
1

Implementation and Empirical Comparison of
Partitioning-based Multi-core Scheduling

Yi Zhang†, Nan Guan†‡, Yanbin Xiao†, Wang Yi†‡

†Department of Computer Science and Technology, Northeastern University, China
‡Department of Information Technology, Uppsala University, Sweden

Abstract—Recent theoretical studies have shown that
partitioning-based scheduling has better real-time perfor-
mance than other scheduling paradigms like global schedul-
ing on multi-cores. Especially, a class of partitioning-based
scheduling algorithms (called semi-partitioned scheduling),
which allow to split a small number of tasks among different
cores, offer very high resource utilization. The major concern
about the semi-partitioned scheduling is that due to the task
splitting, some tasks will migrate from one core to another
at run time, which incurs higher context switch overhead. So
one would suspect whether the extra overhead caused by task
splitting would counteract the theoretical performance gain
of semi-partitioned scheduling.

In this work, we implement a semi-partitioned scheduler in
the Linux operating system, and run experiments on an Intel
Core-i7 4-cores machine to measure the real overhead in both
partitioned scheduling and semi-partitioned scheduling. Then
we integrate the measured overhead into the state-of-the-
art partitioned scheduling and semi-partitioned scheduling
algorithms, and conduct empirical comparisons of their real-
time performance. Our results show that the extra overhead
caused by task splitting in semi-partitioned scheduling is very
low, and its effect on the system schedulability is very small.
Semi-partitioned scheduling indeed outperforms partitioned
scheduling in realistic systems.

I. INTRODUCTION

It has been widely believed that future real-time systems
will be deployed on multi-core processors, to satisfy the
dramatically increasing high-performance and low-power
requirements. There are two basic approaches for schedul-
ing real-time tasks on multiprocessor/multi-core platforms
[1]: In the global approach, each task can execute on
any available processor at run time. In the partitioned
approach, each task is assigned to a processor beforehand
and during run time it can only execute on this particular
processor. Recent studies showed that the partitioned ap-
proach is superior in scheduling hard real-time systems, for
both theoretical and practical reasons. However, partitioned
scheduling still suffers from resource waste similar to the
bin-packing problem: a task would fail to be partitioned to
any of the processors when the total available capacity of
the whole system is still large. When the individual task
utilization is high, this waste could be significant, and in
the worst-case only half of the system resource can be used.

To overcome this problem, recently researchers have
proposed semi-partitioned scheduling [2], [3], [4], [5], [6],
[7], in which most tasks are statically assigned to one fixed
processor as in partitioned scheduling, while a few number
of tasks are split into several subtasks, which are assigned
to different processors. Theoretical studies have shown
that semi-partitioned scheduling can significantly improve
the resource utilization over partitioned scheduling, and
appears to a promising solution for scheduling real-time
systems on multi-cores.

While there have been quite a few works on imple-
menting global and partitioned scheduling algorithms in
existing operating systems and studying their characteriza-
tions like run-time overheads, the study of semi-partitioned
scheduling algorithms is mainly on the theoretical aspect.
The semi-partitioned scheduling has not been accepted as
a mainstream design choice due to the lack of evidences on
its practicability. Particularly, in semi-partitioned schedul-
ing, some tasks will migrate from one core to another at
run time, and might incur higher context switch overhead
than partitioned scheduling. So one would suspect whether
the extra overhead caused by task splitting would coun-
teract the theoretical performance gain of semi-partitioned
scheduling.

In this work, we answer the question on the practi-
cability of semi-partitioned scheduling by implementing
RTPS (Real-Time Partitioning-based Scheduler) in Linux
to support semi-partitioned scheduling, and evaluate its
actual real-time performance. By a careful design, RTPS
has very low run-time overhead although non-trivial mech-
anisms are instrumented to support task migration. Then
we measure the RTPS’s realistic run-time overhead as
well as the cache related overhead on an Intel Core-
i7 4-cores machine. Finally we integrate the measured
overhead into empirical comparison of the state-of-the-
art partitioned scheduling and semi-partitioned scheduling
algorithms. Our experiments show that semi-partitioned
scheduling indeed outperforms partitioned scheduling in
the presence of realistic run-time overheads.

The remainder of this paper is organized as follows:
Section II reviews related works; Section III introduces
the background on semi-partitioned scheduling; Section
IV presents the implementation of the semi-partitioned



2

scheduler on Linux; Section V identifies the run-time
overheads. Section V presents the overhead measurement
results. Section VII introduces the empirical comparison
experiments, and finally conclusions are drawn in Section
VIII.

II. RELATED WORK

Although Linux was originally designed for general-
purpose computer systems, more and more real-time sup-
ports have been adopted during its evolution. For example,
the 2.6 kernel has taken a big step of making the kernel
almost fully preemptive and providing the “preemptive”
compiling option, which leads significant improvements to
the responsiveness. Nowadays, it has been widely accepted
that the standard Linux can be used for many real-time
applications (at least soft real-time applications). Some
Linux real-time extensions can provide competitive real-
time performance compared with other commercial real-
time operating systems [8], [9], [10].

Many works have been done to implement and eval-
uate the state-of-the-art real-time scheduling research ef-
forts in Linux on single-core machines. For example,
SCHED EDF [11] implements the Earliest Deadline First
(EDF) algorithm by adding new scheduling class into
Linux and uses the Constant Bandwidth Server (CBS) to
allocate the execution time for each task. However, the
newly added scheduling class is “lower” than POSIX real-
time scheduling class sched_rt and would be interfered
with POSIX real-time tasks.

The UNC research team led by James Anderson devel-
oped LITMUSRT[12] as a testbed for evaluating scheduling
algorithms and synchronization on multi-core platforms.
Based on LITMUSRT, they performed a series of empirical
works to compare the performance of the state-of-art
multiprocessor scheduling algorithms on several different
multi-core machines [13], [14], [15]. One of the major
conclusions of these works is that, the global scheduling,
even with a very careful design, is clearly inferior to
partitioned schedulers, because global scheduling incurs
heavy contentions on the scheduler and frequently task
migration.

Shinpei [16] implements a loadable real-time scheduler
suite RESCH to support different scheduling algorithms
on multi-core systems, including semi-partitioned schedul-
ing. RESCH can be installed into Linux without patches.
RESCH employs a special migration thread to operate
task migrations, which would introduce extra overheads
and degrade the responsiveness of the tasks managed by
RESCH. For example, the POSIX FIFO real-time task
would delay the migration thread, which makes the task
migration overhead to be unpredictable. Due to its high
and unpredictable run-time overhead, RESCH would not be
suitable for hard real-time systems. In contrast, we imple-
ment the semi-partitioned scheduler by Linux scheduling
class for a low and predictable run-time overhead.

(a) τi is split into four subtasks.

(b) The subtasks need synchronization to execute correctly.

Fig. 1. Illustration of task splitting

III. SEMI-PARTITIONED SCHEDULING

In this section we will introduce the background on
semi-partitioned scheduling. We start with the task model.
We use τ to denote a task set consisting of N independent
periodic tasks. Each periodic task τi is a tuple 〈Ci, Ti〉,
where Ci is the worst-case execution time (WCET) and
Ti is the minimal inter-release separation (period) of τi.
We assume the implicit deadline model, i.e., Ti is also the
relative deadline of τi.

A semi-partitioned scheduling algorithm consists of two
parts: the partitioning algorithm, which determines how
to split and assign each task (or rather each part of it)
to a fixed processor, and the scheduling algorithm, which
determines how to schedule the tasks assigned to each
processor.

With the partitioning algorithm, most tasks are assigned
to a processor and only execute on this processor at run
time. We call them non-split tasks. The other tasks are
called split tasks, since they are split into several subtasks.
Each subtask of split task τi is assigned to (thereby
executes on) a different processor, and the sum of the
execution time of all subtasks equals Ci. For example, in
Figure 1 the task τi is split into four subtasks executing
on processor P0, P1, P2 and P3, respectively. The first
subtask is called the head subtask, denoted by τhi , and the
last subtask is called the tail subtask, denoted by τ ti . Each
of the other subtasks is called a body subtask, and the jth

body subtask is denoted by τ
bj
i . The subtasks of a task

need to be synchronized to execute correctly. For example,
in Figure 1, τ bji can not start execution until τhi is finished.

In this paper, we focus on (task-level) fixed priority
scheduling. Note that our scheduler implementation and
overhead measurement can be easily applied to other
scheduling paradigms like EDF as well. Several fixed-
priority semi-partitioned algorithms have been proposed



3

[4]. In this work we adopt a recent developed algorithm
FP-TS [4], which has both high worst-case utilization
guarantees (can achieve hight utilization bounds) and good
average-case real-time performance (exhibits high accep-
tance ratio in empirical evaluations). In the following we
give a brief description of FP-TS’s work flow. More details
about FP-TS can be found in [4].

• FP-TS assigns tasks to processors in increasing prior-
ity order. FP-TS always selects the processor on which
the total utilization of tasks that have been assigned
so far is minimal among all processors.

• A task (subtask) can be entirely assigned to the
current processor, if all tasks including this one on
this processor can meet their deadlines.

• When a task (subtask) can not be assigned entirely
to the current selected processor, FP-TS splits it into
two parts. The first part is assigned to this processor.
The splitting is done such that the portion of the first
part is as big as possible guaranteeing no task on this
processor misses its deadline; the second part is left
for the assignment to the next selected processor.

IV. SCHEDULER IMPLEMENTATION

We implement RTPS as the highest-priority Linux
scheduling class. Each time the Linux scheduler is invoked,
it first checks whether there is any task in RTPS to be
scheduled for execution. Therefore the real-time tasks in
RTPS will not be interfered by tasks in other scheduling
classes. Further, RTPS is implemented as a SMP (Sym-
metric Multi-processor) scheduler, i.e., each core runs an
instance of the scheduler code, and uses the shared-memory
abstraction for data consistency.

A good real-time schedulers should meet two require-
ments: (1) high timing resolution, and (2) low run-time
overhead. In the following, we will present the implemen-
tation detail of RTPS, to show how these two requirements
are met in RTPS.

A. Event-driven Scheduling based on HRtimer

The original Linux periodic scheduler is based on the
tick-driven mechanism, which is not suitable for hard real-
time tasks. The dilemma in tick-driven schedulers is that,
a long tick period causes a large response delay which
may invalidate the timing requirement of high-frequency
tasks, while a short tick period causes very often scheduler
invocation which increases the run-time overhead.

In the contrast, our Real-time Partitioning-based Sched-
uler (RTPS) employs the event-driven mechanism. RTPS
uses the High-Resolution timer (HRtimer) to maintain the
temporal information. The HRtimer is a per-core hard-
ware counter with nanosecond precision, which has been
adopted in most mainstream processor architectures. Each
HRtimer is related with a time-ordered event tree. When
it reaches the counting time of current pending event,
the current event’s callback function is invoked and the

next pending event is reloaded. In the following we will
introduce how to manage the scheduling events by the one-
per-core HRtimers.

There are two types of scheduling events needed to be
tracked by the HRtimer. The first type is task release, i.e.,
the HRtimer should keep track of the future time points
when a task should be released. Since tasks are periodic,
the time of all releases of a task are actually fixed (as long
as we know the first release time). Keeping track of task
release events is easy: when a task τi is released at time t,
its next release event is simply calculated by t+ Ti.

The second type of scheduling events is budget expi-
ration. Suppose τi is a split task with two parts τ1i and
τ2i , hosted by core P1 and P2 respectively, and the first
part execution budget is C1

i . After executing for C1
i , τi

should stop the execution on P1 and migrate to P2 to
execute the reminded execution. Therefore, the HRtimer
on P1 needs to keep track of the time when the τ1i ’s
execution budget C1

i is expired, to invoke the scheduler
to do the task migration. Different from the task release
events, the budget expiration events are dynamic. This is
because in the preemptive scheduling a running task may
be preempted by other tasks, and resume execution at some
future time point. So it is inadequate to only set the budget
expiration events when a task starts execution.

RTPS manages budget expiration events as follows: At
any time, at most one budget expiration event is recorded,
no matter how many tasks on one core need the budget
control. Each task records its remained budget in the
task struct data structure. Each time when a task is
switched to the CPU for execution, the budget expiration
event is updated to the time point when this task’s re-
mained budget will be expired if it executes without being
preempted; each time a task is taken off from the CPU,
i.e., preempted by other tasks, its corresponding budget
expiration event is canceled and its remained budget is
subtracted by the time length it just has executed for.
Another benefit of this approach is to avoid inter-core
contention on HRtimer caused by task migrations, which
will be introduced in detail in next subsection.

B. Data Structures: as Local as Possible

Besides the HRtimer resource, RTPS maintains two
queues on each core:

• Sleep Queue hosts the tasks that have finished ex-
ecution in the current period and are waiting to be
released for next period.

• Ready Queue hosts the tasks that have been released
but not finished its execution, and are waiting to run
on that core.

In strictly partitioned scheduling (where task splitting is not
allowed), these per-core queues are all local data structures,
and the operations are quite straightforward: newly released
tasks are moved from the sleep queue to the ready queue;
finished tasks are moved from the Ready Queue to the



4

Sleep Queue; in case of preemption, the current running
task is put back to the Ready Queue, and the preempting
task is moved out of the Ready Queue for execution.

However, in semi-partitioned scheduling, a splitting task
will first execute on one core for a certain amount of
time, then migrate to another core. Since Linux runs an
instance of the scheduler on each core, these queues might
be accessed by the scheduler instances on different cores
and thereby are not local any more. In RTPS, we use spin
locks to guarantee the mutually exclusive access. Spin lock
guarantees that at any time only one of the lock requestors
obtain the lock, and the other requestors spin around by
repeatedly executing a tight loop. Spin lock is simple, but
unfair: there is no guarantee that a requestor can obtain the
lock as long as there are still other requestors. Therefore,
for each requestor, a safe estimation of the waiting time for
a lock should count the delay caused by all other requestors
to this lock. So a key of reducing the scheduler overhead
is to share as few data structures as possible.

There are in total three one-per-core data structures used
by the scheduler: Sleep Queue, Ready Queue and HRtimer.
All of them are potentially accessed by multiple scheduler
instances on different cores:

• Sleep Queue: After the tail subtask of τi is finished,
τi needs to be somehow put back to the Sleep Queue
of core P1 which hosts τi’s head subtask, such that
the next released instance of τi starts execution on P1.

• Ready Queue: When τi has expired the execution
budget on one core, it needs to be inserted to the
Ready Queue of the core hosting the next part of its
execution.

• HRtimer: After a task migrates from one core to
another, the HRtimer of the destination core needs
to be updated at some point such that it can correctly
track the time when the budget of this task on the
destination core is expired.

However, we manage to implement RTPS in the way
that inter-core contentions only happen on the Ready
Queue, and both Sleep Queue and HRtimer are local data
structures.

Sleep Queue is “localized” by the following approach:
When the tail subtask of τi finishes, τi is inserted into
the Sleep Queue of the tail core (the core hosting the last
subtask) instead of putting it back to the head core (the core
hosting the first subtask). So the HRtimer on the tail core
keeps track of the time when this task should be released
again. When this task’s release time arrives, the HRtimer
on the tail core invokes an interrupt, in which τi is directly
inserted to the head core’s ready queue, bypassing the head
core’s Sleep Queue. Then the scheduler on the tail core
sends an inter-core interrupt to the head core, to invoke
the scheduling on the head core.

Now we will show that HRtimer is also “localized”, by
the above approach and the budget expiration management
mechanism introduced in Section IV-A. Recall that there
are two types of scheduling events, task release and budge

expiration, with which HRtimer needs to be updated. We
will show in our implementation there is no inter-core
operation on HRtimer with either of them:

• Since the task release event of a split task only needs
to be recorded on the tail core, there is no inter-core
operation on HRtimer due to task releases.

• The budget expiration event is inserted into HRtimer
only when a task is switched on the CPU to execute,
which is after this task being moved to current core.
So updating HRtimer is a initiated by the local sched-
uler, but not an inter-core operation.

In summary, there is no inter-core operations on Sleep
Queue and HRtimer, so they can be used as local data
structures without protected by spin locks. Only the Ready
Queues are shared data structures, and all the related
operations need to be wrapped up by spin locks.

V. OVERHEAD IDENTIFICATION AND ACCOUNTING

In this section, we will study the run-time overhead
of RTPS. We first identify all possible run-time overhead
caused by task preemption and migration, and then intro-
duce how these overheads should be accounted into the
partitioning algorithm.

The possible run-time overheads are listed as follows.
• Scheduler Invocation (sch). Overhead to invoke the

scheduling, which includes the time of responding and
serving the interrupt, switching between the user mode
and kernel mode.

• Context Switch (cnt). Overhead due to the context
switch from the preempted task to the preempting
task. It involves storing the preempted task’s context,
and loading the preempting task’s context.

• HRtimer operations (tmr). Overhead for scheduling
events to be inserted into or removed from HRtimer’s
event tree.

• Queue operations overheads due to the operation on
the Sleep and Ready Queue. Sleep Queue on each core
is a local data structure, and all its related operations
are local. Ready Queue on each core is a global shared
data structure, and its “adding” operations can be
either local or remote. There are different types of
queue operation overheads:

– S add Overhead of inserting a task into the Sleep
Queue.

– S take Overhead of searching a task and remov-
ing it from the Sleep Queue.

– R add r Overhead of inserting a task into the
Ready Queue on another core (the last letter “r”
stands for “remote”).

– R add l Overhead of inserting a task into the
Ready Queue on the local core (the last letter “l”
stands for “local”).

– R take Overhead of searching a task and remov-
ing it from the Ready Queue.



5

(a) Preemption

(b) Migration

Fig. 2. An example to illustrate the run-time overhead.

• Cache Related Overhead due to the task preemption
and migration:

– Preemption Cache Overhead (ch l). When a task,
which is preempted by higher priority tasks at
some earlier time point, resumes execution on the
same core, it needs to first reload its memory
context that have been replace out of the cache
(the last letter “l” stands for “local”).

– Migration Cache Overhead (ch r). When a task
migrates to from the first core to the second core,
its memory context needs to be moved from the
private cache of the first core to the second core
(the last letter “r” stands for “remote”).

We consider the typical scenarios of task preemption and
migration in Figure 2, to demonstrate how the overheads
introduced above occur at runtime.

Figure 2-(a) shows the scenario that τ2 is preempted by
a higher-priority task τ1, and later resumes execution when
τ1 is finished. At time ta τ1 is released and the scheduler
is invoked by interrupt (sch). The scheduler takes τ1 out
of the Sleep Queue (S take) and inserts it into the Ready
Queue (R add l). Since τ1’s priority is higher than τ2, τ1
will execute instead of τ2, so the scheduler puts τ2 back
to the Ready Queue (R add l) and takes τ1 out of the
Ready Queue (R take). After the context switch cnt, τ1
starts execution. At time tb τ1 is finished. It first invokes
the scheduler (sch). The scheduler takes the next-to-run
task τ2 out of the Ready Queue (R take), switches τ2’s
context onto CPU (cnt) and updates HRtimer (tmr), to
insert the budget expiration event of τ2 (this is not needed
if τ2 is not split task). Then the scheduler puts the finished
task τ1 back to the Sleep Queue (S add). Finally τ2 load
its memory content to cache (ch l) and starts execution.
Note that, the cache related overhead of τ2 is ch l (l means
local) as it resumes execution on the same core. We can
sum up the overhead in the above illustration as a safe
margin added to a non-split task τi’s original WCET Ci,
to get a safe bound for its overhead-aware execution time

Ci:

Ci = Ci + sch+ S take+ S add+R add l+

2×R take+ tmr + 2× cnt+ ch l

Note that we assume ch l is a common upper bound for
the local cache related overhead for all tasks. So the ch l
before τ2 resume execution can be accounted into τ1’s
execution time, i.e, we always let the task who causes a
preemption to be responsible to the cache related overhead
of this preemption.

Figure 2-(b) shows a typical scenario of task migration.
τ1 has the highest priority among, and is split into two
parts: the first part is assigned to P1 and the second part
to P0. At time ta, τ1 is released, and the scheduler on
P0 is invoked by interrupt (sch). Recall that as introduced
in Section IV-B, when a split task is finished, it will be
inserted into the Sleep Queue of its tail core, which is P0

in this example. The scheduler takes τ1 out of the Sleep
Queue on P0 (S take), and adds it to the Ready Queue
of P1, which is a remote queue operation (R add r), then
the scheduler on P0 issues an inter-core interrupt to invoke
the scheduler on P1, after which τ2 continues execution.
On P1, the scheduler is invoked by the interrupt from
P0 (sch). Since τ1 has the highest priority, the scheduler
puts the current running task τ3 back to the Ready Queue
(R add l), takes τ1 out of the Ready Queue (R take),
sets HRtimer to keep track the time when τ1’s budget on
P1 expires, and switches the context of τ1 to CPU to let it
execute (cnt).

At time tb τ1’s budget on P0 expires, so it invokes the
scheduler (sch), which takes τ3 out of the P0’s Ready
Queue, inserts the τ1 to P1’s Ready Queue which is
a remote operation and issues an inter-core interrupt to
invoke the scheduler on P0. Then τ3 resumes execution
after the context switch (cnt). On P0, τ1 will execute
instead of τ2 since τ1 has higher priority. The scheduler
inserts the current running task τ2 back to the Ready
Queue, takes τ1 out of the Ready Queue, set HRtimer and



6

so on. Since τ1 migrates from P1 to P0, its cache content is
remotely loaded (chr). At tc, τ1 finishes execution and τ2
resumes, the overhead of which is similar to corresponding
part in Figure 2-(a).

Now we discuss how the overheads are accounted for
split tasks. We group the overheads into several parts as in
Figure 2-(b):

A = sch+ S take+R add r

B = sch+R add l +R take+ tmr + cnt

C = sch+R take+R add r + cnt

D = sch+R add l +R take+ tmr + cnt+ ch r

E = sch+R take+ tmr + cnt+ S add+ ch l

As suggested in Figure 2-(b), for the head subtask τhi (the
first part of τi), the overhead includes B and C, i.e.,

Ch
i = Ch

i +B + C

and for the tail subtask τ ti (the last part of τi), the overhead
includes A, D and E, i.e.,

Ct
i = Ct

i +A+D + E

For a body subtask τ
bj
i , the overhead involves, first, the

“receiving” part from its precedent subtask (D), and sec-
ond, the “sending” part to its successive subtask (C), so
we have:

C
bj
i = C

bj
i + C +D

Finally, one can replace Ci by Ci for non-split tasks, and
replace Ch

i , Ct
i and Cbj

i by Ch
i , Ct

i and Cbj
i respectively

for split subtask tasks in the algorithm FP-TS such that
the tasks assigned to each processor are guaranteed to be
schedulable by RMS in the presence of run-time overheads.

Note that the overhead accounting we presented above
is a general approach which works for any job-level fixed
priority scheduling algorithm. For a restricted subset of
scheduling algorithms it’s possible to have a more precise
overhead accounting, for example, for task-level fixed
priority scheduling, one can easily integrate the overheads
into the RTA calculation instead of adding a margin to the
WCET, to obtain a tighter overhead accounting. However,
to provide a general feeling how much does the run-
time overhead affect the real-time performance, we will
adopt the general overhead accounting presented above.
It’s obvious that if the overhead effect is ignorable with
this general accounting approach, then the same conclusion
also holds with other more precise overhead accounting
approaches.

VI. OVERHEAD MEASUREMENT

The measurement is conducted on a machine with a 4-
core Intel Core i7 870 processor. The processor frequency
is 2.93GHz. Each core has a 32k 8-way set associative L1
instruction cache, 32k 4-way set associative L1 data cache,
and a private 256k 8-way unified L2 cache. All the four
cores share one 8M 16-way set associative L3 cache and
a 3G DDR3 memory.

TABLE I
MEASURED SCHEDULER OVERHEADS (IN CPU CYCLES).

overhead avg/max no MA MA
64 256 64 256

cnt
avg 542 547 1250 1287
max 2320 2232 5712 10268

tmr
avg 775 743 1293 1233
max 2076 2948 3464 7224

sch
avg 652 670 1559 1592
max 1532 1512 2700 4556

R add l∗
avg 474 466 770 846
max 1404 1500 1916 2712

R add r∗
avg 1541 1486 3374 3233
max 2388 2300 5064 4956

R take∗
avg 420 461 639 648
max 1672 1696 3812 7148

S add
avg 735 713 1413 1482
max 1704 1672 3948 8132

S take
avg 262 260 335 351
max 1004 1020 1732 2320

A. Scheduler Overhead

Since the Ready Queue is a shared data structure, the
operations R add r, R add l and R take are wrapped by
spin locks for mutual exclusive access. In the worst-case,
the spinlock acquisition would take the time of performing
all other competitor’s operations on this queue. So the
overhead of operations on the Ready Queue depends on
the maximal number of parallel operations. If a core hosts
n split tasks, then the maximal number of competitors
is n, i.e., the worst-case of a queue operation will task
n times longer than an operation without competitors. In
our measurement, we only measure the time of single
Ready Queue operations without contention, denoted by
R add r∗, R add l∗ and R take∗, then multiply the
number of split tasks hosted by corresponding core (known
in the task partitioning procedure) to them, in order to
obtain R add r, R add l and R take.

Table I shows the measurement results of the scheduler
overheads in four different settings: with “no MA” tasks do
not issue any memory access but only run an empty while
loop, while with “MA” each task iteratively visit a 1MB
array; with “64” the total number of tasks in the system
is 64 (16 tasks on each core), while with “256” the total
number of tasks is 256 (64 tasks on each core). Both the
maximal (“max”) and average (“avg”) measured value are
provide in the table. We have the following observations:

• The scheduler overhead is insensitive to the number of
tasks on each core. As shown in the table, increasing
the number of tasks on each core from 16 to 64
essentially does not cause overhead increment.

• The scheduler overhead is sensitive to the tasks’
memory usage. In the experiments with “no MA”, the
tested tasks only consume very few cache capacity,
and the scheduler data structures can be completely
accommodated by the 256KB L2 cache. In the exper-
iments with “MA”, the overhead is on average two



7

to three times as much as the “no MA” case, which
coincides with the ratio between the delay of loading
data from L2 cache and L3 cache. Therefore, we can
infer that the scheduler data structures still reside in
the L3 cache, although the total memory footprint of
the tested task set is much larger than the size of the
L3 cache (8MB). This is because, the scheduler data
structures are the most frequently visited data, so the
16-way set associative L3 cache has a good chance to
keep them not be replaced to the memory.

• The remote adding operation on the shared Ready
Queue R add r is more expensive than the local
version R add l. The difference is mainly caused
by cache coherence protocol. Recall that in our im-
plementation of RTPS, the date structures are design
to be as local as possible, and the only shared data
structure is the Ready Queue, and the only remote
queue operation is R add r.

B. Cache Related Overhead

To measure the cache related overhead due to preemp-
tions, we use the task set of one test task and a competing
task. Each competing task iteratively updates a 512KB
array. We first let the test task to execute without any
interruption (with the highest priority in the highest priority
scheduling class RTPS), and record its execution time,
as the net time. Then we let the test task to run with
the competing tasks, where the test task has the highest
priority. After running the test task for a while (to make
sure its working set has been loaded into the cache), the
test task suspends itself for 1 second, during which the
competing task executes, which will evict the working set
of the test task out of the L2 cache. We record test task’s
execution time in this case, as the gross time. The overhead
equals the gross time minus the net time.

To measure the cache related overhead due to task mi-
grations, the net time is also obtained by running it without
interruptions. The gross time is obtained by measuring
the case that a migration is invoked during the task’s
execution, after which it immediately continues to run on
the destination core.

Table II is the measurement results of the preemption
and migration overheads with different working set sizes.
We can observe that

• Both the preemption and migration cache related
overhead roughly increase linearly with respect to the
size of the test task’s working set.

• The migration cache related overhead is roughly twice
as many as the preemption cache related overhead.

Note that in all the experiments of Table II, the working set
of the test task can stay in the L3 cache. For the case of
large working set that can not be fit into the L3 cache,
the cache related overheads caused by preemption and
migration are similar, since in both cases a resumed task
has to load its memory content from the off-chip memory.

TABLE II
CACHE RELATED OVERHEAD (IN CPU CYCLES).

WS (KB) Preemption Migration
1 241 305
2 424 610
4 991 1213
8 1497 4176

16 4145 8346
32 6645 14594
64 8318 20592
128 31686 43519
256 63366 82572
512 105852 186137

1024 166534 391402

VII. REAL-TIME PERFORMANCE COMPARISON

We conduct comparison of the real-time performance in
terms of acceptance ratio of FP-TS and two widely-used
fixed-priority partitioned scheduling algorithm FFD (first-
fit decreasing size) and WFD (worst-fit decreasing size),
with randomly generated task sets. We follow the method
in [17] to generate synthetic task sets: A task set of M +
1 tasks is generated and tested for feasibility using all the
algorithms mentioned above. Then the number of tasks is
increased by 1 to generate a new task set, and it is tested
for feasibility again. This process is iterated until the total
processor utilization exceeds M. The whole procedure is
then repeated, starting with a new task set of M + 1 tasks,
until 100,000 task sets have been generated and tested.

The hardware setting is based on the machine we used
for overhead measurement: There are 4 cores in the system,
and 1us equals 2930 CPU cycles. We apply the overhead
accounting approach presented in Section V and the mea-
sured value in Section V to the worst-case execution time
of each task, to get the overhead-aware execution time
bound, and fed them into the partitioning algorithms (FP-
TS, FFD and WFD). For the scheduler overhead, we use
the maximal measured value of each type (the bold values
in Table I). For the cache related overhead, we let the
preemption overhead (ch l) to be 50us, and the migration
overhead (ch r) to be 200us (both larger than the maximal
value in Table II).

Figure 3-(a) shows the first group of experiments in
which the individual task utilization is uniformly dis-
tributed in [0.1, 0.3]. For each partitioning algorithm, we
test for three different scales of task frequency (distin-
guished by the suffix “high”, “mid” and “ideal”). The
task periods are uniformly distributed in [10ms, 100ms]
in the “high” frequency setting, and [20ms, 200ms] in the
“mid” uniformly. In the “ideal” frequency setting, we let
all the run-time overhead to be 0, to represent the case
that the task period/WCET is very large and the overhead
has little effect on the timing parameters. The x-axis of
the figure is the system utilization (we only keep the part
with system utilization above 0.5), and the y-axis is the
acceptance ratio. From the figure we can see that, although



8

(a) U: 0.1 ∼ 0.3

(b) U: 0.1 ∼ 0.5

Fig. 3. An example to illustrate the run-time overhead.

the acceptance ratio of semi-partitioned scheduling with
overheads is lower than the ideal case (with zero overhead),
it is still clearly higher than the partitioned algorithms (even
higher than their ideal case).

Figure 3-(b) has the same setting as Figure 3-(a), except
that the individual task utilization is uniformly distributed
in [0.1, 0.5]. In this figure we can see that, the performance
of partitioned scheduling algorithms degrades seriously as
the average individual utilization increases, while the per-
formance of semi-partitioned scheduling is not decreased.
So the superiority of semi-partitioned scheduling is even
larger with “heavy” task sets.

VIII. CONCLUSION

In this work, we present the implementation of a Linux
based semi-partitioned scheduler RTPS. RTPS has the
features of both high time resolution and low/predictable
run-time overhead. Then we conduct experiments to mea-
sure the realistic run-time overheads of RTPS, as well as
the cache related overheads. We integrate these overhead
measurement into the state-of-the-art semi-partitioned and
partitioned scheduling algorithms, and conduct empirical
experiments to compare their real-time performance. Our
experiments show that, for task sets with reasonable pa-
rameters settings, semi-partitioned scheduling indeed out-

performs partitioned scheduling in the presence of realis-
tic overheads. So we believe semi-partitioned scheduling
should be considered as one of the major design choices
for real-time systems on multi-cores. In the future, we will
extend our work to support resource sharing in the semi-
partitioned scheduler. Another potential direction is to use
the mechanism in our semi-partitioned scheduler to support
visualization, for a flexible and efficient application-level
resource allocation.

REFERENCES

[1] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah, A Categorization of Real-Time Multiprocessor Schedul-
ing Problems and Algorithms, 2004.

[2] B. Andersson, K. Bletsas, and S. Baruah, “Scheduling arbitrary-
deadline sporadic task systems multiprocessors,” in RTSS, 2008.

[3] B. Andersson and E. Tovar, “Multiprocessor scheduling with few
preemptions,” in RTCSA, 2006.

[4] N. Guan, M. Stigge, W. Yi, and G. Yu, “Fixed-priority multiproces-
sor scheduling with Liu & Layland’s utilization bound,” in RTAS,
2010.

[5] S. Kato and N. Yamasaki, “Portioned EDF-based scheduling on
multiprocessors,” in EMSOFT, 2008.

[6] ——, “Semi-partitioned fixed-priority scheduling on multiproces-
sors,” in RTAS, 2009.

[7] S. Kato, N. Yamasaki, and Y. Ishikawa, “Semi-partitioned schedul-
ing of sporadic task systems on multiprocessors,” in ECRTS, 2009.

[8] RTAI home page. http://www.rtai.org.
[9] Xenomai home page. http://www.Xenomai.org.

[10] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa,
and C. Taliercio, “Performance comparison of VxWorks, Linux,
RTAI and Xenomai in a hard real-time application,” in Real-Time
Conference, 2007 15th IEEE-NPSS. IEEE, 2007, pp. 1–5.

[11] D. Faggioli, F. Checconi, M. Trimarchi, and C. Scordino, “An EDF
scheduling class for the Linux kernel,” in Proceeding of the Real-
Time Linux Workshop, 2009.

[12] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson,
“LITMUSˆ RT: A Testbed for Empirically Comparing Real-Time
Multiprocessor Schedulers,” in 27th IEEE International Real-Time
Systems Symposium, 2006. RTSS’06, 2006, pp. 111–126.

[13] B. Brandenburg, J. Calandrino, and J. Anderson, “On the scalability
of real-time scheduling algorithms on multicore platforms: A case
study,” in 2008 Real-Time Systems Symposium, 2008, pp. 157–169.

[14] A. Bastoni, B. Brandenburg, and J. Anderson, “An Empirical
Comparison of Global, Partitioned, and Clustered Multiprocessor
Real-Time Schedulers,” in Proceedings of the 31st IEEE Real-Time
Systems Symposium, 2010, pp. 14–24.

[15] B. Brandenburg and J. Anderson, “On the Implementation of Global
Real-Time Schedulers,” in Proceedings of the 2009 30th IEEE Real-
Time Systems Symposium, 2009, pp. 214–224.

[16] S. Kato, R. Rajkumar, and Y. Ishikawa, “A Loadable
Real-Time Scheduler Suite for Multicore Platforms,”
Technical Report CMUECE-TR09-12, 2009. Online Available:
http://www.contrib.andrew.cmu.edu/shinpei/papers/techrep09.pdf,
Tech. Rep.

[17] T. Baker, “A comparison of global and partitioned EDF schedu-
lability tests for multiprocessors,” in Proceedings of International
Conference on Real-Time and Network Systems In Proceedings of
International Conference on Real-Time and Network Systems, 2006,
pp. 119–127.


