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Dataset

The Visualization Pipeline - Recall

Input Dataset Filtering Dataset DatasetMapping Rendering Dataset

any kind 
of data

formatted 
data

filtered 
data

spatial 
data

2D 
image

1. Input data 
• your primary “raw” source of information 
• can be anything (measurements, simulations, databases, …) 

2. Formatted data 
• converted to points, cells, attributes (discussed next in this module) 
• Ready to use for visualization algorithms 

3. Filtered data 
• eliminates the unneeded data, adds the needed information 
• read and written by visualization algorithms 

4. Spatial (mapped) data 
• has spatial embedding → can be drawn 

5. 2D Image 
•  final image you look at to get your answers



Scientific Visualization – The Dataset

Dataset  

• key notion in visualization (SciVis, InfoVis, SoftVis)  
• captures all relevant characteristics of a data collection  

• structure 
• data values 
• data operations 

Dataset

Structure Attributes

Points Cells Scalar Vector Tensor

Operations

Reconstruction ……

f : Rm → Rn f : Rm → Rn f : Rm → Rn

f : R2 → Rn

f : R3 → Rn
f : Rm → R f : Rm → R3 f : Rm → R6..9 • piecewise constant 

• piecewise linear

f : Rm → Rn

m-dimensional n-variate

www.cs.rug.nl/svcg

We’ll detail all these next
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Visualization data properties

Sampling 
(data importing) Reconstruction

Sampling Reconstruction

Continuous data Measurements (samples) 
at discrete set of points

Continuous data, as close as possible to input

Domain Co-domain
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Continuous data

Cauchy definition of continuity 

A function f is continuous iff 

C -1 discontinuous (graph of function has “holes”) 
C 0 first-order continuous (graph of function has “kinks”)

C k first k derivatives of the function are continuous



Sampled data

Functional properties 

• finite 
• captures continuous signal at a finite set of points (measurements)  

• accurate 
• can reconstruct a signal close to input accurately 
• reconstruction guarantees continuity properties 

Non-functional properties 

• efficient 
• reconstruction is fast 

• compact 
• store Gbytes of sample points compactly 

• generic 
• few data structures cover most dataset types 

• simple 
• learn to create & use such data structures quickly

www.cs.rug.nl/svcg
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Why Interpolate?

Nearest neighbour Bilinear Bicubic

! Interpolation usually gives a better 
representation of the sampled data 

! Interpolation is always a “guess” of what 
the “missing" data would be like.

https://en.wikipedia.org/wiki/Interpolation

http://www.it.uu.se


Interpolation

Fundamental tool for signal reconstruction 

1. Reconstruction formula

are basis (or interpolation) functions

2. Interpolation: reconstruction passes through (interpolates) the sampled values

3. Orthogonality of basis functions

4. Normality of basis functions

because

why? Just apply (2) to  f =
1, p= pj
0, p≠ pj

⎧
⎨
⎪

⎩⎪

why?                            (sum (3) over             )  
                                     

φi (pj ) =1
i=1

N

∑ ,∀pj i =1..N

and apply above to all  pi ∈ D

Doesn’t necessarily pass through  
sample values = approximation
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Interpolation, Examples

Linear Polynomial
https://en.wikipedia.org/wiki/Interpolation

http://www.it.uu.se


! Linear Interpolation: 

! u varies from 0 to 1. 
! Expand 

! Basis (blending) Functions
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Linear Interpolation

The line equation!!!

I

I

I

1-u

u

u

p(u)

http://www.it.uu.se


Practical interpolation: Cells

Recall the interpolation formula 

This becomes very inefficient if  
•N is very large and we have to evaluate φi at all these N points
•φi have complicated expressions 

Practical basis functions 

•are non-zero over small spatial ‘pieces’ of D only (limited support) 
•have the same simple formula at all sample points pi

www.cs.rug.nl/svcg

We will discretize our spatial domain D into cells

Note: 
Cubic Polynomials are often 
used in Computer graphics
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Cells: 1D space
Consider a simple 1D function f : R → R 

1.Sample the 1D axis at some points pi

2.Define cells ci=(pi, pi+1)
3.Consider the reference basis functions for a reference cell (0,1) 

φ0,1 : [0,1] → [0,1],  φ0(r)=1−r,  φ1(r)=r
4.Define a linear transformation Ti from the reference to actual cell ci

5. For ci, define the actual basis functions Φ0,1 using φ0,1 and Ti
-1

   
and rewrite the final interpolation 

•Apply (5) to interpolate all points in ci using only samples at vertices pi, pi+1 of ci

•Repeat from 4 for next cell ci+1  

Note: see Sec. 3.4 for expressions for all T-1 

This is covered in 
 the CG course!
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Hermite Splines
! A cubic Hermite curve is defined by four constraints, 

the two endpoints p1, p2 and the tangents at these 
points t1 and t2. 
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How to Derive the Equations
! We can use the following equations: 

! Let u=0 and u=1 and solve:

Compute the inverse 
of the matrix to get 
the coefficients!
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Basis and Geometry
! Basis matrix and Geometry matrix
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Solution
! Insert vector with different degrees of u

P(u)=uMG
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Blending functions
! Blends the geometry together

Blending functions
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Blending Functions
! The polynomials functions that blends the geometry 

" i.e. blends the control points 

! Do you remember linear Interpolation? 
p(u)=p0(1-u)+p1(u) 

1-u

u

u

p(u)
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Blending Functions
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In Detail...

t instead of u and transposed!
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Cells: 1D example (cont’d)

Remarks 
•interpolation & reconstruction goes cell-by-cell 
•only need sample points at a cell vertices to interpolate over that cell 
•reconstruction is piecewise C 1 because φi  are C 1



www.cs.rug.nl/svcg

2D cells: Quads

Same as in 1D case, but 
•we have to decide on different cells; say we take quads 
•quads → 4 vertices, 4 basis functions 
•particular case: square cells = pixels 

Bilinear basis functions                                        Bilinear transforms

See book, p 47-50

Remember that these functions “support” the points! I.e.  
when equal to 1 we have the point Vx
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2D cells: Quads
Bilinear interpolation

• 4 functions, one per vertex 
• result: C 0 but never C 1 (why?) 
• good for vertex-based samples

Constant interpolation

• 1 functions per whole cell 
• result: not even C 0

• good for cell-based samples
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Intermezzo

Flat shading Gouraud shading

What is the difference between flat and Gouraud (smooth) shading?

• surface: bilinear interpolation 
• colors:    constant interpolation

• surface: bilinear interpolation 
• colors:    bilinear interpolation

Note:  do not confuse Gouraud shading (color interpolation) with 
           the Phong lighting model (color computation from normals) 
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2D cells: Quads

Images (color or grayscale) 
•use constant basis functions 
•cells = pixels 
•data (color) is defined at the center of pixels, not corners 
•we’ll see why this is important in Module 3
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2D cells: Triangles

Remarks 
•triangles and quads offers largely same pro’s and con’s 
•quad basis functions are not planes (they are bilinear) 
•in graphics/visualization, triangles used more often than quads 

• easier to cover complex shapes with triangles than quads 
• same computational complexity
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3D cells: Tetrahedra

Remarks 
•counterparts of triangles in 3D 
•interpolate volumetric functions f : R3 → R 
•three parametric coordinates r, s, t
•trilinear interpolation
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3D cells: Hexahedra

Remarks 
•counterparts of quads in 3D 
•interpolate volumetric functions f : R3 → R 
•trilinear interpolation 
•particular case: cubic cells or voxels (studied later in Module 7)
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Cell types for constant/linear basis functions

0D 
•point 
1D 
•line 
2D 
•triangle, quad, rectangle 
3D 
•tetrahedron, parallelepiped, 
box, pyramid, prism, … 
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Quadratic cells

•allow defining quadratic basis functions 
•higher precision for interpolation 
•however, we need data samples at extra midpoints, not just vertices 
•used in more complex numerical simulations (e.g. finite elements) 
•split into linear cells for visualization purposes 
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Non Linear Interpolation
! Splines are often used to interpolate data 
! They are polynomials 

" often second or third degree Polynomials 
! Two Points: Linear Interpolation 
! Three points: Quadratic Interpolation  
! Four points: Cubic Interpolation and so forth 
! Larger degree does not necessarily give better 

interpolation!



! p0

! p1
! p2

! p(u)= au2+bu+c 
! Solve the system of equations to obtain 

the coefficients 
 
 0    0    1  a      p0  
1/4 1/2  1  b  =  p1  
 1    1    1  c      p2  

! This curve is defined between 
p0 and p1 for u=[0..1] 

In
fo

rm
at

io
ns

te
kn

ol
og

i

Institutionen för informationsteknologi | www.it.uu.se

Quadratic interpolation
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Quadratic Interpolation
! Can be used on triangles 

" Must have 6 points of data 
! Quads 

" needs 8 points of data
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From cells to grids

Cells 
•provide interpolation over a small, simple-shapedspatial region 
Grids 
•partition our complex data domain D into cells 
•allow applying per-cell interpolation (as described so far) 

Given a domain D… 

A grid G = {ci} is a set of cells such that 

The dimension of the domain D constrains which cell types we can use: see next

ci ∩cj =∅,∀i ≠ j no two cells overlap (why? Think about interpolation)

the cells cover all our domain (why? Think about our end goal)
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Uniform grids

image volume

•all cells have identical size and type (typically, square or cubic) 
•cannot model non-axis-aligned domains 

•Efficient Storage! 
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Rectilinear grids

•all cells have same type 
•cells can have different dimensions but share them along axes  
•cannot model non-axis-aligned domains 
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Structured grids

•all cells have same type 
•cell vertex coordinates are freely (explicitly) specifiable… 
•…as long as cells assemble in a matrix-like structure 
•can approximate more complex shapes than rectilinear/uniform grids 
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Unstructured grids

Consider the domain D: a square with a hole in the middle 

We cannot cover such a domain with a structured grid (why?) 
•it’s not of genus 0, so cannot be covered with a matrix-like distribution of cells 

For this, we need unstructured grids (see next)
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Unstructured grids

•different cell types can be mixed (though it’s not usual) 
•both vertex coordinates and cell themselves are freely (explicitly) specifiable 
•implementation 

vertex set 
cell set 

•most flexible, but most complex/expensive grid type 

V = {vi}
C = {ci = (indicesof verticesinV)}
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Topology vs. Geometry
! Each type has its topology 

" Example: 
# A triangle has three vertices but a line has only 

two, etc 

! Geometry 
" Can differ within the same type
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Data Representation
! Cells 

" Linear 
" Non linear 

! Topology vs. Geometry 
! Attribute Data 

" Scalar 
" Vectors 
" Normals 
" Texture Coordinates 
" Tensors



Recapitulation: Dataset

Dataset

Structure Attributes

Points Cells Scalar Vector Tensor

Operations

Reconstruction ……

f : Rm → Rn f : Rm → Rn f : Rm → Rn

f : R2 → Rn

f : R3 → Rn
f : Rm → R f : Rm → R3 f : Rm → R6..9 • piecewise constant 

• piecewise linear

f : Rm → Rn

m-dimensional n-variate

www.cs.rug.nl/svcg

• We discussed about these (grids, interpolation, reconstruction) 
• We discuss next about attributes



Data attributes
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f : Rm → Rn

• n=0 no attributes (we model a shape only e.g. a surface)
• n=1 scalars (e.g. temperature, pressure, curvature, density) 
• n=2 2D vectors
• n=3 3D vectors (e.g. velocity, gradients, normals, colors)
• n=6 symmetric tensors (e.g. diffusion, stress/strain – Modules 5..6)
• n=9 assymetric general tensors (not very common)

Remarks 

• an attribute is usually specified for all sample points in a dataset (why?) 
• different measurements will generate different attributes 
• each attribute is interpolated separately 
• different visualization methods for each n (see Module 3 next)



Summary
Data Representation (book Chapter 2) 

• reconstruct continuous representations of sampled signals 
• efficiently 
• accurately 

• interpolation, grids, and cells 

• data attributes (scalars, vectors, tensors) 

• advanced issues (resampling, grid-less interpolation) 

• read Ch. 2 in detail to understand all the math! 

Next module 

• visualization algorithms

www.cs.rug.nl/svcg

Happy so far?



Scientific Visualization Module 3  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Dataset

The Visualization Pipeline - Recall

Process Dataset Process Dataset DatasetProcess Process Dataset

data 
formatting

data 
filtering

data 
mapping

3D to 2D 
rendering
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Algorithm classification

1. Scalar algorithms 
• operate on scalar data 
• color mapping, contouring, height plots  

2. Vector algorithms 
• operate on vector data 
• hedgehogs, glyhps, derived quantities, stream surfaces, image-based methods 

3. Tensor algorithms 
• operate on symmetric 3x3 tensors 
• tensor glyphs, hyperstreamlines, fiber tracing, principal component analysis 

4. Modeling algorithms 
• change attributes and/or underlying grid 
• implicit functions, distance fields, cutting, selection, grid-less interpolation, grid 

processing



Color mapping
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Basic idea 
•Map each scalar value        R at a point to a color via a function c : [0,1] → [0,1]3

Color tables 
•precompute (sample) c and save results into a table 
•index table by normalized scalar values

f ∈

{ci}i=1..N

scalar value f 

scalar value range [fmin , fmax] 

f is color-mapped to ci

i = N f − fmin
fmax − fmin

ci = c
i
N
⎛

⎝
⎜

⎞

⎠
⎟Color mapping c :[0,1]→ [0,1]3

input data

determine input range

normalize input to [0,N]

desired color  
transfer functioncolor table
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Colormap design

What makes a good colormap? 

•map scalar values to colors intuitively… 
•…so we can visually invert the mapping to tell scalar values from colors 

Recall example in Module 1

Data values mapped to RGB colors via a colormap 

Invert mapping: 
1.look at some point (x,y) in the image → color c
2.locate c in colormap at some position p 
•use the colormap legend to derive data value s from p  

x,y

p
blue=0 red=100

answer: s = 90
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Rainbow colormap

•probably the most (in)famous in data visualization 
•intuitive ‘heat map’ meaning 

• cold colors     = low values 
• warm colors   = high values

Simple to implement 
(see Sec. 5.2)



www.cs.rug.nl/svcg

Gray-value colormap

•brightness = value  
•natural in some domains (X-ray, angiography) 

2D slice in 3D CT dataset 
Scalar value: tissue density

Gray-value colormap 
•white = hard tissues (bone) 
•gray = soft tissues (flesh) 
•black = air

Rainbow colormap 
•red = hard tissues (bone) 
•blue = air 
•other colors = soft tissues
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Colormap comparison

2D slice in 3D hydrogen atom potential field

Gray-value colormap 
•maxima are highlighted well 
•lower values are unclear

Heat colormap 
•maxima highlighted well 
•lower values better 
separable than with 
gray-value colormap

Rainbow colormap 
•maxima not prominent 
•lower values better 
•separable

Which is the better colormap? Depends on the application context!
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Colormap comparison

2D slice in 3D pressure field in an engine

A. Gray-value colormap 
•maxima highlighted well 
•low-contrast

B. Purple-to-green colormap 
•maxima highlighted well 
•good high-low separation

C. Red-to-green colormap 
•luminance not used 
•color-blind problems..

D. ‘Random’ 
•equal-value zones visible 
•little use for the rest

Which is the better colormap? Depends on the application context!
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Colormap design techniques

We cannot give universal design rules 
•but some technical guidelines/tricks still exist 

1. Fully use the perceptual spectrum 
•colormap entries should differ in more, rather than less, HSV components 

2. Colormap should be easily invertible 
•avoid colormap entries with 

• similar HSV entries 
• which are perceived as similar (see color blindness issues) 
• which are hard to perceive (e.g. dark or strongly desaturated colors) 

scalar value ~ V; H,S not used

scalar value ~ H; S,V not used

scalar value ~ H,V; S not used

Good design guidelines: www.colorbrewer.org



www.cs.rug.nl/svcg

Colormap design techniques

3. Design based on what you need to emphasize 
•specific value ranges 
•specific values 
•value change rate (1st derivative of scalar data) 
•… 2D function f (x, y) = e−10(x4+y4 )

Gray-scale colormap 
•highlights plateaus 
•value transitions hard 
to see

Zebra colormap 
•highlights value variations (1st derivative) 
•dense, thin bands: fast variation 
•thick bands: slow variation
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Colormap implementation details

Where to apply the colormap? 
•per grid-cell vertex

64x64 points 32x32 points 16x16 points

2D periodic high-frequency function

As we decrease the sampling frequency, strong colormapping artifacts appear 
Why is this so?

Note: 
Compare to  
Gouraud Shading
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Colormap implementation details

Where to apply the colormap? 
•per pixel drawn – better results than per-vertex colormapping 
•done using 1D textures

64x64 points 32x32 points 16x16 points

2D periodic high-frequency function

Explanation 
•per-vertex: f → c( f ) → interpolation(c( f ))         color interpolation can fall outside colormap! 
•per-pixel:   f → interpolation( f )→ c(interpolation( f ))  colors always stay in colormap

See Sec. 5.2 for details

Note: 
Compare to  
Phong Shading
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Color banding

How many distinct colors N to use in a color table? 
•more colors:   better sampled c thus smoother results
•fewer colors:  color banding appears

color banding

Question 
•can we see sharp color banding 
with per-vertex colormapping? 
Why (not)? 
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Colour Mapping
! Maps scalar data to colour 
! Can be done by a colour look up table
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Height / displacement plots

Displace a given surface S ⊆ D in the direction of its normal 
Displacement value encodes the scalar data f

Sdispl (x) = x+n(x) f (x), ∀x∈ S

input surface S displaced surface Sdispl

input surface S displaced surface Sdispl

Height plot 
•S = xy plane
•displacement always along z

Displacement plot 
•S = any surface in R3

•useful to visualize 
3D scalar fields
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Conclusion
! Data interpolation 

" Fills in “missing data” 
! Simple visualisation of scalar data 

" Colour Mapping 
! Next time scalar continued and vector 

visualisations


