
Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

High Performance Programming

Programming in C – part 2

Anastasia Kruchinina

Uppsala University, Sweden

April 18, 2017

HPP 1 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Summary of Part 1 - what do we know

syntax of basic constructions of C programming language

for, while, do...while; switch

what is a pointer and how to use it

int var = 2;

int *p = &var;

*p = 3; // now var equals 3

how to operate with strings and arrays

char filename[] = "data.txt";

double arr[3] = {4.5, 6.4, 2.4};

how to allocate memory dynamically during runtime

int *arr = (int *) malloc (5*sizeof(int));

free(arr);
HPP 2 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Q/A

What is the output of the following program?

#include<stdio.h>

void f(int *y)

{ int x = *y;

x = 3;}

int main()

{

int x = 5;

f(&x);

printf("%d", x);

return 0;

}

Output: 5
HPP 3 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Q/A

Choose the correct statement that is a combination of these two
statements:
Statement 1: char *p;

Statement 2: p = (char*) malloc(100);

A - char p = *malloc(100);

B - char *p = (char*)malloc(100);

C - char *p = (char) malloc(100);

D - None of the above

Answer: B

HPP 4 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Q/A

What does the ”arr” indicate?

char* arr[30];

Answer: arr is an array of 30 character pointers

HPP 5 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Multidimensional arrays

General form: type name[size1][size2]...[sizeN];

Arrays are always laid out contiguously in memory.
2D array initialization:

int arr[2][5] = {

{0, 1, 2, 3} ,

{5, 6, 7, 8, 9}

};

int value= a[1][3]; // value = 8

arr[2][5] is a matrix with 2 rows and 5 columns (array of arrays)

In memory it is stored in row-major order: after arr[0][3] comes
arr[0][4] and after arr[0][4] comes arr[1][0].

0 1 2 3 0 5 6 7 8 9

HPP 6 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Multidimensional arrays

General form: type name[size1][size2]...[sizeN];

Arrays are always laid out contiguously in memory.
2D array initialization:

int arr[2][5] = {

{0, 1, 2, 3} ,

{5, 6, 7, 8, 9}

};

int value= a[1][3]; // value = 8

arr[2][5] is a matrix with 2 rows and 5 columns (array of arrays)

In memory it is stored in row-major order: after arr[0][3] comes
arr[0][4] and after arr[0][4] comes arr[1][0].

0 1 2 3 0 5 6 7 8 9

HPP 6 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Multidimensional arrays

2D array initialization:

int arr[2][5] = {

{0, 1, 2, 3} ,

{5, 6, 7, 8, 9}

};

//or

int arr[2][5] = { 0, 1, 2, 3, 0, 5, 6, 7, 8, 9};

// or skipping the first dimension (not the second!)

int arr[][5] = {

{0, 1, 2, 3} ,

{5, 6, 7, 8, 9}

};

0 1 2 3 0 5 6 7 8 9

HPP 7 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Test

”Arrays are always laid out contiguously in memory.”

For those who don’t trust me, try this:

int arr[2][5] = {

{0, 1, 2, 3} ,

{5, 6, 7, 8, 9}

};

for(int i = 0; i < 10; ++i)

printf("%d ", *(&arr[0][0] + i));

Output: 0 1 2 3 0 5 6 7 8 9

HPP 8 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Static vs dynamic memory

Static memory allocation: memory is allocated by the compiler.
Dynamic memory allocation: memory is allocated at the time of
run time on heap.
You would use DMA if you don’t know exactly how much data you
will need at runtime or if you need to allocate a lot of data.

Static allocation:
int arr[10];

Dynamic allocation
int *ptr;

ptr=(int *)malloc(sizeof(int)*10);

HPP 9 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Dynamic memory allocation

Allocate memory for a matrix 3× 5 dynamically.

int **arr = (int **)malloc(3 * sizeof(int*));

for (i = 0; i < 3; i++)

arr[i] = (int *)malloc(5 * sizeof(int));

Note: explicit cast from void * before malloc call can be omitted
in C, but in C++ it will result in error

Deallocate memory:

for (int i = 0; i < 3; i++)

free(arr[i]);

free(arr);

Extra info: How does free knows how much memory to free? It
looks at the extra information saved by malloc.

HPP 10 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Dynamic memory allocation

Allocate memory for a matrix 3× 5 dynamically.

int **arr = (int **)malloc(3 * sizeof(int*));

for (i = 0; i < 3; i++)

arr[i] = (int *)malloc(5 * sizeof(int));

Note: explicit cast from void * before malloc call can be omitted
in C, but in C++ it will result in error

Deallocate memory:

for (int i = 0; i < 3; i++)

free(arr[i]);

free(arr);

Extra info: How does free knows how much memory to free? It
looks at the extra information saved by malloc.

HPP 10 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Dynamic memory allocation of a matrix

Compare:

int arr[2][3]; // size is known at the compile time

int **arr; // allocate memory using malloc or calloc

int* arr[3];

HPP 11 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Dynamic memory allocation of a matrix

Compare:

void f(int **p){}

void g(int *p[]){}

void h(int p[2][3]){}

int main(){

int **a;

allocate_mem(&a); // allocate memory for a

f(a); // OK!

g(a); // OK!

// h(a); // NOT OK

int b[2][3];

// f(b); // NOT OK

// g(b); // NOT OK

h(b); // OK!

return 0;

}

HPP 12 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Q/A

Which function declaration can be used in the main function?

(a) void f(int **b);

(b) void f(int b[3][]);

(c) void f(int b[][5]);

int main()

{

int a[3][5] = {{1, 2, 3},

{4, 5 ,6},

{6, 7, 8, 9, 10}};

f(a);

return 0;

}

Answer: (c)
HPP 13 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Pointers to functions

Declaration of a pointer to a function:

<function return type>(*<Pointer_name>)(function

argument list)

For example

void (*ptrfun)()

void (*ptrfun)(double, char)

double (*ptrfun)(double, char *)

int* (*ptrfun)(int*)

HPP 14 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

#include <stdio.h>

#include <stdlib.h>

double add(double a, double b)

{return a+b;}

double sub(double a, double b)

{return a-b;}

void print_output(double a, double b, double (*funptr)(double,

double))

{printf("Value is %lf \n", (*funptr)(a, b));}

int main(int argc, char const *argv[])

{

int n = atoi(argv[1]);

double (*funptr)(double, double); // declare pointer to function

if(n%2) funptr = &add; // assign address of a function

else funptr = ⊂

print_output(3, 4, funptr);

return 0;

}

Note: you can omit symbol & in &add and &sub, and * in (*funptr)(a, b)

HPP 15 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Time measuring

Bash command time.

C commands:

gettimeofday()

clock_gettime() on Solaris or Linux, or
clock_get_time() on Mac.

HPP 16 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Time measuring

= user time

+ = real (wall clock) time

Usually the word “time” refers to user time.

= system time

+

= some other user’s time

cumulative user time

HPP 17 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Time measuring

Type in your terminal:

$ time ./executable

You will get something like this:

$ time ./executable

real 0m0.143s

user 0m0.001s

sys 0m0.010s

$

real refers to actual elapsed time.
user refers to the CPU time used by this process spent in
user-mode code (calls from your C code).
sys refers to the CPU time used by this process spent in
kernel-mode code (ex. I/O, memory allocation).

HPP 18 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Time measuring

int gettimeofday(struct timeval *tv, struct timezone

*tz);

gives the number of seconds and microseconds since the Epoch
(1970-01-01 00:00:00 (UTC))

struct timeval {

time_t tv_sec; /* seconds */

suseconds_t tv_usec; /* microseconds */

};

struct timezone {

int tz_minuteswest; /* minutes west of Greenwich */

int tz_dsttime; /* type of DST correction */

};

HPP 19 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Time measuring gettimeofday

In your code:

Do not forget to #include <sys/time.h>

(You may need to link with -lrt)

struct timeval t0, t1;

gettimeofday(&t0, 0);

/* your code */

gettimeofday(&t1, 0);

long elapsed_time_usec = (t1.tv_sec-t0.tv_sec)*1e6 + t1.

tv_usec-t0.tv_usec;

double elapsed_time_sec= (t1.tv_sec-t0.tv_sec) + (t1.

tv_usec-t0.tv_usec)/1e6;

printf("%ld microsec, %lf sec\n", elapsed_time_usec,

elapsed_time_sec);

HPP 20 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Time measuring

int clock_gettime(clockid_t clk_id, struct timespec *

tp);

gives the number of seconds and nanoseconds since the Epoch
(1970-01-01 00:00:00 (UTC))

clk_id is CLOCK_REALTIME // we will use this one

struct timespec {

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

HPP 21 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Time measuring clock gettime

In your code:

Do not forget to #include <time.h>
(You may need to link with -lrt)

struct timespec t0, t1;

clock_gettime(CLOCK_REALTIME, &t0);

/* your code */

clock_gettime(CLOCK_REALTIME, &t1);

long elapsed_time_nsec = (t1.tv_sec-t0.tv_sec)*1e9 + t1.

tv_nsec-t0.tv_nsec;

double elapsed_time_sec = (t1.tv_sec-t0.tv_sec) + (t1.

tv_nsec-t0.tv_nsec)/1e9;

printf("%ld nano sec, %lf sec\n", elapsed_time_nsec,

elapsed_time_sec);

HPP 22 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Guidelines for measuring execution time

Use a high resolution timer, such as clock gettime()

Check the amount of time your program spends in the OS
using the time command

Do not trust timings unless they are at least 100 times longer
than the CPU time resolution

Measure several runs to gauge variability (3 or more)

Pick the shortest time as a representative or an average

Outliers can be important!

HPP 23 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Complexity

The same problem often can be solved by different algorithms.

Which algorithm to choose?
The best, of course.

But by which criterion?

Computational complexity: how many resources we need in
order to solve some problem?

HPP 24 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Complexity

Space complexity - memory needed for an algorithm to solve a
given problem. We are measuring total allocated memory in some
units.

Time complexity - time needed for an algorithm to solve a given
problem. Time is measured in some units, for example seconds or
minutes, it can be number of cycles.

HPP 25 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Complexity

Examples:

n! = 1 ∗ 2 ∗ 3 . . . (n − 1)n: n − 1 multiplications.

nested loops: n ×m function calls

for(int i = 0; i < n; ++i)

for(int j = 0; j < m; ++j){ f(); }

matrix multiplication: 2n2 storage, n2(2n − 1) = 2n3 − n2

operations.

The time required to solve each of these problems will depend on a
computer and on an implementation. Increasing the problem size n
the time will in general increase.

We consider just a dominant part of the instruction count.
Matrix multiplication requires ≈ 2n3 operations.

HPP 26 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Complexity

Matrix multiplication of matrices of size n on a computer X takes
30n3 microseconds:
n = 100, it needs 30 seconds
n = 200, it needs 240 seconds - 8 time more!

On another computer Y multiplication takes 0.3n3 microseconds:
n = 100, it needs 0.3 seconds
n = 200, it needs 2,4 seconds - 8 time more!

We want to compare algorithms, not computers!

Implementations on similar computer architecture may give
different complexity up to a constant.

Matrix multiplication requires cn3 operations, where c = const.

HPP 27 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Complexity

Introduce function f which gives a feeling about the amount of
work required for a given problem size.
f is growing function.
Consider asymptotic behavior of algorithms.

Let f and g are functions from S ⊂ R to R.
f is not growing faster than g if
∃ x0 ∈ S and c > 0 such that
∀ x > x0, |f (x)| < c |g(x)|.

We denote such relation as f ∈ O(g) (when x →∞) — it says
that the algorithm has an order g time complexity.

HPP 28 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Complexity

Let f and g are functions from S ⊂ R to R.
f is not growing faster than g if
∃ x0 ∈ S and c > 0 such that
∀ x > x0, |f (x)| < c |g(x)|.

We denote such relation as f ∈ O(g) (when x →∞) — it says
that the algorithm has an order g time complexity.

Examples:
−2x3 + 4x2 + x = O(x3)
n/2 = O(n)
log n + n − 2 = O(n)

HPP 29 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Complexity

Common time complexities:

O(1) constant ←− access element in an array

O(log n) logarithmic ←− search element in a binary search
tree

polynomial:
O(n) linear ←− compute n!
O(n log n) ←− merge sort
O(n2) ←− matrix addition
O(n3) ←− matrix multiplication

O(2poly(n)) exponential ←− Fibonacci numbers O(2n)

O(n!) factorial ←− find all permutations of a string

HPP 30 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Q/A

For a given problem size n two algorithms require 2n7 and
n(n6 + log n) instructions respectively. How do their complexities
relate?
Answer: both are O(n7)

HPP 31 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Q/A

What is the time complexity of the function f?

void f(int n)

{

int i, j;

for (i=0; i<log(n); i++)

for (j=0; j<n; j++)

printf("hello");

}

Answer: O(n log n)

HPP 32 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Complexity

Picture: http://bigocheatsheet.com/

HPP 33 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Computing xn

Task: compute y = xn where x is a real number of n > 0 is an
integer.

Solution:

double pow_n(double x, int n){

double y = 1;

for(int i = 0; i < n; ++i)

y *= x;

}

Space complexity? Time complexity?

O(1) O(n)

Can we do better?

HPP 34 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Computing xn

Task: compute y = xn where x is a real number of n > 0 is an
integer.

Solution:

double pow_n(double x, int n){

double y = 1;

for(int i = 0; i < n; ++i)

y *= x;

}

Space complexity? Time complexity?
O(1) O(n)

Can we do better?

HPP 34 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Computing xn

Task: compute y = xn where x is a real number of n > 0 is an
integer.

Second solution:

double pow_n(double x, int n){

if(n == 0) return 1;

double temp = pow_n(x, n/2);

double y = temp*temp;

if(n%2) y *= x;

}

Space complexity? O(log n) (we save data on the stack for each
recursive call, O(1) can be achieved using iterative algorithm)
Time complexity? O(log n)

HPP 35 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Computing xn

Task: compute y = xn where x is a real number of n > 0 is an
integer.

Second solution:

double pow_n(double x, int n){

if(n == 0) return 1;

double temp = pow_n(x, n/2);

double y = temp*temp;

if(n%2) y *= x;

}

Space complexity? O(log n) (we save data on the stack for each
recursive call, O(1) can be achieved using iterative algorithm)
Time complexity? O(log n)

HPP 35 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Array sorting algorithms

(Space complexity ignores the space
used by the input to the algorithm)

Picture: http://bigocheatsheet.com/
HPP 36 / 37

Summary of Part 1 Multidimensional arrays Timing and Complexity Summary

Summary

What do you know after the lecture:

how to use multidimensional arrays

how to measure time in C

what is time and space complexity

Lab 3 is available on the Studentportalen.
Assignment 2 is available on the Studentportalen.

HPP 37 / 37

Extra example

Compare:

void allocate_mem(int** arr, int n, int m)

{

arr = (int**)malloc(n*sizeof(int*));

for(int i=0; i<n; i++)

arr[i] = (int*)malloc(m*sizeof(int));

}

void allocate_mem(int*** arr, int n, int m)

{

*arr = (int**)malloc(n*sizeof(int*));

for(int i=0; i<n; i++)

(*arr)[i] = (int*)malloc(m*sizeof(int));

}

HPP 38 / 37

	Summary of Part 1
	Multidimensional arrays
	Timing and Complexity
	Summary
	Appendix

