
Logical Methods in Computer Science
Vol. 14(1:6)2018, pp. 1–33
https://lmcs.episciences.org/

Submitted Nov. 23, 2016
Published Jan. 16, 2018

MENDING FENCES WITH SELF-INVALIDATION AND

SELF-DOWNGRADE ∗

PAROSH AZIZ ABDULLA a, MOHAMED FAOUZI ATIG a, STEFANOS KAXIRAS a,
CARL LEONARDSSON a, ALBERTO ROS b, AND YUNYUN ZHU a

a Uppsala University, Sweden
e-mail address: parosh.abdulla@it.uu.se
e-mail address: mohamed faouzi.atig@it.uu.se
e-mail address: stefanos.kaxiras@it.uu.se
e-mail address: carl.leonardsson@it.uu.se
e-mail address: yunyun.zhu@it.uu.se

b Universidad de Murcia, Spain
e-mail address: aros@ditec.um.es

Abstract. Cache coherence protocols based on self-invalidation and self-downgrade have
recently seen increased popularity due to their simplicity, potential performance efficiency,
and low energy consumption. However, such protocols result in memory instruction
reordering, thus causing extra program behaviors that are often not intended by the
programmers. We propose a novel formal model that captures the semantics of programs
running under such protocols, and features a set of fences that interact with the coherence
layer. Using the model, we design an algorithm to analyze the reachability and check
whether a program satisfies a given safety property with the current set of fences. We
describe a method for insertion of optimal sets of fences that ensure correctness of the
program under such protocols. The method relies on a counter-example guided fence
insertion procedure. One feature of our method is that it can handle a variety of fences
(with different costs). This diversity makes optimization more difficult since one has to
optimize the total cost of the inserted fences, rather than just their number. To demonstrate
the strength of our approach, we have implemented a prototype and run it on a wide range
of examples and benchmarks. We have also, using simulation, evaluated the performance
of the resulting fenced programs.

2012 ACM CCS: [Theory of computation]: AAA—BBB; [Mathematics of computing]: CCC—
DDD.

Key words and phrases: automatic fence insertion, cache coherence protocol, self-invalidation, self-
downgrade.

∗ A preliminary version of this paper has appeared at FORTE 2016, held as Part of the 11th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2016.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-14(1:6)2018
© P.A. Abdulla, M.F. Atig, S. Kaxiras, C. Leonardsson, A. Ros, and Y. Zhu
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 P.A. ABDULLA, M.F. ATIG, S. KAXIRAS, C. LEONARDSSON, A. ROS, AND Y. ZHU

1. Introduction

Background. Traditional cache coherence protocols, either directory-based or snooping-
based, are transparent to the programmer in the sense that they respect the memory
consistency model of the system, and hence there is no effect on memory ordering due to
the coherence protocol. On the other hand, there is an ever larger demand on hardware
designers to increase efficiency both in performance and power consumption. The quest to
increase performance while maintaining transparency has led to complex coherence protocols
with many states and relying on directories, invalidations, broadcasts, etc, often at the price
of high verification cost, area (hardware cost) and increased energy consumption. Therefore,
many researchers have recently proposed ways to simplify coherence without compromising
performance but at the price of relaxing the memory consistency model [LW95, CKS+11,
KK11, RK12, SKA13, KR13, HHB+14, RDK15, SA15, RK15a, DRHK15, KRHK16, RK16].
Principal techniques among these proposals are Self-Invalidation (Si) and Self-Downgrade
(Sd).

A protocol with Self-Invalidation (Si) allows old copies of the data to be kept, with-
out invalidation on each store operation by another core. This eliminates the need for
tracking readers [LW95]. In an Si protocol, invalidation of data from a cache is caused by
synchronization instructions executed by the core local to the cache.

Correspondingly, in a protocol with Self-Downgrade (Sd), downgrades are not caused
by read operations in other cores, but again by synchronization instructions. Sd eliminates
the need to track the last writer of a cache line [RK12].

A protocol with both self-invalidation and self-downgrade (SiSd) does not need a
directory, thus removing a main source of complexity and scalability constraints in traditional
cache coherence protocols [RK12]. But this comes at a price: SiSd protocols induce weak
memory semantics that allow reordering or memory instructions. The behavior of a program
may now deviate from its behavior under the standard Sequentially Consistent (SC) semantics
[Lam79], sometimes leading to subtle errors that are hard to detect and correct.

In the context of weak memory, hardware designers provide memory fence instructions
to help the programmer to eliminate the undesired behaviors. A fence instruction, executed
by a thread, limits the allowed reorderings between instructions issued before and after the
fence instruction. To enforce consistency under SiSd, fences should also be made visible to
caches, such that necessary invalidations or downgrades may be performed. In this paper, we
consider different types of fences. Each type eliminates a different kind of non-SC behavior,
and may have different impact on the program performance. In fact, unnecessary fences
may significantly jeopardize program performance. This is particularly true for the fences
considered in this work, since they both incur latency, and affect the performance of the
cache coherence subsystem as a whole. These fences cause the invalidation of the contents
of the cache. Hence the more fences the less caching and the higher traffic we have. Thus,
it is desirable to find the optimal set of fences, which guarantee correctness at minimal
performance cost. There are multiple ways of defining optimality. The one we adopt is
to calculate the number of occurrences of fences in the source program, with the costs of
different fences taken into account.

Challenge. One possibility to make SiSd transparent to the program is to require the
programmer to ensure that the program does not contain any data races. In fact, data

MENDING FENCES WITH SELF-INVALIDATION AND SELF-DOWNGRADE 3

race freedom is often required by designers of SiSd protocols in order to guarantee correct
program behavior [CKS+11, KK11]. However, this approach would unnecessarily disqualify
large sets of programs, since many data races are in reality not harmful. Examples of
correct programs with races include lock-free data structures (e.g., the Chase-Lev Work-
stealing queue algorithm [CL05]), transactional memories (e.g., the TL2 algorithm [DSS06]),
and synchronization library primitives (e.g. pthread spin lock in glibc). In this paper,
we consider a different approach where fences are inserted to restore correctness. This
means that we may insert sufficiently many fences to achieve program correctness without
needing to eliminate all its races or non-SC behaviors. The challenge then is to find sets of
fences that guarantee program correctness without compromising efficiency. Manual fence
placement is time-consuming and error-prone due to the complex behaviors of multithreaded
programs [HS08]. Thus, we would like to provide the programmer with a tool for automatic
fence placement. There are several requirements to be met in the design of fence insertion
algorithms. First, a set of fences should be sound, i.e., it should have enough fences to
enforce a sufficiently ordered behavior for the program to be correct. Second, the set should
be optimal, in the sense that it has a lowest total cost among all sound sets of fences. We
define the cost to be the number of occurrences of fences in the source program, with the
costs of different fences taken into account. In general, there may exist several different
optimal sets of fences for the same program. Our experiments (Section 7) show that different
choices of sound fence sets may impact performance and network traffic.

To carry out fence insertion we need to be able to perform program verification, i.e., to
check correctness of the program with a given set of fences. This is necessary in order to be
able to decide whether the set of fences is sound, or whether additional fences are needed to
ensure correctness. A critical task in the design of formal verification algorithms is to define
the program semantics under the given memory model.

Our Approach. We present a method for automatic fence insertion in programs running
in the presence of SiSd. The method is applicable to a large class of self-invalidation and
self-downgrade protocols such as the ones in [LW95, CKS+11, KK11, RK12, SKA13, KR13,
HHB+14, RDK15, SA15, RK15a, DRHK15, KRHK16]. Our goal is to eliminate incorrect
behaviors that occur due to the memory model induced by SiSd. We will not concern
ourselves with other sources of consistency relaxation, such as compiler optimizations. We
formulate the correctness of programs as safety properties. A safety property is an assertion
that some specified “erroneous”, or “bad”, program states can never occur during execution.
Such bad states may include e.g., states where a programmer-specified assert statement fails,
or where uninitialized data is read. To check a safety property, we check the reachability of
the set of “bad” states.

We provide an algorithm for checking the reachability of a set of bad states for a given
program running under SiSd. In the case that such states are reachable, our algorithm
provides a counter-example (i.e., an execution of the program that leads to one of the
bad states). This counter-example is used by our fence insertion procedure to add fences
in order to remove the counter-examples introduced by SiSd semantics. Thus, we get a
counter-example guided procedure for inferring the optimal sets of fences. The termination of
the obtained procedure is guaranteed under the assumption that each call to the reachability
algorithm terminates. As a special case, our tool detects when a program behaves incorrectly
already under SC. Notice that in such a case, the program cannot be corrected by inserting
any set of fences.

4 P.A. ABDULLA, M.F. ATIG, S. KAXIRAS, C. LEONARDSSON, A. ROS, AND Y. ZHU

Contributions. We make the following main contributions:

• We define a novel formal model that captures the semantics of programs running under
SiSd, and employs a set of fences that interact with the coherence layer. The semantics
support the essential features of typical assembly code.
• We develop a tool, Memorax, available at https://github.com/memorax/memorax, that

we have run successfully on a wide range of examples under SiSd and under Si. Notably,
our tool detects for the first time four bugs in programs in the Splash-2 benchmark
suite [WOT+95], which have been fixed in a recent Splash-3 release [SLKR16]. Two
of these are present even under SC, while the other two arise under SiSd. We employ
the tool to infer fences of different kinds and evaluate the relative performance of the
fence-augmented programs by simulation in GEMS.

We augment the semantics with a reachability analysis algorithm that can check whether
a program satisfies a given safety property with the current set of fences. Inspired by an
algorithm in [LNP+12] (which uses dynamic analysis instead of verification as backend), we
describe a counter-example guided fence insertion procedure that automatically infers the
optimal sets of fences necessary for the correctness of the program. The procedure relies
on the counter-examples provided by the reachability algorithm in order to refine the set
of fences. One feature of our method is that it can handle different types of fences with
different costs. This diversity makes optimization more difficult since one has to optimize
the total cost of the inserted fences, rather than just their number. Upon termination, the
procedure will return all optimal sets of fences.

Related Work. Adve and Hill proposed SC-for-DRF as a contract between software
and hardware: If the software is data race free, the hardware behaves as sequentially
consistent [AH90]. Dynamic self-invalidation (for DRF programs) was first proposed by
Lebeck and Wood [LW95]. Several recent works employ self-invalidation to simplify coherence,
including SARC coherence [KK11], DeNovo [CKS+11, SKA13, SA15], and VIPS-M [RK12,
KR13, RDK15, RK15a, KRHK16].

A number of techniques for automatic fence insertion have been proposed, for different
memory models and with different approaches. However, to our knowledge, we propose the
first counter-example guided fence insertion procedure in the presence of a variety of fences
(with different costs). In our previous work [AAC+12], we propose counter-example guided
fence insertion for programs under TSO with respect to safety properties (also implemented
in Memorax). Considering the SiSd model makes the problem significantly more difficult.
TSO offers only one fence, whereas the SiSd model offers a variety of fences with different
costs. This diversity makes the optimization more difficult since one has to minimize the
total cost of the fences rather than just their number.

The work presented in [KVY10] proposes an insertion procedure for different memory
models w.r.t. safety properties. This procedure computes the set of needed fences in order
to not reach each state in the transition graph. Furthermore, this procedure assigns a
unique cost for all fences. The procedure is not counter-example based, and requires some
modification to the reachability procedure.

In [BDM13], the tool Trencher is introduced, which inserts fences under TSO to enforce
robustness (formalised by Shasha and Snir in [SS88]), also using an exact, model-checking
based technique. Musketeer [AKNP14] uses static analysis to efficiently overapproximate
the fences necessary to enforce robustness under several different memory models. In contrast

https://github.com/memorax/memorax

MENDING FENCES WITH SELF-INVALIDATION AND SELF-DOWNGRADE 5

to our work, the fence insertion procedures in [BDM13] and [AKNP14] first enumerate all
solutions and then use linear programming to find the optimal set of fences.

In [GHS11] and [GHS09], the authors discuss fence insertion and verification of satisfia-
bility modulo theory (SMT) of relaxed memory models under transactional memories. Our
work, in comparison, addresses the reachability problem.

The program semantics under SiSd is different from those under other weak memory
models (e.g. TSO and POWER). Hence existing techniques cannot be directly applied. To
our knowledge, ours is the first work that defines the SiSd model, proposes a reachability
analysis and describes a fence insertion procedure under SiSd.

There exist works on the verification of cache coherence protocols. This paper is
orthogonal to these works since we are concerned with verification of programs running on
such architectures and not the protocols themselves.

2. Self-Invalidation, Self-Downgrade, and their Fences

In this section, we recall the notions of self-invalidation and self-downgrade, and describe the
main features of the system architecture and the protocol we consider. We also introduce
two fences that are defined under the protocol.

2.1. Self-Invalidation and Self-Downgrade. Self-invalidation eliminates the need to
track sharers of a cache line in a directory structure [LW95]. We consider that invalidation
of shared data in caches is caused by fences inserted in the programs and not as a result of
writes from other cores.

Correspondingly, self-downgrade eliminates the need to track the last writer (i.e., the
owner, in a Moesi-like protocol) of a cache line [RK12]. This is because downgrades are
also not performed as a consequence of read operations, but by means of fence instructions
inserted in the programs.

A protocol that implements self-invalidation together with self-downgrade does not need
a directory, thus removing one of the main sources of complexity and scalability constraints
in traditional cache coherence protocols [RK12].

We first set the stage for the architecture and the coherence protocol we study in this
work, by discussing some of their details: i.e., how memory accesses are resolved, and how
the self-invalidation and the self-downgrade are performed when a fence is encountered.

System architecture. We assume a standard multicore architecture with a number of cores,
each with a private L1 cache. The proposals and algorithms described in this paper are
more widely applicable to systems with several levels of private caches. The last level cache
(LLC) of the system is logically shared among all the cores.

2.2. Cache coherence protocol. We also assume a very simple version of a self-
invalidation/self-downgrade protocol with only three stable states in the L1 cache (invalid
–I–, clean –C–, and dirty –D–) and only two stable states in the LLC (invalid –I– and valid
–V–). There are no invalidations or downgrades, which means that there are no transient
states to account for the arrival of such coherence actions. There are no requests other
than from the L1s to the LLC (and from LLC to memory). There is no distinction of
data into private or shared as in [RK12], as this would distract from our discussion. Such
optimizations are straightforward extensions in our approach.

6 P.A. ABDULLA, M.F. ATIG, S. KAXIRAS, C. LEONARDSSON, A. ROS, AND Y. ZHU

Basic actions: To connect with the formal specification of the system behavior that follows
in Section 4 we present here some necessary —if somewhat mundane— details of the basic
actions in our assumed system.

• A read request that misses in the L1 cache issues a request to the LLC. If it hits in the
LLC, a reply containing the data is sent. In case of a miss, main memory is accessed to
get the data block. When the data arrives to the L1 cache, the miss is resolved and the
data can be accessed. The block is stored in an L1 cache line in clean state.
• A write request is always resolved immediately, even if the block is not present in the

L1 (in this case, the miss status handling register –MSHR– can temporarily hold the
new data). This is because writes are assumed to be data-race-free, i.e, they are always
ordered with respect to conflicting reads [AH90]. In this case, writes do not require “write
permission”.
• After writing in an L1 cache line (e.g., one word), if the data block is missing it is fetched

from the LLC. The block is merged with the written word. Before merging the data, the
cache line is in a transient state and once merged transitions to dirty.
• An atomic read-modify-write (RMW) request (e.g., test-and-set –TAS–) needs to reach

the LLC, get the data block and send it back to the L1 cache. During this operation, the
corresponding cache line in the LLC is blocked, so no other RMW request can proceed.
When the data arrives at the L1 cache it is read and possibly modified. If modified, the
data is written-back in the LLC, unblocking the LLC line at the same time. Otherwise the
LLC line will be simply unblocked. This blocking operation —common in other protocols
for directory operations that generate new messages (indirection, invalidations, etc.)— is
only necessary in this protocol for RMW requests. Once the transaction finishes, the data
block remains in the L1 in clean state.
• Evictions of clean cache lines only require a change of state to invalid. However, evictions

of dirty cache lines need to write back to the LLC the data that have been modified locally.
This is necessary to avoid overwriting unrelated data in the LLC cache line (a different
part of the LLC line may have been modified independently without a conflict). When
modified data are written-back an acknowledgement message is sent to the L1 to signal
the completion of the corresponding writes.
• To keep track of the locally modified data in an L1 cache line, it is necessary to keep

information in the form of a dirty bit per word (byte), either with the L1 cache lines
[CKS+11], or in the write-buffer or MSHRs [RK12].

2.3. Self-Invalidation and Self-Downgrade fences. Since the described protocol has
neither invalidation on writes nor downgrades on reads, we need to ensure that a read
operation sees the latest value written, when this is intended by the program. Typically, the
program contains synchronization to enforce an order between conflicting writes and reads.

In this context, to ensure that a read gets the latest value of a corresponding write,
two things need to happen: first, the data in the writer’s cache must be self-downgraded
and put back in the LLC sometime after the write but before the read; second, if there is a
(stale) copy in the reader’s cache, it must be self-invalidated sometime before the read. The
self-downgrade and self-invalidation also need to be ordered the same as the write and read
are ordered by synchronization.

Prior proposals [LW95, KK11, CKS+11, SKA13, ADC11, RK12, KR13] invariably offer
SC for data-race-free (DRF) programs [AH90]. In general, such proposals can be thought of

MENDING FENCES WITH SELF-INVALIDATION AND SELF-DOWNGRADE 7

as employing a single fence causing the self-invalidation and self-downgrade of cached data,
on every synchronization in the DRF program (e.g., [RK12].)

Our approach is fundamentally different. We make no assumption as to what constitutes
synchronization (perhaps ordinary accesses relying on SC semantics, or algorithms involving
atomic RMW operations). We insert fences in a program to cause self invalidation and self
downgrade in such a way as to produce the desired behavior.

With only a single fence, ensuring that a read sees the latest value of a write causes the
self-invalidation and self-downgrade of both the reader’s and the writer’s cache. In many
cases, this is unnecessary.

One of the contributions of our work is to propose two separate fences, which we call
“load-load fence” (llfence) and “store-store fence” (ssfence) to address the above problem.
An llfence self-invalidates only clean data in the cache (at word level), while an ssfence

writes back only dirty data to the LLC (again at word level), so all the data in the L1 cache
of the process are clean.

The separation of self-invalidation and self-downgrade into two fences affects performance
in two ways: first, we reduce the fence latency when we do not have to self-downgrade;
second, we eliminate extraneous misses (that cost in performance) when we only need to
self-downgrade.

2.4. Improving self-invalidation of partially dirty cache lines: the DoI state. The
llfence defined above operates efficiently for cache lines that are entirely clean, or entirely
dirty. In particular, for clean data they take a single cycle, while for dirty data they do not
perform any action. However, cache lines that contain both clean and dirty words are not
self-invalidated efficiently. Consider, for example, a cache line with one clean word and one
dirty word (its dirty bit is set). The llfence must invalidate the clean word (if it were to
be accessed afterwards), without affecting the dirty word. If we invalidate the whole cache
line we also have to write the dirty data to the LLC. This would have the same impact (for
this cache line) as a single full fence, and would offer no advantage from using the llfence

instead.
In order to improve the efficiency of llfence operations we propose that they operate

at word granularity, being able to self-invalidate the clean words in a single cycle and leaving
untouched the dirty words. Thus, we introduce a new state for L1 cache lines, called DoI
(dirty or invalid), for exactly this purpose. A cache line in this state contains words that
are either dirty (with the dirty bit set) or invalid (with the dirt bit unset). An llfence

transitions any partially dirty cache line to the DoI state. No write back is performed for
its dirty words. This allows an efficient, one-cycle implementation of llfence, since now
the only necessary action for a llfence is to change the cache-line state from dirty to DoI.

3. Overview

In this section, we give an informal overview of the main concepts in our framework. We
describe the semantics (configurations and runs) of programs running under SiSd, the notion
of safety properties, the weak memory model induced by SiSd, the roles of fences, and
optimal sets of fences. This will be formalized in later sections.

8 P.A. ABDULLA, M.F. ATIG, S. KAXIRAS, C. LEONARDSSON, A. ROS, AND Y. ZHU

data x=0 y=0 z=0

process P0

registers $r0
begin

L1: x := 1;

L2: y := 1;

L3: $r0 := z;
end

process P1

registers $r1
$r2 $r3
begin
L4: z := 1;
L5: $r1 := x;
L6: $r2 := y;

L7: $r3 := x;
end

Figure 1. A simple program P.

Example. We will use the toy program P in Figure 1 as a running example. The program
is written in a simple assembly-like programming language. The syntax and semantics of
the language are formally defined in Section 4. P consists of two processes P0 and P1 that
share three variables x, y, and z. Process P0 has one register $r0, and process P1 has three
registers $r1, $r2, and $r3. Process P0 has three instructions labeled with L1, L2, L3, and
process P1 has four instructions labeled with L4, L5, L6, L7.

To simplify the presentation, we assume that each cache line holds only one variable.
We also assume that the underlying protocol contains both Si and Sd. It is straightforward
to extend our framework to the case where a cache line may hold several variables, and
to the case where the protocol only contains one of Si and Sd. In P, all the instructions
have unique labels. Therefore, to simplify the presentation, we identify each label with the
corresponding instruction, e.g., L1 and x := 1 in P0.

x=0
y=0
z=0

L1
$r0=0

L4 $r1=0
$r2=0 $r3=0

c0

LLC P0 P1

x=0
y=0
z=0

L3
$r0=0

x=1 y=1

L5 $r1=0
$r2=0 $r3=0

z=1

c1

x=1
y=1
z=0

L3
$r0=0

L6 $r1=0
$r2=0 $r3=0

x=0 z=1
c2

x=1
y=1
z=0

L3
$r0=0

end $r1=0
$r2=1 $r3=0
x=0 y=1 z=1

c3

x=0
y=1
z=0

L3
$r0=0
x=1

end $r1=0
$r2=1 $r3=0

x=0 z=1

c4

LLC P0 P1

x=1
y=0
z=0

end
$r0=0

y=1 z=0

end $r1=0
$r2=0 $r3=0

x=0 z=1

c5

Figure 2. Configurations

Configurations. A configuration is a snapshot of the global state of the system, and consists
of two parts, namely the local and shared parts. The local part defines the local states of the
processes, i.e., it defines for each process: (i) its next instruction to be executed, (ii) the
values stored in its registers, and (iii) the variables (memory locations) that are currently
cached in its L1, together with their status: invalid, clean, or dirty; and the current value of

MENDING FENCES WITH SELF-INVALIDATION AND SELF-DOWNGRADE 9

the variable in case it is valid. The shared part defines, for each variable, its value in the
LLC. Figure 2 shows different configurations of P. Each configuration is depicted as three
fields, representing the LLC, P0, and P1 respectively. P starts its execution from the initial
configuration c0, where the values of all variables are 0 in the LLC. P0 and P1 are about to
execute the instructions labeled L1 and L4, respectively. The values of all registers are 0.
None of the variables is valid in the L1 of the processes. In contrast, in c4, the value of y is
1 in the LLC. P0 is about to execute the instruction L3, while P1 has ended its execution.
The value of the register $r2 is 1. The variables x, and z are valid in the L1 of P1, with
values 0 and 1 respectively. The variable z is dirty in the L1 of P1 (marked by underlining
z=1), while x is clean (not underlined). Finally, there is a dirty copy of x with value 1 in P0.

Safety Properties. Suppose that, together with the program P , we are given a safety property
φ which states that a certain set Bad of configurations will not occur during any execution
of P. For the example, we assume that Bad is the set of configurations where (i) P1 has
ended its execution, and (ii) the registers $r2 and $r3 have values 1 and 0 respectively. For
instance, c3 and c4 are members of Bad . We are interested in checking whether P satisfies φ
under the SiSd semantics. Note that the set Bad is not reachable in P under SC semantics,
which also means that P satisfies φ under SC.

Runs. The semantics of a program boils down to defining a transition relation on the set
of configurations. The execution of the program can be viewed as a run, consisting of a
sequence of transitions, i.e., events that take the program from one configuration to another
by changing the local states of the processes and the shared parts. Such a transition will
either be performed by a given process when it executes an instruction, or it occurs due
to a system event. We consider three kinds of system events: fetch, evict, and wrllc.
They model respectively fetching a value from LLC to L1, invalidating an L1 entry, and
writing a dirty L1 entry through to the LLC. The system events are decoupled from program
instructions and execute independently.

c0 ρ1
c1

L4* L1* L2*

ρ2
c2

L5* evict*(P0,x) evict*(P0,y)

ρ3
c3

L6* L7

Figure 3. The run π1.

In Figure 3 we show one example run π1 of P. It consists of three sequences ρ1, ρ2,
ρ3 of transitions, and takes us from c0 through c1 and c2 to c3. ρ1: Starting from c0, P1
executes L4. Since z is invalid in the L1 of P1, it is fetched from the LLC. In Figure 3, the
star in L4* is to simplify the notation, and it indicates that the instruction L4 is preceded by
fetch event1 of the process (here P1) on the relevant variable (here z). Consequently, a dirty
copy of z with value 1 is stored in the L1 of P1. Next, P0 executes L1 and L2, putting dirty
copies (with values 1) of x and y in its L1, reaching the configuration c1. ρ2: P1 executes L5,
fetching x from the LLC, and storing a clean copy with value 0. P0 evicts the variable x.
An evict event may only be performed on clean variables. To simplify the notation, we
augment the evict event in Figure 3 by a star. This indicates that it is preceded by an

1In the examples of this section, fetch events always precede read or write events. In general, fetch
events may occur anywhere along the run.

10 P.A. ABDULLA, M.F. ATIG, S. KAXIRAS, C. LEONARDSSON, A. ROS, AND Y. ZHU

wrllc event on x. The latter updates the value of x to 1 in the LLC, and makes x clean
in the L1 of P0. Next, P0 evicts y in a similar manner, thus reaching c2. ρ3: P1 executes
L6. Since y is invalid in the L1 of P1, it is fetched from the LLC, and stored with value 1
as clean. The register $r2 will be assigned the value 1. Finally, P1 executes L7. Since x is
valid, it need not be fetched from the memory (L7 is therefore not starred in Figure 3), and
hence $r3 is assigned the value 0. Thus we reach c3, which is in the set Bad . And so P
violates the safety property φ under the SiSd semantics.

Weak Memory Model. Although the configuration c3 is not reachable from c0 under SC
semantics, we demonstrated above that it is reachable under SiSd semantics. The reason
is that SiSd introduces a weak memory semantics in the form of reorderings of events. In
the case of π1, we have a read-read reordering. More precisely, the read event L7 overtakes
the read event L6, in the sense that L6 is issued before L7, but the value assigned to $r2 in
L6 (coming from the write on y in L2) is more recent than the value assigned to $r3 in L7

(which is the initial value of x). To prevent event reorderings, we use fences. In this paper,
we use four types of fences, namely llfence, ssfence, fence, and syncwr. In this section,
we only describe the first three types.

data x=0 y=0 z=0

process P0

registers $r0
begin

L1: x := 1;

L2: y := 1;

L3: $r0 := z;
end

process P1

registers $r1
$r2 $r3
begin
L4: z := 1;
L5: $r1 := x;
L6: $r2 := y;
L8: llfence;
L7: $r3 := x;
end

Figure 4. The program P1.

c0
L1* L2* evict*(P0,y) L4* L5*

L
6
*

evict(P1,x)evict(P1,y)L8c4
L7

Figure 5. The run π2.

LL Fences. To forbid the run π1, we insert an llfence between L6 and L7, obtaining a
new program P1 (Figure 4). Intuitively, an llfence (load-load-fence) blocks when there
are clean entries in the L1 of the process, and hence forbids the reordering of two read
(load) operations. For instance, in the above example, L8 cannot be executed before x has
become invalid in the L1 of P1, and hence the new value 1 of x will be assigned to $r3 in L7.
Therefore, P1 does not contain the run π1 any more.

MENDING FENCES WITH SELF-INVALIDATION AND SELF-DOWNGRADE 11

data x=0 y=0 z=0

process P0

registers $r0
begin

L1: x := 1;
L9: ssfence;
L2: y := 1;

L3: $r0 := z;
end

process P1

registers $r1
$r2 $r3
begin
L4: z := 1;
L5: $r1 := x;
L6: $r2 := y;

L7: $r3 := x;
end

Figure 6. The program P2.

c0
L4* L5* L6* evict(P1,x) evict(P1,y)

L
8

L7*L1*evict*(P0,x)L9L2*c5
L3*

Figure 7. The run π3.

SS Fences. Despite the fact that the insertion of L8 eliminates the run π1, the program P1
still does not satisfy the safety property φ: the set Bad is still reachable from c0 in P1, this
time through a run π2 (Figure 5) that leads to the configuration c4 (which is also a member
of Bad). In π2, P0 performs L1 and L2 and then evicts only y, which means that the values
of x and y in the LLC will be 0 resp. 1. Now, P1 will perform the instructions L4, L5, L6.
Next P1 evicts x and then y which means that now P1 does not contain any clean variables,
and hence L8 is enabled. Notice that these evict events are not followed by stars (since
they concern clean copies of the variables). Finally, P1 executes L7. Since x is invalid in the
L1 of P0, it is fetched from the LLC (where its value is 0 since it was never evicted by P0),
and hence $r3 will be assigned the value 0. Thus, we are now in c4.

Notice again that π2 is not possible under SC (in the SC semantics, fences have no effect,
so they are equivalent to empty statements). The reason why π2 is possible under SiSd
is due to a write-write reordering. More precisely, the write event L1 is issued before the
write event L2, but L2 takes effect (updates the LLC) before L1. To forbid the run π2, we
insert an ssfence between L1 and L2, obtaining the program P2 (Figure 6). An ssfence

(store-store-fence) is only enabled when there are no dirty entries in the L1 of the process.
Hence it forbids the reordering of two write operations. For instance, in the above example,
L9 cannot be executed before x has been evicted by P0, and hence the value of x in the LLC
will be updated to 1.

In fact, no configuration in Bad is reachable from c0 in P2, which means that P2 indeed
satisfies the property φ. Thus, we have found a sound set of fences for P w.r.t. φ. It is
interesting to observe that, although P2 is correct w.r.t. φ, the program still contains runs
that are impossible under SC, e.g., the run π3 given in Figure 7.

Full Fences. Consider a safety property φ′ defined by (unreachability of) a new set of config-
urations Bad ′. The set Bad ′ contains all configurations in Bad , and also all configurations
where (i) the processes P0 and P1 have both terminated, and (ii) both $r0 and $r3 have

12 P.A. ABDULLA, M.F. ATIG, S. KAXIRAS, C. LEONARDSSON, A. ROS, AND Y. ZHU

values 0. We show that P2 violates φ′, i.e., the set Bad ′ is reachable from c0 in P2. To that
end, we construct the run π3, depicted in Figure 7. (The run can be explained similarly to
π1 and π2.) At the end of π3, we reach the configuration c5 which is in Bad ′.

Notice that the run π3 is not possible under SC, while it is feasible under the SiSd
semantics even in the presence of the two fences at L8 and L9. The reason π3 is possible
under SiSd is write-read reordering. More precisely, read events may overtake write events
(although not the other way round). In π3, the write event L4 is issued before the read
events L5, L6, and L7, but L4 does not take effect (does not update the LLC) before the
read events. There are several ways to prevent the reachability of the set Bad ′. One is to
replace the llfence at L8 and the ssfence at L9 by the full fence fence, thus obtaining
the program P3 (Figure 8). A full fence fence is only enabled when the L1 of the process is
empty, and hence it forbids all reorderings of events of the process. In P3, no configuration
in Bad ′ is reachable from c0. Thus we have inserted a sound set of fences in P w.r.t. the set
Bad ′.

data x=0 y=0 z=0

process P0

registers $r0
begin

L1: x := 1;
L9: fence;
L2: y := 1;

L3: $r0 := z;
end

process P1

registers $r1
$r2 $r3
begin
L4: z := 1;
L5: $r1 := x;
L6: $r2 := y;
L8: fence;
L7: $r3 := x;
end

Figure 8. The program P3.

Optimal Sets of Fences. We will describe some optimal sets of fences for the program P.
As we will notice, this task is not trivial even for P. Our framework allows to make use of
different kinds of fences. We saw above three examples of fences (and we introduce another
one in Section 4). The motivation is that different kinds of fences may have different costs.
Using a more “light-weight” fence may both increase program performance and reduce
network traffic (see Section 7). In that respect, the cost of a full fence is higher than that of
an llfence or an ssfence. The cost assignment is provided by the user of our tool. Let
us assume that an llfence or an ssfence costs 1 unit, and that a full fence costs 2 units.
Let F1 be the set of fences where there is an ssfence after L1, and an llfence after L6.
Then, F1 is optimal for the program P w.r.t. the property φ. First, F1 is sound since P2
(which is the result of inserting the two fences in P) satisfies φ, i.e., it does not reach Bad
from c0. Second, F1 has the minimal cost that guarantees unreachability of Bad . The set
F2 which we get by replacing both the llfence and ssfence by full fences is also sound. It
is also minimal w.r.t. the number of fences (which is 2). However, it is not optimal w.r.t. φ
since it has a larger cost than F1. On the other hand, F2 is optimal w.r.t. the set φ′. In
fact, there are several optimal sets of fences w.r.t. φ′ (12 sets to be exact, as reported by our
tool). One such a set is F3 which we get by inserting an ssfence after L1, an llfence after
L2, and an ssfence followed by an llfence after L6. The set F3 is not minimal w.r.t. the

MENDING FENCES WITH SELF-INVALIDATION AND SELF-DOWNGRADE 13

number of fences, but optimal w.r.t. the property φ′. Notice that there are at least 215 ways
to insert three types of fences in the simple program of Figure 1. (Each type may or may
not be inserted in any particular position.)

4. Programs – Syntax and Semantics

In this section, we formalize SiSd and Si protocols, by introducing a simple assembly-like
programming language, and defining its syntax and semantics.

4.1. Syntax. The syntax of programs is given by the grammar in Figure 9. A program
has a finite set of processes which share a number of variables (memory locations) M. A
variable x ∈M should be interpreted as one machine word at a particular memory address.
For simplicity, we assume that all the variables and process registers take their values from
a common finite domain V of values. Each process contains a sequence of instructions, each
consisting of a program label and a statement. To simplify the presentation, we assume that
all instructions (in all processes) have unique labels. For a label λ, we apply three functions:
Proc (λ) returns the process p in which the label occurs. Stmt (λ) returns the statement
whose label id is λ. Next (λ) returns the label of the next statement in the process code, or
end if there is no next statement.

〈pgm〉 ::= data 〈vdecl〉+〈proc〉+

〈vdecl〉 ::= 〈var〉 '=' ('∗' | 〈val〉)

〈proc〉 ::= process 〈pid〉 registers 〈reg〉∗ 〈stmts〉

〈stmts〉 ::= begin (〈label〉 ':' 〈stmt〉 ';')+ end

〈stmt〉 ::= 〈var〉 ':=' 〈expr〉 | 〈reg〉 ':=' 〈var〉 |
〈reg〉 ':=' 〈expr〉 | llfence | fence |
cas '(' 〈var〉 ',' 〈expr〉 ',' 〈expr〉 ')' |
syncwr ':' 〈var〉 ':=' 〈expr〉 | ssfence |
cbranch '(' 〈bexpr〉 ')' 〈label〉

Figure 9. The grammar of concurrent programs.

4.2. Configurations. As illustrated in Figure 10, a local configuration of a process p is a
triple (λ,RVal, L1), where λ is the label of the next statement to execute in p, RVal defines
the values of the local registers, and L1 defines the state of the L1 cache of p. In turn, L1 is
a triple (Valid, LStatus, LVal). Here Valid ⊆ M defines the set of shared variables that are
currently in the valid state, and LStatus is a function from Valid to the set {dirty, clean}
that defines, for each x ∈ Valid, whether x is dirty or clean, and LVal is a function from Valid
to V that defines for each x ∈ Valid its current value in the L1 cache of p. The shared part
of a configuration is given by a function LLC that defines for each variable x ∈M its value
LLC(x) in the LLC. A configuration c then is a pair (LConf, LLC) where LConf is a function

14 P.A. ABDULLA, M.F. ATIG, S. KAXIRAS, C. LEONARDSSON, A. ROS, AND Y. ZHU

c : (LConf, LLC)

LConf : for each process p, returns the local configuration of p

(λ,RVal, L1) : Local configuration of p

λ : the label of the next statement to execute in p

RVal : the values of the local registers in p

L1 : (Valid, LStatus, LVal), the state of the L1 cache of p

Valid ⊆M : the set of shared variables currently in the valid state

LStatus : Valid→ {dirty, clean} : for each x ∈ Valid, whether x is dirty or clean

LVal : Valid→ V : for each x ∈ Valid, its current value in the L1 cache of p

LLC:M→ V : shared part of c, defines for each x ∈M its value in the LLC

Figure 10. The definition of a configuration c

that returns, for each process p, the local configuration of p. In the formal definition below,
our semantics allows system events to occur non-deterministically. This means that we
model not only instructions from the program code itself, but also events that are caused by
unpredictable things as hardware prefetching, software prefetching, program preemption,
false sharing, multiple threads of the same program being scheduled on the same core, etc.

A transition t is either performed by a given process when it executes an instruction, or
is a system event. In the former case, t will be of the form λ, i.e., t models the effect of a
process p performing the statement labeled with λ. In the latter case, t will be equal to ω
for some system event ω. For a function f , we use f [a← b], to denote the function f ′ such
that f ′(a) = b and f ′(a′) = f(a′) if a′ 6= a. We write f(a) = ⊥ to denote that f is undefined
for a.

Below, we give an intuitive explanation of each transition. The formal definition can be
found in Figure 11 where we assume c = (LConf, LLC), and LConf(p) = (λ,RVal, L1), and
L1 = (Valid, LStatus, LVal), Proc (λ) = p, and Stmt (λ) = σ. We leave out the definitions for
local instructions, since they have standard semantics.

4.3. Semantics.

4.3.1. Instruction Semantics. Let p be one of the processes in the program, and let λ be the

label of an instruction in p whose statement is σ. We will define a transition relation
λ−→,

induced by λ, on the set of configurations. The relation is defined in terms of the type of
operation performed by the given statement σ. In all the cases only the local state of p and
LLC will be changed. The local states of the rest of the processes will not be affected. This

MENDING FENCES WITH SELF-INVALIDATION AND SELF-DOWNGRADE 15

mirrors the principle in SiSd that L1 cache controllers will communicate with the LLC, but
never directly with other L1 caches.

Read ($r := x): Process p reads the value of x from L1 into the register $r. The L1 and
the LLC will not change. The transition is only enabled if x is valid in the L1 cache of p.
This means that if x is not in L1, then a system event fetch must occur before p is able to
execute the read operation.

Write (x := e): An expression e contains only registers and constants. The value of x in L1
is updated with the evaluation of e where registers have values as indicated by RVal, and x
becomes dirty. The write is only enabled if x is valid for p.

Fence (fence): A full fence transition is only enabled when the L1 of p is empty. This
means that before the fence can be executed, all entries in its L1 must be evicted (and
written to the LLC if dirty). So p must stall until the necessary system events (wrllc and
evict) have occurred. Executing the fence has no further effect on the caches.

SS-Fence (ssfence): Similarly, an ssfence transition is only enabled when there are no
dirty entries in the L1 cache of p. So p must stall until all dirty entries have been written
to the LLC by wrllc system events. In contrast to a full fence, an ssfence permits clean
entries to remain in the L1.

LL-Fence (llfence): This is the dual of an SS-Fence. An llfence transition is only
enabled when there are no clean entries in the L1 cache of p. In other words, the read
instructions before and after an llfence cannot be reordered.

Synchronized write (syncwr : x := e): A synchronized write is like an ordinary write, but
acts directly on the LLC instead of the L1 cache. For a syncwr transition to be enabled, x
may not be in the L1. (I.e., the cache must invalidate x before executing the syncwr.) When
it is executed, the value of x in the LLC is updated with the evaluation of the expression e
under the register valuation RVal of p. The L1 cache is not changed.

CAS (cas(x, e0, e1)): A compare and swap transition acts directly on the LLC. The cas is
only enabled when x is not in the L1 cache of p, and the value of x in the LLC equals e0
(under RVal). When the instruction is executed, it atomically writes the value of e1 directly
to the LLC in the same way as a synchronized write would.

4.3.2. System Event Semantics. The system may non-deterministically (i.e., at any time)
perform a system event. A system event is not a program instruction, and so will not change

the program counter (label) of a process. We will define a transition relation
ω−→, induced

by the system event ω. There are three types of system events as follows.

Eviction (evict(p, x)): An evict(p, x) system event may occur when x is valid and clean
in the L1 of process p. When the event occurs, x is removed from the L1 of p.

Write-LLC (wrllc(p, x)): If the entry of x is dirty in the L1 of p, then a wrllc(p, x) event
may occur. The value of x in the LLC is then updated with the value of x in the L1 of p.
The entry of x in the L1 of p becomes clean.

Fetch (fetch(p, x)): If x does not have an entry in the L1 of p, then p may fetch the value
of x from the LLC, and create a new, clean entry with that value for x in its L1.

16 P.A. ABDULLA, M.F. ATIG, S. KAXIRAS, C. LEONARDSSON, A. ROS, AND Y. ZHU

Instruction Semantics

c = (LConf, LLC), LConf(p) = (λ,RVal, L1),

L1 = (Valid, LStatus, LVal), Proc (λ) = p, Stmt (λ) = σ

σ = ($r := x) , x ∈ Valid

c
λ−→ (LConf [p← (Next (λ) ,RVal [$r ← LVal(x)] , L1)] , LLC)

σ=(x:=e) , x∈Valid
c
λ−→(LConf[p←(Next(λ),RVal,(Valid,LStatus[x←dirty],LVal[x←RVal(e)]))],LLC)

σ = fence , Valid = ∅

c
λ−→ (LConf [p← (Next (λ) ,RVal, L1)] , LLC)

σ = ssfence , ∀x ∈M. (x ∈ Valid⇒ LStatus(x) = clean)

c
λ−→ (LConf [p← (Next (λ) ,RVal, L1)] , LLC)

σ = llfence , ∀x ∈M. (x ∈ Valid⇒ LStatus(x) = dirty)

c
λ−→ (LConf [p← (Next (λ) ,RVal, L1)] , LLC)

σ = (syncwr : x := e) , x 6∈ Valid

c
λ−→ (LConf [p← (Next (λ) ,RVal, L1)] , LLC [x← RVal(e)])

σ = cas(x, e0, e1) , x 6∈ Valid , LLC(x) = RVal(e0)

c
λ−→ (LConf [p← (Next (λ) ,RVal, L1)] , LLC [x← RVal(e1)])

σ = (cbranch(e) λ′), RVal(e) = true

c
λ−→ (LConf [p← (λ′,RVal, L1)] , LLC)

σ = (cbranch(e) λ′), RVal(e) = false

c
λ−→ (LConf [p← (Next (λ) ,RVal, L1)] , LLC)

System Event Semantics

ω = (fetch(p, x)) , x 6∈ Valid

c
ω−→ (LConf [p← (λ,RVal, (Valid ∪ {x}, LStatus [x← clean] , LVal [x← LLC(x)]))] , LLC)

ω = (wrllc(p, x)) , x ∈ Valid , LStatus(x) = dirty

c
ω−→ (LConf [p← (λ,RVal, (Valid, LStatus [x← clean] , LVal))] , LLC [x← LVal(x)])

ω = (evict(p, x)) , x ∈ Valid , LStatus(x) = clean

c
ω−→ (LConf [p← (λ,RVal, (Valid \ {x}, LStatus [x← ⊥] , LVal [x← ⊥]))] , LLC)

Figure 11. Semantics of programs running under SiSd.

MENDING FENCES WITH SELF-INVALIDATION AND SELF-DOWNGRADE 17

4.4. Program Semantics under an SI Protocol. In a self-invalidation protocol without
self-downgrade, a writing process will be downgraded and forced to communicate its dirty
data when another process accesses that location in the LLC. This behavior can be modelled
by a semantics where writes take effect atomically with respect to the LLC. Hence, to modify
the semantics given in Section 4.3 such that it models a program under an Si protocol, it
suffices to interpret all write instructions as the corresponding syncwr instructions.

4.5. Transition Graph and the Reachability Algorithm. Our semantics allows to
construct, for a given program P, a finite transition graph, where each node in the graph
is a configuration in P, and each edge is a transition. Figure 12 shows four nodes in the
transition graph of the program in Figure 1. The configurations c2 and c3 are those depicted
in Figure 2, while c6 is the configuration we get from c2 by adding a clean copy of y with
value 1 to the L1 of P1; and c7 is the configuration we get from c6 by updating the label of

P1 to L7, and the value of $r2 to 1. A run is a sequence c0
t1−→ c1

t2−→ c2 · · ·
tn−→ cn, which

is a path in the transition graph, where ti(0 ≤ i ≤ n) is either a label λ or a system event ω.
Figure 12 shows the path of the run ρ3.

c2 c6 c7 c3
fetch(P1,y) L6 L7

Figure 12. Part of the transition graph of the program in Figure 1.

Together with the program, the user provides a safety property φ that describes a set
Bad of configurations that are considered to be errors. Checking φ for a program P amounts
to checking whether there is a run leading from the initial configuration to a configuration
in Bad . To do that, the input program under SiSd is translated to the code recognized
by the reachability analysis tool chosen by the user. The translated code simulates all the
behaviors which are allowed in the SiSd semantics. Also, there is instrumentation added to
simulate the caches. Verifying the input program amounts to verifying the translated code
which is analyzed under SC. If a bad configuration is encountered, a witness run is returned
by the tool. Otherwise, the program is declared to be correct.

5. Litmus Tests and Comparison with Other Memory Models

In this section, we will first compare the behavior of SiSd with other weak memory models.
We do this by presenting a sequence of litmus tests that differentiate the SiSd semantics
from the other models. Each program consists of a number of threads that share a number of
variables. Later, we will describe a number of additional litmus tests to clarify the bahavior
of the SiSd model.

5.1. Comparing with Other Memory Models.

18 P.A. ABDULLA, M.F. ATIG, S. KAXIRAS, C. LEONARDSSON, A. ROS, AND Y. ZHU

Initially: x=0, y=0

process P0

registers $r1
begin

L1: x := 1;

L2: $r1 := y;
end

process P1

registers $r2
begin
L3: y := 1;

L4: $r2 := x;
end

Assertion: $r1=0, $r2=0

Figure 13. SB (Dekker’s) algorithm.

P0

P1 y=2 x=3 ... y=0

Shared memory

x=0
x=1 y=1 x=2 ...

Figure 14. TSO

Sequential Consistency (SC). The SiSd model is weaker than SC. Consider the classic SB
(Dekker’s) algorithm shown in Figure 13. Under the SC semantics, the program does not
have any runs satisfying the assertion, since the operations performed by the process P0
are not reordered. If $r1 = 0, then x := 1 must have been executed and the value 1 of x is
updated to the memory. At this time, P0 sees the value of y as 0 in the memory, which
means that y := 1 is not executed by P1 yet. When P1 executes y := 1 and $r2 := x, the
value of x in the memory is already 1 and thus 1 is assigned to $r2.

Any run of a program P under SC can be simulated by a run of P under SiSd as the
following: 1) right after each write operation, the assigned value of the variable is updated
to LLC and the variable is invalidated from the local cache immediately; 2) right before
each read operation, the value of the variable is fetched from LLC and after reading the
value, the variable is immediately invalidated from the local cache.

Total Store Order (TSO). The SiSd model and TSO are not comparable. As illustrated in
Figure 14, the TSO model inserts a store buffer between each process and the shared memory.
When a process executes a write instruction, the instruction is appended to the end of the
buffer of the process. At any point of the execution, the instruction at the head of the buffer
may nondeterministically be removed and applied to update the memory. When a process
reads the value of a variable, it fetches the value from the most recent write operation on
the variable in its buffer. If such a write operation is missing, then the value is fetched from
the memory.

First, we show that TSO is not weaker than SiSd. Consider the program MP in Figure 15.
Under the TSO semantics, the program MP does not have any runs that satisfy the assertion.
The reason is that the two write operations performed by P0 will reach the memory in the
same order as they are performed, i.e, x := 1 and then y := 1. Furthermore, the two read
operations performed by P1 are not re-ordered according to the TSO semantics. Therefore,
if $r2 = 1 then P1 has already seen that the value of x is equal to 1 when it performs

MENDING FENCES WITH SELF-INVALIDATION AND SELF-DOWNGRADE 19

Initially: x=0, y=0

process P0
registers
begin

L1: x := 1;

L2: y := 1;
end

process P1

registers $r1 $r2
begin

L3: $r1 := x;
L4: $r2 := y;
end

Assertion: $r1=0, $r2=1

Figure 15. Program MP.

Initially: x=0, y=0

process P0

registers $r1
$r2 $r3 $r4
begin

L1: x := 1;

L2: x := 2;

L3: x := 3;

L4: x := 4;

L5: $r1 := y;

L6: $r2 := y;

L7: $r3 := y;

L8: $r4 := y;
end

process P1

registers $r5
$r6 $r7 $r8
begin

L9: y := 1;

L10: y := 2;
L11: y := 3;
L12: y := 4;

L13: $r5 := x;
L14: $r6 := x;

L15: $r7 := x;
L16: $r8 := x;
end

Assertion:
$r1=1, $r2=2, $r3=3, $r4=4,
$r5=1, $r6=2, $r7=3, $r8=4

Figure 16. Program ReadSeq.

the assignment $r1 := x. In contrast, the program MP has the following run under SiSd
that satisfies the assertion. First, the process P0 assigns 1 to x and y respectively, but
only updates the value of y to the LLC. Next, P1 fetches the values of x and y (0 and 1
respectively) from the LLC, and assigns them to the registers using the instructions $r1 := x
and $r2 := y, which means the assertion will be satisfied.

The program ReadSeq in Figure 16 shows that SiSd is not weaker than TSO. Under
TSO, the program exhibits a run that satisfies the assertion as follows. First, P0 executes
the instructions x := 1, x := 2, x := 3, and x := 4, one by one, and the corresponding
operations are put in its buffer. Then, P1 executes the instructions y := 1, y := 2, y := 3,
and y := 4, one by one, again putting the corresponding operations in its buffer. Now,
the memory is updated with x := 1 after which P1 executes $r5 := x, thus assigning 1 to
$r5. Following this, the memory is updated with x := 2 after which P1 executes $r6 := x,
thus assigning 2 to $r6. Finally 3 and 4 are assigned to $r7 and $r8 respectively in similar
manners. A similar sequence of operations is performed assigning 1, 2, 3 and 4 to $r1, $r2,
$r3, and $r4 respectively.

However, under the SiSd semantics, the ReadSeq program does not have any runs that
can satisfy the assertion. More specifically, since the processes do not have any store buffers,
at most three different values of a variable can be kept in this example. I.e., one in the local

20 P.A. ABDULLA, M.F. ATIG, S. KAXIRAS, C. LEONARDSSON, A. ROS, AND Y. ZHU

P0

P1

y=2 y=3 ...

y=0

Shared memory

x=0
x=1

y=1

x=2 ...

z=0
z=3 ...

...

Figure 17. PSO

Initially: x=0, y=0

process P0
registers
begin

L1: x := 1;
end

process P1

registers $r1
begin

L2: $r1 := x;
L3: y := 1;
end

process P2

registers $r2 $r3
begin

L4: $r2 := y;

L5: $r3 := x;
end

Assertion: $r1=1, $r2=1, $r3=0

Figure 18. Program WRC.

cache of the process which executes the write operation of the variable, one in the local
cache of the process which executes the read operation of the variable, and one in the LLC.
When there are four or more values assigned to a variable in a similar manner as in ReadSeq,
the assertion that each process reads all the values of the variable in the same order as it is
written by the other process cannot be satisfied.

Partial Store Order (PSO). The SiSd model and PSO are not comparable. In PSO, a
store buffer is inserted for each variable, between each process and the shared memory as
illustrated in Figure 17 .

To illustrate the difference between SiSd and PSO, we consider the program WRC in
Figure 18. Under the PSO semantics, the program WRC does not have any runs that satisfy
the assertion. More precisely, if $r1 = 1 then the write operation x := 1 by P0 must
have reached the memory before the write operation y := 1 has been performed by P2.
Furthermore, if $r2 = 1 holds then the write operation y := 1 must have reached the memory
before the instruction $r3 := x has been performed by P2. Since read instructions are not
re-ordered in PSO and since x := 1 reaches the memory before y := 1 it follows that the
value of x is equal to 1 in the memory when $r3 := x is performed by P2, and hence $r3 = 1.

The program WRC has the following run under SiSd that satisfies the assertion. The
process P2 fetches the initial value 0 of the variable x. The process P0 assigns 1 to x and
updates the value to the LLC. The process P1 fetches the value 1 of x from the LLC and
then executes the instruction $r1 := x which means that the value of $r1 is equal to 1. Then,

MENDING FENCES WITH SELF-INVALIDATION AND SELF-DOWNGRADE 21

Initially: x=0, y=0

process P0
registers
begin

L1: x := 1;
L2: sync;

L3: y := 1;
end

process P

registers $r1 $r2
begin

L4: $r1 := y;

L5: $r2 := (&x + 0*$r1);
end

Assertion: $r1=1, $r2=0

Figure 19. PwrEg

Initially: x=0, y=0

process P0
registers
begin

L1: x := 1;
L2: fence;
L3: y := 1;
end

process P1

registers $r1 $r2
begin

L4: $r1 := y;

L5: $r2 := x;
end

Assertion: $r1=1, $r2=0

Figure 20. SisdEg

P1 assigns the value 1 to the variable y and updates the value to the LLC. The process P2
fetches the value of y from the LLC and then executes the instruction $r2 := y which means
that $r2 = 1. Finally, P2 executes the instruction $r3 := x and we get $r3 = 0.

As PSO is weaker than TSO, we can use the same example in Figure 16 to show that
the ReadSeq program also has a run under PSO satisfying the assertion, which means that
SiSd is not weaker than PSO.

POWER/ARM. The SiSd model and POWER are not comparable. We show that the
POWER memory model is not weaker than SiSd with the program PwrEg in Figure 19. The
program does not have any runs that satisfy the assertion under POWER, since cycles of the
form write-(sync)→write-(read from)→ read-(address dependency)→read-(from

read)→ are not allowed by POWER. The sync instruction maintains the order between the
two write instructions and the address dependency maintains the order between the two
read instructions, which make the cycle impossible.

However, under SiSd the program SisdEg in Figure 20 has the run that satisfies the
assertion. The process P1 fetches the initial value 0 of the variable x. The process P0
assigns 1 to x, updates the value to the LLC, assigns 1 to y, and updates the value to the
LLC again. The process P1 fetches the value 1 of y from the LLC and then executes the
instruction $r1 := y. Therefore, the value of $r1 is equal to 1. Finally, P1 executes the
instruction $r2 := x and we get $r2 = 0.

We can show that SiSd is not weaker than POWER with the program ReadSeq in
Figure 16.

22 P.A. ABDULLA, M.F. ATIG, S. KAXIRAS, C. LEONARDSSON, A. ROS, AND Y. ZHU

We can also show that the SiSd model and ARM are not comparable with the programs
in Figure 16, Figure 19 and Figure 20.

Relaxed Memory Order (RMO). We can show that SiSd is not weaker than RMO again
with the program ReadSeq in Figure 16, since RMO allows the reorder between both 1)
write and write operations and 2) read and read/write operations.

We keep the other direction open since we have not found any examples as the proof.

5.2. Further Litmus Tests. We describe the behavior of the SiSd model for three more
litmus tests.

Load-Buffering (LB). The LB program in Figure 21 does not have any runs that can satisfy
the assertion under SiSd. If $r1 = 1, then process P1 must have executed the write
instruction x := 1 and updated the value 1 of x to the LLC before P0 has executed the
instruction $r1 := x. This means when P1 executes the read instruction $r2 := y, the value
of y has not been updated by P0, and thus $r2 = 0.

Initially: x=0, y=0

process P0

registers $r1
begin

L1: $r1 := x;

L2: y := 1;
end

process P1

registers $r2
begin

L3: $r2 := y;
L4: x := 1;
end

Assertion: $r1=1, $r2=1

Figure 21. Program LB.

ISA2. The program ISA2 in Figure 22 has the following run under SiSd that satisfies the
assertion. The process P2 fetches the initial value 0 of the variable x. The process P0
assigns 1 to x and y, and updates the value to the LLC. The process P1 fetches the value 1
of y from the LLC and then executes the instruction $r1 := y, which means that the value of
$r1 is equal to 1. Then, P1 assigns the value 1 to the variable z and updates the value to the
LLC. The process P2 fetches the value of z from the LLC and then executes the instruction
$r2 := z, which means that $r2 = 1. Finally, P2 executes the instruction $r3 := x and we
get $r3 = 0.

IRIW. The program IRIW in Figure 23 has the following run under SiSd that satisfies the
assertion. The processes P1 and P3 fetch the initial values 0 of the variables y and x
respectively. The process P0 assigns 1 to x and updates the values to the LLC. The process
P1 fetches the value 1 of x from the LLC and executes the instruction $r1 := x, which
means that the value of $r1 is equal to 1. Then P1 executes the instruction $r2 := y, which
means that $r2 = 0. After that, the process P2 assigns the value 1 to the variable y and
updates the value to the LLC. The process P3 fetches the value of y from the LLC and
then executes the instruction $r3 := y, which means that $r3 = 1. Finally, P3 executes the
instruction $r4 := x and we get $r4 = 0.

MENDING FENCES WITH SELF-INVALIDATION AND SELF-DOWNGRADE 23

Initially: x=0, y=0, z=0

process P0
registers
begin

L1: x := 1;

L2: y := 1;
end

process P1

registers $r1
begin

L3: $r1 := y;
L4: z := 1;
end

process P2

registers $r2 $r3
begin

L5: $r2 := z;
L6: $r3 := x;
end

Assertion: $r1=1, $r2=1, $r3=0

Figure 22. Program ISA2.

Initially: x=0, y=0

process P0
registers
begin

L1: x := 1;
end

process P1

registers $r1 $r2
begin

L2: $r1 := x;
L3: $r2 := y;
end

process P2
registers
begin
L4: y := 1;
end

process P3

registers $r3 $r4
begin

L5: $r3 := y;

L6: $r4 := x;
end

Assertion: $r1=1, $r2=0, $r3=1, $r4=0

Figure 23. Program IRIW.

6. Fence Insertion

In this section we describe our fence insertion procedure, which is closely related to the
algorithm described in [LNP+12]. Given a program P, a cost function κ and a safety
property φ, the procedure finds all the sets of fences that are optimal for P w.r.t. φ and κ.

In this section we take fence constraint (or fence for short) to mean a pair (λ, f) where
λ is a statement label and f is a fence instruction. A fence constraint (λ, f) should be
interpreted as the notion of inserting the fence instruction f into a program, between the
statement labeled λ and the next statement (labeled by Next (λ))2. For a program P and a
set F of fence constraints, we define P ⊕ F to mean the program P where all fence constraints
in F have been inserted. To avoid ambiguities in the case when F contains multiple fence
constraints with the same statement label (e.g (λ, llfence) and (λ, ssfence)), we assume
that fences are always inserted in some fixed order.

Definition 6.1 (Soundness of Fence Sets). For a program P, safety property φ, and set F
of fence constraints, the set F is sound for P w.r.t. φ if P ⊕ F satisfies φ under SiSd.

A cost function κ is a function from fence constraints to positive integer costs. We
extend the notion of a cost function to sets of fence constraints in the natural way: For a
cost function κ and a set F of fence constraints, we define κ(F) =

∑
c∈F κ(c).

Definition 6.2 (Optimality of Fence Sets). For a program P, safety property φ, cost
function κ, and set F of fence constraints, F is optimal for P w.r.t. φ and κ if F is sound
for P w.r.t. φ, and there is no sound fence set G for P w.r.t. φ where κ(G) < κ(F).

2This definition can be generalized. Our prototype tool does indeed support a more general definition of
fence positions, which is left out of the article for simplicity.

24 P.A. ABDULLA, M.F. ATIG, S. KAXIRAS, C. LEONARDSSON, A. ROS, AND Y. ZHU

Observe that the optimality is evaluated with the number of occurrences of fences in
the source program and the costs of different fences.

In order to introduce our algorithm, we define the notion of a hitting set.

Definition 6.3 (Hitting Set). For a set S = {S0, · · · , Sn} of sets S0, · · · , Sn, and a set T ,
we say that T is a hitting set of S if T ∩ Si 6= ∅ for all 0 ≤ i ≤ n.

For example {a, d} is a hitting set of {{a, b, c}, {d}, {a, e}}. For a set S of sets, hitting
sets of S can be computed using various search techniques, such as constraint programming.
We will assume that we are given a function hits(S, κ) which computes all hitting sets for S
which are cheapest w.r.t. κ. I.e., for a set S of finite sets, and a cost function κ, the call
hits(S, κ) returns the set of all sets T with T ⊆

⋃
Si∈S Si such that

• T is a hitting set of S, and
• there is no hitting set T ′ of S such that κ(T ′) < κ(T).

Fencins(P,φ,κ)
1: opt := ∅; // Optimal fence sets

2: req := ∅; // Known requirements

3: while(∃F ∈ hits(req, κ) \ opt){
4: π := reachable(P ⊕ F, φ);
5: if(π =⊥){

// The fence set F is sound

// (and optimal)!

6: opt := opt ∪ {F};
7: }else{ // π is a witness run.

8: C := analyze witness(P ⊕ F, π);
// C is the set of fences

// that can prevent π.
9: if(C = ∅){ // error under SC!

10: return ∅;
11: }
12: req := req ∪ {C};
13: }
14: }
15: return opt;

Figure 24. The fence insertion algorithm.

We present our fence insertion algorithm in Figure 24. The algorithm keeps two variables
opt and req. Both are sets of fence constraint sets, but are intuitively interpreted in different
ways. The set opt contains all the optimal fence constraint sets for P w.r.t. φ and κ that
have been found thus far. The set req is used to keep track of the requirements that have
been discovered for which fences are necessary for soundness of P . We maintain the following
invariant for req: Any fence constraint set F which is sound for P w.r.t. φ is a hitting set of
req. As the algorithm learns more about P, the requirements in req will grow, and hence
give more information about what a sound fence set may look like. Notice that the invariant
holds trivially in the beginning, when req = ∅.

MENDING FENCES WITH SELF-INVALIDATION AND SELF-DOWNGRADE 25

In the loop from lines 3-14 we repeatedly compute a candidate fence set F (line 3),
insert it into P , and call the reachability analysis to check if F is sound (line 4). We assume
that the call reachable(P ⊕ F, φ) returns ⊥ if φ is unreachable in P ⊕ F, and a witness run
otherwise. If P ⊕ F satisfies the safety property φ, then F is sound. Furthermore, since F

is chosen as one of the cheapest (w.r.t. κ) hitting sets of req, and all sound fence sets are
hitting sets of req, it must also be the case that F is optimal. Therefore, we add F to opt

on line 6.
If P ⊕ F does not satisfy the safety property φ, then we proceed to analyze the witness

run π. The witness analysis procedure is outlined in Section 6.1. The analysis will return
a set C of fence constraints such that any fence set which is restrictive enough to prevent
the erroneous run π must contain at least one fence constraint from C. Since every sound
fence set must prevent π, this means that every sound fence set must have a non-empty
intersection with C. Therefore we add C to req on line 12, so that req will better guide our
choice of fence set candidates in the future.

Note that in the beginning, hits(req, κ) will return a singleton set of the empty set,
namely {∅}. Then F is chosen as the empty set ∅ and the algorithm continues. A special
case occurs when the run π contains no memory access reorderings. This means that P can
reach the bad states even under the SC memory model. Hence it is impossible to correct P
by only inserting fences. The call analyze witness(P ⊕ F, π) will in this case return the
empty set. The main algorithm then terminates, also returning the empty set, indicating
that there are no optimal fence sets for the given problem.

6.1. Witness Analysis. The analyze witness function takes as input a program P (which
may already contain some fences inserted by the fence insertion algorithm), and a counter-
example run π generated by the reachability analysis. The goal is to find a set G of fences
such that

• all sound fence sets have at least one fence in common with G and
• G contains no fence which is already in P.

It is desirable to keep G as small as possible, in order to quickly converge on sound fence
sets.

There are several ways to implement analyze witness to satisfy the above requirements.
One simple way builds on the following insight: Any sound fence set must prevent the
current witness run. The only way to do that, is to have fences preventing some access
reordering that occurs in the witness. So a set G which contains all fences preventing some
reordering in the current witness satisfies both requirements listed above.

As an example, consider Figure 25. On the left, we show part of a program P where
the thread P0 performs three memory accesses L0, L1 and L2. On the right, we show the
corresponding part of a counter-example run π. We see that the store L0 becomes globally
visible at line 7, while the loads L1 and L2 access the LLC at respectively lines 3 and 5.
Hence the order between the instructions L0 and L1 and the order between L0 and L2 in the
program code, is opposite to the order in which they take effect w.r.t. the LLC in π. We
say that L0 is reordered with L1 and L2. The loads are not reordered with each other. Let
us assume that π does not contain any other memory access reordering.
The reordering is caused by the late wrllc on line 7. Hence, this particular error run can be
prevented by the following four fence constraints: c0 = (L0, ssfence), c1 = (L1, ssfence),

26 P.A. ABDULLA, M.F. ATIG, S. KAXIRAS, C. LEONARDSSON, A. ROS, AND Y. ZHU

Program fragment Witness run

process P0

...

L0: x := 1;

L1: $r0 := y;

L2: $r1 := z;

...

...

1.fetch(P0,x)

2.L0: x := 1

3.fetch(P0,y)

4.L1: $r0 := y

5.fetch(P0,z)

6.L2: $r1 := z

...

7.wrllc(P0,x)

...

Figure 25. Left: Part of a program P, containing three instructions of the
thread P0. Right: A part of a counter-example run π of P.

c2 = (L0, fence), and c3 = (L1, fence). The fence set returned by analyze witness(P, π)
is G = {c0, c1, c2, c3}. Notice that G satisfies both of the requirements for analyze witness.

7. Experimental Results

We have implemented our fence insertion algorithm together with a reachability analysis
for SiSd in the tool Memorax. It is publicly available at https://github.com/memorax/
memorax. We apply the tool to a number of benchmarks (Section 7.1). Using simulation, we
show the positive impact of using different types of fences, compared to using only the full
fence, on performance and network traffic (Section 7.2).

7.1. Fence Insertion Results. We evaluate the automatic fence insertion procedure by
running our tool on a number of different benchmarks containing racy code. For each example,
the tool gives us all optimal sets of fences. We run our tool on the same benchmarks both
for SiSd and for the Si protocol.3 The results for SiSd are given in Table 1. We give the
benchmark sizes in lines of code. All benchmarks have 2 or 3 processes. The fence insertion
procedure was run single-threadedly on a 3.07 GHz Intel i7 CPU with 6 GB RAM.

The first set of benchmarks are classical examples from the context of lock-free synchro-
nization. They contain mutual exclusion algorithms: a simple CAS lock –cas–, a test &
TAS lock –tatas– [Sco13], Lamport’s bakery algorithm –bakery– [Lam74], the MCS queue
lock –mcsqueue– [MCS91], the CLH queue lock –clh– [MLH94], and Dekker’s algorithm
–dekker– [Dij02]. They also contain a work scheduling algorithm –postgresql–4, and an idiom
for double-checked locking –dclocking– [SH96], as well as two process barriers –srbarrier–
[Sco13] and –treebarrier– [MCS91]. The second set of benchmarks are based on the Splash-2
benchmark suite [WOT+95]. We use the race detection tool Fast&Furious [RK15b] to detect
racy parts in the Splash-2 code. We then manually extract models capturing the core of
those parts.

3Our methods could also run under a plain Sd protocol. However, to our knowledge, no cache coherence
protocol employs only Sd without Si.

4http://archives.postgresql.org/pgsql-hackers/2011-08/msg00330.php

https://github.com/memorax/memorax
https://github.com/memorax/memorax
http://archives.postgresql.org/pgsql-hackers/2011-08/msg00330.php

MENDING FENCES WITH SELF-INVALIDATION AND SELF-DOWNGRADE 27

Only full fence Mixed fences

BenchmarkSize (LOC) Time #solutions #fences Time #solutions Fences / proc

bakery 45 17.3 s 4 5 108.1 s 16 2 sw, 4 ll, 1 ss

cas 32 <0.1 s 1 2 <0.1 s 1 1 ll, 1 ss

clh 37 4.4 s 4 4 3.7 s 1 3 sw, 2 ll, 1 ss

dekker 48 2.0 s 16 3 2.9 s 16 1 sw,2 ll, 1 ss

mcslock 67 15.6 s 4 2 33.0 s 4 1 ll, 1 ss

testtas 38 <0.1 s 1 2 <0.1 s 1 1 ll, 1 ss

srbarrier 60 0.3 s 9 3 0.4 s 4 2 ll, 1 ss

treebarrier 56 33.2 s 12 1 / 2 769.9 s 132 1 ll, 1 ss

dclocking 44 0.8 s 16 4 0.9 s 16 1 sw, 2 ll, 1 ss

postgresql 32 <0.1 s 4 2 0.1 s 4 1 ll, 1 ss

barnes 1 30 0.2 s 1 1 0.5 s 1 1 ll / 1 ss

barnes 2 96 16.3 s 16 1 16.1 s 16 1 ss

cholesky 98 1.6 s 1 0 1.6 s 1 0
radiosity 196 25.1 s 1 0 24.6 s 1 0
raytrace 101 69.3 s 1 0 70.1 s 1 0
volrend 87 376.2 s 1 0 376.9 s 1 0

Table 1. Automatic fence insertion for SiSd.

In four cases the tool detects bugs in the original Splash-2 code. The barnes benchmark
is an n-body simulation, where the bodies are kept in a shared tree structure. We detect
two bugs under SiSd: When bodies are inserted (barnes 2), some bodies may be lost.
When the center of mass is computed for each node (barnes 1), some nodes may neglect
entirely the weight of some of their children. Our tool inserts fences that prevent these bugs.
The radiosity model describes a work-stealing queue that appears in the Splash-2 radiosity
benchmark. Our tool detects data race from it. After careful code inspection we find that
it is possible for all workers but one to terminate prematurely, leaving one worker to do
all remaining work, which is caused by data race. [SLKR16] The volrend model is also a
work-stealing queue. Our tool detects that it is possible for some tasks to be performed
twice. The bugs in radiosity and volrend can occur even under SC. Hence the code cannot
be fixed only by adding fences. Instead we manually correct it.

For each benchmark, we apply the fence insertion procedure in two different modes. In
the first one (“Only full fence”), we use only full fences. In the table, we give the total time
for computing all optimal sets, the number of such sets, and the number of fences to insert
into each process. For treebarrier, one process (the root process) requires only one fence,
while the others require two. Notice also that if a benchmark has one solution with zero
fence, that means that the benchmark is correct without the need to insert any fences.

In the second set of experiments (“Mixed fences”), we allow all four types of fences,
using a cost function assigning a cost of ten units for a full fence, five units for an ssfence or
an llfence, and one unit for a synchronized write. These cost assignments are reasonable in
light of our empirical evaluation of synchronization cost in Section 7.2. We list the number
of inserted fences of each kind. In barnes 1, the processes in the model run different codes.
One process requires an llfence, the other an ssfence.

In addition to running our tool for SiSd, we have also run the same benchmarks for Si.
As expected, ssfence and syncwr are no longer necessary, and fence may be downgraded
to llfence. Otherwise, the inferred fence sets are the same as for SiSd. Since Si allows

28 P.A. ABDULLA, M.F. ATIG, S. KAXIRAS, C. LEONARDSSON, A. ROS, AND Y. ZHU

fewer behaviors than SiSd, the inference for Si is mostly faster. Each benchmark is fenced
under Si within 71 seconds.

7.2. Simulation Results. Here we show the impact of different choices of fences when
executing programs. In particular we show that an optimal fence set using the “Mixed fences”
cost function yields a better performance and network traffic compared to an optimal fence
set using the “Only full fence” cost function. Here network traffic refers to the traffic in both
the on-chip interconnection network and the memory bus. We account for all the traffic due
to coherence messages. We evaluate the micro-benchmarks analyzed in the previous section
and the whole Splash-2 benchmark suite [WOT+95], running the applications from beginnig
to end, but presenting results only for the parallel phase of the applications. All programs
are fenced according to the optimal fence sets produced by our tool as described above.

Simulation Environment: We use the Wisconsin GEMS simulator [MSB+05]. We model
an in-order processor that with the Ruby cycle-accurate memory simulator (provided by
GEMS) offers a detailed timing model. The simulated system is a 64-core chip multiprocessor
implementing the SiSd protocol described in Section 2 and 32KB, 4-way, private L1 caches
and a logically shared but physically distributed L2 with 64 banks of 256KB, 16-way each.

Cost of Fences: Our automatic fence insertion tool employs different weights in order to
insert the optimal amount of fences given the cost of each fence. Here, we calculate the
weights based on an approximate cost of fences obtained by our simulations.

The effect of fences on performance is twofold. First, there is a cost to execute the fence
instructions (fence latency); the more fences and the more dirty blocks to self-downgrade,
the higher the penalty. Second, fences affect cache miss ratio (due to self-invalidation) and
network traffic (due to extra fetches caused by self-invalidations and write-throughs caused
by self-downgrades). The combined effect on cache misses and network traffic also affects
performance.

barnes

cholesky fftfmm lulunc
ocean

oceannc

radiosity
radix

raytra
ce
volrend

waternsq

watersp

Average
0.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

C
os

t o
f f

en
ce

s
(%

 c
yc

le
s)

LL-Fence
SS-Fence
SyncWr

(a) Cycles

barnes

cholesky fftfmm lulunc
ocean

oceannc

radiosity
radix

raytra
ce
volrend

waternsq

watersp

Average
0.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

C
os

t o
f f

en
ce

s
(%

 tr
af

fic
)

LL-Fence
SS-Fence
SyncWr

(b) Traffic

Figure 26. Percentage of cycles and traffic that each type of fence cost

We calculate the cost of fences in terms of execution as indicated in equation 7.1, where
latency fence is the time in cycles required by the fence, missessi is the number of misses

MENDING FENCES WITH SELF-INVALIDATION AND SELF-DOWNGRADE 29

caused by self-invalidation, and latencymiss is the average latency of such misses. According
to this equation, and considering a protocol implementing the DoI state described in Section
2, the average percentage of cycles (execution time) employed by each type of fence when
running the Splash2 benchmarks is the following: the cost of an llfence is 64.4%, the cost
of an ssfence is 22.4%, and the cost of a syncwr is 13.2%, as shown in Figure 26a.

time fence = latency fence + missessi × latencymiss (7.1)

The cost of the fences in traffic is calculated as indicated in equation 7.2, where sd is the
number of self-downgrades, trafficwt is the traffic caused by a write-through, and trafficmiss

is the traffic caused by a cache miss. In percentage, the cost of the each type of fence on
average in terms of traffic is 40.4% for an llfence, 50.3% for an ssfence, and 9.3% for
a syncwr, as shown in Figure 26b. Thus, the weights assigned to fences in our tool seem
reasonable.

trafficfence = sd ∗ trafficwt + missessi × trafficmiss (7.2)

Cache Misses: As mentioned, the fences affect the cache miss rate. Figure 27 shows clearly
the effect of self-invalidation and self-downgrade on misses. First we show the misses due to
cold capacity and conflict misses (Cold-cap-conf), which, in general, are not affected by the
type of fences. However, in some cases reducing the self-invalidation can give the appearance
of extra capacity misses because of having a more occupied cache. The graph does not plot
coherence misses since fenced programs on Sisd coherence do not induce cache misses due
to coherence transactions. The second kind of miss is named as Bypass. These misses are
due to atomic operations which cannot use the data in the private cache, but need to access
it from the shared cache. They are very frequent in the micro-benchmarks (Figure 27a),
which are synchronization intensive, but almost unnoticeable for the Splash2 benchmarks
(Figure 27b). Finally, we show the misses caused by self-invalidation Self-inv. These are the
ones which number is reduced, when applying the mixed fences, but also when employing
the DoI state, since dirty words are not invalidated.

Traffic: As already mentioned, traffic is also affected by the type of fences employed. Figure
28 shows the traffic in the on-chip network generated by these applications. The use of
llfence, ssfence, syncwr is able to reduce the traffic requirements by 11.1% for the
micro-benchmarks and 1.6% for the Splash2 applications, on average, compared to using
full fences. Additionally, when employing the DoI state, this reduction reaches 21.3% and
1.9%, on average, for the micro-benchmarks and the Splash2, respectively. Again, the more
synchronization is required by the applications, the more traffic can be saved by employing
mixed fences.

Execution Time: Finally, we show the impact on execution time, which is affected by the
reductions in cache misses and traffic. Figure 29 shows simulated execution time for both
the micro-benchmarks (Figure 29a) and the Splash2 benchmarks (Figure 29b). The use
of mixed fences improves the execution time compared to using full fences by 10.4% for
the micro-benchmarks and by 1.0% for the Splash2 benchmarks. The DoI-mixed column
shows the execution time results for the same mixed fence sets as the mixed column. But
in DoI case, llfences are implemented in GEMS using an extra L1 cache line state (the
Dirty-or-Invalid state). This feature is an architectural optimization of the SiSd protocol.

30 P.A. ABDULLA, M.F. ATIG, S. KAXIRAS, C. LEONARDSSON, A. ROS, AND Y. ZHU

bakery cas

clhqueue

dclocking

mcsqueue

postgresql

srbarrie
r

tatas

tre
ebarrie

r

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 c
ac

he
 m

is
se

s

Cold-cap-conf
Bypass
Self-inv1. Full 2. Mixed 3. DoI-mixed

(a) Micro-benchmarks

barnes

cholesky fft fmm lu lunc
ocean

oceannc

radiosity
radix

raytra
ce

volrend

waternsq

watersp

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 c
ac

he
 m

is
se

s

Cold-cap-conf
Bypass
Self-inv1. Full 2. Mixed 3. DoI-mixed

(b) Splash2 benchmarks

Figure 27. Normalized cache misses under different fence sets and protocol
states

Implementing the DoI state further improves the performance of the mixed fences, by 20.0%
for the micro-benchmarks and 2.1% for the Splash2, on average, compared to using of full
fences. Mixed fences are useful for applications with more synchronization. Applications
using more synchronization would benefit to a large extent from the use of mixed fences.

8. Conclusions and Future Work

We have presented a uniform framework for automatic fence insertion in programs that run
on architectures that provide self-invalidation and self-downgrade. We have implemented a
tool and applied it on a wide range of benchmarks. There are several interesting directions
for future work. One is to instantiate our framework in the context of abstract interpretation
and stateless model checking. While this will compromise the optimality criterion, it will
allow more scalability and application to real program code. Another direction is to consider
robustness properties [BMM11]. In our framework, this would mean that we consider program
traces (in the sense of Shasha and Snir [SS88]), and show that the program will not exhibit
more behaviors under SiSd than under SC. While this may cause over-fencing, it frees the
user from providing correctness specifications such as safety properties. Also, the optimality
of fence insertion can be evaluated with the number of the times that each fence is executed.

MENDING FENCES WITH SELF-INVALIDATION AND SELF-DOWNGRADE 31

cas
clhqueue tatas

postgresql
dclocking

srbarrier
bakery

mcsqueue
treebarrier

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 n
et

w
or

k
tr

af
fic

Full
Mixed
DoI-mixed

(a) Micro-benchmarks

barnes
cholesky fft fmm lu lunc

ocean
oceannc

radiosity radix
raytrace

volrend
waternsq

watersp
Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 n
et

w
or

k
tr

af
fic

Full
Mixed
DoI-mixed

(b) Splash2 benchmarks

Figure 28. Normalized network traffic under different fence sets and protocol
states

This measurement will provide more accuracy when, for instance, fences with different
weights are inserted in a loop computation in a branching program.

Acknowledgment. This work was supported by the Uppsala Programming for Multicore
Architectures Research Center (UPMARC), the Swedish Board of Science project, “Rethink-
ing the Memory System”, the “Fundación Seneca-Agencia de Ciencia y Tecnoloǵıa de la
Región de Murcia” under the project “Jóvenes Ĺıderes en Investigación” and European
Commission FEDER funds.

References

[AAC+12] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl Leonardsson, and Ahmed
Rezine. Counter-example guided fence insertion under TSO. In TACAS, pages 204–219. Springer,
2012.

[ADC11] Thomas J. Ashby, Pedro Dı́az, and Marcelo Cintra. Software-based cache coherence with hardware-
assisted selective self-invalidations using bloom filters. IEEE Transactions on Computers (TC),
60(4):472–483, April 2011.

[AH90] Sarita V. Adve and Mark D. Hill. Weak ordering – a new definition. In ISCA, pages 2–14, 1990.
[AKNP14] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. Don’t sit on the fence - A

static analysis approach to automatic fence insertion. In CAV, pages 508–524, 2014.
[BDM13] Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. Checking and enforcing robustness

against TSO. In Programming Languages and Systems, pages 533–553. Springer, 2013.
[BMM11] Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann. Deciding robustness against total store

ordering. In ICALP (2), volume 6756 of LNCS, pages 428–440. Springer, 2011.

32 P.A. ABDULLA, M.F. ATIG, S. KAXIRAS, C. LEONARDSSON, A. ROS, AND Y. ZHU

cas
clhqueue tatas

postgresql
dclocking

srbarrier
bakery

mcsqueue
treebarrier

Average
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Full
Mixed
DoI-mixed

(a) Micro-benchmarks

barnes
cholesky fft fmm lu lunc

ocean
oceannc

radiosity radix
raytrace

volrend
waternsq

watersp
Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Full
Mixed
DoI-mixed

(b) Splash2 benchmarks

Figure 29. Execution time under different fence sets and protocol states

[CKS+11] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima Honarmand, Sarita V.
Adve, Vikram S. Adve, Nicholas P. Carter, and Ching-Tsun Chou. DeNovo: Rethinking the
memory hierarchy for disciplined parallelism. In PACT, pages 155–166, 2011.

[CL05] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In SPAA, pages 21–28, 2005.
[Dij02] E. W. Dijkstra. Cooperating sequential processes. 2002.
[DRHK15] Mahdad Davari, Alberto Ros, Erik Hagersten, and Stefanos Kaxiras. An efficient, self-contained,

on-chip, directory: DIR1-SISD. In PACT, pages 317–330, 2015.
[DSS06] David Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In DISC, volume 4167 of Lecture

Notes in Computer Science, pages 194–208, 2006.
[GHS09] Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Software transactional memory on

relaxed memory models. In Computer Aided Verification, 21st International Conference, CAV
2009, Grenoble, France, June 26 - July 2, 2009. Proceedings, pages 321–336, 2009.

[GHS11] Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Verification of STM on relaxed memory
models. Formal Methods in System Design, 39(3):297–331, 2011.

[HHB+14] Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Benedict R. Gaster, Mark D. Hill,
Steven K. Reinhardt, and David A. Wood. Heterogeneous-race-free memory models. In ASPLOS,
pages 427–440, 2014.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008.

[KK11] Stefanos Kaxiras and Georgios Keramidas. SARC coherence: Scaling directory cache coherence
in performance and power. IEEE Micro, 30(5):54–65, September 2011.

[KR13] Stefanos Kaxiras and Alberto Ros. A new perspective for efficient virtual-cache coherence. In
ISCA, pages 535–547, 2013.

[KRHK16] Konstantinos Koukos, Alberto Ros, Erik Hagersten, and Stefanos Kaxiras. Building heterogeneous
unified virtual memories UVMS without the overhead. ACM TACO, 13(1):1:1–1:22, 2016.

[KVY10] Michael Kuperstein, Martin Vechev, and Eran Yahav. Automatic inference of memory fences. In
FMCAD, pages 111–119. IEEE, 2010.

MENDING FENCES WITH SELF-INVALIDATION AND SELF-DOWNGRADE 33

[Lam74] Leslie Lamport. A new solution of Dijkstra’s concurrent programming problem. Communications
of the ACM, 17, August 1974.

[Lam79] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Transactions on Computers (TC), 28(9):690–691, September 1979.

[LNP+12] Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin T. Vechev, and Eran Yahav. Dynamic
synthesis for relaxed memory models. In PLDI, pages 429–440, 2012.

[LW95] Alvin R. Lebeck and David A. Wood. Dynamic self-invalidation: Reducing coherence overhead
in shared-memory multiprocessors. In ISCA, pages 48–59, 1995.

[MCS91] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Transactions on Computer Systems (TOCS), 9, February 1991.

[MLH94] Peter Magnusson, Anders Landin, and Erik Hagersten. Queue locks on cache coherent multipro-
cessors. In Proceedings of the Eighth International Parallel Processing Symposium, pages 165–171.
IEEE, 1994.

[MSB+05] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu, Alaa R.
Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood. Multifacet’s general execution-
driven multiprocessor simulator (GEMS) toolset. Computer Architecture News, 33(4):92–99,
September 2005.

[RDK15] Alberto Ros, Mahdad Davari, and Stefanos Kaxiras. Hierarchical private/shared classification:
the key to simple and efficient coherence for clustered cache hierarchies. In HPCA, pages 186–197,
2015.

[RK12] Alberto Ros and Stefanos Kaxiras. Complexity-effective multicore coherence. In PACT, pages
241–252, 2012.

[RK15a] Alberto Ros and Stefanos Kaxiras. Callback: Efficient synchronization without invalidation with
a directory just for spin-waiting. In ISCA, pages 427–438, 2015.

[RK15b] Alberto Ros and Stefanos Kaxiras. Fast&furious: A tool for detecting covert racing. In PARMA
and DITAM, pages 1–6, 2015.

[RK16] Alberto Ros and Stefanos Kaxiras. Racer: TSO consistency via race detection. In 49th IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), 2016.

[SA15] Hyojin Sung and Sarita V. Adve. DeNovoSync: Efficient support for arbitrary synchronization
without writer-initiated invalidations. In ASPLOS, pages 545–559, 2015.

[Sco13] Michael L. Scott. Shared-Memory Synchronization. Morgan & Claypool, 2013.
[SH96] Douglas C. Schmidt and Tim Harrison. Double-checked locking - an optimization pattern for

efficiently initializing and accessing thread-safe objects. In PLoP, 1996.
[SKA13] Hyojin Sung, Rakesh Komuravelli, and Sarita V. Adve. DeNovoND: Efficient hardware support

for disciplined non-determinism. In ASPLOS, pages 13–26, 2013.
[SLKR16] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. Splash-3: A properly

synchronized benchmark suite for contemporary research. In ISPASS, 2016.
[SS88] Dennis Shasha and Marc Snir. Efficient and correct execution of parallel programs that share

memory. ACM Transactions on Programming Languages and Systems (TOPLAS), 10(2):282–312,
1988.

[WOT+95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta.
The SPLASH-2 programs: Characterization and methodological considerations. In ISCA, pages
24–36, 1995.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit https://creativecommons.org/licenses/by-nd/4.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	Background.
	Challenge.
	Our Approach.
	Contributions.
	Related Work.

	2. Self-Invalidation, Self-Downgrade, and their Fences
	2.1. Self-Invalidation and Self-Downgrade
	2.2. Cache coherence protocol
	2.3. Self-Invalidation and Self-Downgrade fences
	2.4. Improving self-invalidation of partially dirty cache lines: the DoI state

	3. Overview
	4. Programs – Syntax and Semantics
	4.1. Syntax
	4.2. Configurations
	4.3. Semantics
	4.4. Program Semantics under an SI Protocol
	4.5. Transition Graph and the Reachability Algorithm

	5. Litmus Tests and Comparison with Other Memory Models
	5.1. Comparing with Other Memory Models
	5.2. Further Litmus Tests

	6. Fence Insertion
	6.1. Witness Analysis

	7. Experimental Results
	7.1. Fence Insertion Results
	7.2. Simulation Results

	8. Conclusions and Future Work
	References

