
Rendering techniques
for visualisation

Scientific Visualisation
HT 2018
Lecture 5

Fredrik Nysjö
Centre for Image analysis
Uppsala University

First: A trip through the
programmable graphics pipeline

Transparency

Transparency
● Many uses in visualization:

▬ Visualizing data with different layers

▬ Showing hidden structures and reducing clutter

▬ Volume rendering

▬ Overlays and user-interfaces (UI)

Alpha blending
● Composites (blends) the values of two fragments

● The OVER operator [Porter and Duff '84] used for
back-to-front alpha blending:

Image source: http://www.realtimerendering.com

Order-dependent transparency
● The OVER operator is not commutative!

● Thus, requires depth sorting (~O(n log n)):

1.Sort primitives (triangles) by distance from camera

2.Render back-to-front (Painter’s algorithm)

Image courtesy: Johan Nysjö

Unsorted (incorrect) transparency Sorted (correct) transparency

Painter's algorithm

Image source: https://en.wikipedia.org/wiki/Painter's_algorithm

Painter's algorithm: Failure case

Order-independent transparency
● Order-independent transparency (OIT) methods does

not require primitive sorting

● Stores fragments for sorting afterwards (A-buffer) or
uses commutative blend equations (blended OIT)

● Other techniques: Depth-peeling (available in VTK)

Image source: https://developer.nvidia.com

Weighted blended OIT

http://www.vtk.org/Wiki/VTK/Depth_Peeling

Depth-peeling (basic idea)

Peeled layer 1

Front-to-back
blended result

Peeled layer 2 Peeled layer 3

Peeled layer 5Peeled layer 4

Image courtesy: Johan Nysjö

Shadows and Ambient Occlusion

Is the bunny standing on the ground
or floating in the air?

Shadows
● Important depth cue: helps us perceive depth and spatial

relations between 3D objects

● Common techniques:

▬ projective shadows

▬ shadow mapping (lots of variations)

▬ shadow volumes

● Trade-off between speed and quality

Shadow mapping
● Basic idea:

1. Render the scene depth
values (from the light's
perspective) into a texture
to generate a shadow
map

2. Render the scene again
(color and depth values)
from the viewer's
perspective and compare
the location of each
fragment with the shadow
map to determine if the
point is in shadow

Shadow map Same scene rendered
from the viewers
perspective (with the
shadow map applied)

Image courtesy: http://www.realtimerendering.com

Ambient occlusion
● Simulates self-shadowing and shadowing of ambient light

● Surface points that are occluded becomes darker

No shadows With ambient occlusion Full global illumination

Image courtesy: http://www.realtimerendering.com

Screen-space ambient occlusion
● Render scene depth and normals to textures and compute

dynamic ambient occlusion in a post-processing pass

● Most techniques uses a rotating filter mask with uniformly
distributed points to sample the depth and normal textures

● A subsequent blurring pass is required to remove noise

Image courtesy: http://www.realtimerendering.com

Screen-space ambient occlusion

* =

Ambient lighting Occlusion Final shading

Volume Rendering

Volume rendering applications
● Medical visualization

● Scientific visualization

● Computer games and visual effects
▬ Clouds

▬ Fire

▬ Smoke

▬ Volumetric fog

Image source: http://www.blender.org

Digital images

2D image 3D (volume) image

Pixel
Voxel

Volume data

Computed tomography (CT) image of a foot. The
intensity values of the voxels represent different
tissue types (bone, soft tissue, skin, etc)

● Represented as regular 3D
grids with scalar or vector
values

● Can be aquired with, e.g.,
a CT scanner or be
generated procedurally

● Voxels can be anisotropic
(have non-uniform size)

Multi-planar reformatting (2D slices)

Ray-casting
● For each fragment (i.e., each pixel in the viewport), cast a ray

from the starting point (front face) and sample the volume along
the ray direction at even intervals until the ray reaches the end
point (back face)

Image plane

Eye/camera

Volume

Ray

Front-face image (starting points)

Ray-start positions* displayed as RGB colors

*Specified as 3D texture coordinates (s,t,p) ranging from 0.0 to 1.0

Back-face image (end points)

Ray-end positions* displayed as RGB colors

*Specified as 3D texture coordinates (s,t,p) ranging from 0.0 to 1.0

GPU-accelerated ray-casting
● Basic algorithm:

1. Render the front face of the volume image's bounding box
to a 2D RGB texture to obtain ray starting points

2. Render the back face of the bounding box to a 2D RGB
texture to obtain ray end points

3. Render a fullscreen quad and (in the ray-casting fragment
shader) subtract the back-face texture from the front-face
texture to obtain ray direction

4. Given the ray starting points and direction vectors, cast a
ray from each fragment into the volume image

5. Let the ray gather color and transparency information from
the voxels it passes through

Maximum intensity projection (MIP)
● Basic idea: extract the maximum intensity value along

each ray to create an X-ray-like projection of the data

Isosurface rendering
● Stop raycasting at first opacity value above threshold, and

compute surface normal and other attributes for shading

● With direct volume rendering, the isovalue can be updated
interactively

Front-to-back alpha blending

Front-to-back alpha blending
● Define a transfer function (TF) that maps voxel intensity to

color and opacity

● Create a semi-transparent projection of the volume by
accumulating opacity values along each ray while composing
(blending) colors

TF example (Human CT data)
● Bone tissue (which has high intensity) will become

white/yellowish and less transparent

● Soft tissue (which has low intensity) will become red/orange
and more transparent

Other TF examples (Wind speed)

Other TF examples (Solar dust)

Acceleration methods: Empty-space
skipping

● Improves performance by rendering a more fine-graind
bounding geometry (from min-max value blocks)

Front faces Back faces

Direct volume rendering vs. geometry-
based rendering

● Direct volume rendering

+ Allows showing other aspects of the data (MIP, transparency)

+ Isovalue and other parameters can be changed interactively.
 Easy to add cut planes!

– Slow (without proper acceleration data structures)

● Geometry-based rendering

+ Fast (uses the standard GPU rasterization pipeline)

+ High data reduction (but information can be lost)

– Changing isovalue requires recomputing the whole geometry

Geometry-based rendering:
Polygonisation

Image source: Wikipedia

● Examples: Marching cubes, dual contouring, ...
● Anders covered this topic in lecture 3

Geometry-based rendering:
Splatting

Image source: http://www.realtimerendering.com

Splatting
● Basic idea: for each boundary voxel (or grid cell with

an intersection), emit a point and throw (”splat”) it onto
the image plane

● Convolution is used to fill in holes

● Points can be extracted in a pre-processing step
(similar to Marching Cubes)

● Efficient implementations exist for both the CPU and
the GPU

Image source: http://www.realtimerendering.com

Volume rendering software

ParaView

Volume rendering software

Voreen

Volume rendering software

Inwivo

Large-Scale Visualisation
(Extra slides)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

