High Performance Programming Programming in C – part 2

Anastasia Kruchinina

Uppsala University, Sweden

April 18, 2017

Summary of Part 1 - what do we know

• syntax of basic constructions of C programming language

```
for, while, do...while; switch
```

• what is a pointer and how to use it

how to operate with strings and arrays

char filename[] = "data.txt"; double arr[3] = {4.5, 6.4, 2.4};

how to allocate memory dynamically during runtime

int *arr = (int *) malloc (5*sizeof(int));
free(arr);

What is the output of the following program?

```
#include<stdio.h>
```

```
void f(int *y)
{    int x = *y;
    x = 3;}
int main()
{
    int x = 5;
    f(&x);
    printf("%d", x);
    return 0;
}
```

Output: 5

Choose the correct statement that is a combination of these two statements:

Statement 1: char *p; Statement 2: p = (char*) malloc(100);

```
A - char p = *malloc(100);
B - char *p = (char*)malloc(100);
C - char *p = (char) malloc(100);
D - None of the above
```

Answer: B

What does the "arr" indicate?

char* arr[30];

Answer: arr is an array of 30 character pointers

Multidimensional arrays

General form: type name[size1][size2]...[sizeN]; Arrays are always laid out contiguously in memory. 2D array initialization:

```
int arr[2][5] = {
{0, 1, 2, 3},
{5, 6, 7, 8, 9}
};
int value= a[1][3]; // value = 8
```

Multidimensional arrays

General form: type name[size1][size2]...[sizeN]; Arrays are always laid out contiguously in memory. 2D array initialization:

```
int arr[2][5] = {
{0, 1, 2, 3},
{5, 6, 7, 8, 9}
};
int value= a[1][3]; // value = 8
```

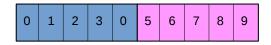
arr[2] [5] is a matrix with 2 rows and 5 columns (array of arrays)

In memory it is stored in row-major order: after arr[0][3] comes arr[0][4] and after arr[0][4] comes arr[1][0].

Multidimensional arrays

2D array initialization:

```
int arr[2][5] = {
        \{0, 1, 2, 3\},
        \{5, 6, 7, 8, 9\}
};
11or
int arr[2][5] = { 0, 1, 2, 3, 0, 5, 6, 7, 8, 9};
// or skipping the first dimension (not the second!)
int arr[][5] = \{
\{0, 1, 2, 3\}.
\{5, 6, 7, 8, 9\}
1:
```



Test

"Arrays are always laid out contiguously in memory."

For those who don't trust me, try this:

```
int arr[2][5] = {
{0, 1, 2, 3},
{5, 6, 7, 8, 9}
};
for(int i = 0; i < 10; ++i)
    printf("%d ", *(&arr[0][0] + i));
Output: 0 1 2 3 0 5 6 7 8 9</pre>
```

Static vs dynamic memory

Static memory allocation: memory is allocated by the compiler. **Dynamic memory allocation**: memory is allocated at the time of run time on *heap*.

You would use DMA if you don't know exactly how much data you will need at runtime or if you need to allocate a lot of data.

Static allocation: int arr[10];

Dynamic allocation

int *ptr;
ptr=(int *)malloc(sizeof(int)*10);

Dynamic memory allocation

Allocate memory for a matrix 3×5 dynamically.

```
int **arr = (int **)malloc(3 * sizeof(int*));
for (i = 0; i < 3; i++)
    arr[i] = (int *)malloc(5 * sizeof(int));</pre>
```

Note: explicit cast from void * before malloc call can be omitted in C, but in C++ it will result in error

Dynamic memory allocation

Allocate memory for a matrix 3×5 dynamically.

```
int **arr = (int **)malloc(3 * sizeof(int*));
for (i = 0; i < 3; i++)
    arr[i] = (int *)malloc(5 * sizeof(int));</pre>
```

Note: explicit cast from void * before malloc call can be omitted in C, but in C++ it will result in error

Deallocate memory:

```
for (int i = 0; i < 3; i++)
  free(arr[i]);
free(arr);</pre>
```

Extra info: How does free knows how much memory to free? It looks at the extra information saved by malloc.

Dynamic memory allocation of a matrix

Compare:

int arr[2][3]; // size is known at the compile time
int **arr; // allocate memory using malloc or calloc
int* arr[3];

Dynamic memory allocation of a matrix

Compare:

```
void f(int **p){}
void g(int *p[]){}
void h(int p[2][3]){}
int main(){
    int **a;
    allocate_mem(&a); // allocate memory for a
    f(a); // OK!
    g(a); // OK!
```

int b[2][3];
// f(b); // NOT OK
// g(b); // NOT OK
h(b); // OK!

```
return 0;
}
```

Which function declaration can be used in the main function?

```
(a) void f(int **b);
(b) void f(int b[3][]);
(c) void f(int b[][5]);
int main()
{
         int a[3][5] = \{\{1, 2, 3\},\
                 \{4, 5, 6\},\
                 \{6, 7, 8, 9, 10\}\};
        f(a);
        return 0;
```

}

Answer: (c)

Pointers to functions

Declaration of a pointer to a function:

```
<function return type>(*<Pointer_name>)(function
argument list)
```

For example

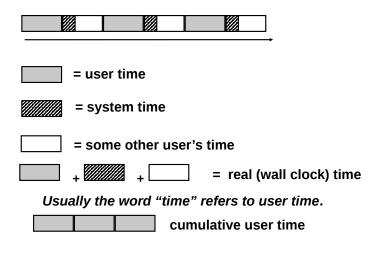
```
void (*ptrfun)()
void (*ptrfun)(double, char)
double (*ptrfun)(double, char *)
int* (*ptrfun)(int*)
```

```
#include <stdio.h>
#include <stdlib.h>
double add(double a, double b)
{return a+b;}
double sub(double a, double b)
{return a-b;}
void print_output(double a, double b, double (*funptr)(double,
    double))
{printf("Value is %lf \n", (*funptr)(a, b));}
int main(int argc, char const *argv[])
ſ
 int n = atoi(argv[1]);
double (*funptr)(double, double); // declare pointer to function
 if(n/2) funptr = &add; // assign address of a function
else funptr = ⊂
print_output(3, 4, funptr);
return 0;
}
```

Note: you can omit symbol & in &add and &sub, and * in (*funptr)(a, b)

Bash command time.

- C commands:
 - gettimeofday()
 - clock_gettime() on Solaris or Linux, or clock_get_time() on Mac.



Type in your terminal:

\$ time ./executable

You will get something like this:

\$ time ./executable
real 0m0.143s
user 0m0.001s
sys 0m0.010s
\$

real refers to actual elapsed time. **user** refers to the CPU time used *by this process* spent in user-mode code (calls from your C code). **sys** refers to the CPU time used *by this process* spent in kernel-mode code (ex. I/O, memory allocation).

```
int gettimeofday(struct timeval *tv, struct timezone
    *tz);
```

gives the number of seconds and microseconds since the Epoch (1970-01-01 00:00:00 (UTC))

```
struct timeval {
  time_t tv_sec; /* seconds */
  suseconds_t tv_usec; /* microseconds */
};
struct timezone {
  int tz_minuteswest; /* minutes west of Greenwich */
  int tz_dsttime; /* type of DST correction */
};
```

Time measuring gettimeofday

In your code:

```
Do not forget to #include <sys/time.h>
(You may need to link with -lrt)
struct timeval t0, t1;
gettimeofday(&t0, 0);
/* your code */
gettimeofday(&t1, 0);
long elapsed_time_usec = (t1.tv_sec-t0.tv_sec)*1e6 + t1.
   tv_usec-t0.tv_usec;
double elapsed_time_sec= (t1.tv_sec-t0.tv_sec) + (t1.
   tv_usec-t0.tv_usec)/1e6;
printf("%ld microsec, %lf sec\n", elapsed_time_usec,
```

```
elapsed_time_sec);
```

```
int clock_gettime(clockid_t clk_id, struct timespec *
    tp);
```

gives the number of seconds and **nanoseconds** since the Epoch (1970-01-01 00:00:00 (UTC))

 clk_id is $CLOCK_REALTIME$ // we will use this one

```
struct timespec {
   time_t tv_sec; /* seconds */
   long tv_nsec; /* nanoseconds */
}
```

};

Time measuring clock_gettime

In your code:

```
Do not forget to #include <time.h>
(You may need to link with -lrt)
struct timespec t0, t1;
clock_gettime(CLOCK_REALTIME, &t0);
/* your code */
clock_gettime(CLOCK_REALTIME, &t1);
long elapsed_time_nsec = (t1.tv_sec-t0.tv_sec)*1e9 + t1.
   tv_nsec-t0.tv_nsec;
double elapsed_time_sec = (t1.tv_sec-t0.tv_sec) + (t1.
   tv_nsec-t0.tv_nsec)/1e9;
printf("%ld nano sec, %lf sec\n", elapsed_time_nsec,
```

```
elapsed_time_sec);
```

Guidelines for measuring execution time

- Use a high resolution timer, such as clock_gettime()
- Check the amount of time your program spends in the OS using the time command
- Do not trust timings unless they are at least 100 times longer than the CPU time resolution
- Measure several runs to gauge variability (3 or more)
- Pick the shortest time as a representative or an average
- Outliers can be important!

The same problem often can be solved by different algorithms.

Which algorithm to choose? The best, of course.

But by which criterion?

Computational complexity: how many resources we need in order to solve some problem?

Complexity

Space complexity - memory needed for an algorithm to solve a given problem. We are measuring total allocated memory in some units.

Time complexity - time needed for an algorithm to solve a given problem. Time is measured in some units, for example seconds or minutes, it can be number of cycles.

Examples:

- n! = 1 * 2 * 3 ... (n-1)n: n-1 multiplications.
- nested loops: $n \times m$ function calls

for(int i = 0; i < n; ++i)
for(int j = 0; j < m; ++j){ f(); }</pre>

• matrix multiplication: $2n^2$ storage, $n^2(2n-1) = 2n^3 - n^2$ operations.

The time required to solve each of these problems will depend on a computer and on an implementation. Increasing the problem size n the time will in general increase.

We consider just a **dominant part** of the instruction count. Matrix multiplication requires $\approx 2n^3$ operations.

Matrix multiplication of matrices of size n on a computer X takes $30n^3$ microseconds:

- n = 100, it needs 30 seconds
- n = 200, it needs 240 seconds 8 time more!

On another computer Y multiplication takes $0.3n^3$ microseconds: n = 100, it needs 0.3 seconds n = 200, it needs 2,4 seconds - **8 time more!**

We want to compare algorithms, not computers!

Implementations on similar computer architecture may give different complexity up to a constant.

Matrix multiplication requires cn^3 operations, where c = const.

Introduce function f which gives a feeling about the amount of work required for a given problem size.

f is growing function.

Consider asymptotic behavior of algorithms.

Let f and g are functions from $S \subset \mathbb{R}$ to \mathbb{R} . f is not growing faster than g if $\exists x_0 \in S$ and c > 0 such that $\forall x > x_0, |f(x)| < c|g(x)|.$

We denote such relation as $\mathbf{f} \in \mathbf{O}(\mathbf{g})$ (when $x \to \infty$) — it says that the algorithm has an **order g** time complexity.

Let f and g are functions from
$$S \subset \mathbb{R}$$
 to \mathbb{R} .
f is not growing faster than g if
 $\exists x_0 \in S$ and $c > 0$ such that
 $\forall x > x_0, |f(x)| < c|g(x)|.$

We denote such relation as $\mathbf{f} \in \mathbf{O}(\mathbf{g})$ (when $x \to \infty$) — it says that the algorithm has an **order g** time complexity.

Examples: $-2x^{3} + 4x^{2} + x = O(x^{3})$ n/2 = O(n) $\log n + n - 2 = O(n)$

Common time complexities:

- $\mathcal{O}(1)$ constant \longleftarrow access element in an array
- O(log n) logarithmic ← search element in a binary search tree
- polynomial:
 - $\mathcal{O}(n)$ linear \leftarrow compute n!
 - $\mathcal{O}(n \log n) \longleftarrow$ merge sort
 - $\mathcal{O}(n^2) \longleftarrow$ matrix addition
 - $\mathcal{O}(n^3) \longleftarrow$ matrix multiplication
- $\mathcal{O}(2^{\text{poly}(n)})$ exponential \leftarrow Fibonacci numbers $\mathcal{O}(2^n)$
- $\mathcal{O}(n!)$ factorial \leftarrow find all permutations of a string

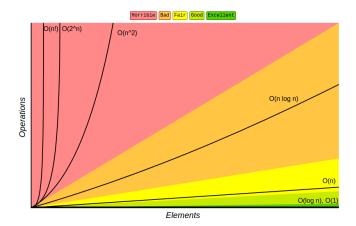
For a given problem size *n* two algorithms require $2n^7$ and $n(n^6 + \log n)$ instructions respectively. How do their complexities relate?

Answer: both are $\mathcal{O}(n^7)$

What is the time complexity of the function f?

```
void f(int n)
{
    int i, j;
    for (i=0; i<log(n); i++)
        for (j=0; j<n; j++)
            printf("hello");
}</pre>
```

Answer: $\mathcal{O}(n \log n)$



Picture: http://bigocheatsheet.com/

Task: compute $y = x^n$ where x is a real number of n > 0 is an integer.

Solution:

```
double pow_n(double x, int n){
        double y = 1;
        for(int i = 0; i < n; ++i)
            y *= x;
}</pre>
```

Space complexity? Time complexity?

Task: compute $y = x^n$ where x is a real number of n > 0 is an integer.

Solution:

```
double pow_n(double x, int n){
        double y = 1;
        for(int i = 0; i < n; ++i)
            y *= x;
}</pre>
```

Can we do better?

Task: compute $y = x^n$ where x is a real number of n > 0 is an integer.

Second solution:

```
double pow_n(double x, int n){
    if(n == 0) return 1;
    double temp = pow_n(x, n/2);
    double y = temp*temp;
    if(n%2) y *= x;
}
```

Task: compute $y = x^n$ where x is a real number of n > 0 is an integer.

Second solution:

```
double pow_n(double x, int n){
    if(n == 0) return 1;
    double temp = pow_n(x, n/2);
    double y = temp*temp;
    if(n%2) y *= x;
}
```

Array sorting algorithms

Algorithm	Time Complexity			Space Complexity
	Best	Average	Worst	Worst
Quicksort	Ω(n log(n))	O(n log(n))	0(n^2)	O(log(n))
Mergesort	Ω(n log(n))	O(n log(n))	O(n log(n))	0(n)
Timsort	<u>Ω(n)</u>	O(n log(n))	O(n log(n))	<mark>0(n)</mark>
<u>Heapsort</u>	Ω(n log(n))	O(n log(n))	O(n log(n))	0(1)
Bubble Sort	<u>Ω(n)</u>	0(n^2)	0(n^2)	0(1)
Insertion Sort	<u>Ω(n)</u>	0(n^2)	0(n^2)	0(1)
Selection Sort	Ω(n^2)	0(n^2)	0(n^2)	0(1)
Tree Sort	Ω(n log(n))	O(n log(n))	0(n^2)	<mark>0(n)</mark>
Shell Sort	Ω(n log(n))	0(n(log(n))^2)	O(n(log(n))^2)	0(1)
Bucket Sort	Ω(n+k)	0(n+k)	0(n^2)	0(n)
Radix Sort	Ω(nk)	Θ(nk)	0(nk)	0(n+k)
Counting Sort	Ω(n+k)	0(n+k)	0(n+k)	0(k)
Cubesort	<u>Ω(n)</u>	O(n log(n))	O(n log(n))	0(n)

(Space complexity ignores the space used by the input to the algorithm)

Picture: http://bigocheatsheet.com/

Summary

What do you know after the lecture:

- how to use multidimensional arrays
- how to measure time in C
- what is time and space complexity

Lab 3 is available on the Studentportalen. Assignment 2 is available on the Studentportalen.

Extra example

Compare:

}

```
void allocate_mem(int** arr, int n, int m)
ł
arr = (int**)malloc(n*sizeof(int*));
for(int i=0; i<n; i++)</pre>
arr[i] = (int*)malloc(m*sizeof(int));
}
void allocate_mem(int*** arr, int n, int m)
ł
*arr = (int**)malloc(n*sizeof(int*));
for(int i=0; i<n; i++)</pre>
```

```
(*arr)[i] = (int*)malloc(m*sizeof(int));
```