

�����	
��$ � �	�
�
�� ������	� ���
�� 	� ��� �
��
'� ���	�	
�� �!"�� � ���� ��� ������ �
�� �
 ��� ����	���	
� ��� ���

����� (%�'�)� ��
���� �
��	�
�
��� ���� ��� � ���� �
�� 	� �����	
� �
 ��� ��
���� �
��	� ���
�
��� ���� *��!+ ����	�	��
�
���
�$ � ���	
� � �
���	
� �
 � ��
�� ��
���� ���
%���� ���� �������� ��� ���	
� �
 �����
 �
��� ��	�
 �
��
�
��	��� ��
� ��

����	�
 ��	��	�
 ��
���
����	�� ��� � 	�������� �
�� ���
��	�
 �
 ���	� �
������
�����	
�� ,���	�� ��,�	�������

����� - ���������	
�	�����
� 	��
�
�	� �

��	��

�
� �� ��� ��
����	 ������ �

���		 ����� �����
�� �

����� 	��
�
�	� ���������	 ��
�����
� �����	 �� �������
��
������ �����
� ��� ������
 ��
���
	��
	 �� ��������
 ���

�� �����
��

�
������
����� ��� ������ ��� ��� �	����	
�� ��� ������� ������� �
 ��

����
�	�
 ���	�	�	�� �� �����	� �����
� ��
&�	����$ (� 	��������
� ��	� &��	�
 	� ����
��� ������� ��� �	����� �
� ������� ��� (%�'�) �	����	
� �	���� ���
�
� � ���
����� ���	�	�� .�
� �������
��
� ��
�� ����	
��� 	� ����� -/�
� ���� �����	�

��� �
������
����� ��� ������
� ���� �����	�
 ���� �
������ ��

����	�

������
� ���
�
� �����	�

���� �
������
� ���	�	�	��$ 0�������
���
��� ���
������� ��� �	������� ��� �	����	
�� ��� �	��������� ��� ���� ��� ������� �

����� ���
���� �
������ ��� ���	�	�	�� ���� ��� ������� �
 ��	� �	����	
�$

��� ������� �
�� ��� 	����	&�� ���� �����	�� �� ���� �� �
������ ���� ���
����� �	����	
��
� ���	��	
�$ 0�#�� ��� *���
� .1221/ �	����� �	����	
��
�
���	��	
� ������� �
 �����	��$ ��� ����
�� ������	�� � ������
� ����	��
�
��������	� ���	��	
�
� �����	�	�
 �
�
� ��	��� ���	�

13

Concept

Concept

Concept

Activity

Activity

Dimension

D
i
m
e
n
s
i
o
n

������ �� ��� ����� �		�
�����
 �
� �����
���
 �� ��������� �� � 	�������
����� ���
������	 ������
 �������� ���� ��� �����
���
 ��� ��� �
 ���������
 ���
��� ��������
���������	 �����
�������
 ��� ���������
� ���� � �����
��� �
 ��
������� ���
 ���
���� ��� 	������� �������
 ��� ������
�
 �� ��

��
�

���� ����
 ��� �� ���
� �����	�
 ��� �
 �
 ���
���	� ���� ������� �����
��
� ���������
 ��� ���� ��
������ 	����� ���� �����
 ��� 	������
� ��� �	
�
���� ����� ���
�����	 �����
���
 �	���
���� ������
� ���������
 �����
����� ���� �� ���
� ��� �������� ���! �� ���
�� 	������
 ��� ����
�� ��
���������
 �� ������
�� "����� �� #$$%�

	
� ���
��������� ������ �� �
� ���
��� ��
����
 �

������ �
�� �����
��
� ��� ���������� �����
�������
 ��� ������� �
����
 ������ �����
���
 ��
����������

	���� � ��������
 �
�� ��������� �� �
� �����
���
 �� ��������� ��
������ ��
�
�
������� �� �
 ������ �
�� �
�
������ ��� ����� ���������
 ������
�
! ������� ��
���� �
�
� �����
���
�
���� �� �
 �
�� ��

���� ��� �
�
������ ��
�� �
� �������
�� �
� ���������
� "� �
������ ����
��� ���
 �� �����
���� �
� �������
 ���
��

���� ��� �
�
������ �� ��
����� 	
�
��
�� ����� �� ��������� ���������� ���
�
� ���� �������� ����� �� ���������� �����
�������� �
� ���� �������
� �� �
�
���� �����
���
 �� ��������� ��� �
��� ��������
� �
�
������ ����
 �� ��
�����

"� ������
��� ������ � �����
�����
 �
� ������# �������� ������� 	
������
��� $�����
��� �� �
� �������� �����

� �
��� ����������
������
 ���� ��%�����
�����
� &������
 ��� ��
���� � �����
��� �� ��������� �
��
������� �������

�� ������� ���
 �
� ���������
� '
�� � �����
��� �
 ��
������� �
�
 ����

�
� ��

������� ��� � ����� ���������� �����
������� ��� ��� �������� �������
���������
� 	
�
 �
 �� ���� ���
 �
� ������ �
��
���
������
 �#���

 �
�� �
��

��� ��
������ �
� ���������
 ��
�� ��� �
�� �
� �������
� �
��� ��
��
������

�#���

 �
� ����
��� �������� �#���������

(�

� �������	���
�� ��
��� ����

��� �������� �����	
�� �	
��� ����� ��
�	�
��
��
�� ��
���� ����
��	�����

�	�
�
��� ����	��	�� ��
���	 	����� ������

�	� �
���	
�� ��	���
��� �	�

����
���� ����	�	�� � ���� ���� ���� �� ���	��	� �	� ����
���	�� ���� �� � ��	�

���
��� ���
����� �	
�� �	���
���
��	 ��
��� ����
��	����� �	
�� �����	
 ����

���	��	� ������ �
���	
�� ��	���
��� �	����
�	��	��� ����� ����
���	� ������
�

��

�	 	����� �
���	
�� ������

�	� ��
���
���� �	
��� ��	
��

�� ����
��	

��
���	 ���	��	� �	� ����
���	�
��	� ��� ��	���
��� ����	�	� �	� ����	�	�

�� ������

�	� ��
���
��� ����	� �	 ���� �
��� �	�
�
����� �����
��	�	�
�

���� �
��� �	�
��� ����	�	� �������� �� ��	������

���������
�� �������� ������ �	
�� �	
������ �
����� ��
� ��
��
�� ����

�	�� �
���	
�� !��
�� �	������ ��
�� ��
� � ���� ���
����� ���� ���	�
�	��

������ �	� �����
��	
������

���
��	 "	��	�� ���
�� �������	�#

� ��� ����
��� �� �������	��� ��
�	� �
���	
� �� �$������ �� ���	
���

��������
�
� ����	
��	
�� ��	���
�� !��
���
��� �
 �� ����	
��

�
���	
� �������	�� ������

�	� ��
���
��� �	� ��	���
��� �	����
�	��	�

�� �$����� �
���
�	
� ��
��� ���� ������
� ��
� �	� ��
��
�
��� ���

������
� ���� ������
� ��
�
�� �
����

� %	 �	���
����
���� �� �
���	
�� ����	�	� �� ��������
��
 ��
�	�
��
��

��
 ��
���
��� �� ���� �� ��	���
��� �	����
�	��	�� ����
�
� ��
�	���	�

�� �����
��	�

� &����� ����� �� ����
���� ���"���	�� ����
�
�
��� ��
�	���	� �� �����
��	

�	 � ��
���� ��� ��
��� ����	��� ����
� �	����
�	��	� ��	���
� ����
�

�
��� ��
�	���	� �� �����
��	�

� ���
��
 ���	�"��	
 "	��	� �	
�� �����	
 �������� ��
��
 � ���� ��
�	�

�
��
��
��
 ����
��� �	� ��	���
��� �	����
�	��	�� ���� ��
�	���	� ��

�����
��	 �� ������� ���� ��� ���	 �������� ��	�� � ���� ������ � ���

� ���	
��� ��
�	���	� �� �����
��	 ����
��
� ����
�����

� '�	��$��	
��� ���	 � ��
�	���	 �� �����
��	 �� ���	�� ��� � �
���	
�
���

����
�� �	 �����
�	�
� ���
�� �
���	

� ����	 ��	���
� ��� ��
���
��� �	

	�� �����

����� �����
� ��	 ������	 ��� �
���	
�� ����	�	� ��
�
�
�� ���
�
� �� ���

��	���
�
� ����
���� �	� ��
�
�
�� ���
 ����
���
� ��	���
�� �	 ����
��	
���

������	�
��
 ���	 � ���
��	 ��	���
 �� ��
���
� �� ����	��� �
 ��	 ���	 �� ���

����	�	� 	�� ��	���
� �	� ��
���
���� ����
��
�
���� ������� ����	��� ���
��

��
�	���	� �� �����
��	�

(��������
�� �����
� ��
�� �����	
 �������� ��	
� ��
� ��
�	
 ������	 ���

��
���
���� ������
�� ��� ���
��� �	
�� ���� �� 	�
 	���������� ����
� �����	��

��	���
��� �	����
�	��	�� �	� ��� �
����	� �� ��	���
� �� 	�
 	���������� ����

)*

�� � ������ 	�
�	 �� �
�		��	���� �� ����������� ���������� �� ��� ������� �� ���
	������� ��������� ���� ��� ������� ��� ��	���� ���������� ��
��������� �����
����� �� �� ������������� ���������	 ��� ��������	 	��������

��������������� ���
�������� ������ ������� ��� ������ ���� ������ ���
!���� "##$% ����������		� ������� &��� �� �������� �������	 �������� �� ���������
��� &��� �� ���� � ����� �� 	������� ��� �������� �� ����� �� �������� ��

�������� �� ��� ��������� !�� ������� &��
 ����������� �� ��� ���� ��
��&	����
�� ��������' 	������� �� ��������� �� ���	�����	 ����	 �� ��& ���������� ��

�������� ��	��� �� ���������	 ��� ��������	 	�������� !� ��� ��� ����	 �� � �����
��� ������� ��������	 ������� ����� ��� ��	����� ���&��� �������� ��� ��������
�� � 	������� �����(� &��	� �� �� ����������� 	��� �� ������ ���������

��������	
����

� &��� �� ����
 �� �����
���� ��������� ������	 !���) ��� ��� ������� ������
��� �������� ������� �� ��&������ ����������� ��� ��� ����������
� ������ ���
��� ��� �������� ��� ��	� ������ ��� ������� �� &������ ��� ������

���������

�������� *� �"##+%� !�� ��
�	������ �� ������
� �(������� ��� ,�(���	���- !��
����������� �� ���������	 ��� ���������	
��&	����� �� �������� *� ���
.�&
��� *�� �������� ��� �������	�
� ��
����	���� ��
�����

� �������

��
�������
�
�
����� ���������� ����� �/+$� 0�	����� ���&��� 12�

�������� *�� 3��	� 4�� ��� 2������� *� �"##�%� *� �	�������
� �����������	5
�6����� �� ���������	 ��� ���������	
��&	����� ����

� ��� ����
��� �

�
���	
���� ����
���
� +7�"%-��8/�+��

����	���� *� �"##8%� ��
�
�
� ��	����� �����	� �

 ����������� ������� ������

��� !�
�" !��" ��!

� !����� 1����� 9" �� :����	� .������������ ����
��� 3���	�� �� ;������ ��� !�����	���� *��� :��
��������� :���	�������
:����	�� ;&�����

������ ;� *� ����"%� ��
�
�
� �� #����
	 $ ���
�	�
���
���� ������������
1����� 7� �� <=������ ;������ �� 0���������	 ;������� *��� :��
���������
<�������������� <=������� ;&�����

��������� 2� �"##�%� %����
�� &����
� !���
 �
��� %���!
�� %����	� ������'

�
���

� (
�����

��
��� >��������� ������� :����	� :��
������� :����	��
;&�����

��������� 2�� 0�
����	� *�� ��?������� @�� �����=�� 2� 0�� @���	�A�� ���
;������� B�� ��� C������ ?� �"##�%� !������	� �������� �� �������� ���5
����- �� ���� �(��� ��� ��� ���� �����	D %)*�%� +������
� +���%-8#$/8#7�

"9

�������� 	
� �����
�� �
� ��� ��������
�� �
 ������
 �������� ������� ���
�� �������� ����������� �! �������!�
 ��� ���������!�
 ��������" 	 ���#
������������� ����$
 �������� 	
���
�
��
������ %��&�"��'(�))

*�+���� ,
 ��� ������� -
 ������
 .������
� �������� ��� ��� ����������� �!
������������� �� ���������
 	������ �� ������
��
������ /��0�"�%%(��0

�� 1�
�$� 1
 �%)22�
 ���� ��3��
���� �!
������� �� �������
 4� ��
�5�$� 6

��� �������� -
� �������� 	������� ��� ����
� ����������� ����� �2/(�))

��5����� 6�
���� 	���������� 4��

6�7����
� 	
 ����0�
 ����
� 	�������� �������� �� ����
��������� �����������

���������� ������� 8����
� 8��+�����$� 8����
�� �5����

6�7����
� 	
 ��� 1���
���� 	
 ����'�
 9��� *��� 4� .�7� �� ����� ,��#
�������� .���7��� : 4� ���
������� �� ��� ��� �����������! ���������

��
����� "�����
� #��$����% �
"� ����� %/'(%&/� �����
�� 9����������
8�	

6�7����
� 	
� ��������$� ;
� �����<�� -
 6
� ;���
�=� �
� ��� >������ �

����0�
 ������������ ������� ��!�5��� �������" �������� ����
��� ��� ��#
�
��������
 �������� 	
���
�
��
������ %0�/�

6�7����
� 	
� ��������$� ;
� �����<�� -
 6
� �������� ?
� .������ �
� ���
>������ �
 ������
 ���� ����� �� �����" ��������� �������� ��
�����

������
 4� ���
������� �� ��� &�� �����������! #��$���� �� ���������

��
����� "�����
�� ����� %�/(%/�
 	��

6�7����
� 	
 ��� .���@� �
 ����'�
 A�+��� B�+� ����������� ����������� �!
C��B���C ��� C�
���C� ��� +�������� �����$
 	 '�	
 (�!!����� /��/�"2)()/

6��5���
�� A
 ����/�
 �������� ��� ���������
 !����5��7� ������������ ���
6.� ���B���
 D��������
 ;����� / �! ��� 6�������� .�������#��������
6�+��������� �� 8������������ ������� ,��B���� �����
 �! 6��������� 8��#
+�����$ �! 6��������� ����� ���/

6��5���
�� A
 ������
 ����������� �!
������� ��� ��� �E�������� �! �����#
��������" .������
��� �����E���
 ��F������� ��� 7��5
���� ��B����
 4�
G��������� �
� 1�
���� 	
� ��� G��+�7������ H
� �������� "��������� ���

���
�����! ������)�����
� �� �������� ��� �����
����� ����� %�/(%&/

6��6G46;

����$� -
 ��� ������� �
 ������
 8������������ ��� ����� �! �E���������
 +���#
�����
)
���� �������� �� ������
��
������ /�/�"�/&(�'�

I����� ,
 ��� ,�5���� ?
 ����'�
 6+�
������ ����������� �! ��+��� �����������
��+���������
 4� ���
������� �� ��� ��� �����������! ���������
��
�����

"�����
� #��$����% �
"% 	����!�% #���������% *)� �����))(%%�

��

������� �� �	

��� �
� �������� ������� �
 ������ ���������
� �� ��� ��������

� �
������ �������� �������� 	
���
�
��
������ ���	�� !"�		�

�������� #� ��� $���%��� &� �� '(��)
�������� ��� ��
������� *�
������ ��
������������ +� ����
����
�, ����,���� -� �������� #�� ����
�� ���
������

��� ���
������ ���������� ���
��� �� ���������
�� ����� �"	.� /�������
���������� 0#�

�
������� +� ��� $������� 1� �� '	�� 2�� �
��
� ��� ���
���
�, �� �������
��������� 0�������� �������
� ��������� ������ ��
��
������� ������
��
!	�	��	
�"	�.�

�
������� +� ��� $������� 1� �	

��� 2�� ���
���
�, �� ������� �������
�� 3
��4
����
�� �
� ��� �����,45��� �����,� 	
���
�
��
������ ''����	'"!6�

7������ #� �	

.�� -� ���������
� ��� *�, �
 �
�������8 �������
������ ��

��� ���� !
�6���("6	�

$������ 9�� +����� /�� 3���������� :�� 3
��� ;�� ������ #�� $����
��� <��
<�)�����,� 9�� <
���=�� #�� :������� 7�� :���>�>� ��� :��
�� ?�� ���
2�
���� $� �	

6�� + �����4����
��� ����,
� ������� ��� ������� �*���� ��
�
%��� ��
��������� ��� 	���	
 ��������� �(�6���� "�!
�

$������ 9�� ?�������� +��)����� 2�� ?������ #�� @��%��4A
B��� 7�� ���*�� ?��
��������� $�� $�B�
�49����,� +�� :������� 7�� :�������)�� ��� ;�����,�
#� $� �	

(�� 9������� ���������%��
� ���
�C����4����, ������� -� ����	

!�� "#$� !������ ����� ������� �� ����	
 �� ���������� ��� ��
������%

��
������� �
���
� ���
������ ����� �6("�(!� 0�� D
�*� 0D� E:+� +)<�

<���
�� 3� ��� ?

��� :� �� .�� &������� ��� ���������� $������� /������
+���� <������ 0#�

<���
�� 3� ��� 2���� +� �	

6�� ��������� '��
����� ��� ��� 	��
� �� &��������
$������� /������ +���� <������ 0#�

<�)�����,� 9�� /�*������ +�� <
���
�� #� /�� :������� 7�� ��� F������)�
�	

.�� :��������� ��������G ���������� �
� ������� ������*� 	���	
 ���

������ � �����!("�(
�

<�)
����*� 9� �� .��)
�������� ��� ��
������� *�
������� �������������

(������ �� ��
������% ��� '�����
��
������ .��"	���6�"�! �

<�)���*��� <�� +�������� 1�� A���� A�� @������� <�� ������ A�� 7
��*����
D�4A�� $�B���)�� 2�
���� $�� E������ -�� ��� ;������ 2� �	

��� + �����4
����
���� �����4���������
��� ����,
� ����������
� ��
�������� �*����
�
5���4,��� �� ��������� 	���	
 ��������� ���6���	!"�'
�

<�)���� 1� ��� �
������� A� �	

!�� 2�� ��%��
�����
� ��������G ��,�
�
����*��� ��� ���������� �� ����� 5���4,��� ��
�
�, �
������)�����
��
�

����� 6 �	!!"	' �

	'

������ �� �� 	
� �	
��
� ������� ��������� ��
����� 	
� ����������� �
���
��!� ���" #�$�������!$�	� ��
�$���	�$�
� 	
� 	 ��
�����	� %�	������ %��
��	��$
! 	
� ��	�
$
!� ������ ��	
���
�� &'�(�"()(*(++�

���	
���� ,� �-''.�� �	����� � ��������� /01/0�23�

���	
���� ,�� �	���4
� 2�� 	
� 5������
� 3� ����-�� 6
�����	
�$
! 	 5��

���
�
 $
 ��� /��	$
� 	� 	
����� �% 7�
��8��	�$9	�$�
� �
����������

�
	����
� ��	
���
��� ������
�� &����"--�*-�(�

5�	��� 0�� ,��!��
�� 0�� #�����	�� 0�� #	��� 5�� :$

�
�
� 5�� �	��$� ��� ��
7	��
���
�� �����;�� ��� ������� ���
	���$<�� ��� 3������� 7�� 3$��
�
,�� 3�	����$� 1�� 	
� ����	�� �� ����+�� =�	�>� ��� �������? ��	��
���> �8���$�
�� �% �����
� ��	�
$
! ��������� 	
� %	$������ ��

� ��� �����

��� �
������
�
� �
��	���� ��	
���
� ������
�� �
�� ������� ���!"

#	�������� �
��	��� �

���$� ++�

5��
��� @�� 3��$��� :�� �����
� 5�� 	
� @���9�!� =� �-'+��� 0�������	�$�

�% 	 ��$�
�$A� ��
����$�
" ���	�� 	 ������ �% ��
�����	� ��	
!�� �
���
�

��	
���
�� ..���"�--*��)�

��$
�� 0��
��
����� ��� 	
�
��
����� B� ����(�� ��	�
$
! 	
� ��	��$
!
���!�	��$
!" 0 ��C$�� 	
� �$�����$�
� �
��	��� �
���
� ��	
���
��
-(���"-()*-)��

�!	���$� �� 	
� 3	���D	��
� �-''��� 0�E�$�$�$�
 �% ���!�	��$
! �
�����!�
	
� ��$���� 1
 ���� ��� @���
� ��� 3	���D	��
�� 	
� @$������� /�� ��$�����
��$
�
�
�$
� ��
��������� �	!�� -�)*-)&� 0�	���$� 5�����

�
����
� 6� ����.�� =�	� $� $� 5���$��� �� ��	�
? 2
 F	�$	�$�
 	� 	 B�����	��
7�
�$�$�
 %�� ��	�
$
!� �
���������� �
	����
� ��	
���
��� ������
��
���&�"(')*&-��

3�	�� ��
� �������
���
�����	�9
! ��������	� �
�����!�� �
	���� �
� ��%

����
� �� &��������
� ��	
���
�� (."&�-*&--�

3C�
���
� �� �-'+&�� �G

$����$���
 $ 1B2� !�����
� %����
$
!" /�
 �G�	
��
�G

$��	
� H��� $�	!� �% �	
 $
 ����	��� $
 ��� 1B2� !����I $
 3���$��J�
����
$�	� ������� @;�����!� �
$C���$���� 1
��$���$�
�
 %;� ���	!�!$�� 3��
��
�

34�4� �� ������� ���	��� ��
���� ����	��� E����$�
� %��� ��� �������� �%
��� ������	
 ���K��� '�()
�� �� �
���
� ��	
���
�� �
���
� ��	
���
��
+.���".�&*.&&�

���
4� �� 	
� #�����	�� 0� ����'�� F	�$	�$�
 ������ 0���$�� �� 3����
��>
7�
����$�
� �% 7������� 5��!�	��$
!� �	�
���� �
	����
� �����������

��	
���
�� 0������� %�� ����$�	�$�
�

�'

���������� 	
 ��

��
 �� ����������� ��������� � ������������� �� �����
��������� ���!����� !��������"�
 ������ ����	
��� #$�%���&&'�&(

���������� �
�)������ *
� ��� ���+�,������ -
 ��

.�

	�������
�	 ����	��

��� �����	 �������� �� �	������ ��� ���
���
��� �������	� �� �	������
��� ���
���
����
 ���+���

#

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /RelativeColorimetric
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings true
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.16667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.16667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.08333
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Euroscale Coated v2)
 /PDFXOutputConditionIdentifier (FOGRA1)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF0054007200790063006B0069006E0073007400E4006C006C006E0069006E00670020006600F6007200200074007200790063006B006F007000740069006D006500720061006400650020005000440046002D00660069006C00650072002000760069006400200045006E0068006500740065006E0020006600F600720020006400690067006900740061006C0020007000750062006C00690063006500720069006E0067002E000D002A002000500044004600200031002E00330020002800D600700070006E006100730020006D006500640020004100630072006F00620061007400200034002E00300020006F00630068002000730065006E0061007200650029000D002A0020005000440046002F0058000D002A00200049006E00670065006E0020006B006F006D007000720069006D006500720069006E0067002000610076002000620069006C006400650072000D002A00200049006E0067006100200073006B00E40072006D00E40072006B0065006E002E00200041006E007600E4006E006400200064006F006B0075006D0065006E007400650074007300200069006E0073007400E4006C006C006E0069006E0067006100720020006600F6007200200075007400660061006C006C000D002A00200049006E00670065006E0020006600E40072006700680061006E0074006500720069006E0067>
 /SVE ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [467.717 685.984]
>> setpagedevice

