
1

Finitary Real-Time Calculus: Efficient Performance
Analysis of Distributed Embedded Systems

Nan Guan and Wang Yi
Uppsala University, Sweden

Email: {nan.guan|yi}@it.uu.se

Abstract—Real-Time Calculus (RTC) is a powerful framework
to analyze real-time performance of distributed embedded sys-
tems. However, RTC may run into serious analysis efficiency
problems when applied to systems of large scale and/or with
complex timing parameter characteristics. The main reason
is that many RTC operations generate curves with periods
equal to the hyper-period of the input curves. Therefore, the
analysis in RTC has exponential complexity. In practise the
curve periods may explode rapidly when several components are
serially connected, which leads to low analysis efficiency.

In this work, we propose Finitary RTC to solve the above
problem. Finitary RTC only maintains and operates on a limited
part of each curve that is relevant to the final analysis results,
which results in pseudo-polynomial computational complexity.
Experiments show that Finitary RTC can drastically improve
the analysis efficiency over the original RTC. The original RTC
may take hours or even days to analyze systems with complex
timing characteristics, but Finitary RTC typically can complete
the analysis in seconds. Even for simple systems, Finitary RTC
also typically speeds up the analysis procedure by hundreds of
times. While getting better efficiency, Finitary RTC does not
introduce any extra pessimism, i.e., it yields analysis results as
precise as the original RTC.

I. INTRODUCTION

Real-Time Calculus (RTC) [18] is a framework for per-
formance analysis of distributed embedded systems rooted
in the Network Calculus theory [4]. RTC uses variability
characterization curves [12] to model workload and resource,
and analyzes workload flows through a network of compu-
tation and communication resources to derive performance
characteristics of the system. RTC has proved to be one of
the most powerful methods for real-time embedded system
performance analysis, and has drawn considerable attention
from both academia and industry in recent years.

Although one of RTC’s advantages is avoiding the state-
space explosion problem in state-based verification techniques
such as timed automata [3], it may still encounter scalabil-
ity problems when applied to systems with complex timing
properties. The major reason of RTC’s efficiency problem is
due to the fact that the workload/resource representations and
computations in the RTC framework are defined for the infinite
range of time intervals. Although in practise it is possible to
compactly represent the workload and resource information
of infinite time intervals by finite data structures [21], it may
still have to maintain a great amount of information in the
analysis procedure and take very long time to complete the
computations when the timing characteristics of the system
are complex. More specifically, many RTC operations generate
curves with periods equal to the LCM (least common multiple)

of the input curve periods. Therefore, the curve periods may
explode rapidly when several components with complex tim-
ing characteristics, (e.g., co-prime periods) are connected in a
row. We call this phenomenon period explosion (Section III
discusses the period explosion problem in detail). In general,
the analysis in RTC has exponential complexity and in practise
the efficiency may be extremely low for large systems with
complex timing characteristics.

In this paper, we propose Finitary Real-Time Calculus,
a refinement of the RTC framework, to solve the above
problem. Finitary RTC has pseudo-polynomial complexity, and
in practise can drastically improve the analysis efficiency of
complex distributed embedded systems. The key idea is that
only the system behavior in time intervals up to a certain
length is relevant to the final analysis results, hence we can
safely chop off the part of a workload and resource curve
beyond that length limit and only work with a (small) piece
of the original curve during the analysis procedure.

While getting better efficiency, Finitary RTC does not in-
troduce any extra pessimism, i.e., the analysis results obtained
by Finitary RTC are as precise as using the original RTC
approach. This is a fundamental difference between Finitary
RTC and other methods that approximate the workload and
resource information to simplify the problem but lead to
pessimistic analysis results (e.g., adjusting task periods for a
smaller hyper-period).

We conduct experiments to evaluate the efficiency improve-
ment of Finitary RTC over the original RTC. Experiments
show that Finitary RTC can drastically speed up the analysis.
For systems with complex timing characteristics, the analysis
procedure in the original RTC may take hours or even days, but
Finitary RTC typically can complete the analysis in seconds.
Even for simple systems, Finitary RTC also typically speeds
up the analysis procedure by hundreds of times.

A. Related Work
Real-Time Calculus (RTC) is based on Network Calculus

(NC) [4]. There are several significant differences between
RTC and NC. First, RTC can model and compute the re-
maining service of each component, which is not explicitly
considered in NC. Second, while NC mainly uses the upper
arrival curves and lower service curves, RTC uses both lower
and upper curves for both events and resource, which supports
a tighter computation of the output curves. Furthermore, RTC
has been extended to model and analyze common problems
in the real-time embedded system domain, such as structured
event streams [14], workload correlations [6], interface-based

design [19], mode switches [15], and cyclic systems [9].
The classical real-time scheduling theory is extended to

distributed systems by holistic analysis [20]. MAST [8] is a
well-known example of this approach. MAST supports offset-
based holistic schedulability analysis to guarantee various real-
time performance constraints such as local deadlines, global
deadlines and maximal jitters. Different from the holistic
analysis approach in MAST, RTC supports a compositional
analysis framework, where local analysis is performed for each
component to derive the output event/resource models and
afterwards the calculated output event models are propagated
to the subsequent components. SymTA/S [7] is another well-
known compositional real-time performance analysis frame-
work, which uses a similar event and resource model with
RTC. The local analysis in SymTA/S is based on the classical
busy period technique in real-time scheduling theory [11]. We
refer to [17] for comparisons among these frameworks.

State-based verification techniques such as Timed Automata
[3] provide extremely powerful expressiveness to model com-
plex real-time systems. However, this approach usually suf-
fers from the state-space explosion problem. The analytical
(stateless) method of RTC depends on solutions of closed-
form expressions, which in general yields a much better
scalability than the state-based approach. Hybrid methods
combining RTC and timed automata [10] are used to balance
the expressiveness and scalability in the design of complex
systems. However, as pointed out in this paper, although
RTC is significantly more scalable than state-based verification
techniques, it still may run into serious efficiency problems due
to the period explosion phenomenon.

II. RTC BASICS

A. Arrival and Service Curves
RTC uses variability characterization curves (curves for

short) to describe timing properties of event streams and
available resource:

Definition 1 (Arrival Curve). Let R[s, t) denote the total
amount of requested capacity to process in time interval [s, t).
Then, the corresponding upper and lower arrival curves are
denoted as αu and αl, respectively, and satisfy:

∀s < t, αl(t − s) ≤ R[s, t) ≤ αu(t − s) (1)

where αu(0) = αl(0) = 0.

Definition 2 (Service Curve). Let C[s, t) denote the number
of events that a resource can process in time interval [s, t).
Then, the corresponding upper and lower service curves are
denoted as βu and βl, respectively, and satisfy:

∀s < t, βl(t − s) ≤ C[s, t) ≤ βu(t − s) (2)

where βu(0) = βl(0) = 0.

The arrival and service curves are monotonically non-
decreasing. Further, we only consider curves that are piece-
wise linear and the length of each linear segment is lower-
bounded by a constant. Therefore, we exclude curves that are
“infinitely complex”. The number of linear segments contained
by a curve in an interval is polynomial with respect to the
interval length. To simplify the presentation, we sometimes

use a curve pair α (β) to represent both the upper curve αu

(βu) and the lower curve αl (βl).
The RTC framework intensively uses the min-plus/max-plus

convolution/deconvolution operations:

Definition 3 (Convolution and Deconvolution). Let f , g be
two curves, the min-plus convolution ⊗, max-plus convolution
⊗, min-plus deconvolution ⊘ and max-plus deconvolution ⊘

are defined as:
(f⊗g)(∆) ≜ inf

0≤λ≤∆
{f(∆ − λ) + g(λ)}

(f⊗g)(∆) ≜ sup
0≤λ≤∆

{f(∆ − λ) + g(λ)}

(f⊘g)(∆) ≜ sup
λ≥0

{f(∆ + λ) − g(λ)}

(f⊘g)(∆) ≜ inf
λ≥0

{f(∆ + λ) − g(λ)}

In this paper, we assume an upper (lower) bound curve to
be sub-additive (super-additive) [21]:

Definition 4 (Sub-Additivity and Super-Additivity). A curve
f is sub-additive iff

∀x, y ≥ 0 ∶ f(x) + f(y) ≥ f(x + y)

A curve f is super-additive iff
∀x, y ≥ 0 ∶ f(x) + f(y) ≤ f(x + y)

Moreover, we assume the arrival curve α = (αu, αl) and
service curves β = (βu, βl) to be causal [13]:

Definition 5 (Causality). Given a sub-additive upper bound
curve fu and a super-additive lower bound curve f l, curve
pair f = (fu, f l) is causal iff

fu = fu⊘f l and f l = f l⊘fu

The arrival and service curves are well-defined if they
comply with the monotonicity, sub/super-additivity and causal-
ity constraints. Arrival and service curves that are not well-
defined contain inconsistent information in modeling realistic
system timing behaviors, and can be transferred into their
monotonicity, sub/super-additivity and causality closures [21],
[13]. The computations in RTC generate well-defined arrival
and service curves if the inputs are well-defined. We assume
that all arrival and service curves are well-defined, which is
necessary to establish the Finitary RTC approach in this paper.
Finally, we define the long-term slope of a curve f as

s(f) ≜ lim
∆→+∞

(f(∆)/∆)

B. Greedy Processing Component (GPC)
In this paper, we focus on the most widely used abstract

component in RTC called Greedy Processing Component
(GPC) [5]. A GPC processes events from the input event
stream (described by arrival curve α) in a greedy fashion, as
long as it complies with the availability of resources (described
by the service curve β). GPC produces an output event stream,
described by arrival curve α′ = (αu

′

, αl
′

), and an output
remaining service, described by service curve β′ = (βu

′

, βl
′

):

αu
′

≜ [(αu ⊗ βu) ⊘ βl] ∧ βu (3)

αl
′

≜ [(αl ⊘ βu) ⊗ βl] ∧ βl (4)

βu
′

≜ (βu − αl) ⊘ 0 (5)

βl
′

≜ (βl − αu) ⊗ 0 (6)

Figure 1. Illustration of B(αu, βl
), D(αu, βl

) and MBS(αu, βl
).

where (f ∧ g)(∆) = min(f(∆), g(∆)). We use the following
form to compactly represent the computation in (3) ∼ (6):

(α
′

, β
′

) = GPC(α,β)

The number of events in the input queue, i.e., the backlog,
and the delay of each event can be bounded by B(αu, βl) and
D(αu, βl) respectively:

B(αu, βl) ≜ sup
λ≥0

{αu(λ) − βl(λ)} (7)

D(αu, βl) ≜ sup
λ≥0

{inf{τ ∈ [0, λ] ∶ αu(λ − τ) ≤ βl(λ)}} (8)

Intuitively, B(αu, βl) and D(αu, βl) are the maximal ver-
tical and horizontal distance from αu to βl, as illustrated in
Figure 1. In this paper, we intensively use another notation
maximal busy-period size:

MBS(αu, βl) = min{λ > 0 ∶ αu(λ) = βl(λ)}

Intuitively, MBS(αu, βl) is the maximal length of the time
interval in which αu is above βl, i.e., the maximal size of the
so-called busy periods [1] (formally defined in the appendix).
Note that in general αu may goes above βl again after they
intersect at MBS(αu, βl), as shown in Figure 1. We use MBS
as the abbreviation of MBS(αu, βl) when αu and βl are clear
from the context.

In this paper we assume for each component s(αu)/s(βl)
is bounded by a constant ε that is strictly smaller than
1, and thus MBS(αu, βl) is bounded by a number that is
pseudo-polynomially large. This is essentially the same as
the common constraint in real-time scheduling theory that the
system utilization is strictly smaller than 1 [2].

C. Performance Analysis Network
The RTC framework connects multiple components into

a network to model systems with resource sharing and net-
worked structures, as illustrated in Figure 2. As in most litera-
ture on RTC we assume the performance analysis networks are
acyclic. Therefore, one can conduct the analysis of the whole
network following the event and resource flows: it starts with a
number of initial input curves, to generate intermediate curves
step by step, and eventually generate the final output curves.
The components whose inputs are all initial input curves are
called start components, and the ones whose outputs are all
final output curves are called end components.

For example, in Figure 2 the analysis starts with the start
component 1, using the initial input curves α1, β1 to derive

Figure 2. An example of analysis network in RTC.

Figure 3. Illustration of the segment number increase caused by a plus
operation, where the red part of each curve are the segments that need to be
stored to represent the whole curve.

its backlog bound B(αu1 , β
l
1) and delay bound D(αu1 , β

l
1),

and generate the output curves α
′

1, β
′

1. Then α2, β
′

1 are used
to analyze component 2, and α2, β

′

1 are used to analyze
component 3, and finally the resulting curves α

′

2, β
′

2 from these
two components are used to analyze the end component 4.

Besides backlog bound B(αu, βl) and delay bound
D(αu, βl), another important performance metric is the end-
to-end delay of an event stream, denoted by Dend. This can
be obtained by summing up the individual delay bound of
each component along the event stream flow. However, this
may lead to pessimistic end-to-end delay bound estimation.
One can “group” the components along the event flow to get
a more precise end-to-end delay bound (the so-called “pay-
burst-only-once”) [4]:

Dend =D(αu, βl1⊗β
l
2⊗⋯⊗β

l
n) (9)

where βl1, β
l
2,⋯, β

l
n are the lower service curves of the

components along the event stream flow with initial input αu.

III. EFFICIENCY BOTTLENECK OF RTC
In RTC, the arrival/service curves are defined for the infinite

range of positive real numbers ∆ ∈ R≥0. For a practical
implementation, we need a finite representation of curves and
the curve operations should be completed in a finite time.

To solve this problem, RTC Toolbox [22] restricts to a class
of regular curves [21], which can be efficiently represented
by finite data structures but are still expressive enough to
model most realistic problems. A regular curve consists of
an aperiodic part, followed by a periodic part. Each part is
represented by a concatenation of linear segments. Generally,
the computation time and memory requirement of an operation
between two curves is proportional to the number of segments
contained by the curves.

Many RTC operations (e.g., plus, minus and convolution)
generate output curves with much longer periods than the
periods of the input curves. Typically, the period of the output
curve equals to the LCM (least common multiple) of the input
periods. Figure 3 shows an example of the plus operation of
two curves. Both input curves are strictly periodic (i.e., the
aperidoc parts are empty). The first input curve’s period is 4

and the second input curve’s period is 5. Each of them only
contains one segment. Applying the plus operation to these two
curves, the result is a periodic curve with period 20, which is
the LCM of 4 and 5, and containing 8 segments.

In general, when many components are serially connected
in a row, the number of segments contained by the curves
increases exponentially, and thus the time cost of the analysis
increases exponentially as it steps forward along the analysis
flow. We call this phenomenon period explosion, which is the
major reason why the analysis of large-scale systems in RTC
is problematic.

IV. OVERVIEW OF FINITARY RTC
We start with a simple example of only one component.

As introduced in Section II-B, the backlog bound B(αu, βl)
and delay bound D(αu, βl) of this system is calculated
by measuring the maximal horizontal and vertical distance
between αu and βl (in the part where αu is above βl).

Actually, to calculate B(αu, βl) and D(αu, βl), one only
needs to check both curves up to MBS(αu, βl) on the x-axis:

Theorem 1. Given a sub-additive upper arrival curve αu and
a super-additive service curve βl,

B(αu, βl) = sup
MBS≥λ≥0

{αu(λ) − βl(λ)}

D(αu, βl) = sup
MBS≥λ≥0

{inf{τ ∈ [0, λ] ∶ αu(λ − τ) ≤ βl(λ)}}

Theorem 1 is proved in the appendix.
Note that αu may be above βl again after MBS, as shown

in Figure 1. Nevertheless, Theorem 1 guarantees that the
maximal backlog and delay occurs in time intervals of size up
to MBS(αu, βl). Therefore, the analysis can “chop off” the
parts beyond MBS(αu, βl) of both curves, and only use the
remaining finitary curves to obtain exactly the same B(αu, βl)
and D(αu, βl) results as before. This represents the basic idea
of Finitary RTC:

Main Idea: Instead of working with complete curves, we
only work with the part of each curve that is relevant to the
analysis results.

This is similar to the standard analysis techniques based
on busy periods in classical real-time scheduling theory. For
example, in the schedulability analysis of EDF based on
demand bound functions [1], one only needs to check what
happens in a busy period. The analysis of time intervals
beyond the maximal busy period size is irrelevant to the system
schedulability and thereby can be ignored.

However, it is difficult to apply this idea to the analysis
of networked systems in the RTC framework. For example,
suppose we want to analyze the backlog and delay bound
of component 4 in Figure 2. By the discussions above, we
only need to keep the input curves of component 4 up to
MBS(αu

′

2 , β
l′

2) on the x-axis to obtain the desired results.
However, the value of MBS(αu

′

2 , β
l′

2) is not revealed until
we have actually obtained αu

′

2 and βl
′

2 . To calculate αu
′

2 and
βl
′

2 , we need to first accomplish the analysis of component
2 and 3, and component 1 at the first place. Therefore, we
still have to conduct the expensive analysis for the preceding

components of component 4 with complete curves, although
we only need a small part of the input curves of component
4 to calculate its backlog and delay bound. In this way, the
efficiency improvement is trivial since the analysis procedure
is as expensive as in the original RTC except for the very last
step to analyze component 4.

The target of Finitary RTC is to work with finitary curves
(the parts of curves up to certain limits) through the whole
analysis network. In other words, we should already use
finitary curves at the initial inputs, and generate finitary curves
at outputs from the input finitary curves at each component.
By this, the overall analysis procedure is significantly more
efficient than the original RTC approach. To achieve this, we
first need to solve the following problem:

Problem 1: How to compute the output finitary curves from
the input finitary curves for each component?

Recall that the computation in (α
′

, β
′

) = GPC(α,β) uses
the min-plus and max-plus deconvolution operations:

(f⊘g)(∆) = sup
λ≥0

{f(∆ + λ) − g(λ)}

(f⊘g)(∆) = inf
λ≥0

{f(∆ + λ) − g(λ)}

In order to calculate (f⊘g)(∆) or (f⊘g)(∆) for a particular
∆, it is required to check the value of f(∆ + λ) − g(λ) for
all λ ≥ 0, i.e., slide over curve f from ∆ to above and slide
over the whole curve g, to get the suprema (infima). Therefore,
even if we only want to calculate a small piece of a curve at
the output, we still need to know the complete input curves
defined in the infinite range. Section V is dedicated to the
solution of this problem, where we use a “finitary” version of
the deconvolution operations in the computation of the output
arrival and service curves. We prove that to calculate the output
curve up to interval size x, it is enough to only visit the part
of input curves up to interval length x +MBS.

If we somehow know the MBS value for each component,
then we can “backtrack” the whole analysis network to decide
the size of the input finitary curves for each component, and
eventually decide the size of the curves we need to keep at the
initial inputs. However, the MBS value for each component
is not revealed until its input arrival and service curves are
actually known, and we do not want to actually perform
the expensive analysis with complete curves to obtain the
MBS information. Therefore, we need to solve the following
problem:

Problem 2: How to efficiently estimate the MBS value of
each component in the network?

We address this problem in Section VI, using safe ap-
proximations of the input curves to quickly “pre-analyze”
the whole analysis network and obtain safe estimation of the
MBS value for each component. The key point is that as long
as we always use over-approximations (formally defined in
Section VI) of the curves, the obtained MBS estimation is
guaranteed to be no smaller than its real value. Note that
the over-approximations of input curves are used merely for
the purpose of estimating MBS. After we have obtained the

MBS estimation of each component, the following analysis
procedure does not introduce any extra pessimism, and the
analysis results we finally obtained are as precise as using the
original RTC.

V. ANALYZING GPC WITH FINITARY DECONVOLUTION

This section addresses the first problem, i.e., how to com-
pute the output finitary curves from the input finitary curves
for each component. We first define the finitary version of the
min-plus and max-plus deconvolutions operations:

Definition 6 (Finitary Deconvolution). The finitary min-plus
deconvolution and finitary max-plus deconvolution regarding
a non-negative real number T , denoted by ⊘T and ⊘T
respectively, are defined as:

(f ⊘T g)(∆) ≜ sup
T≥λ≥0

{f(∆ + λ) − g(λ)}

(f ⊘T g)(∆) ≜ inf
T≥λ≥0

{f(∆ + λ) − g(λ)}

The result of (f⊘T g)(∆) and (f⊘T g)(∆) for a particular
∆ only depends on f in [∆,∆ + T] and g in [0, T].

Now we can refine the computation (α
′

, β
′

) = GPC(α,β),
using ⊘T and ⊘T to replace ⊘ and ⊘, and still safely bound
the output event stream and remaining service:

Theorem 2. Given an event stream described by the arrival
curves αu, αl and a resource described by the service curves
βu, βl. If T is a real number with

T ≥ MBS(αu, βl)

then the processed event stream and remaining service are
bounded from above and below by (α

′

, β
′

) = GPCT (α,β):

αu
′

≜ ((αu ⊗ βu) ⊘T βl ∧ βu) (10)

αl
′

≜ ((αl ⊘T βu) ⊗ βl ∧ βl) (11)

βu
′

≜ (βu − αl) ⊘T 0 (12)

βl
′

≜ (βl − αu) ⊗ 0 (13)

Moreover, GPCT does not sacrifice any analysis precision
comparing with GPC that uses the original deconvolution
operations:

Theorem 3. The output event arrival curves and remaining
service curves obtained by GPCT in Theorem 2 is at least as
precise as that obtained by GPC.

The proofs of Theorem 2 and 3 are presented in the
appendix. Note that these proofs are not simple reproduc-
tions of their counterparts in the original RTC. Particularly,
sophisticated techniques are developed to utilize the busy
period concept in the construction of the desired bounds in
Theorem 2, and Theorem 3 relies on the sub/super-additivity
and causality property of the input arrival and service curves.

The original deconvolution in GPC is replaced by the fini-
tary deconvolution operations in GPCT , so the computation
of a particular point on the output curve only requires to slide
over a limited range of the input curves. Therefore, we can
establish the information dependency between the input curves
and output curves in GPCT :

Theorem 4. Let (α
′

, β
′

) = GPCT (α,β). The computation of
α
′

or β
′

in the range of [0, x] on the x-axis only depends on
the input curves in the range of [0, x + T] on the x-axis.

Theorem 4 can be easily proved by rewriting (10) ∼ (13)
with the definition of the convolution and finitary deconvolu-
tion operations. Proof details are omitted due to space limit.

We use ∣f ∣ to denote the upper limit on the x-axis to which
we want to keep the curve (pair) f . Then according to Theorem
4, we know the following constraint between the upper limits
of the input and output curves in GPCT :

∣α∣ = ∣β∣ ≥ T +max(∣α
′

∣, ∣β
′

∣) (14)

For example, if we want to use GPC6 to generate output
curves with upper limit of 5, then the upper limit of the input
curves should be at least 5 + 6 = 11, i.e., the input curves
should be defined at least in the range [0,11].

VI. ANALYSIS NETWORK IN FINITARY RTC
The GPC networks considered in this paper are acyclic.

Therefore, as soon as we have chosen the T value in GPCT
for each component, we can traverse the network backwards
and use the relation in (14) to iteratively decide the upper
limits of the input finitary curves of each component. The
choice of T for each component is subject to the constraint
T ≥ MBS. Therefore, it is sufficient to derive an upper bound
of MBS, and use this upper bound as the value of T in GPCT
at each component. In the following, we first introduce how
to efficiently compute a safe upper bound of MBSi for each
component i, then introduce how to decide the upper limits of
input finitary curves of each component.

A. Bounding Individual MBS
We first define the over-approximation of curves:

Definition 7 (Over-approximation). For two upper bound
curves cu∗ and cu, if ∀∆ ≥ 0 ∶ cu∗(∆) ≥ cu(∆), then cu∗

is an over-approximation of cu. For two lower bound curves
cl∗ and cl, if ∀∆ ≥ 0 ∶ cl∗(∆) ≤ cl(∆), then cl∗ is an over-
approximation of cl. Curve pair c∗ = (cu∗, cl∗) is an over-
approximation of curve pair c = (cu, cl) if cu∗ and cl∗ are
over-approximations of cu and cl respectively. We use a ⪰ b
to denote that a is an over-approximation of b.

To compute a safe upper bound of MBSi for each compo-
nent, we use over-approximations of the initial input curves to
“pre-analyze” the whole network. First we have the following
property by examining the computation rules of GPC:

Property 1. If α1 ⪰ α2 and β1 ⪰ β2, then α
′

1 ⪰ α
′

2 and
β
′

1 ⪰ β
′

2, where (α
′

1, β
′

1) = GPC(α1, β1) and (α
′

2, β
′

2) =

GPC(α2, β2).

So we know that if we start with over-approximations of
the initial input curves, then during the whole “pre-analysis”
procedure all the resulting curves are over-approximations of
their correspondences. Further, we know

Property 2. If αu1 ⪰ αu2 and βl1 ⪰ βl2, then MBS(αu1 , β
l
1) ≥

MBS(αu2 , β
l
2).

Therefore, if we use over-approximations of the initial input
curves to conduct the analysis of the system, then the resulted

maximal busy-period size of each component i, denoted by
MBS∗

i , is an safe upper bound of the real MBSi of that
component with the original curves.

There are infinitely many possibilities to over-approximate
the initial input curves to conduct the pre-analysis procedure.
In this paper we choose to use the “tightest” linear functions
as their over-approximations: each initial input curve pair f =

(fu, f l) is over-approximated by f = (fu, f l) where fu(∆) =

au ×∆ + bu and f l(∆) = al ×∆ + bl with

au = s(fu) bu = inf{ b ∣ ∀∆ ∶ au ×∆ + b ≥ fu(∆)}

al = s(f l) bl = sup{ b ∣ ∀∆ ∶ al ×∆ + b ≤ f l(∆)}

Using these linear functions as the initial inputs, the generated
curves in the pre-analysis procedure only contain polynomially
many segments and the computations are very efficient.

B. Decision of Curve Upper Limits
The decision of the upper limit of each finitary curve starts

with the end components. Since the output curves of an end
component are not used by other components, it is enough to
set the upper limit of the input finitary curves of each end
component i to be MBS∗

i . Then we can traverse the whole
analysis network backwards, using (14) to iteratively compute
the upper limits of the finitary input curves of each component.
The pseudo-code of this procedure is shown in Algorithm 1.

Example 1. We use linear functions to over-approximations
the initial inputs α1, α2, β1, β2 to pre-analyze the system in
Figure 2. Suppose the resulting estimated maximal busy-period
sizes are MBS∗

1 = 10, MBS∗

2 = 12, MBS∗

3 = 14 and MBS∗

4 =

20. Then we iteratively compute the size of the finitary curves:

∣α
′

2∣ = ∣β
′

2∣ = MBS∗

4 = 20

∣α
′

1∣ = ∣β2∣ = MBS∗

3 +max(∣β
′

2∣,0) = 14 + 20 = 34

∣α2∣ = ∣β
′

1∣ = MBS∗

2 +max(∣α
′

2∣,0) = 12 + 20 = 32

∣α1∣ = ∣β1∣ = MBS∗

1 +max(∣α
′

1∣, ∣β
′

1∣) = 10 + 34 = 44

To use (9) to analyze the end-to-end delay Dend of an event
stream, we can use the over-approximations of the initial input
arrival curve and the related service curves to decide the upper
limits to which these curves are required to be kept:

∣α∣ = ∣β1∣ = ⋯ = ∣βn∣ = MBS(αu∗, βl∗1 ⊗β
l∗
2 ⊗⋯⊗β

l∗
n)

where αu∗, βl∗1 ,⋯, β
l∗
n are the over-approximations of the

initial input upper arrival curve αu and the related lower
service curves βl1,⋯, β

l
n.

C. Complexity
In summary, the analysis of a network by Finitary RTC

consists of three steps: (1) Using linear over-approximations
of initial input curves to analyze the network “forwards”
and get an estimated MBS∗ for each component. (2) Using
the estimated MBS∗ values to traverse the analysis network
“backwards” to decide the upper limits of the input finitary
curves of each component. (3) Conduct the analysis of the
network “forwards” with the finitary curves.

Finding the “tightest” linear over-approximation of a curve
is of pseudo-polynomial complexity (polynomial with respect
to the number of segments contained by the curve). With

1: Mark all component as unfinished.
2: for each end component i do
3: ∣αini ∣ = ∣βini ∣←MBS∗

i

4: Mark component i as finished
5: end for
6: while exist unfinished components do
7: Select an unfinished component j whose successors are

both finished (i.e., ∣αoutj ∣ and ∣βoutj ∣ are known).
8: ∣αinj ∣ = ∣βinj ∣←MBS∗

j +max(∣αoutj ∣, ∣βoutj ∣)

9: Mark component j as finished
10: end while
Algorithm 1: Pseudo-code of algorithm computing the upper
limit of each finitary curve.

the linear over-approximations of the initial input curves, the
maximal number of segments of each curve generated in the
pre-analysis is polynomial with respect to network size. So
the overall complexity of step (1) is pseudo-polynomial. It
is easy to see that the complexity of step (2) is polynomial.
Since for each component s(αu)/s(βl) is bounded by a
constant ε strictly smaller than 1, the estimated MBS∗ with the
linear curve over-approximations is bounded by a number that
is pseudo-polynomially large. Therefore, each finitary curve
obtained by Algorithm 1 has a pseudo-polynomial upper limit.
Since the complexity of GPCT is polynomial with respect to
the curve upper limits and the value of T (i.e., the estimated
MBS∗), the complexity of the analysis for each component is
pseudo-polynomial, and the overall complexity of step (3) is
also pseudo-polynomial. In summary, the overall complexity
of the whole analysis procedure is pseudo-polynomial.

VII. EVALUATION

In this section we use synthetic systems to evaluate the effi-
ciency improvement of the Finitary RTC approach. We use the
metric speedup ratio to represent the efficiency improvement
of Finitary RTC over the original RTC:

speedup ratio =
time cost of analysis by original RTC
time cost of analysis by Finitary RTC

In Section VII-A we present a case study to give a general
picture of the efficiency improvement by Finitary RTC. Then
in Section VII-B we adjust the parameters of this system to
discuss different factors that affect the speedup ratio.

We implement Finitary RTC in RTC Toolbox [22]. RTC
Toolbox consists of two major software components: a Java-
implemented kernel of basic RTC operations and a set of
Matlab libraries to provide high-level modeling capability.
Since the Java kernel is not open-source, we implement
Finitary RTC only using the open-source Matlab libraries: For
each finitary curve f , we use a linear curve to replace the part
beyond its upper limit ∣f ∣ instead of actually removing this
part. Therefore, we can reuse the Java kernel of RTC Toolbox
to implement the idea of Finitary RTC. All experiments are
conducted on a desktop computer with a 3.4GHZ Intel Core
i7 processor.

A. Case Study
We consider a fairly small and simple system of a 4×3 2D-

mesh analysis network, as shown in Figure 4. All initial input

Figure 4. Analysis network of the case study.

α1 α2 α3 α4

p 10 14 18 22
j 2 3 5 6
d 4 6 8 4

β1 β2 β3
s 4 6 8
c 6 8 10
b 1 1 1

Table I
PARAMETERS OF THE INITIAL INPUT ARRIVAL AND SERVICE CURVES

event curves are specified by the parameter triple (p, j, d),
where p denotes the period, j the jitter and d the minimum
inter-arrival distance of events [16]. The arrival curves of a
(p, j, d)-specified stream are

αu(∆) = min(⌈
∆ + j

p
⌉ , ⌈

∆

d
⌉) , αl(∆) = ⌊

∆ − j

p
⌋

All initial input service curves correspond to TDMA resource.
Each resource is specified by a triple (s, c, b), where a slot of
length s is allocated with very TDMA cycle c, on a resource
with total bandwidth b [22]. The service curves of a (s, c, b)-
specified resource are

βu(∆) = (⌊
∆

c
⌋ ⋅ s +min(∆ mod c, s)) ⋅ b

βl(∆) = (⌊
∆′

c
⌋ ⋅ s +min(∆′ mod c, s)) ⋅ b

where ∆′ = max(∆ − c + s,0). The parameters of the input
arrival and service curves are shown in Table I.

Using the original RTC approach, the analysis of the whole
network completes in 415 seconds, while using the Finitary
RTC approach proposed in this paper, the analysis only takes
0.14 seconds. The Finitary RTC approach leads to a speedup
ratio of about 3000 in this case study.

If we modify the system parameters by changing the period
p of the third and fourth event stream to 19 and 23 respectively,
which leads to a larger hyper-period of the four event streams,
then the original RTC approach cannot accomplish the analysis
since an overflow error occurs in the Java kernel of the RTC-
Toolbox, while the analysis by Finitary RTC still completes
within 0.14 seconds.

B. Factors that Affect the Speedup Ratio
The speedup ratio between the Finitary RTC and original

RTC heavily depends on the system parameters. In this section
we adjust the parameters of the example system in the above
case study to discuss factors that affect the speedup ratio.

As introduced in Section III, in the original RTC the period
of the output curves typically equals the LCM of the periods
of the input curves. For example, a system with initial input
curves having co-prime periods may lead to very large curve
periods. To evaluate the analysis efficiency of the original

RTC with different parameter complexity degree, we adjust
the period parameter p of each initial input arrival curve to get
systems with different hyper-periods. We randomly generate
period p of each curve (within a certain scope), to construct
systems with different hyper-periods of input event streams,
then calculate the average analysis time cost in the original
RTC and Finitary RTC of systems with hyper-periods in a
certain scope, as shown in Table II. For example the column
starting with “1 ∼ 2” in Table II reports the average analysis
time cost in the original RTC and Finitary RTC of systems
with hyper-period between 1000 and 2000. From Table II we
can see that the analysis time cost in the original RTC grows
rapidly as the hyper-period increases, while Finitary RTC is
not sensitive to the hyper-period changes and keeps very low
time cost all the time. The speedup ratio is more significant
for systems with more complex timing characteristics.

The analysis efficiency of Finitary RTC depends on the
curve upper limits. In general, the closer is the long-term ratio
of αu to βl, the bigger is MBS(αu, βl) and thus the bigger is
the upper limits of the finitary curves. We define the maximal
utilization among all the components in the analysis network:

Umax = max
each component i

{
s(αui)

s(βli)
}

where αui and βli are the input upper arrival and lower service
curve of component i. We adjust the bandwidth b for all of the
three (s, c, b)-specified TDMA resource in Table I to construct
systems with different Umax. We are only interested in systems
with Umax ≤ 1, since otherwise some components in the
system deem to have unbounded backlog and delay, and the
system is considered to be a failure immediately. From Table
III we can see that the time cost of the Finitary RTC approach
increases as we increase Umax. Nevertheless, Finitary RTC
can speed up the analysis by 1000 times with systems of
relatively high Umax (up to 0.8). Even for systems with Umax
that are pretty close to 1 (e.g., Umax = 0.96), Finitary RTC
still can significantly improve the analysis efficiency (speed
up the analysis by 20 times).

The above experiments show that Finitary RTC drastically
speeds up the analysis under different parameter configura-
tions. The speedup is more significantly for systems with more
complex timing characteristics and lighter workloads.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we propose Finitary RTC to drastically improve
the analysis efficiency of the RTC framework. The cental idea
is to use a (small) piece of each infinite curve in the analysis
procedure, which avoids the “period explosion” problem in the
original RTC and results in a pseudo-polynomial complexity
(the original RTC has exponential complexity). In practise,
Finitary RTC can drastically improve the analysis efficiency,
especially for systems with complex timing characteristics.
Finitary RTC does not introduce any extra pessimism, i.e.,
its analysis results are as precise as using the original RTC.

Although we present Finitary RTC in the context of a
particular type of component GPC, the same idea can be
also extended to components modeling different scheduling
policies like FIFO and EDF. In this paper we assume the
analysis networks to be acyclic. It is not clear yet how to

hyper-period (×103) 1 ∼ 2 2 ∼ 3 3 ∼ 4 4 ∼ 5 5 ∼ 6 6 ∼ 7 7 ∼ 8 8 ∼ 9 9 ∼ 10 10 ∼ 11 11 ∼ 12 12 ∼ 13
original RTC (second) 2.15 14.51 108.94 195.77 362.95 487.65 643.097 797.32 841.75 1043.68 1342.16 1696.53
Finitary RTC (second) 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

speedup ratio 15 112 778 1398 2592 3483 4592 5695 6012 7454 9586 12118

Table II
EXPERIMENT RESULTS OF SYSTEMS WITH DIFFERENT HYPER-PERIODS.

b (bandwidth) 1 0.9 0.8 0.7 0.6 0.5 0.45 0.425
Umax 0.41 0.45 0.51 0.58 0.68 0.82 0.91 0.96

original RTC (second) 415.58 487.24 522.38 419.58 388.64 271.01 322.17 305.77
Finitary RTC (second) 0.14 0.14 0.15 0.19 0.20 0.40 14.25 12.74

speedup ratio 2968 3478 3480 2747 2092 970 19 24

Table III
EXPERIMENT RESULTS OF SYSTEMS WITH DIFFERENT MAXIMAL UTILIZATIONS

generalize Finitary RTC to the analysis of systems with cyclic
event and resource dependencies. A straightforward extension
of Finitary RTC to cyclic systems is to bound the number of
iterations after which the analysis is guaranteed to converge,
and extend the curve upper limits following the analysis
iterations, which may lead to very large curve upper limits and
less significant efficiency improvement. In the future we will
study efficient application of Finitary RTC to cyclic systems.

REFERENCES

[1] S. K. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-
real-time sporadic tasks on one processor. In Proceedings of the 11th
Real-Time Systems Symposium (RTSS), 1990.

[2] Sanjoy K. Baruah, Deji Chen, Sergey Gorinsky, and Aloysius K. Mok:.
Generalized multiframe tasks. Real-Time Systems, 1999.

[3] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms
and tools. In Lectures on Concurrency and Petri Nets, 2003.

[4] J. L. Boudec and P. Thiran. Network calculus - a theory of deterministic
queuing systems for the internet. In LNCS 2050. Springer Verlag, 2001.

[5] Samarjit Chakraborty, Simon Künzli, and Lothar Thiele. A general
framework for analysing system properties in platform-based embedded
system designs. In DATE, 2003.

[6] Lothar Thiele Ernesto Wandeler. Characterizing workload correlations
in multi processor hard real-time systems. In RTAS, 2005.

[7] Arne Hamann, Marek Jersak, Kai Richter, and Rolf Ernst. Design
space exploration and system optimization with symta/s-symbolic timing
analysis for systems. In RTSS, 2004.

[8] Michael Gonzalez Harbour, J. J. Gutierrez Garcia, Jose C. Palencia
Gutierrez, and J. M. Drake Moyano. Mast: Modeling and analysis suite
for real time applications. In ECRTS, 2001.

[9] Bengt Jonsson, Simon Perathoner, Lothar Thiele, and Wang Yi. Cyclic
dependencies in modular performance analysis. In EMSOFT, 2008.

[10] Kai Lampka, Simon Perathoner, and Lothar Thiele. Analytic real-time
analysis and timed automata: a hybrid method for analyzing embedded
real-time systems. In EMSOFT, 2009.

[11] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with
arbitrary deadlines. In RTSS, 1990.

[12] A. Maxiaguine, Yongxin Zhu, S. Chakraborty, and Weng-Fai Wong.
Tuning soc platforms for multimedia processing: identifying limits and
tradeoffs. In CODES+ISSS, 2004.

[13] Matthieu Moy and Karine Altisen. Arrival Curves for Real-Time
Calculus: The Causality Problem and Its Solutions. In TACAS, 2010.

[14] Simon Perathoner, Tobias Rein, Lothar Thiele, Kai Lampka, and Jonas
Rox. Modeling structured event streams in system level performance
analysis. In LCTES, 2010.

[15] Linh T. X. Phan, Samarjit Chakraborty, and P. S. Thiagarajan. A multi-
mode real-time calculus. In RTSS, 2008.

[16] K. Richter. Compositional scheduling analysis using standard event
models. In Ph.D. Thesis, Technical University Carolo-Wilhelmina of
Braunschweig, 2005.

[17] Lothar Thiele Arne Hamann Simon Schliecker Rafik Henia Razvan Racu
Rolf Ernst Michael Gonzalez Harbour Simon Perathoner, Ernesto Wan-
deler. Influence of different abstractions on the performance analysis
of distributed hard real-time systems. In Design Autom. for Emb. Sys.,
2009.

[18] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. In Proc. Inti. Symposium on Circuits
and Systems, 2000.

[19] Lothar Thiele, Ernesto Wandeler, and Nikolay Stoimenov. Real-time
interfaces for composing real-time systems. In EMSOFT, 2006.

[20] Ken Tindell and John Clark. Holistic schedulability analysis for
distributed hard real-time systems. In Microprocessing and Micropro-
gramming, 1994.

[21] Ernesto Wandeler. Modular performance analysis and interface-based
design for embedded real-time systems. In PhD thesis, ETHZ, 2006.

[22] Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC)
Toolbox. http://www.mpa.ethz.ch/Rtctoolbox.

APPENDIX A: PROOF OF THEOREM 1
We first prove that in order to compute B(αu, βl) it is

sufficient to only check αu and βl up to MBS(αu, βl). More
precisely, we prove

sup
λ≥0

{αu(λ) − βl(λ)} = sup
MBS≥λ≥0

{αu(λ) − βl(λ)} (15)

Let m = MBS(αu, βl), so αu(m) = βl(m). For any non-
negative λ, let q = ⌊ λ

m
⌋ and r = λ − q ⋅m, and by the sub-

additivity of αu and super-additivity of βl we have

αu(λ) = αu(q ⋅m + r) ≤ αu(q ⋅m) + αu(r) ≤ q ⋅ αu(m) + αu(r)

βl(λ) = βl(q ⋅m + r) ≥ βl(q ⋅m) + βl(r) ≥ q ⋅ βl(m) + βl(r)

by which we have

αu(λ) − βl(λ) ≤ q ⋅ (αu(m) − βl(m)) + αu(r) − βl(r)

⇔ αu(λ) − βl(λ) ≤ αu(r) − βl(r) (∵ αu(m) = βl(m))

In other words, for any λ ≥ 0, we can always find a
corresponding r in the range of [0,m] (m = MBS(αu, βl))
such that αu(λ) − βl(λ) ≤ αu(r) − βl(r), which proves (15).

To prove the theorem for D(αu, βl), we can use the
same reasoning as above to the “inverse functions” of αu(λ)
and βl(λ): D(αu, βl) is the horizontal distance between the
“inverse functions” of αu(λ) and βl(λ), and the “inverse func-
tion” of αu(λ) is super-additive and the “inverse function” of
βl(λ) is sub-additive. We omit the proof details for D(αu, βl)
due to space limit.

APPENDIX B: PROOF OF THEOREM 2
We first introduce some useful concepts and notations [21]:

R[s, t) denotes the number of events arrived in time interval
[s, t), and R′[s, t) denotes the number of processed events
in [s, t). C[s, t) denotes the amount of available resource in
[s, t), and C ′[s, t) denotes the amount of remaining resource
in [s, t). Further, the following relation is known [21]:

R′
[s, t) = C[s, t) −C ′

[s, t) (16)

B(t) denotes the backlog at time t. Moreover, we use p to
denote an arbitrarily early time point with B(p) = 0. The RTC
framework assumes there always exists such a time point p.

Definition 8 (Busy Period). A time interval (s, t) is a busy
period iff both of the following conditions hold: (i) ∀x ∈ (s, t) ∶
B(x) ≠ 0 and, (ii) B(s) = B(t) = 0. Moreover, we call s the
start point of the busy period (s, t), and t its end point.

Lemma 1. Given an event stream restricted by upper arrival
curve αu and resource restricted by lower service curves βl,
the size of any busy period is bounded by MBS(αu, βl).

Proof: Follows the definitions of MBS and busy period.

Then we introduce another important auxiliary lemma:

Lemma 2. Let x2 be an arbitrary time point with B(x2) = 0.
Then ∀x1 ∶ p ≤ x1 ≤ x2:

sup
x1≤x≤x2

{C[p, x) −R[p, x)} = C ′
[p, x2) (17)

Proof:
Since B(x2), all the events arrived before x2 have been

processed before x2, so we have

C ′
[p, x2) = C[p, x2) −R[p, x2) −B(p)

= C[p, x2) −R[p, x2) (∵B(p) = 0)

So in the following we only need to prove

C[p, x2) −R[p, x2) = sup
x1≤x≤x2

{C[p, x) −R[p, x)} (18)

It is easy to see that the LHS of (18) is no larger than its RHS.
In the following we only need to prove that it holds LHS ≥

RHS as well. We do this by contradiction, assuming

C[p, x2) −R[p, x2) < sup
x1≤x≤x2

{C[p, x) −R[p, x)}

So there must exist a time point x′ ∈ [x1, x2) such that:

C[p, x2) −R[p, x2) < C[p, x′) −R[p, x′) (19)
⇔ C[x′, x2) < R[x′, x2) (20)

i.e., the total service provided in [x′, x2) is strictly smaller
than the events arrived in the same time interval, which leads
to a contradiction with B(x2) = 0.

In the following we prove that the upper/lower bounds in
Theorem 2 are safe. More specifically, for any two time points
s, t with t − s = ∆ ≥ 0, we prove the following inequalities:

αu
′

∶ R′
[s, t) ≤ min(sup

0≤λ≤T
{ inf

0≤µ≤λ+∆
{αu(µ)

+ βu(λ +∆ − µ)} − βl(λ)}, βu(∆))

αl
′

∶ R′
[s, t) ≥ min(inf

0≤µ≤∆
{ sup

0≤λ≤T
{αl(µ)

− βu(λ +∆ − µ)} + βl(λ)}, βl(∆))

βu
′

∶ C ′
[s, t) ≤ inf

∆≤λ≤T
{βu(λ) − αl(λ)}+

βl
′

∶ C ′
[s, t) ≥ sup

0≤λ≤∆
{βu(λ) − αl(λ)}

Proof of αu
′

:
First of all, by R′[s, t) = R′[p, t) − R′[p, s) and (16) we

have

R′
[s, t) = C[p, t) −C ′

[p, t) −C[p, s) +C ′
[p, s) (21)

We define a time point s′ as follows:
● If B(s) = 0, then let s′ = s.
● If B(s) ≠ 0, then let s′ be the start point of the busy

period containing s. By T ≥ MBS and Lemma 1 we
know s − T ≤ s′.

Then we can apply Lemma 2 (x1 = s − T and x2 = s
′) to get

C ′
[p, s′) = sup

s−T≤b≤s′
{C[p, b) −R[p, b)}

Therefore, we can rewrite (21) as

R′
[s, t) = sup

s−T≤b≤s′
{C[s, t)−C ′

[p, t)+C[p, b)−R[p, b)} (22)

Now we focus on the expression inside the sup operation in
the above equation, with an arbitrary b satisfying s−T ≤ b ≤ s′.

By the same way as defining s′, we define t′ with respect
to t, and apply Lemma 2 (x1 = b and x2 = t

′) to get

C ′
[p, t′) = sup

b≤a≤t′
{C[p, a) −R[p, a)} (23)

We discuss in two cases
● If B(t) = 0, i.e., t = t′, we can rewrite (23) as

C ′
[p, t′) = sup

b≤a≤t
{C[p, a) −R[p, a)}

● If B(t) ≠ 0, i.e., t′ is the start point of the busy period
containing t. Therefore, for any time point c ∈ (t′, t], the
available resource in time interval [t′, c) is strictly smaller
than the request in that interval (otherwise the busy period
terminates at c), i.e.,

∀c ∈ (t′, t] ∶ C[t′, c) −R[t′, c) < 0

⇔∀c ∈ (t′, t] ∶ C[p, c) −R[p, c) < C[p, t′) −R[p, t′)

⇒ sup
b≤a≤t

{C[p, a) −R[p, a)} = sup
b≤a≤t′

{C[p, a) −R[p, a)}

Combining this with (23) we get

C ′
[p, t′) = sup

b≤a≤t
{C[p, a) −R[p, a)}

In summary, no matter whether B(t) equals 0 or not, we have

C ′
[p, t′) = sup

b≤a≤t
{C[p, a) −R[p, a)}

And by the definition of t′ we know C ′[t′, t) = 0, we have

C ′
[p, t) = C ′

[p, t′) = sup
b≤a≤t

{C[p, a) −R[p, a)}

So we can rewrite (22) as

R′
[s, t) = sup

s−T≤b≤s′
{C[s, t) − sup

b≤a≤t
{C[p, a) −R[p, a)}

+C[p, b) −R[p, b)}

= sup
s−T≤b≤s′

{ inf
b≤a≤t

{C[s, t) +C[a, b) −R[a, b)}}

≤ sup
s−T≤b≤s

{ inf
b≤a≤t

{C[s, t) +C[a, b) −R[a, b)}}

We define λ = s − b and µ = a + λ − s. Since a ≥ b, we also
know µ ≥ 0. Further, ∆ = t − s. Applying these substitutions
to above we have

R′
[s, t) ≤ sup

0≤λ≤T
{ inf

0≤µ≤λ+∆
{R[s − λ,µ − λ + s)

+C[µ − λ + s, t) −C[s − λ, s)}

Use the upper and lower curves to substitute R and C in above:

R′
[s, t) ≤ sup

0≤λ≤T
{ inf

0≤µ≤λ+∆
{αu(µ) + βu(λ +∆ − µ)} − βl(λ)}

Further, it is obvious that R′[s, t) is also bounded by βu(∆),
so finally we have

R′
[s, t) ≤min(sup

0≤λ≤T
{ inf

0≤µ≤λ+∆
{αu(µ) + βu(λ +∆ − µ)}

− βl(λ)}, βu(∆))

Proof of αl
′

:
By the computation of αl

′

in the original GPC we have:

R′
[s, t) ≥min(inf

0≤µ≤t−s
{sup

0≤λ
{αl(µ) − βu(λ + t − s − µ)}

+ βl(λ)}, βl(t − s))

⇒ R′
[s, t) ≥min(inf

0≤µ≤t−s
{ sup

0≤λ≤T
{αl(µ) − βu(λ + t − s − µ)}

+ βl(λ)}, βl(t − s))

Proof of βu
′

:
By the computation of βu

′

in the original GPC we have:

C ′
[s, t) ≤ inf

t−s≤λ
{βu(λ) − αl(λ)}+

⇒ C ′
[s, t) ≤ inf

t−s≤λ≤T
{βu(λ) − αl(λ)}+

Proof of βl
′

:
The proof is trivial since the computation of βl

′

in GPCT
is exactly the same as in the original GPC.

APPENDIX C: PROOF OF THEOREM 3
We first introduce an important lemma:

Lemma 3. Given well-defined arrival and service curves α
and β, and two arbitrary non-negative real numbers x and y,

αl(x) ≥ αl(x + y) − αu(y) (24)

βu(x) ≤ βu(x + y) − βl(y) (25)

Proof: Since α = (αu, αl) is a well-defined (thus causal)
arrival curve pair, we know αl = αl⊘αu (see Definition 5),
i.e.,

αl(x) = sup
λ≥0

{αl(x + λ) − αu(λ)}

⇒ αl(x) ≥ αl(x + y) − αu(y)

Since β = (βu, βl) is also a causal service curve pair, we know
βu = βu⊘βl, i.e.,

βu(x) = inf
λ≥0

{βu(x + λ) − βl(λ)}

⇒ βu(x) ≤ βu(x + y) − βl(y)

Now we start to prove Theorem 3. More specifically,
we shall prove that the output arrival/service upper curves
obtained by GPCT are no larger than its counterpart obtained
by GPC, and the output arrival/service lower curves are no
smaller than that obtained by GPC.

Proof of αu
′

:
Let F (∆, λ) = inf0≤µ≤λ+∆{αu(µ)+βu(λ+∆−µ)}−βl(λ).

To prove that the αu
′

obtained by GPCT is no larger than that
obtained by GPC, we need to show that ∀∆ ≥ 0:

min{ sup
0≤λ≤T

{F (∆, λ)}, βl(∆)} ≤ min{sup
0≤λ

{F (∆, λ)}, βl(∆)}

which is obviously true.
Proof of αl

′

:
The main task of this proof is to show

sup
0≤λ≤T

{αl(µ + λ) − βu(λ)} = sup
0≤λ

{αl(µ + λ) − βu(λ)} (26)

As soon as (26) is proved, it is easy to see that the αl
′

obtained
by GPCT is no smaller than its counterpart obtained in GPC.
In the following we prove (26).

For simplicity of presentation, let m = MBS(αu, βl), so
αu(m) = βl(m). For an arbitrary λ with λ ≥ 0, let q = ⌊ λ

m
⌋

and r = λ− q ⋅m. Then by Lemma 3 and the sub-additivity of
αu we know

αl(µ + λ) − αl(µ + r) ≤ αu(q ⋅m) ≤ q ⋅ αu(m) (27)

On the other hand, by Lemma 3 and the supper-additivity of
βl we also know

βu(µ + λ) − βu(µ + r) ≥ βl(q ⋅m) ≥ q ⋅ βl(m) (28)

By (27), (28) and αu(m) = βl(m) we can get

αl(µ + λ) − βu(µ + λ) ≤ αl(µ + r) − βu(µ + r)

In other words, for any λ ≥ 0, we can always find a correspond-
ing r in the range of [0,m] such that αl(µ+λ)−βu(µ+λ) ≤
αl(µ + r) − βu(µ + r), and by m ≤ T we finally get (26).

Proof of βu
′

:
We want to prove

inf
0≤λ≤T

{βu(λ) − αl(λ)}+ = inf
0≤λ

{βu(λ) − αl(λ)}+ (29)

Similar with the above proof, let m = MBS(αu, βl), so
αu(m) = βl(m). Let q = ⌊ λ

m
⌋ and r = λ − q ⋅m. Then by

Lemma 3 and the sub-additivity of αu we know

αl(λ) − αl(r) ≤ αu(q ⋅m) ≤ q ⋅ αu(m) (30)

On the other hand, by Lemma 3 and the super-additivity of
βl we can get

βu(λ) − βu(r) ≥ βl(q ⋅m) ≥ q ⋅ βl(m) (31)

By (30), (31) and αu(m) = βl(m) we have

βu(λ) − αl(λ) ≥ βu(r) − αl(r)

In other words, for any λ ≥ 0, we can always find a corre-
sponding r in the range of [0,m] such that βu(λ) − αl(λ) ≥
βu(r) − αl(r), and since m ≤ T , finally we get (29).

Proof of βl
′

:
The proof is trivial since the computation of βl

′

in GPCT
is exactly the same as in the original GPC.

