
Effective and Efficient Scheduling of Certifiable
Mixed-Criticality Sporadic Task Systems

Nan Guan1,2, Pontus Ekberg1, Martin Stigge1 and Wang Yi1,2
1Uppsala University, Sweden

2Northeastern University, China

Abstract—An increasing trend in embedded system design is
to integrate components with different levels of criticality into a
shared hardware platform for better cost and power efficiency.
Such mixed-criticality systems are subject to certifications at
different levels of rigorousness, for validating the correctness
of different subsystems on various confidence levels. The real-
time scheduling of certifiable mixed-criticality systems has been
recognized to be a challenging problem, where using traditional
scheduling techniques may result in unacceptable resource waste.
In this paper we present an algorithm called PLRS to schedule
certifiable mixed-criticality sporadic tasks systems. PLRS uses
fixed-job-priority scheduling, and assigns job priorities by explor-
ing and balancing the asymmetric effects between the workload
on different criticality levels. Comparing with the state-of-the-art
algorithm by Li and Baruah for such systems, which we refer to
as LB, PLRS is both more effective and more efficient: (i) The
schedulability test of PLRS not only theoretically dominates, but
also on average significantly outperforms LB’s. (ii) The run-time
complexity of PLRS is polynomial (quadratic in the number of
tasks), which is much more efficient than the pseudo-polynomial
run-time complexity of LB.

I. INTRODUCTION

A major trend in modern real-time embedded systems
is to integrate different functionalities into a single shared
computing platform to meet rapidly increasing cost, power and
thermal constraints. Typically, these different functionalities
are not equally critical to the overall system performance.
For example, in the control system of an unmanned aerial
vehicle executing surveillance missions, it is more important to
guarantee the correctness for the flight-critical functionalities
such that the vehicle does not crash, than for the mission-
critical functionalities like capturing images.

The functionalities with different criticalities in the system
are usually subject to more or less rigorous forms of analysis
depending on their overall criticality. For example [4], in order
to get permission for an unmanned aerial vehicle to operate
over civilian airspace, it is mandatory that its flight-critical
functionalities be certified by authorities like US Federal
Aviation Authority or European Aviation Safety Agency. The
certification by such authorities is extremely rigorous: the sys-
tem is examined under exceedingly pessimistic assumptions,
which are very unlikely to occur in reality. However, these
authorities are not interested in anything else except the safety
of the vehicle. It is not important for them whether surveillance
missions like capturing images are executed in time or not. On
the other hand, the whole system, including both the flight-
critical and mission-critical functionalities, must be validated

by the manufacturers or other qualification agencies, who usu-
ally use a less rigorous standard than the aviation authorities.

The design of such certifiable mixed-criticality real-time
systems has been recognized to be a very important but
challenging problem in the emerging discipline of Cyber-
Physical Systems [1], [4]. Roughly speaking, in such systems
the “importance” and “urgency” of the workload are decou-
pled, and need to be carefully balanced in the scheduling.
Neither the “importance” (i.e., criticality) nor the “urgency”
(i.e., deadline) on its own can be used as a good scheduling
criterion. Indeed, the problem of optimally scheduling such
mixed-criticality systems is highly intractable even with very
simple system models [2].

Baruah et. al. [4] proposed an effective algorithm, called
OCBP (Own Criticality Based Priority), to schedule a simple
version of such systems, which consists of a finite number
of non-recurrent jobs. The strength of OCBP is to use
more global knowledge of the system to better explore the
asymmetric effects between different criticality levels. Such a
global knowledge is much more effective than simple criteria
like deadlines or criticalities, and OCBP provides significantly
better performance than other strategies like EDF and Critical-
ity Monotonic (higher criticality jobs have higher priorities).
Indeed, OCBP is optimal, in terms of speedup factor [9],
among all the fixed-job-priority algorithms for the finite non-
recurrent job set model [2].

However, real-time tasks are typically recurrently executing,
and are usually modeled as sporadic tasks. Recently, Li and
Baruah [12] proposed an algorithm, which we refer to as
LB, to extend OCBP to sporadic tasks. The main idea of
LB is to at run-time recompute the priority assignment for
future jobs from time to time according to the system state
(Section II will introduce LB in detail). Although LB brings
very interesting ideas on how to apply the OCBP priority
assignment principle to sporadic tasks, it still has serious
limitations in both effectiveness and efficiency:
• The performance of LB is unsatisfactory as it relies on

very pessimistic schedulability tests based on load bound
conditions.

• The run-time overhead of LB is large as it needs on-line
pseudo-polynomial priority assignment recomputation.

In this paper, we present a new algorithm PLRS (Priority
List Reuse Scheduling) to schedule certifiable mixed-criticality
sporadic task systems, which overcomes both the above limi-
tations of LB:

• The schedulability test of PLRS not only theoretically
dominates, but also on average significantly outperforms
LB’s. This is analogous to the well-known relation be-
tween the response time analysis and utilization bounds:
PLRS’s schedulability test still maintains LB’s load
bound, but can accept many task systems that are denied
by LB’s load bound.

• The run-time complexity of PLRS is polynomial
(quadratic in the number of tasks), which is much more
efficient than the pseudo-polynomial run-time complexity
of LB. In practise, PLRS’s run-time overhead can be
several orders of magnitude smaller than LB’s.

The key for PLRS to overcome both of LB’s limitations is to
understand and utilize the “critical instant” of the scheduling in
a more abstract way. Although the system behavior can not be
represented by a single critical instant (that’s why LB needs to
perform the heavy run-time priority assignment recomputation
and relies on the pessimistic load bounds), we still can abstract
the workload characterization for a set of critical instants by
a particular scenario. Therefore, on one hand we can off-line
analyze the system with this particular scenario for a much
better analysis precision; on the other hand we can at run-
time schedule the system according to (with some lightweight
adjustments) the priority assignment generated off-line under
this scenario, which results in much more efficient run-time
scheduling.

II. RELATED WORK

The mixed-criticality scheduling problem was first identified
and formalized by Vestal in [18], where he proposed a fixed-
task-priority algorithm to schedule such systems. Dorin et. al.
[8] formally proved that the algorithm in [18] is optimal in the
scope of fixed-task-priority preemptive algorithms. However,
as pointed out by Baruah and Vestal [5], the algorithm in [18]
is by no means optimal if we are not restricted to fixed-task-
priority preemptive algorithms, and is actually incomparable
with the EDF algorithm.

Recognizing the ineffectiveness of applying traditional
scheduling techniques to mixed-criticality systems, Baruah et.
al. conducted a series of fundamental works on a simpler
model consisting of a finite number of jobs with fixed release
times. First they showed that deciding the feasibility of such
job sets is strongly NP-hard even if all the jobs are released
at the same time [2]. Then in [4] they proposed an effective
heuristic algorithm OCBP, which guarantees to successfully
schedule any feasible job set with two criticality levels on a
1.618 times faster machine. One can also use the insight from
[4] to derive a load bound for OCBP, and the bound is refined
in [13]. The results in [4] were further extended to arbitrary
number of criticality levels [3].

The state-of-the-art technique of scheduling mixed-
criticality sporadic task systems is the LB algorithm proposed
by Li and Baruah [12]. LB adopts the effective OCBP
principle, therefore, it is more flexible than fixed-task-priority
algorithms or EDF. Applying OCBP to sporadic tasks is not
a trivial extension due to at least two problems: (i) Since a

sporadic task system will generate infinitely many jobs, the
off-line priority computation procedure of OCBP will not
terminate. (ii) OCBP requires the release time of each job
to be known. However, in sporadic task systems the release
time of each job is not known beforehand. LB solved the first
problem by only computing the priorities for the jobs that
can be released in one busy interval. LB solved the second
problem by the following approach: Before the system starts
running, LB computes a priority assignment for all jobs that
can be released in a busy interval, assuming an as-early-as-
possible job release pattern. Then jobs are scheduled according
to this priority assignment, until some time point when the
job releases deviate from the assumed pattern. Under these
circumstances, LB will recompute a new priority assignment,
and use it to schedule jobs until the next time some job’s
released does not exactly follow the expectation.

Although LB brings very interesting ideas on how to apply
the OCBP priority assignment principle to sporadic tasks,
it still has serious limitations in the following two aspects:
(i) The performance of LB is unsatisfactory as it relies on
very pessimistic schedulability test conditions. (ii) The run-
time overhead of LB is large as it needs pseudo-polynomial
run-time computation.

Our new algorithm PLRS will address both of these two
problems. PLRS can be analyzed by a much more precise
scheduliability test, and thereby provides significantly better
performance. The run-time scheduling of PLRS is of polyno-
mial complexity, and (the safe bound of) its run-time overhead
could be several orders of magnitude smaller than LB’s.

A. Other Related Works
De Niz et al. [7] considered a different aspect of mixed-

criticality systems regarding effective scheduling of mixed-
criticality tasks that may overrun. Nevertheless, [7] provides
interesting ideas on how to dynamically adjust a task/job prior-
ity to protect the high criticality tasks from the interference of
low criticality tasks, while still as much as possible maintain
a “good” priority order from the urgency point of view. This
approach has been later extended to handle systems with
non-preemptable shared resources [10] and distributed/parallel
systems where the mixed-criticality workload needs to be
allocated to different execution units [11]. Pellizzoni et. al.
[16] proposed a reservations-based approach to ensure strong
isolation among subsystems of different criticalities. Petters
et. al. [17] also considered the use of temporal isolation of
subsystems for mixed-criticality systems, and addressed many
practical issues in building such systems in reality. The draw-
back of the resource/temporal isolation approach is that it re-
lies on severely over-provisioning computing resources, which
may result in significant cost and energy waste. Mollison et.
al. [15] adopt the criticality monotonic priority assignment
for mixed-criticality scheduling on multi-core platforms. The
higher-criticality tasks run with high priorities, and in the
common case where they use only a small fraction of their
execution time budgets, the lower-criticality tasks can execute
in the remaining slack time.

III. PROBLEM MODEL

We consider the scheduling of Mixed-Criticality (MC) spo-
radic task systems on a preemptive single processor. As in
traditional real-time systems, a MC sporadic task generates a
potentially infinite sequence of MC jobs. We start with the
definition of MC jobs.

A. MC Jobs
Each MC job is characterized by a 4-tuple: Ji =

〈ai, di, `i, ci〉, where
• ai ∈ R+ is the release time.
• di ∈ R+ is the (absolute) deadline.
• `i ∈ [1, 2, · · · , L] is the criticality of the job, where L is

the number of criticality levels in the system.
• ci ∈ RL+ is a vector. The `th element in the vector,

denoted by ci(`), specifies the worst-case execution time
(WCET) estimate of job Ji at criticality level `.

We follow the convention in real-time scheduling literatures
that a smaller priority value represents a higher priority. We
use a larger criticality value to represent a higher criticality.

Further, we adopt the following assumptions about the
execution time of a MC job Ji, as in the original work of
OCBP [4]:
• ∀`a > `b : ci(`

a) ≥ ci(`
b). This corresponds to the fact

that the execution time estimation on a higher criticality
level is more conservative.

• ∀`a > `i : ci(`
a) = ci(`i). No job is allowed to execute

for more than its WCET at its own specified criticality.
The semantics of the MC job model is as follows: Job Ji

is released at time ai, has a deadline at di, and needs to
execute for some amount of time γi. However, the value of
γi is not known beforehand, but only becomes revealed by
actually executing the job until it signals that it has completed
execution. Job Ji is said to have exhibited a λ-criticality
behavior, where

λ = min{`|γi ≤ ci(`)}.

If it does not signal completion upon having executed for ci(L)
(L is the highest criticality level), its behavior is erroneous,
denoted by L+ 1.

B. MC Tasks
Each MC sporadic task is characterized by a 4-tuple: τk =

〈Dk, Tk, `k, Ck〉, where
• Dk ∈ R+ is the relative deadline.
• Tk ∈ R+ is the minimal release separation (period).
• `k ∈ [1, 2, · · · , L] is the criticality level of the task.
• Ck ∈ RL+ is a vector. The `th element in the vector,

denoted by Ck(`), specifies the worst-case execution time
(WCET) estimate of task τk at criticality level `.

Note that there is no constraint on the relation between the
relative deadline and period of a task: Dk can be larger than,
smaller than or equal to Tk.

A MC task system τ consists of N independent MC tasks.
Each MC task τk potentially releases an infinite sequence of

MC jobs, with successive jobs being released at least Tk time
apart. We use J ∈ τk to denote job J is released by task τk.

C. MC-Schedulablity
The MC task system is subjected to certifications on each

criticality level. The system is temporally correct, i.e., schedu-
lable, if and only if it passes all the certifications.

We say that the system behavior is of criticality-λ, if the
highest criticality level of any job’s behavior in the system is λ.
If any job in the system exhibits erroneous behavior, the sys-
tem’s behavior is erroneous. We define the MC-schedulability
under a scheduling algorithm A as follows:

Definition III.1 (MC-schedulability). Under a given schedul-
ing algorithm A, a job Ji is MC-schedulable if and only if for
criticality-λ system behavior the following implication holds:

λ ≤ `i ⇒ Ji has finished by di

A task τi is MC-schedulable if and only if all the jobs
released by τi are MC-schedulable. An MC task system τ
is MC-schedulable if and only if all the tasks in τ are MC-
schedulable.

By the above definition we can see that if the system
exhibits a behavior with criticality higher than job Ji’s criti-
cality `i, then Ji does not need to meet its deadline for the
scheduling to be considered successful. This is because no
certification authority will require that Ji meets its deadline
in this situation: for the authorities certifying the system at
a criticality level higher than `i, meeting Ji’s deadline is not
required; for authorities at a criticality level lower than or equal
to `i, the system behavior is not within their assumption.

IV. THE NEW ALGORITHM PLRS
As introduced in Section II, both of LB’s limitations are due

to the run-time priority recomputation. The reason why LB has
to repeatedly perform the recomputation is that the priority
assignment obtained assuming the as-early-as-possible job
release pattern does not guarantee the system schedulability
if some jobs are released later than expected. The crucial ob-
servation behind our new algorithm PLRS is that, although the
as-early-as-possible job release pattern itself is not a concrete
worst-case system behavior, the information contained in this
pattern can actually represent the worst-case system behavior
in an abstract way. By correctly extracting and utilizing such
information, we only need to perform the priority computation
once off-line. The results of this computation can be used
(with some lightweight calculations) at run-time to assign job
priorities. In this way, PLRS avoids the heavy on-line priority
assignment recomputations, and solves both the performance
and run-time overhead limitations of LB.

In the following we first introduce PLRS’s off-line compu-
tation, then introduce how the results of the off-line computa-
tion are used in PLRS’s run-time scheduling. Later in Section
V we will prove that the system’s schedulability is completely
determined on the off-line computation, and in Section VI we
will show that PLRS’s run-time scheduling is of polynomial
complexity.

A. Off-line Computation

As pointed out in [12], although a sporadic task system
will potentially release an infinite number of jobs, at any time
we only need to consider the jobs that can be released in
the current busy interval. This is because before the system
goes into the next busy interval, there must be a time point
at which the processor becomes idle and the system is reset
to the same state as in the beginning of the previous busy
interval. Therefore, the jobs released in the next interval can
be scheduled by the same principle as in the previous one. For
the same reason, the off-line computation of PLRS only needs
to consider a set of jobs (denoted by I) that can be released in
one busy interval. We can derive a pseudo-polynomial upper
bound1 on the number of jobs from each task in I [12]. In the
following, we use nk to denote this bound for each task τk.

The first step of PLRS’s off-line computation is to compute
a priority order for all the jobs in I . Since all the jobs from
the same task are identical, we can always assign priorities
to jobs from the same task in the way that later jobs never
have higher priorities. Among the jobs from the same task,
we thus already have a reasonable priority order, and we only
need to consider the relative priority orders between jobs from
different tasks.

The priority assignment is computed based on the OCBP
principle, which is essentially the same as the run-time priority
recomputation in LB: Each task τk is related to a number δk
which denotes the number of τk’s jobs that have not been
assigned a priority. Initially, δk = nk. The algorithm first
determines which task’s largest-index job can be assigned the
lowest priority. Task τk’s largest-index job Jδkk is eligible to
be assigned the lowest priority if it satisfies the condition:∑

τj∈τ
(δj × Cj(`k)) ≤ (δk − 1)× Ti +Di. (1)

The LHS of the condition represents the total workload of
all the remaining jobs in I if the system’s behavior is of
criticality level `k, and the RHS is the minimal distance
between the absolute deadline of Jδkk and the beginning of
the busy interval. So if the LHS does not exceed the RHS,
we can guarantee that Jδkk is MC-schedulable if all other jobs
have higher priorities. In general there could be more than
one task whose largest-index job is eligible to be assigned the
lowest priority, and in this case we can arbitrarily choose one
of them. After deciding the lowest priority job Jδkk , we set
δk ← δk − 1 to exclude that job from the consideration in
future steps.

We then repeat the above procedure until all the jobs are
assigned a priority each, or at some point no job is eligible to
be assigned the lowest priority. If the algorithm terminates with
the first case, we say that the off-line computation algorithm
succeeds, otherwise, it is a failure. Note that the priority
assignment itself is not meant to provide any schedulability

1The bound presented in [12] is for MC task systems with two criticality
levels, however, it can be easily extended to systems with arbitrary number
of criticality levels by induction.

TABLE I
AN EXAMPLE TASK SYSTEM.

Task Ti Di `i Ci(1) Ci(2)
τ1 10 10 1 (low) 1 1
τ2 20 20 2 (high) 1 2
τ3 30 30 1 (low) 15 15
τ4 50 50 2 (high) 15 25

guarantee, i.e., even if the off-line computation algorithm
succeeds, the task system may still be not MC-schedulable
if at run-time the jobs are scheduled strictly following this
priority assignment.

Example IV.1. Consider the MC task system in Table I. We
assume2 that initially δ1 = 6, δ2 = 3, δ3 = 2 and δ4 = 1. The
following is a possible result by PLRS’s off-line computation
for this example:

high low
1 2 3 4 5 6 7 8 9 10 11 12
J1
1 J2

1 J1
2 J3

1 J1
3 J2

2 J1
4 J4

1 J5
1 J3

2 J2
3 J6

1

We choose J1
4 to illustrate the usage of Condition (1). At the

step of assigning the lowest priority to J1
4 , the remaining jobs

are {J1
1 , J

2
1 , J

1
2 , J

3
1 , J

1
3 , J

2
2 , J

1
4}, i.e., δ1 = 3, δ2 = 2, δ3 = 1

and δ4 = 1. Since J1
4 ’s criticality level is 2, so the LHS of

Condition (1) equals:

δ1 × C1(2) + δ2 × C2(2) + δ3 × C3(2) + δ4 × C4(2) = 47.

On the other hand, the RHS of Condition (1) is:

(δ4 − 1)× T4 +D4 = 50.

So Condition (1) is true for J1
4 and it can be assigned the

lowest priority at that step.

By now we have obtained a priority order for the jobs
that can be released in a busy interval. However, this priority
assignment will not be directly used in the on-line scheduling
of PLRS. Instead, we will derive an individual priority list
Λk for each task τk, by collecting the priorities assigned to
the jobs of task τk in an ordered list. We use Λk(x) to denote
the xth priority value in the individual priority list.

Example IV.2. Corresponding to the resulting priority order
in Example IV.1, the priority list Λk for each task is as follows.
For example, we have Λ1(4) = 8 since the fourth priority
value in Λ1 is 8.

Λ1 1 2 4 8 9 12
Λ2 3 6 10
Λ3 5 11
Λ4 7

B. Run-Time Scheduling
PLRS is fixed-job-priority preemptive scheduling. PLRS

will calculate priority prt(J) for each job J . For each task
τk, PLRS at run time maintains a plan for the priorities of its

2The number of jobs that can be released in a busy interval is actually larger
according to the bound in [12]. Here we only consider a subset of these jobs
for illustration.

future jobs that can be released in the current busy interval.
We use Ψk to denote τk’s priority plan, which records a set
of indices directing to the priority values in Λk. According
to the priority plan, the first future job will get the priority
in Λk identified by the smallest index stored in Ψk, and the
next future job will get the priority identified by the second
smallest index and so on.

We can use a pair (α, β) to abstractly represent several
consecutive indices in Ψk, where α is the first one and β
the last one of these consecutive indices. So we can represent
Ψk by a set of such pairs {(α1, β1), (α2, β2), · · · }. We use
|(αm, βm)| = βm − αm + 1 to denote the number of
indices represented by this pair. For example, the priority
plan recording indices {1, 2, 5, 6, 7, 11} is represented by
{(1, 2), (5, 7), (11, 11)}, and |(1, 2)| = 2, |(5, 7)| = 3 and
|(11, 11)| = 1. Note that, this abstract representation of Ψk is
the key for PLRS to have polynomial run-time complexity.

When a job Ji of task τi is released, PLRS executes the
priority management routine PrtMng(Ji) to first adjust the
priority plans according to the system state, and then assign
the released job a priority. In the following, we will in detail
introduce the working principle of PrtMng(Ji), and later in
Section VI we discuss its computational complexity.

PrtMng(Ji) first checks whether the processor is currently
idle. If yes, a new busy interval starts, and each task will
reset its priority plan to the initial state, in which the coming
jobs will be assigned priorities simply following the priority
lists Λ1, . . . ,ΛN . If currently a job Jcur is running, then
PrtMng(Ji) compares prt(Jcur) with the planned priority of
the released job Ji according to the current plan Ψi. If Ji’s
planned priority is higher, PrtMng(Ji) adjusts each task’s
priority plan. Finally, Ji gets its priority according to the
new priority plan after the adjustment, and Ji’s information
is removed from the plan.

The priority plan adjustment is the key step of PLRS. Intu-
itively, for each task τk, the adjustment will find a “borderline”
in its priority plan Ψk according to the priority of the currently
running job Jcur. Then the indices directing to priorities higher
than prt(Jcur) will be promoted (become smaller) as much as
possible, while the other ones remain unchanged.

The algorithm in Figure 1 shows the pseudo-code of
PrtMng(Ji) with six operations on the priority plan. We use
Ψi = {(α1, β1), (α2, β2), · · · } to denote τi’s priority plan
before an operation, and Ψ′i after an operation, to explain the
functionality of each operation as follows:

• Reset(Ψi) resets Ψi to its initial state:

Ψ′i ← {(1, ni)}. (2)

where ni is the maximal number of jobs τi can release
in a busy interval.

• GetFirst(Ψi) returns Λi(α1), where Λi is the priority list
of τi and α1 is the first index in the first pair of Ψi.

• Locate(Λi, pcur) returns the largest index x with an entry
strictly less than pcur, i.e., max {x | Λi(x) < pcur}

• Split(Ψk, µ) divides the pair (αm, βm) satisfying αm ≤

1: if the processor is currently idle then
2: for each τk do
3: Reset(Ψk)
4: end for
5: else
6: pcur ← the currently running job’s priority
7: prls ← GetFirst(Ψi)
8: if prls < pcur then
9: for each τk do

10: µ← Locate(Λk, pcur)
11: Split(Ψk, µ)
12: Merge(Ψk, µ)
13: end for
14: end if
15: end if
16: prt(Ji)← GetFirst(Ψi)
17: RmvFirst(Ψi)

Fig. 1. The priority management routine PrtMng(Ji).

µ < βm, if there is one, into two pairs:

Ψ′i ← {(α1, β1), · · · , (αm, µ), (µ+ 1, βm)︸ ︷︷ ︸
the orginial (αm,βm)

, · · · }. (3)

• Merge(Ψk, µ) merges the pairs (α1, β1), · · · , (αm, βm)
into one pair, where (αm, βm) is the last pair satisfying
βm ≤ µ.

Ψ′i ← {(α, β), (αm+1, βm+1), · · · } (4)

and the resulting new pair (α, β) is:

(α, β)← (1,
∑m
x=1 |(αx, βx)|) .

• RmvFirst(Ψi) removes the first index represented in Ψi:

Ψ′i ←
{
{(α1 + 1, β1), (α2, β2), · · · } α1 < β1
{(α2, β2), · · · } α1 = β1

(5)

.

Example IV.3. We use the task system in Example IV.1 and
the priority lists in Example IV.2 to illustrate how PrtMng(Ji)
works. We assume that all the tasks release the first job at
time 0, and the initial priority plans of τ1 and τ2 are shown
in Figure 3-(a). Figure 3-(b) shows their priority plans at time
36, just before the release of J2

2 . Comparing with Figure 3-(a),
both Ψ1 and Ψ2 have shrunk for one index due to the release of
J1
1 and J2

1 . When J2
2 is released, by GetFirst(Ψ2) we know

its planned priority is 6, which is higher than the currently
running job J2

3 ’s priority 11, so PrtMng(Ji) executes line
9 to line 13 to adjust each task’s priority plan. For τ1, the
adjustment first uses Locate(Λ1, 11) to find the borderline 5,
which is the largest index in Λ1 directing to a priority higher
than the currently running job’s priority 11. Split(Ψ1, 5) splits
the pair (2, 6), which is crossed by the borderline 5, into two
pairs (2, 5) and (6, 6), and Merge(Ψ1, 5) merges all the pairs
before the borderline (in this example only one pair), and
pushes them to smaller indices as much as possible. So the
pair (2, 5) becomes (1, 4). For τ2, first Locate(Λ2, 11) finds

0 4

J3
1

J4
1

8 12 16 20 24 28 32 36 40 44 48 52

1

2

3

4

J1
1

J2
1 J2

2

time

J3
2

J1
2

Fig. 2. An example to illustrate PrtMng(Ji). The number in brace after
each job name denotes the priority this job obtained at release.

1 2 3 4 5 6 1 2 3

1

1

2

2

(a) The initial priority plan

1 2 3 4 5 6 1 2 3

(b) at time 36, before J2
2 is released

1 2 3 4 5 6 1 2 3

(c) at time 36, after J2
2 is released

1 2 3 4 5 6 1 2 3

(d) at time 50, after J2
1 is released

Fig. 3. Illustration of how the priority plans of τ1 and τ2 changes over time.

the borderline 3, and then Merge(Ψ2, 3) pushes the pair (2, 3)
to small indices, i.e., change (2, 3) to (1, 2). Finally, J2

2 gets
its priority 3 according to the new priority plan, and the first
index represented in Ψ2 is removed to delete the priority plan
for the released job J2

2 . At time 50, J2
1 is released at idle time,

so each task will reset its priority plan to the initial state. The
released job J2

1 gets the priority 1 according to the initial
priority plan, after which the first index represented in Ψ1 is
removed to exclude the priority plan for J2

1 .

Finally, we address a subtle technical issue: a higher priority
job Jh may be released at the same time as a lower priority job
Jl finished its work. In this case, we construct the scheduler
so that Jl temporally does not signal completion, but will be
preempted by Jh, and wait until the earliest time instant when
Jl is scheduled to execute again and signal its completion.
By this construction, we exclude the possibility that a higher
priority job starts execution right after a low priority Jl
signals completion. In other words, right after a job signalled
completion, the processor must be running a job with priority
lower (including the idle job). By such a construction, we
have the following property, which will be useful in the proof
of PLRS’s schedulability and run-time complexity in later
sections:

Lemma IV.4. Suppose a job Ja signalled completion at time
ta, and later at time tb another job Jb with prt(Jb) < prt(Ja)
is preempted. Then there must be a job Jc with prt(Jc) >
prt(Ja) which is preempted at some time point tc ∈ (ta, tb).

Proof: We prove by contradiction. Assume there is no
such job Jc with priority prt(Jc) > prt(Ja) which is pre-
empted at any tc ∈ (ta, tb), i.e., every job with priority lower
than Ja executing in (ta, tb) can execute to completion without
interruption.

Therefore, right after Ja signalled completion, the processor
started to run a job J1 with lower priority (recall that we
construct the run-time scheduler of PLRS in the way that

right after a job Jl signalled completion, the processor must
be running a job with priority lower than Jl, as discussed
at the end of the Section IV-B), and by our assumption J1
will execute to completion without interruption. For the same
reason, right after J1 signalled completion, another job J2
with priority lower than J1 will execute to completion. The
procedure repeats until some job Jx signalled completion and
Jb starts execution at tb. It follows that all these jobs have
lower and lower priorities, so we have

prt(Ja) < prt(J1) < prt(J2) < · · · < prt(Jx) < prt(Jb).

This contradicts the assumption prt(Jb) < prt(Ja).

V. SCHEDULABILITY OF PLRS

In this section we will show that the schedulability of
PLRS is determined by off-line computation, i.e., any task
set τ that succeeds with PLRS’s off-line computation is MC-
schedulable by PLRS’s run-time scheduling algorithm.

To simplify the presentation, from now on we will view an
idle processor as executing an “idle” job J⊥ with the lowest
priority +∞. Any job released by the task system has higher
priority than J⊥ and thereby preempts J⊥, which corresponds
to the fact that a released job will immediately execute if the
processor is currently idle.

In the run-time scheduling of PLRS, each job actually has
been planned a priority before it is released (with the priority
plans Ψ). However, the planned priority may change from time
to time until the job is released. To capture a job’s priority
that is planned by PLRS until it is released, we introduce the
concept of expected priority epp(J, t). Intuitively, epp(J, t)
represents the priority which J will eventually get if all the
jobs from the same task strictly follow the priority plan at
time t. Consider the example in Figures 2 and 3. We have
epp(J6

1 , 40) = 12, since if the unreleased jobs J2
1 · · · J6

1

strictly follow the priority plan at time 40, which is the same
as Figure 3-(c), then J6

1 will get the priority 12. Below is
the formal definition of epp(J, t), in which (6) describes how
to parse the information in Ψi to obtain the corresponding
priority value.

Definition V.1 (Expected Priority). Given a job J and a time
instant t strictly before its release. Suppose J is the xth job
ever released by τi and τi has released y jobs by t. Let
Ψi = {(α1, β2), (α2, β2), · · · } be τi’s priority plan at t (after
priority adjustment if there is any). Then J’s expected priority
epp(J, t) at time t is defined as follows:

epp(J, t) = Λi(x− y −
m−1∑
z=1

|(αz, βz)|+ αm − 1) (6)

where (αm, βm) is the pair in Ψi satisfying:

m−1∑
z=1

|(αz, βz)| < x− y ≤
m∑
z=1

|(αz, βz)|. (7)

Note that x > y since t is strictly before J’s release time,
otherwise epp(J, t) is not defined. Further, there always exists

a pair satisfying (7), since the job set used to construct the
priority assignment in PLRS’s off-line computation is large
enough to cover all the jobs that will be released in a busy
interval. In other words, the system is always reset to the
initial state before all the indices in Ψi are consumed. The
expected priorities also follow the convention that a smaller
value represents a higher priority.

Further, we use t− to denote a time instant that is before,
but arbitrarily close to t, and thereby we can use epp(J, t−)
to denote the concept of J’s planned priority at time t just
before all the priority adjustments at t.

Lemma V.2. If job J is released at time r, we have the
following properties:

1) ∀t < r : epp(J, t) ≥ prt(J)
2) ∀t < r : if epp(J, t−) > epp(J, t), then there must be

some job Jcur (possibly the idle job) with prt(Jcur) >
epp(J, t−) being preempted at t.

Proof: These properties follow directly from the defini-
tion of epp(J, t) and the construction of PLRS’s run-time
scheduling. The first property: When a job J is released at
r, its priority is assigned by its up-to-date expected priority
after the priority adjustment at t. Also the priority adjustment
never causes the expected priority of a job to become lower
(increase in value): Both Reset and Merge only “move” a pair
to smaller indices. Therefore we know at any time the expected
priority for a job is not higher than its priority. The second
property: From PLRS’s run-time rules, we know that a job’s
expected priority only changes when the priority adjustment
is triggered. For this, there must be some job released whose
expected priority is higher than the currently running job. After
the priority adjustment, this released job will get a priority
no lower than the expected priority before, because of the
first property. This must cause a preemption to the currently
running job.

Now we will use the expected priority concept and its
properties to prove PLRS’s schedulability: Any task set for
which PLRS’s off-line computation succeeds is guaranteed
to be MC-schedulable by PLRS’s run-time scheduling. The
overall proof strategy is by contradiction: We assume PLRS’s
off-line computation is successful for a task set τ , but τ is not
MC-scheduable by PLRS’s run-time scheduling. We let a job
Ji of task τi be the first job that is not MC-schedulable, i.e.,
the system behavior is no higher than Ji’s criticality level `i
before Ji’s deadline di, and Ji has not signalled completion
by di. We will show that this contradicts the assumption that
the off-line computation of PLRS was successful, by which
the proof is established.

In the remaining part of this section, Ji (a job of task τi)
denotes the first job that is not MC-schedulable. The proof
will focus on the workload that occurs in a particular time
interval ending with Ji’s deadline di:

Definition V.3 (Problem Window). The problem window is the
time interval (t0, di], where t0 is the latest time point before di
at which some job with priority lower than prt(Ji) (possibly

the idle job J⊥) is preempted.

Lemma V.4. Any job Jk that executes in the problem window
(t0, di] satisfies both of the following conditions:

1) Jk is released no earlier than t0
2) epp(Jk, t0) ≤ epp(Ji, t0)

Proof: We prove the first claim by contradiction. We let
Jp be the job preempted at t0, and by the definition of t0
we know prt(Jp) > prt(Ji). Suppose Jk is a job released
before t0, which executes in (t0, di]. Since at t0 it is Jp, but
not Jk, being preempted, we know prt(Jk) > prt(Jp). So we
can conclude that prt(Jk) > prt(Ji). Therefore, there must
be some time point t1 ∈ (t0, di] at which the processor starts
to execute the jobs whose priorities are higher than prt(Ji)
(otherwise Ji would be able to finish its work before deadline).
So by Lemma IV.4 we know at t1 some job with priority lower
than prt(Ji) is preempted. This contradicts with that t0 is the
latest time point before di at which some job (possibly the
idle job J⊥) with priority lower than prt(Ji) is preempted.

We prove the second claim also by contradiction. Assume
Jk is a job executing in (t0, di], which satisfies

epp(Jk, t0) > epp(Ji, t0). (8)

By the first property of Lemma V.2, we know prt(Jk) ≤
epp(Jk, t0). Then we distinguish the following two cases:

1) prt(Jk) < epp(Jk, t0)
2) prt(Jk) = epp(Jk, t0)

Consider case 1). Since prt(Jk) < epp(Jk, t0), we know
there must be some time point t1 > t0 at which Jk’s expected
priority for the first time becomes higher than epp(Jk, t0),
i.e., t1 satisfies:

epp(Jk, t
−
1) = epp(Jk, t0) (9)

and
epp(Jk, t1) < epp(Jk, t0).

Then by the second property of Lemma V.2 we know it must
be true that at t1 some job Jl with priority satisfying

prt(Jl) > epp(Jk, t
−
1) (10)

is preempted. By combining (8), (9) and (10) we have

prt(Jl) > epp(Ji, t0).

By the first property of Lemma V.2 we also know
epp(Ji, t0) ≥ prt(Ji), so we have prt(Jl) > prt(Ji), i.e.,
at t1, a time point strictly later than t0, a job with priority
lower than prt(Ji) is preempted, which contradicts with the
definition that t0 is the latest time point before di at which a
job with priority lower than prt(Ji) is preempted.

Now consider case 2). By prt(Jk) = epp(Jk, t0) and (8) we
have prt(Jk) > epp(Ji, t0). By the first property of Lemma
V.2 we also have epp(Ji, t0) ≥ prt(Ji), so we know prt(Jk) >
prt(Ji).

Since Jk’s priority is lower than Ji’s, there must exist some
time point t1 ∈ (t0, di] at which the processor starts to execute

jobs whose priorities are no lower than Ji’s priority prt(Ji).
So by Lemma IV.4 we know at t1 some job with priority lower
than prt(Ji) is preempted. This contradicts with that t0 is the
latest time point before di at which some job (possibly the
idle job J⊥) with priority lower than prt(Ji) is preempted.

In summary, the assumption leads to a contradiction in both
cases, so the second claim is proved.

Now we are ready to establish the main theorem for PLRS’s
schedulability.

Theorem V.5. Any MC task system τ that succeeds with the
off-line calculation algorithm of PLRS is MC-schedulable by
PLRS’s run-time scheduling.

Proof: We prove by contradiction, and use the same
notation as above: Let Ji be the first job that is not MC-
schedulable, and (t0, di] be the problem window.

By Lemma V.4 we know all the jobs that can execute in
(t0, di] are released no earlier than t0, and have expected
priorities no lower than Ji after the adjustment at t0. We use
I1 to denote the set of these jobs.

Assume Ji is the xth job of τi in I1. Since τ succeeds
with PLRS’s off-line computation, Condition (1) holds for τi
at each step in the off-line computation, and in particular, the
following holds:∑

τj∈τ
δxj × Cj(`i) ≤ (x− 1)× Ti +Di (11)

where δxj denotes the number of τj’s jobs that had not been
assigned yet when assigning the priority of the xth job of τi
during the off-line computation.

By Lemma V.4 we know all the jobs in I1 have not
been released before t0, and each Jk of these jobs satisfies
epp(Jk, t0) ≤ epp(Ji, t0). Therefore, the number of jobs in
I1 for any task τj is at most δxj (otherwise some of τj’s jobs
in I1 will end up with expected priorities lower than Ji’s). So
we have the following:∑

Jj∈I1

cj(`i) ≤
∑
τj∈τ

δxj × Cj(`i). (12)

Since Ji is the xth job in I1, we know

(x− 1)× Ti +Di ≤ di − t0. (13)

By (11), (12) and (13) we have∑
Jj∈I1

cj(`i) ≤ di − t0. (14)

On the other hand, we know that before di each job Jj
executes for at most cj(`i), since the system behavior is no
higher than `i before di. Therefore we know the total workload
of the jobs that executed in (t0, di] (the ones in I1) is no larger
than

∑
Jj∈I1 cj(`i). And since at least one of these jobs (Ji)

has not finished yet by di, we have∑
Jj∈I1

cj(`i) > di − t0

which contradicts with (14).

A. Comparing with LB

We start with introducing the load concept in the context of
MC task systems. In traditional (non MC) real-time systems,
the load is the maximum over all time intervals, of the
cumulative execution requirement by the whole task system
over the interval, normalized by the interval length [14].
Informally, the load represents a lower bound on the portion
of processing capacity required by this task system to meet all
deadlines.

Analogous to this concept, we can define the load for a MC
system on each criticality level.

Definition V.6. The criticality-` load of a MC task system τ
is defined by

Ld`(τ) = max
0≤t1≤t2

 ∑
∀Ji:`i≥`∧t1≤ai∧di≤t2

ci(`)/(t2 − t1)

 .

For any criticality level `, Ld`(τ) can be computed us-
ing well-known techniques [6] for determining the loads of
traditional (i.e., non MC) sporadic task systems. Intuitively,
Ld`(τ) represents a lower bound on the portion of processing
capacity required by this task system with which it can meet all
deadlines only subjecting to the certification on criticality level
`. Clearly to correctly execute a MC task system, a necessary
condition is that the required portion of processing capacity
on each level should not exceed 1.

In [12], LB is presented in the context of systems with two
criticality levels, however, it can be easily extended to handle
MC task systems with any number of criticality levels, and
one can use the knowledge from [3] to get the following MC-
schedulability test condition:

∀` ∈ [1, L] : Ld`(τ) ≤ LoadBound(L) (15)

where Ld` is the load of criticality level `, and LoadBound(L)
is a function with respect to the total number of criticality
levels L of the system, which is recursively calculated as
follows:

LoadBound(1) = 1

LoadBound(L) =
2

1 +
√

4(1/LoadBound(L− 1))2 + 1
.

For the special case of L = 2, a more precise load condition
is available [13], [12]:

(Ld2(τ))2 + Ld1(τ) ≤ 1. (16)

The off-line computation algorithm of PLRS is essentially
the same as the run-time priority recomputation of LB, so we
know that any task set that satisfies the load bound test of LB,
can succeed with PLRS’s off-line computation, and thereby
is MC-schedulable by PLRS. So we know

Corollary V.7. PLRS’s schedulability test in Theorem V.5
dominates the LB’s load bound test.

We have also conducted experiments with randomly gener-
ated MC task sets to compare the acceptance ratio3 of PLRS
and LB. Our experiments show that PLRS indeed exhibits
a significantly better performance than LB, especially for
systems with more criticality levels.

VI. RUN-TIME COMPLEXITY

In this section, we discuss the run-time complexity of
PLRS. In particular, we analyze the run-time priority manage-
ment algorithm in Figure 1, which involves several operations
on the task priority plans Ψi. We will show that the number of
elements in each task priority plan Ψi is bounded by N + 1,
where N is the number of tasks in the system. We will use
this to show that all these operations are of complexity O(N).
Since PLRS’s run-time priority management operates on each
task’s priority plan, the overall complexity of PLRS’s run-time
priority management will therefore be O(N2).

Lemma VI.1. The operations Reset, GetFirst, Locate, Split,
Merge, RmvFirst can all be implemented with linear com-
plexity regarding the number of pairs in Ψi.

Proof: The proofs for Reset, GetFirst, Split, Merge and
RmvFirst are straightforward. Assuming an implementation of
Ψi as a linked list, these operations either operate only the first
pair or only need to linearly traverse the whole list.

To implement Locate, we can either do a binary search in
Λi resulting in polynomial complexity for this operation, or
even use an off-line pre-computed look-up table for deriving
the desired index in constant time.

In order to show that there are at most N+1 elements in Ψi,
we introduce the causer job concept. Each pair (α, β) ∈ Ψi

is assigned such a causer job, denoted by CJ(α, β). Once
assigned, the causer job of a pair (α, β) does not change. The
key idea is to show that at any time, all pairs will have different
causer jobs, but the number of causer jobs is bounded.

A causer job is assigned to a pair (α, β) when it is created,
which only happens in Reset, Split and Merge operations.
The causer job of a newly created pair is assigned according
to the following rules:
• When Reset resets Ψi to its initial state which only

contains one pair (1, nk), we set its causer job by:

CJ(1, nk)← the idle job J⊥.

• When Split splits a pair (αm, βm) into two pairs (αm, µ)
and (µ+ 1, βm) at time t, we set:

CJ(µ+ 1, βm)← CJ(αm, βm). (17)

• When Merge merges (α1, β1), . . . , (αm, βm) into one
pair (α, β) at time t, we set:

CJ(α, β)← the job that was executing at t−. (18)

Note that in the Split operation we do not need to assign the
causer job to the first resutling pair (αm, µ) since later in the

3The acceptance ratio of a scheduling algorithm (schedulability test) is the
ratio between the number of task sets that are deemed to be MC-schedulable
by the algorithm (test), and the total number of the task sets in the experiment.

Merge operation we will do this for either this pair or the new
pair merging this pair with the ones before it.

We have the following properties for the causer jobs:

Lemma VI.2. For any pair (α, β) in Ψk we have:

Λk(β) ≤ prt(CJ(α, β)). (19)

Proof: We prove by induction on the number of times for
which Reset, Split or Merge have been applied to Ψk.

The base case considers the initial state of Ψk, in which
there is only one pair, whose causer job is set to J⊥. The
lemma trivially holds in that case.

For the inductive step we show that the condition still holds
after a Reset operation or a priority adjustment at an arbitrary
time point t.

Reset: Same argument as the base case.
priority adjustment: Recall that the priority adjustment first

splits a pair (αm, βm) into two pairs (αm, µ) and
(µ + 1, βm) (if needed), and assigns a causer job
to the second resulting pair. Then it merges several
pairs (α1, β1), . . . , (αx, βx) before the borderline
(including the first resulting pair of Split if there
is) into a new pair (α, β) = (1,

∑x
j=1 |(αj , βj)|),

and assigns a causer job to it. We first consider the
second resulting pair of the Split operation. Condi-
tion (19) still holds for this pair, since it inherits the
causer job of the original pair. Then we consider
the resulting pair (α, β) of merging several pairs
(α1, β1), . . . , (αx, βx) before the borderline. First,
since the pairs (α1, β1), · · · , (αx, βx) do not overlap
with each other, we know βx ≥

∑x
j=1 |(αj , βj)| =

β. We also know βx ≤ µ by the definition of Merge,
so we have β ≤ µ, i.e., Λk(β) ≤ Λk(µ). By the
definition of Locate we also know Λk(µ) < prt(J),
where J is the the job executing at t−. So we
have Λk(β) ≤ prt(J), and by (18) we finally have
Λk(β) ≤ prt(CJ(α, β)).

Lemma VI.3. Suppose a job Jcur is preempted at time t.
After the priority adjustments at t, for each task τk we have

∀(α, β) ∈ Ψk : prt(CJ(α, β)) ≥ prt(Jcur). (20)

Proof: We will prove by induction on the number of
preemptions since system start.

The base case is when the system starts and the idle job J⊥
is preempted. In this case, there is only one pair in Ψk, and
its causer job is J⊥, so the lemma holds for the base case.

The inductive step is to show if the condition holds before
a preemption, it will still hold after a preemption. We use Ψ′k
to denote the state of Ψk after the priority adjustment at t.

The preemption at t happens because some job Ji is released
at t, and finally gets a priority higher than the Jcur. So
we know the priority adjustment (reset) was invoked at t:
If the priority adjustment (or Reset) was not invoked, then
epp(Ji, t

−) ≥ prt(Jcur) must be true (see line 8 in Figure 1),

and without the priority adjustment (or Reset) Ji’s final
priority won’t promote, and will not preempt prt(Jcur). So we
can conclude that at t, either Reset or the priority adjustment
(Locate, Split and Merge) is performed.

Reset: Same argument as the base case.
Priority adjustment: If the priority adjustment is performed

at t, then there can be two types of pairs in Ψk’: the
pairs that already exist in Ψk, and the pairs that are
newly created during the adjustment.
We first consider the pairs that already exist in
Ψk. Each such pair (α, β) is unchanged because it
satisfied µ < α with µ being the index returned by
Locate. From the definition of Locate we thus know
that prt(Jcur) ≤ Λk(α) ≤ Λk(β). Further, we have
from Lemma VI.2 that Λk(β) ≤ prt(CJ(α, β)) and
can conclude prt(CJ(α, β)) ≥ prt(Jcur).
Second, we consider the pairs that are newly created
in Split or Merge, focusing on Split first. Sup-
pose a pair (αm, βm) is split into two pairs, and a
causer job is assigned to the second resulting pair
(µ + 1, βm). By Lemma VI.2 we know Λk(βm) ≤
prt(CJ(αm, βm)), and by (17) we have

Λk(βm) ≤ prt(CJ(µ+ 1, βm)). (21)

By the definition of Split, the split pair (αm, βm) sat-
isfies µ < βm, which implies Λk(µ+ 1) ≤ Λk(βm).
By combining this and (21) we have

Λk(µ+ 1) ≤ prt(CJ(µ+ 1, βm)). (22)

By the definition of Locate we know µ is the
maximal index of Λk satisfying Λk(µ) < prt(Jcur),
so we know Λk(µ + 1) ≥ prt(Jcur). By this and
(22), we have prt(Jcur) ≤ prt(CJ(µ + 1, βm)), so
the lemma also holds for the second resulting pair
(µ+ 1, βm).
Finally we consider the pair newly created in Merge.
By the causer assignment rule in Merge (18), we
know its causer job is set to be Jcur, so the lemma
still holds for this new pair.

Lemma VI.4. If some element of Ψk is split at time ts, then
at ts after the priority adjustment operations, all causer jobs
in Ψk are active (started execution but not yet finished) jobs.
The idle job is considered to be always active.

Proof: By definition, it’s clear that a job may become a
causer job only after it has started execution. So we only need
to prove that a causer job has not been finished.

We prove by contradiction. Suppose a pair of Ψk is split at
time ts, and let Js be the job executing at t−s , i.e., the job that
was preempted at ts. We assume a causer job Jf has finished
at some time point tf < ts.

A job can only become a causer job when it is preempted,
i.e., before it is finished. So if this job is not a causer job at a
time point t after it is finished, it can not become a causer job

after t. Therefore, since Jf has finished at tf and it is still a
causer job at ts, we know Jf has became a causer job before
tf , and has been continuously being a causer job in [tf , ts].

Now we know that at time tf , job Jf signalled completion,
and later at time ts a job Js is preempted which has a higher
priority than causer job Jf because of Lemma VI.3. Thus, we
know from Lemma IV.4 that some job Jl with

prt(Jl) > prt(Jf) (23)

is preempted at some time point tl ∈ (tf , ts).
On the other hand, by Lemma VI.3 we know that after Jl

is preempted at tl ∈ (tf , ts), all the causer jobs of Ψk have
priority lower than prt(Jl). Since Jf is continuously being a
causer job in [tf , ts], and particularly, Jf is a causer job at tl,
we have prt(Jf) > prt(Jl), which contradicts with (23).

Lemma VI.5. At any time a priority plan Ψk contains at most
N + 1 pairs.

Proof: The size of Ψk can grow only when the Split
operation is executed, and by Lemma VI.4 we know that after
the splitting, all the causer jobs of Ψk are active jobs (including
the idle job). Since at any time each task has at most one active
job4, the number of active jobs in the system at any time is
at most N + 1 (from N tasks plus the idle job). Therefore we
know the number of causer jobs related to the pairs in Ψk is
at most N + 1.

Next we prove that no two pairs in Ψk share the same causer
job. According to the causer job assignment rules, there are
only two opportunities to introduce a new causer job: (1) the
Reset operation and (2) the Merge operation. After the Reset
operation there is only one pair in Ψk, so this will clearly not
lead to any causer job sharing. In the following we focus on
the Merge operation. We prove by contradiction, assuming
that at some time point t several pairs are merged into (α, β)
and it gets causer job J , which is the same as the one of
another pair (α′, β′) in Ψk. In this case it must be true that
β < β′ since all the pairs with smaller indices than β have
been merged into (α, β). By Lemma VI.2 we also know that
Λk(β′) ≤ prt(J) (note that J is the job executing at t−). So
due to the existence of (α′, β′), we know (α, β) is not the
last pair whose largest index directing to the priority equal
to or higher than the preempted job J , which contradicts the
definition of the Merge operation.

By now we have shown the number of causer jobs related
to the pairs in Ψk is at most N + 1, and each pair in Ψk has
a distinguished causer job, so the number of pairs in Ψk is
bounded by N + 1.

By Lemma VI.1 and VI.5 we know the operation on each
priority plan is of complexity O(N), and since there are N

4For sporadic tasks with constrained deadlines this is clearly true. For
sporadic tasks with arbitrary deadlines this is also true. The intuition is that,
in PLRS a job will never get a higher priority than an earlier job released
by the same task before this earlier job is finished. The formal proof for this
claim is omitted due to the space limit.

priority plans in the system, we can conclude the main result
of this section:

Theorem VI.6. The run-time priority management of PLRS
is of complexity O(N2).

A. Comparing with LB
Now we can see that the computational complexity of

PLRS’s run-time scheduling is significantly superior to LB.
What about the comparison of their overheads in practise?
Indeed, the number of jobs involved in LB’s run-time recom-
putation is typically very large, especially for the systems with
higher workload and/or more criticality levels. The run-time
overhead of PLRS can be of several orders of magnitude
smaller than LB for common task systems.

One may expect that the average-case overhead of LB is not
as bad as its worst-case bound. However, in the certification
on high criticality levels, we need a safe upper bound on
the run-time overhead. Therefore, even if in many cases the
average-case run-time overhead of LB is not very expensive,
we still have to adopt its pseudo-polynomial worst-case bound
in the certification (on high criticality levels), which would be
unacceptable in many realistic systems.

VII. CONCLUSION AND FUTURE WORK

In this paper we present an algorithm PLRS to schedule cer-
tifiable mixed-criticality sporadic task systems on a preemptive
uniprocessor machine. To better balance the asymmetric inter-
ference between different criticality levels, PLRS employs the
flexible priority assignment principle OCBP, which has been
proven very effective for the simple model of a finite set of
jobs with known release times. Applying the OCBP principle
to sporadic tasks is a difficult problem since a sporadic task
will potentially generate a infinite number of jobs, and the
release time of each job is not known a priori. The previous
algorithm LB solved this problem by on-line recomputing the
future job priority assignment, which results in both poor
real-time performance and pseudo-polynomially large run-time
overhead. Our new algorithm PLRS addressed both of these
two problems. First, PLRS not only theoretically dominates,
but also on average significantly outperforms LB in terms of
acceptance ratios. Second, the run-time complexity of PLRS is
polynomial (quadratic in the number of tasks), which is much
more efficient than the pseudo-polynomial run-time scheduling
in LB. In practise, PLRS’s run-time overhead can be several
orders of magnitude smaller than LB’s.

We consider the certifiable mixed-criticality scheduling
problem to be highly relevant in the design of future real-
time embedded systems and cyber-physical systems, especially
when the system is deployed on multi-core platforms. On
multi-cores, the gap between the safe estimation and the
typical measurement of a program’s execution time can be
huge due to the non-deterministic resource contention. As
future work, we plan to extend PLRS to global multiprocessor
scheduling. Our preliminary work indicates that such an exten-
sion is not trivial: directly applying PLRS to multiprocessor
setting would cause deadline miss. The reason is similar to

the key challenge in the traditional multiprocessor scheduling
problem (of non-MC task systems), that the synchronous task
release pattern is not necessarily the worst-case scenario. Since
the (abstract) critical-instant in PLRS is also based on the
synchronous task release pattern, the same problem raises
in applying PLRS to multiprocessor scheduling. Another
potential direction of our future work is to study the scheduling
of certifiable mixed-criticality task systems with inter-task
dependencies and shared resources.

REFERENCES

[1] J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Paunicka, P. Sarathy,
J. Stanfill, D. Stuart, and R. Urzi. Mcar white paper: A research agenda
for mixed-criticality systems. In CPS Week 2009 Workshop on Mixed
Criticality: Roadmap to Evolving UAV Certification, 2009.

[2] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie. Scheduling Real-Time Mixed-Criticality
Jobs. In the 35th International Symposium on Mathematical Foundations
of Computer Science (MFCS), 2010.

[3] S. Baruah, H. Li, and L. Stougie. Mixed-criticality scheduling: Im-
proved resource-augmentation results. In the ISCA 25th International
Conference on Computers and Their Applications (CATA), 2010.

[4] S. Baruah, H. Li, and L. Stougie. Towards the Design of Certifiable
Mixed-criticality Systems. In the 16th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2010.

[5] S. Baruah and S. Vestal. Schedulability analysis of sporadic tasks with
multiple criticality specifications. In the 20th Euromicro Conference on
Real-Time Systems (ECRTS), 2008.

[6] G. Buttazzo. Hard real-time computing systems: Predictable scheduling
algorithms and applications, second edition. 2005.

[7] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of
mixed-criticality real-time task sets. In the 30th IEEE Real-Time Systems
Symposium (RTSS), 2009.

[8] F. Dorin, P. Richard, M. Richard, and J. Goossens. Schedulability
and sensitivity analysis of multiple criticality tasks with fixed-priorities.
Real-Time Systems., 46:305–331, December 2010.

[9] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance.
In Journal of ACM, 2000.

[10] K. Lakshmanan, D. de Niz, and R. Rajkumar. Resource allocation
in distributed mixed-criticality cyber-physical systems. In the 30th
International Conference on Distributed Computing Systems (ICDCS),
2010.

[11] K. Lakshmanan, D. de Niz, and R. Rajkumar. Mixed-criticality task
synchronization in zero-slack scheduling. In the 17th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2011.

[12] H. Li and S. Baruah. An algorithm for scheduling certifiable mixed-
criticality sporadic task systems. In the 31st IEEE Real-Time Systems
Symposium (RTSS), 2010.

[13] H. Li and S. Baruah. Load-based schedulability analysis of certifiable
mixed-criticality systems. In the 10th ACM international conference on
Embedded software (EMSOFT), 2010.

[14] J. W. S. Liu. Real-time systems. Prentice Hall, 2000.
[15] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A.

Scoredos. Mixed-criticality real-time scheduling for multicore systems.
the 7th IEEE International Conferences on Embedded Software and
Systems (ICESS), 2010.

[16] R. Pellizzoni, P. Meredith, M. Y. Nam, M. Sun, M. Caccamo, and L. Sha.
Handling mixed criticality in soc-based realtime embedded systems. In
the 9th ACM IEEE International Conference on Embedded software
(EMSOFT), 2009.

[17] S. Petters, M. Lawitzky, R. Heffernan, and K. Elphinstone. Towards real
multi-criticality scheduling. In the 15th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2009.

[18] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In the 28th IEEE Real-
Time Systems Symposium (RTSS), 2007.

