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Miniproject 1 - comments

ode45 - explicit one-step ( RK(4,5) ), adaptive
ode15s - implicit multistep ( Numerical differentiation formulas ),
adaptive

http://se.mathworks.com/help/simulink/ug/

types-of-solvers.html
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Monte-Carlo methods

Two important theorems:

1 Law of large numbers - consistency
If we repeatedly sample a stochastic variable, the mean value
converges to the true expected value

2 Central limit theorem - error
Error decays as n−

1
2 , where n is a sample size
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Monte-Carlo methods

Examples: evaluation of integrals, computing area

Why Monte Carlo?

Errors:

Trapez. rule Simpson’s rule MC

1D n−2 n−4 n−
1
2

2D n−1 n−2 n−
1
2

. . . . . . . . . . . .

kD n−
2
k n−

4
k n−

1
2

In general if error is n−a in 1D, then in kD error will be n−
a
k .
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Pseudorandom numbers
Monte Carlo calculations use pseudorandom numbers, which are
generated using deterministic algorithms.

The generators are initialized using a seed number, which sets the
initial state of the generator.

In Matlab you can remember and set the seed with command rng:
check help rng. It gives you the possibility to repeat the
experiment with the same random numbers.
From help rng:

% Example 1: Retrieve and Restore Generator Settings

s = rng % get the current generator settings

x = rand(1,5) % RAND generates some values

rng(s) % restore the generator settings

y = rand(1,5) % generate the same values as x
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Miniproject 2

Goal: discover random nature of reactions

Compare deterministic model (ODE) which we solved using ode15s
and ode45 with stochastic model (continuous time Markov chains).
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Gillespie algorithm (Stochastic simulation algorithm)

Our deterministic model is a system od ODE, each equation
describes a number of chemical reactions. The variables are the
concentrations of the molecules and parameters are reaction rates.
The system of ODE describe many reactions occuring
simultaniously.

The problems comes when the number of molecules is small and
reactions can occur at different time and in random order.
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Gillespie algorithm (Stochastic simulation algorithm)

We have N objects (ex. N kinds of molecules) and the state vector
x(t) = [x1(t), . . . , xN(t)] (where x1(t) is the number of molecules
of the first kind)
We have M reactions: rj , j = 1, . . . ,M

Reaction changes the state -
see stoichiometry matrix (does not depends on the current state)
Every reaction happens with some probability -
see propensity function (depends on the current state)

Using random numbers and the propensity function we choose
reaction and time for it.

Use stoichiometry matrix to update the state and get x(t + 1).
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Gillespie algorithm (Stochastic simulation algorithm)

Pseudocode for the algorithm:

Initial state x0

while( t < Tf )

get the time until the next reaction

get next reaction

update the state

update time

end
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Gillespie algorithm (Stochastic simulation algorithm)

Propensity function ωrj (x(t)) is like the probability (you can say
degree of expectation) that reaction rj occur in time interval
(t, t + dt] given the state x(t) at time t

We define

a0(x(t)) =
M∑
j=1

ωrj (x(t))
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Gillespie algorithm (Stochastic simulation algorithm)

Theoretical justification is given by Gillespie.

Let Y is a random variable giving a next reaction.

Probability distribution of Y given state x(t) is
P(Y = rj |X = x(t)) probability that, given the state x(t) at time
t, the next reaction will occur in the time interval (t, t + dt], and
will be a reaction rj :

P(Y = rj |X = x(t)) = ωrj (x(t))/a0(x(t))

Anastasia Kruchinina Problem solving 2 12 / 19



Miniproject 1 Miniproject 2

Gillespie algorithm (Stochastic simulation algorithm)

Then the cumulative distribution function is

F (rj , x) = P(Y ≤ rj |X = x(t))

=

j∑
i=1

P(Y = ri |X = x(t)) =

j∑
i=1

ωri (x(t))/a0(x(t))

=
1

a0(x(t))

(
j∑

i=1

ωri (x(t))

)

Notice:

M∑
i=1

P(Y = ri |X = x(t)) = 1
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Step: get the time until the next reaction

Let τ is a exponentially distributed random variable with mean
1

a0(x(t))
, where a0(x(t)) is given before.

Use inverse transform sampling algorithm! - Workout 3
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Exponential distribution -
example for some particular a0

Exponentially
distributed numbers

i

0 5000 10000

x
i

0

0.5

1

1.5

Probability density
function for
exponential
distribution
(x ∈ [0,+∞])

x

0 0.5 1

f(
x
)

0

2

4

6

8

10

Anastasia Kruchinina Problem solving 2 15 / 19



Miniproject 1 Miniproject 2

Step: get next reaction

The next reaction is a discrete random variable Y . Its distribution
depends on the state x . You cannot explicitly write the inverse of
the cumulative distribution function F (rj , x) = P(Y ≤ rj).

Find rj such that F (rj−1, x) < u ≤ F (rj , x), where u is a uniform
random number in [0, 1].
Is equivalent for example that we find minimal j such that
F (rj−1, x) < u.

help cumsum

help find
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Simulate gene expression

Reaction network:

transcription: 0
kR−→ mRNA

translation : mRNA
kP∗mRNA−−−−−−→ mRNA + protein

mRNA decay: mRNA
gR∗mRNA−−−−−−→ 0

protein decay: protein
gP∗protein−−−−−−→ 0

Check the problem genuttryck stochastic folder with
implementation of the problem in Matlab.
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Simulate gene expression

law of large numbers - check the
problem genuttryck stochastic mean folder with implementation of
the problem in Matlab.
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Reports

describe how to get next reaction and its time

comparison of figures with Miniproject 1, be clear which
method is used for each figures

discussion which method (stochastic or deterministic is better
for given problem). Remeber that here we are not solving the
system of ODEs!

do not save results for every time step

we work with discrete values, not concentrations anymore!
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