Fixed-Priority Multiprocessor Scheduling: Beyond Liu & Layland Utilization Bound

Nan Guan', Martin Stigge!, Wang Yi! and Ge Yu?
1 Uppsala University, Sweden
2 Northeastern University, China

Abstract

The increasing interests in multicores raise the question whether
utilization bounds for uni-processor scheduling can be generalized
to the multiprocessor setting. Recently, this has been shown for the
famous Liu and Layland utilization bound by applying novel task
splitting techniques. However, parametric utilization bounds that
can guarantee higher utilizations (up to 100%) for common classes
of systems are not yet known to be generalizable to multiproces-
sors as well. In this paper, we solve this open problem for most
parametric utilization bounds by proposing new partitioning-based
scheduling algorithms.

As the second technical contribution, we show that the utilization
bound proofs can be established even when exact Response Time
Analysis is used for task partitioning. This enables significantly
improved average-case utilization in comparison to previous work.

1 Introduction

Liu and Layland discovered the famous utilization bound
N (2'/N — 1) for fixed-priority scheduling on uni-processors in the
1970’s [20]. Recently, we generalized this bound to multiproces-
sors by a partitioning-based scheduling algorithm [13].

The Liu and Layland utilization bound (L& L bound for short) is
pessimistic: There are a significant number of task systems that ex-
ceed the L& L bound but are indeed schedulable. System resources
would be considerably under-utilized if one only relies on the L& L
bound in the system design.

However, if more information about the task system is available
in the design phase, it is possible to derive higher parametric uti-
lization bounds regarding known task parameters. A well-known
example of parametric utilization bounds is the 100% bound for
harmonic task sets [21]: If the total utilization of a harmonic task
set T is no greater than 100%, then every task in 7 can meet its dead-
line under RMS on a uni-processor platform. Even if the whole task
system is not harmonic, one can still obtain a significantly higher
bound by exploring the “harmonic chains” in the system [16]. Gen-
erally, during the system design, it is usually possible to employ
higher utilization bounds with available task parameter informa-
tion, to better utilize the resources and decrease the system cost.
As will be introduced in Section 3, quite a few higher parametric
utilization bounds regarding different task parameter information
have been derived for uni-processor scheduling.

This naturally raises an interesting question: Can we gener-
alize these higher parametric utilization bounds derived for uni-
processor scheduling to multiprocessors? For example, given a
harmonic task system, can we guarantee the schedulability of the
task system on a multiprocessor platform of M processors, if the
utilization sum of all tasks in the system is no larger than M?

In this paper, we will address the above question by proposing
new RMS-based partitioned scheduling algorithms (with task split-
ting). We first present an algorithm RM-TS/light generalizing all

known parametric utilization bounds for RMS to multiprocessors,
for a subclass of “light” task sets in which each task’s individual
1_%7()7) , where O(7) denotes the L& L bound
for task set 7. Then we present the second algorithm RM-TS that
works for any task set, if the parametric utilization bound is under
the threshold 124%2) L

Generalizing the parametric utilization bounds from uni-
processors to multiprocessors is challenging, even with the insights
from our previous work generalizing the L& L bound to multipro-
cessor scheduling. The reason is that task splitting? may “cre-
ate” new tasks that do not comply with the parameter properties of
the original task set, and thus invalidate the parametric utilization
bound specific to the original task set’s parameter properties. Sec-
tion 3 will discuss this problem in detail. In this paper, we use more
sophisticated proof techniques to solve this problem, and thereby,
generalize the parametric utilization bounds to multiprocessors.

Besides the improved utilization bounds, another advantage of
our new algorithms is the significantly improved average-case per-
formance. Although the algorithm in [13] can achieve the L& L
bound, it has the problem that it never utilizes more than the worst-
case bound. The new algorithms in this paper use exact anal-
ysis, i.e., Response Time Analysis (RTA), instead of the utiliza-
tion bound threshold as in the algorithm of [13], to determine the
maximal workload on each processor. It is well-known that on
uni-processors, by exact schedulability analysis, the average break-
down utilization of RMS is around 88% [19], which is much higher
than its worst-case utilization bound 69.3%. Similarly, our new al-
gorithm has much better performance than the algorithm in [13].
Due to the flexible partitioning strategy using RTA, it is a challeng-
ing problem to prove the expected utilization bounds, since proces-
sors may end up with different utilizations with the new partition-
ing algorithms. This breaks down the key property, required by the
proof in [13], that each processor has exactly the same assigned
utilization.

utilization is at most

Related Work Multiprocessor scheduling is usually categorized
into two paradigms [10]: global scheduling, where each task can
execute on any available processor at run time, and partitioned
scheduling, where each task is assigned to a processor beforehand,
and at run time each task only executes on this fixed processor.
Global scheduling on average utilizes the resources better. How-
ever, the standard RMS and EDF global scheduling strategies suf-
fer from the notorious Dhall effect [12], which may cause a task
system with arbitrarily low utilization to be non-schedulable. Al-
though the Dhall effect can be mitigated by, e.g., assigning higher
priorities to tasks with higher utilizations as in RM-US [3], the best
known utilization bound of global scheduling is still quite low: 38%
for fixed-priority scheduling [2] and 50% for EDF-based schedul-
ing [7]. On the other hand, partitioned scheduling suffers from the

'Note that when ©(7) = 69.3%, oGy = 40.9% and {7l = 81.8%
2Task splitting is needed to exceed the 50% utilization bound limitation of con-

ventional partitioned scheduling. Section 2 will introduce task splitting in detail.

resource waste similar to the bin-packing problem: A set of M + 1
tasks of individual utilization 0.5 + € cannot be packed in M pro-
cessors, and it follows that the worst-case utilization bound for any
partitioned scheduling can not exceed 50%.

Recently, a number of works [1, 4, 5, 6, 13, 14, 15, 17] have
focused on partitioned scheduling with task splitting, which can
exceed the 50% limit of the strict partitioned scheduling. In this
class of scheduling, while most tasks are assigned to a fixed proces-
sor, some tasks may be (sequentially) divided into several parts and
each part is assigned and thereby executed on a different (but fixed)
processor. Notably, our recent work [13] has achieved the L& L
bound by fixed-priority partitioned scheduling with task splitting.

2 Basic Concepts

We consider a multiprocessor platform consisting of M proces-
sors P = {Py, P,,..Py}. Ataskset 7 = {1, 72,...,7v} com-
plies with the L& L task model: Each task 7; is a 2-tuple (C;, T;),
where C; is the worst-case execution time and 7; is the minimal
inter-release separation (also called period). T; is also 7;’s relative
deadline. We use the RMS strategy to assign priorities: tasks with
shorter periods have higher priorities. Without loss of generality
we sort tasks in non-decreasing period order, and can therefore use
the task indices to represent task priorities, i.e., ¢ < j implies that
7; has higher priority than 7;. The utilization of each task 7; is
defined as U; = C;/T;, and the total utilization of task set T is
U(r) = S°N | Ui. We further define the normalized utilization of a
task set 7 on a multiprocessor platform with M processors:

Un(T) = Z Ui/M

TiET

Note that the subscript M in Uy, (7) reminds us that the sum of all
tasks’ utilizations is divided by the number of processors M.

A partitioned scheduling algorithm (with task splitting) consists
of two parts: the partitioning algorithm, which determines how to
split and assign each task (or rather each of its parts) to a fixed
processor, and the scheduling algorithm, which determines how to
schedule the tasks assigned to each processor at run time.

With the partitioning algorithm, most tasks are assigned to a pro-
cessor (and thereby will only execute on this processor at run time).
We call these tasks non-split tasks. The other tasks are called split
tasks, since they are split into several subtasks. Each subtask of
a split task 7; is assigned to (and thereby executes on) a different
processor, and the sum of the execution times of all subtasks equals
C;. For example, in Figure 1 task 7; is split into three subtasks 7},
72 and 73, executing on processor Py, P, and Ps, respectively.

The subtasks of a task need to be synchronized to execute cor-
rectly. For example, in Figure 1, 72 should not start execution until
71 is finished. This equals deferring the actual ready time of 72 by
up to R} (relative to 7;’s original release time), where R} is 7;'’s
worst-case response time. One can regard this as shortening the ac-
tual relative deadline of 72 by up to R;. Similarly, the actual ready
time of 7 is deferred by up to R} + R?, and 73’s actual relative
deadline is shortened by up to R} + R?. We use 7/ to denote the
k" subtask of a split task 7;, and define Tik ’s synthetic deadline as

Af=T,-) R (D

le(1,k—1]

Thus, we represent each subtask 7% by a 3-tuple (C¥, T}, A¥), in
which CF is the execution time of 7F, T; is the original period and
AF is the synthetic deadline. For consistency, each non-split task

Rl » body subtask l
P4 7l !

I e e |
P2 | | L7 |
7 r+R,-’ : |
| r T; - R/ el

Py | | poc R - tail subtask
’ F+RI+R7 d
k—1,-R/-R—

Figure 1. An lllustration of Task Splitting.

7; can be represented by a single subtask 7! with C} = C; and
Al = T;. We use UF = C¥ /T; to denote a subtask 7/’s utilization.

We call the last subtask of 7; its tail subtask, denoted by Tf and
the other subtasks its body subtasks, as shown in Figure 1. We use
’7',ib 7 to denote the j*" body subtask.

We use 7(P;) to denote the set of tasks 7; assigned to processor
P,, and say P, is the host processor of ;. We use U(P;) to denote
the sum of the utilization of all tasks in 7(P,):

UPrP)= > U

T €T(Py)

A task set 7 is schedulable under a partitioned scheduling algorithm
A, if (i) each task (subtask) has been assigned to some processor by
A’s partitioning algorithm, and (ii) each task (subtask) is guaran-
teed to meet its deadline under .A’s scheduling algorithm.

3 Deflatable Parametric Utilization Bounds

A Parametric Utilization Bound (PUB for short) Q(7) for a task
set 7 is the result of applying a function §2(+) to 7’s task parameters,
such that all tasks in 7 are guaranteed to meet their deadlines under
RMS on a uni-processor if 7’s total utilization I (7) < Q(7).

There have been quite a few parametric utilization bounds derived
for RMS on uni-processors. The following are some examples:

* The famous L& L bound, denoted by O(7), is a PUB regard-
ing the number of tasks N: (1) = N(2/N — 1)

* The harmonic chain bound: HC-Bound(7) = K (2'/5 — 1)
[16] , where K is the number of harmonic chains in the task
set. The 100% bound for harmonic task sets is a special case
of the harmonic chain bound with K = 1.

» T-Bound(r) [18] is a PUB regarding the number of tasks and
the task periods: T-Bound(r) = Zf;l T;?l +2- ;F/l N,

1 _
N

where T is ;s scaled period [18].

* R-Bound(7) [18] is similar to T-Bound(7), but uses a more
abstract parameter r, the ratio between the minimum and max-
imum scaled period of the task set: R-Bound(r) = (N —
DEV/WN=D 1) 4 2/r — 1.

We observe that all the above PUBs have the following property:
Suppose a PUB Q(7) is derived from a task set 7’s parameters. If
we decrease the execution times of some tasks in 7 to get a new task
set 7/, then (7) is still applicable to 7/. We call a PUB holding
this property a deflatable parametric utilization bound, as formally
stated in the following definition:

Definition 1. A Deflatable Parametric Utilization Bound (D-PUB)
Q(7) is a PUB satisfying the following property: We decrease the
execution times of some tasks in T to get a new task set T'. If T
satisfies U(T") < Q(7), then it is guaranteed to be schedulable by
RMS on a uni-processor.

does not comply with
L&L task model

|
|
|
1 - 4—>

Ci i i
|
|

7 2 4 b Y

I
»le——

T 6 U -) > >
| elay o wait relative deadline

73 12 16 | until ©,! finished
!

P P, i
728 7 t * complies with L&L task
' (2.8) 7 i <«— 4——» model, but not harmonic
T3 5 i T_“M?—*
7° (4,8) i -« 6—>»
(b) (d)

Figure 2. Partitioning a harmonic task set results in
a nonharmonic task set on some processotr.

We would like to point out that the deflatable property is different
from the (self-)sustainable property [8] [9]. The deflatable property
does not require the original task set 7 to satisfy U(7) < (1)
(7 will be scheduled on M processors and in general have total
utilization lager than 100%). 2(7) is merely a value obtained by
applying the function €2(+) to 7’s parameters, and will be used as a
utilization bound to each individual processor.

The deflatable property is very common for PUBs: In fact all
PUBs for RMS on uni-processors we are aware of are deflatable?.
In the following, we use §2(7) to denote an arbitrary D-PUB de-
rived from 7’s parameters under RMS on uni-processors.

D-PUBs are of great relevance to partitioned multiprocessor
scheduling, since a task set 7 will be partitioned into several subsets
and each subset is executed on a processor individually. Further,
due to the task splitting, a task could be divided into several sub-
tasks, each of which holds a portion of the execution demand of the
original task. So the D-PUB property is clearly useful to generalize
a utilization bound to multiprocessors.

However, the deflatable property by itself is not sufficient for the
generalization of Q(7) to multiprocessors. For example, suppose
the harmonic task set 7 in Figure 2-(a) is partitioned as in Figure
2-(b), where 75 is split into 75 and 72. On P, to correctly execute
T2, T3 and 72 need to be synchronized such that 75 never starts ex-
ecution before its precedence 74 is finished. This can be viewed
as shortening 75’s relative deadline for a certain amount of time
from 75’s original deadline, as shown in Figure 2-(c). In this case,
72 does not comply with the L& L task model (which requires the
relative deadline to equal the period), so none of the parametric uti-
lization bounds for the L& L task model is applicable to processor
P5. In [13], this problem is solved by representing 75’s period by
its relative deadline, as shown in Figure 2-(d). This transforms the
task set {71, 74} into a L& L task set {71, 75*}, with which we can
apply the L& L bound. However, this solution does not in general
work for other parametric utilization bounds: In our example, we
still want to apply the 100% bound which is specific to harmonic
task sets. But if we use 75’s deadline 6 to represent its period 8,
the task set {71,75*} is not harmonic, so the 100% bound is not
applicable. This problem will be solved by our new algorithms and
novel proof techniques in the following sections.

3The PUBs we are aware of include the ones listed above, and the non-closed-
form bounds in [11]. We do not exclude the possibility that there might exist (undis-
covered) parametric utilization bounds that are not deflatable. However, proving the
existence of, or finding such a non-deflatable bound is out of the scope of this paper.

4 The Algorithm for Light Tasks: RM-TS/light

In the following we introduce the first algorithm RM-TS/light,
which achieves Q(7) (any D-PUB derived from 7’s parameters), if
T is light in the sense of an upper bound on each task’s individual
utilization as follows.

Definition 2. A task 7; is a light task if

o(r)
U < ——— 2
=100 @
where ©(7) denotes the L& L bound. Otherwise, T; is a heavy task.
A task set T is a light task set if all tasks in T are light tasks.

RM-TS/light follows two simple principles: (1) assigning tasks
to processors in increasing priority order, and (2) packing tasks
to processors by a “width-first” strategy such that the utilizations
on all processors are increased “evenly”. In this way, when task
splitting occurs, most capacity of the processors has been occupied
by tasks with relatively low priorities, and the unassigned tasks all
have relatively high priorities. This is good for a higher accepted
utilization on each processor: After being split, a subtask 7/’s ac-
tual deadline A? is shorter than 7;’s original deadline (period) T;.
In fixed-priority scheduling, it is generally the interference suffered
by low-priority tasks that determines the maximal accepted utiliza-
tion. Thus, in general, the total utilization accepted by a processor
will decrease if one shortens the deadline of a low-priority task. In
contrast, if one shortens the deadline of a high-priority task, there
is a better chance that the accepted utilization is not affected.

The reason for restricting RM-TS/light to light task sets is that,
a task with very high utilization may need to be split even when
the occupied utilizations of all processors are relatively low. The
second algorithm presented in Section 5 will work on task sets that
also include heavy tasks.

4.1 Algorithm Description

The partitioning algorithm of RM-TS/light is quite simple. We
describe it briefly as follows:

 Tasks are assigned in increasing priority order. We always se-
lect the processor on which the total utilization of the tasks that
have been assigned so far is minimal among all processors.

» A task (subtask) can be entirely assigned to the current proces-
sor, if all tasks including this one on this processor can meet
their deadlines under RMS.

* When a task (subtask) cannot be assigned entirely to the cur-
rent processor, we split it into two parts*. The first part is
assigned to the current processor. The splitting is done such
that the portion of the first part is as big as possible, guarantee-
ing no task on this processor misses its deadline under RMS;
the second part is left for the assignment to the next selected
processor.

In the following, we will give a detailed description. Algo-
rithm 1 and 2 describe the partitioning algorithm of RM-TS/light
in pseudo-code. At the beginning, tasks are sorted (and will there-
fore be assigned) in increasing priority order, and all processors are
marked as non-full which means they still can accept more tasks.
At each step, we pick the next task in order (the one with the lowest
priority), select the processor with the minimal total utilization of

“In general a task may be split into more than two subtasks. Here we mean at
each step the currently selected task (subtask) is split into two parts.

tasks that have been assigned so far, and invoke the routine Assign
to do the task assignment. Assign first verifies that after assigning
the task, all tasks on that processor would still be schedulable un-
der RMS. This is done by applying exact schedulability analysis of
calculating the response time Rf of each task Tjk after assigning the

new task 7 to P, with the well-known fixed-point formula:

Rk

k _ J

ERpY {T
ThET(Py)
h<j

Cn+CF

The response time R;? obtained for each (sub)task T]’»“ is compared
to its (synthetic) deadline Af. If the response time does not exceed
the synthetic deadline for any of the tasks on P, we can conclude
that 7/ can safely be assigned to P, without causing any deadline
miss. Note that a subtask’s synthetic deadline A? may be different
from its period 7). After presenting how the overall partitioning
algorithm works, we will show how to calculate Aé? easily.

1: Task order T}V, ey 7'11 by increasing priorities

2: Mark all processors as non-full

3: while there is an non-full processor and an unassigned task do

4 Pick next task Tf,

5: Pick non-full processor P, with minimal I/ (P)

6: Assign(rF, Py)

7: end while

8: If there is an unassigned task, the algorithm fails, otherwise it succeeds.

Algorithm 1: The partitioning algorithm of RM-TS/light.

1: if 7(P,) with 7F is still schedulable then

2: AddTFtoT(Py)

3: else

4 Split7F via (7}, 7F1) == MaxSplit(rF, P,)
5: AddTFtoT(Py)

6 Mark Py as full

7 TikJrl
8:

: is next task
end if

Algorithm 2: The Assign(7F, P,) routine.

If 7F cannot be entirely assigned to the currently selected
processor FP,, it will be split into two parts using routine
MaxSplit(r¥, P,): one subtask that makes maximum use of the
selected processor, and a remaining part of that task, which will be
subject to assignment in the next iteration. The desired property
here is that we want the first part to be as big as possible such that,
after assigning it to P,, all tasks on that processor will still be able
to meet their deadlines. In order to state the effect of MaxSplit
formally, we introduce the concept of a bottleneck.

Definition 3. A bottleneck of processor P, is a (sub)task that is
assigned to P,, and will become non-schedulable if we increase
the execution time of the task with the highest priority on P, by an
arbitrarily small positive number.

Note that there may be more than one bottleneck on a proces-
sor. Further, since RM-TS/light assigns tasks in increasing priority
order, MaxSplit always operates on the task that has the highest
priority on the processor in question. Thus, we can state:

Definition 4. MaxSplit(1F, P,) is a function that splits T into two

subtasks F and TF 1 such that:

1. 7F can now be assigned to P, without making any task in
7(Py) non-schedulable.

2. After assigning TF, Py has a bottleneck.

MaxSplit can be implemented by, for example, performing a bi-
nary search over [0, C¥] to find out the maximal portion of 7% with
which all tasks on P, can meet their deadlines. A more efficient
implementation of MaxSplit was presented in [17], in which one
only needs to check a (small) number of possible values in [0, C¥].
The complexity of this improved implementation is still pseudo-
polynomial, but in practise it is very efficient.

The while loop in RM-TS/light terminates as soon as all proces-
sors are “full” or all tasks have been assigned. If the loop terminates
due to the first reason and there are still unassigned tasks left, the
algorithm reports a failure of the partitioning, otherwise a success.

Calculating Synthetic Deadlines Now we will show how to
calculate each (sub)task 7’s synthetic deadline A¥, which was left
open in the above presentation. If 7* is a non-split task, its synthetic
deadline trivially equals its period T;. Now we consider the case
that 7F is a subtask of a split task 7;. Recall that tasks are assigned
in increasing order of priorities. Thus, right after a (sub)task is split
and assigned to its host processor, the first part of it, which is a
body subtask, has the highest priority on that processor. After that
the processor will be marked as full and consequently no other tasks
of higher priority can be assigned to it. So we know:

Lemma 1. A body subtask has the highest priority on its host pro-
cessor.

A consequence of this is, the response time of each body subtask
equals its execution time, and one can replace R! by C! in (1) to
calculate the synthetic deadline of a subtask. Especially, we are
interested in the synthetic deadlines of tail subtasks (we don’t need
to worry about a body subtask’s synthetic deadline since it has the
highest priority on its host processor and is schedulable anyway).
The calculation is explicitly stated in the following lemma.

Lemma 2. Let 7; be a task split into B; body subtasks

bp, . ,
Tib17 ST i assigned to processors Py, , ..., Py, respectively,
and the tail subtask 1! assigned to processor P,. The synthetic

deadline Al of a tail subtask 7} is calculated by:

Al=T;— Y o

JE[L,Bi]

Scheduling at Run Time At runtime, the tasks will be sched-
uled using RMS on each processor locally, i.e., with their original
priorities. The subtasks of a split task respect their precedence re-
lations, i.e., a split subtask 77 is ready for execution when its pre-
ceding subtask 7°~* on some other processor has finished.

From the presented partitioning and scheduling algorithm of RM-
TS/light, it is clear that successful partitioning implies schedulabil-
ity, i.e., the guarantee that all deadlines can be met.

Lemma 3. Any task set that has been successfully partitioned by
RM-TS/light is schedulable.

4.2 Utilization Bound

We will now prove that RM-TS/light has the utilization bound of
Q(7) for light task sets. First we will briefly introduce the main
idea and structure of the proof.

To show that RM-TS/light has a utilization bound Q(7), we will
prove that if a light task set 7 is non-schedulable, i.e., not success-
fully partitioned by RM-TS/light, then the sum of the assigned uti-
lizations of all processors is at least® M - Q(T).

5By this, the normalized utilization of 7 strictly exceeds Q(7), since there are
(sub)tasks not assigned to any of the processors after a failed partitioning.

In order to show this, we assume that the assigned utilization on
some processor is strictly less than (7). We prove that this implies
there is no bottleneck on that processor. This is a contradiction,
because each processor on which MaxSplit has been used must
have a bottleneck afterwards. We also know that MaxSplit was
used for all processors, since the partitioning failed.

In the following, we assume P to be a processor with an assigned
utilization of U (P,) < §2(7). A task on P, is either a non-split task,
a body subtask or a tail subtask. The main part of the proof consists
of showing that P, cannot have a bottleneck of any type.

As the first step, we show this for non-split tasks and body sub-
tasks (Lemma 4), after which we turn to the more difficult case of
tail subtasks (Lemma 6).

Lemma 4. Suppose task set T is not schedulable by RM-TS/light,
and after the partitioning phase it holds for a processor Py that

U(Fy) < Q)

Then a bottleneck of P, is neither a non-split task nor a body sub-
task.

Proof. By Lemma 1 we know that the body subtask has the highest priority on Py,
so it can never be a bottleneck.

For the case of non-split tasks, note that all tasks are scheduled locally by RMS
using their original periods, and a non-split task’s parameter (particularly its dead-
line) is unchanged. We use I to denote the set of tasks on Py, and construct a new
task set I'* corresponding to I" such that each non-split task 7; in I" has a counterpart
in I'* that is exactly the same as 7;, and each subtask in I" has a counterpart in I'*
with deadline changed to equal its period. I'* complies with the L& L task model,
and can be viewed as obtained from the whole task set 7 by decreasing some of the
tasks’ execution times (some tasks’ execution times are decreased to 0, which equals
that these tasks are eliminated). So the D-PUB €(7) is sufficient to the guarantee
the schedulability of I'*. Thus, if the execution time of the highest-priority task on
Py is increased by an (arbitrarily small) amount € such that the total utilization still
does not exceed (1), I'* will still be schedulable. Recall that the only difference
between I" and I"* is the subtasks’ deadlines, and since the scheduling of RMS does
depend on tasks’ deadline, we can conclude that each non-split task in I" is also
schedulable (after increasing ¢ to the highest priority task on P;). Note that for this
moment we only want to guarantee the schedulability of non-split tasks in I, but do
not care whether the tail subtasks in I" can meet deadlines or not. O

After the cases of non-split tasks and body subtasks, now we
prove that in a light task set, a bottleneck on a processor with uti-
lization lower than §(7) is not a tail subtask either. The proof goes
in two steps: We first derive in Lemma 5 a general condition guar-
anteeing that a tail subtask can not be a bottleneck; then we con-
clude in Lemma 6 that a bottleneck on a processor with utilization
lower than €2(7) is not a tail subtask, by showing that the condition
in Lemma 5 holds for each of these tail subtasks.

We use the following notation: Let 7; be a task split into B; body

ba

b bBi .
subtasks 7", 7,7, ..., 7, ", assigned to processors P, , Py, ..., Py .

respectively, and a tail subtask 7} assigned to processor P;. The
t

utilization of the tail subtask 7/ is U} = S+, and the utilization of
.) bj '

a body subtask Tib 7 is Uib I = CT We use UL°" to denote the total

utilization of 7;’s all body subtasks, i.e.,

vt= 3 UY=Ui-Uf
je[lei]

For each body subtask Tib 7 let X, b, denote the total utilization of all

(sub)tasks assigned to P,; with lower priority than Tibj . For the tail
subtask 7/, let X; denote the total utilization of all (sub)tasks as-
signed to P; with lower priority than 7/, and Y; the total utilization
of all (sub)tasks assigned to P, with higher priority than 7}.

Now we start with the general condition identifying non-
bottleneck tail subtasks.

Lemma 5. Suppose a tail subtask ! is assigned to processor P,
and O(1) is the L& L bound. If it holds that

Y, + Ul < O(r) - (1 - UP™) 3)

then T} is not a bottleneck of processor P;.

Proof (Sketch). We only introduce the brief idea of the proof due to space limit.
We increase the utilization of the task with the highest priority on P; by a small
number € such that it holds (one can always find such an €):

(Yi +€) + Ul < O(7) - (1 - UY)

By the definition of U;’ody and A!, this equals

(Ve +¢) +U}) - T; /A < O(7))

The key of the proof is to show that Condition (4) still guarantees that ‘rf can meet
its deadline. We consider the task set I" consisting of ’Tit and all tasks with higher
priorities on P;. Then we construct a task set I'* corresponding to I', such that each
task in I" has a counterpart in I'* but with a period reduced to AE in case its original
period exceeds Aﬁ, and then a deadline changed to equal its period in case they
are different. The constructed task set I'* complies with the Liu and Layland task
model (deadlines equal periods) and is prioritized by periods. Thus, one can apply
the L& L bound O(7) to it. At the same time, the total utilization of I'* is bounded
by ((Y: + €) + Uf)T; /Al so Condition (4) implies the counterpart of 7} can meet
its deadline in the context of I'* (note that here we only focus on the schedulability
of Tf, and the schedulability of other tail subtasks are guaranteed when this lemma
is applied to themselves). Further, since I'* is constructed in a way that each task’s
workload is at most that of its counterpart in I'*, the interference Tf suffered in I" is
at most the interference in I'*. From this we know that 7} can meet its deadline in
the context of I', which establishes the proof. O

Note that in the above proof we use the L& L bound O(7) rather
than the higher bound Q(7) to guarantee the schedulability of tasks
in I'*, since the task periods are modified in the construction of I'*,
and Q(7) may not apply to I'* (recall that the deflatable property
of Q(7) only tolerates changes to execution times, but not periods).
For example, suppose the original task set is harmonic, the con-
structed set I'* may not be harmonic since some of task periods are
shorten to A!, which is not necessarily harmonic with other peri-
ods. So the 100% bound of harmonic task sets does not apply to
I'*. However, O(7) is still applicable, since it only depends on, and
is monotonically decreasing regarding the number of tasks.

Having this lemma, we now show that a tail subtask Tf cannot
be a bottleneck either, if its host processor’s utilization is less than
Q(7), by proving Condition (3) for 7}.

Lemma 6. Let 7 be a light task set non-schedulable by RM-
TS/light, and let T; be a split task whose tail subtask 7} is assigned
to processor Py. If

UP) < o))

then 7} is not a bottleneck of P,.

Proof. The proof is by contradiction. We assume the lemma does not hold for one
or more tasks, and let 7; be the lowest-priority one among these tasks, i.e., Tit is
a bottleneck of its host processor P, and all tail subtasks with lower priorities are

either not a bottleneck or on a processor with assigned utilization at least (7).

Recall that {Tfj }jen, B, are the B; body subtasks of 7, and {Py; }je(1, B,
and P; are processors hosting the corresponding body and tail subtasks. Since a
body task has the highest priority on its host processor (Lemma 2) and tasks are
assigned in increasing priority order, all tail subtasks on processors {ij } jelL,B;)
have lower priorities than 7;.

‘We will first show that all processors {ij }je[l,Bi] have an individual assigned
utilization at least (7). We do this by contradiction. Assume there is a Py, whose
assigned utilization is lower than (7). By above discussions we know that the tail
subtasks on Py, cannot be bottlenecks, and by Lemma 4 we know that a bottleneck
of Py . is neither a non-split task nor a body subtask. This implies there is no bot-
tleneck on Pb], which contradicts the fact there is at least one bottleneck on each
processor. So the assumption of ij ’s assigned utilization being lower than Q(7)
must be false, by which we can conclude that all processors hosting Tf ’s body tasks
have assigned utilization at least (7). Thus we have:

S (U +X,) > Bi-Q(r) ©)
JE[1,B; -
UPy ;)

Further, the assumption from Condition (5) can be rewritten as:
Xi+ Y+ U < Q(r))

‘We combine (6) and (7) into:

1 b;
Xt-'ryt“rUf<§ Z (UiJ+ij)
" G€[1,By]
Since the partitioning algorithm selects at each step the processor on which the so-

far assigned utilization is minimal, we have V5 € [1, B;] : ij < X¢. Thus, the
inequality can be relaxed to: '

1 b;
Vi+Uf<— > U
' jel, By
We also have B; > 1 and Uib()dy = jen,B] U, so:

Z' 9
Y: + UL < Ut

Now, in order to get to Condition (3), which implies *rz?5 is not a bottleneck (Lemma
5), we need to show that the RHS of this inequality is bounded by the RHS of
Condition (3), i.e., that:

Ul < o(r)(1 — uew)

It is easy to see that this is equivalent to the following, which holds since 7; is by
assumption a light task:
U_body < o(7)
¢ ~1+0(7)
a

Now we put all parts of the proof in place and can summarize
them as the main theorem concerning the utilization bound of RM-
TS/light for light task sets.

Theorem 7. Q(7) is a utilization bound of RM-TS/light for light
task sets, i.e., any light task set T with

Z/l]\/[(T) < Q(T)

is schedulable by RM-TS/light.

Proof. Assume a light task set 7 with Uy (7) < Q(7) is not schedulable by RM-
TS/light, i.e., there are tasks not assigned to any of the processors after the parti-
tioning procedure with 7. By this we know the sum of the assigned utilization of
all processors after the partitioning is strictly less than M - Q(7), so there is at least
one processor P, with a utilization strictly less than (7). By Lemma 4 we know
the bottleneck of this processor is neither a non-split task nor a body subtask, and by
Lemma 6 we know the bottleneck is not a tail subtask either, so there is no bottle-
neck on this processor. This contradicts the property of the partitioning algorithm,
that all processors to which no more task can be assigned must have a bottleneck
(Definition 4). O

5 The Algorithm for Any Task Set: RM-TS

In this section, we introduce RM-TS, which removes the restric-
tion to light task sets in RM-TS/light. We will show that RM-

TS can achieve a D-PUB Q(7) for any task set 7, if Q(7) does

20(1)
not exceed T60)"

Y (7) from 7’s parameters under uni-processor RMS, RM-TS can

20(t
, 1+@((T))). Note

13_@@(?3) = 81.8% when ©(7) = 69.3%. So we can see that despite
an upper bound on (1), RM-TS still provides significant room for
higher utilization bounds.

For simplicity of presentation, we assume that each task’s utiliza-

tion is bounded by (7), so the utilization of a heavy task is in the

In other words, if one can derive a D-PUB

achieve the utilization bound of Q(7) = min(' (1)

O(r
range (1760
date the utilization bound of our algorithm for task sets which have

some individual task’s utilization above (7)°.

As introduced in the beginning of Section 4, the reason why we
assume a restriction to light tasks in RM-TS/light is that, a heavy
task could already be split when the assigned utilizations of all pro-
cessors are still very low. This could cause tail subtasks to end up
with relatively low priorities on their host processors. To solve this
problem, RM-TS adds a sophisticated heavy task pre-assignment
mechanism to the partitioning algorithm. In the pre-assignment,
we first identify the heavy tasks whose tail subtasks would have low
priority if they were split, and pre-assign these tasks to one proces-
sor each. This avoids the split. The identification is checked by
a simple test condition, called Pre-assign Condition. Those heavy
tasks that do not satisfy this condition will be assigned (and possi-
bly split) later, together with the light tasks.

Before the detailed description of RM-TS, we introduce some
notations. If a heavy task 7; is pre-assigned to a processor P in
RM-TS, we call 7; a pre-assigned task and P, a pre-assigned pro-
cessor, otherwise 7; a normal task and P, a normal processor.

Q(7)]. Note that this assumption does not invali-

5.1 Algorithm Description

The partitioning algorithm of RM-TS is shown in Algorithm 3,
which contains three main phases:

1. We first pre-assign the heavy tasks that satisfy the Pre-assign
Condition to one processor each, in decreasing priority order.

2. We do task partitioning with the remaining (i.e. normal)
tasks and remaining (i.e. normal) processors similar to RM-
TS/light until all the normal processors are full.

3. The remaining tasks are assigned to the pre-assigned pro-
cessors in increasing priority order; the assignment selects
the processor with the largest index (i.e., the one hosting the
lowest-priority pre-assigned task), to assign as many tasks as
possible until it is full, then selects the next processor.

The pseudo-code of RM-TS is given in Algorithm 3. At the be-
ginning, all the processors are marked as normal and non-full.

In the first phase, we visit all the tasks in decreasing priority order,
and for each task we use DeterminePreAssign(r;) (Algorithm 4)
to determine whether we should pre-assign it. P”(7;) records the
set of processors marked as normal at the moment we are chekcing
for ;. If 7; is a heavy task, we check the Pre-assign Condition:

STUp < (IPP(r)] - 1) - Q(r) ®)

i<j

|P"(7;)| is the number of elements in P"(7;), i.e., the number of
processors marked as normal at this moment. If this condition is
satisfied, we pre-assign this heavy task to the current selected pro-
cessor, which is the one with the minimal index among all normal
processors, and mark this processor as pre-assigned. Otherwise,
we do not pre-assign this heavy task, and leave it to the following
phases. The intuition of the pre-assign condition (8) is: We pre-
assign a heavy task 7; if the total utilization of lower-priority tasks
is relatively small, since otherwise its tail subtask may end up with
a low priority on the corresponding processor.

In the second phase we assign the remaining tasks to normal pro-
cessors only. Note that the remaining tasks are all light tasks and

%0ne can let tasks with a utilization of more than (7) execute exclusively on
one dedicated processor each. If we can prove that the utilization bound of all the
other tasks on all the other processors is {2(7), then the utilization bound of the
overall system is also at least (7).

the heavy tasks that do not satisfy the Pre-assign Condition. The
assignment policy in this phase is the same as for RM-TS/light:
We sort tasks in increasing priority order, and at each step select
the (normal) processor P, with the minimal assigned utilization.
Then we invoke routine Assign(F, P,), which is exactly the same
as the one used by RM-TS/light. It either adds 7 to 7(P,) if 7F
can be entirely assigned to P,, or splits 7/ and assigns a maximized

portion of it to F; otherwise.

1: Mark all processors as normal and non-full

/I Phase 1: Pre-assignment
: Sort all tasks in 7 in decreasing priority order
: for each task in 7 do
Pick next task 7;
if DeterminePreAssign(7;) then
Pick the normal processor with the minimal index Py
Add 7; to T7(Py)
Mark Py as pre-assigned
end if
: end for

SR A ARl

—_

/I Phase 2: Assign remaining tasks to normal processors
11: Sort all unassigned tasks in increasing priority order
12: while there is a non-full normal processor

and an unassigned task do

13: Pick next unassigned task 7;
14: Pick the non-full normal processor Py with minimal U (Py)
15: Assign(tF, Py)
16: end while

/I Phase 3: Assign remaining tasks to pre-assigned processors

/I Remaining tasks are still in increasing priority order
17: while there is a non-full pre-assigned processor

and an unassigned task do

18: Pick next unassigned task 7;
19: Pick the non-full pre-assigned processor Py with the largest index
20: Assign(tF, Py)
21: end while

22: If there is an unassigned task, the algorithm fails, otherwise it succeeds.

Algorithm 3: The partitioning algorithm of RM-TS.

1: P> (7;) := the set of normal processors at this moment
2: if 7; is heavy then

30 if 3., Uy < (IPP(m) — 1) - Q(7) then

4: return true

5: endif

6: end if

7

: return false

Algorithm 4: The DeterminePreAssign(r;) routine.

In the third phase we continue to assign the remaining tasks to
pre-assigned processors. There is an important difference between
the second phase and the third phase: In the second phase tasks
are assigned by a “width-first” strategy, i.e., the utilization of all
processors are increased “evenly”, while in the third phase tasks
are now assigned by a “depth first” strategy. More precisely, in the
third phase we select the pre-assigned processor with the largest
index, which hosts the lowest-priority pre-assigned task of all non-
full processors. We assign as much workload as possible to it, until
it is full, and then move to the next processor. This strategy is
one of the key points to facilitate the induction-based proof of the
utilization bound in the next subsection.

Note that, in both the second and third phase we use the same rou-
tine Assign(7F, P,) as in RM-TS/light (to split and assign tasks).
In Assign(7F, P,), the synthetic deadlines of tail subtasks are cal-
culated under the assumption that all body subtasks have the high-
est priority on their host processors, which is true for RM-TS/light

(Lemma 1). It is easy to see this property also holds for the second
phase of RM-TS (the task assignment on normal processors), in
which tasks are assigned in exactly the same way as RM-TS/light.
But it is not clear for this moment whether this assumption also
holds for the third phase or not, since there are pre-assigned tasks
already assigned to these pre-assigned processors in the first phase,
and there is a risk that a pre-assigned might have higher prior-
ity than the body subtask on that processor. However, as will
be shown in the proof of Lemma 14, a body subtask on a pre-
assigned processor has the highest priority on its host processor,
and Assign(7F, P,) still guarantees the schedulability of the split
tasks involved in the third phase.

After these three phases, the partitioning failed if there still are
unassigned tasks left, otherwise it is successful. At run-time, the
tasks assigned to each processor are scheduled by RMS with their
original priorities, and the subtasks of a split task need to respect
their precedence relations, which is the same as in RM-TS/light.
Assuming that a body subtask on a pre-assigned processor also
has the highest priority among all tasks assigned to that proces-
sor, any task set successfully partitioned by RM-TS is guaranteed
to be schedulable (by the algorithm construction). In Lemma 14
we will show that this assumption is true, and thereby prove that a
successful partitioning indeed implies the schedulability.

5.2 Utilization Bound

We will now prove the utilization bound Q(7) for RM-TS. It fol-
lows a similar pattern as the proof for RM-TS/light, by assuming
a task set 7 that can’t be completely assigned. The main difficulty
is that we now have to deal with heavy tasks as well. Recall that
the approach in Section 4 was to show an individual utilization of
at least Q(7) on each single processor after an “overflowed” parti-
tioning phase. However, for RM-TS, we will not do that directly.
Instead, we will show the appropriate bound for sets of processors.

We first introduce some additional notation. Let’s assume
that K > 0 heavy tasks are pre-assigned in the first phase of
RM-TS. Then P is partitioned into the pre-assigned proces-
sors PP := {Pi,..., Pk} and the normal processors PN :=
{Pr+1,-..,Pu}. Wealsouse P>, := {P,,..., Py} to denote
the set of processors with index of at least q.

We want to show that, after a failed partitioning procedure of 7,
the total utilization sum of all processors is at least M - Q(7). We
do that inductively:

¢ Base Case (Lemma 10): We show that the total utilization of
all normal processors is at least [P - Q(7):

> up) = [PV|-Q(r)

PePN

¢ Inductive Step (Lemma 12): For a pre-assigned processor
P,,, we infer the bound for processors { P, ..., Pys } from the
bound for processors { Py, 11, ..., Par }:

Y UP) = Prmgal QA7)

Pe€P>m41

= > UP) = |Pom|-Qr)
P,€P>m

The induction implies the expected bound M - (1) with m = 1.

Before going into the main proof, we introduce a new concept
PR(7}) and its property, which will be useful later, in both the
base case and the inductive steps.

Definition 5. Given a heavy split task T; whose tail subtask T} is
assigned to P, we define the Related Processor Set of 7} by

PR(T?‘/) — PN P, is a normal processor
¢ P>q otherwise

Intuitively, P™(7}) is the set of processors that might host nor-
mal tasks with lower priorities than the heavy task 7;. We have
the following property regarding to the total assigned utilization of
PR(7)).

Lemma 8. Suppose a heavy task 7;’s tail T} is assigned to Py. If
UPR(r))) < [PR()] - (1) ©)

then we have
Y, + Uit < Q) - Uibo‘iy

Proof. Since 7; is a heavy task but not pre-assigned, it failed the Pre-assign Con-
dition, satisfying the negation of that condition:

> U > (1P ()| — 1) - Q(r) (10)

Jj>i

We split the utilization sum of all lower-priority tasks in two parts:

U () = Z U;
Jj>1
T, €T(PR(r))

\I’ﬁ(ﬂ-) = Z U;

i>i
T, €7(P\PR(7}))

The tasks contributing to ¥# (3) are all pre-assigned tasks on processors in
P \ PR(7;), since in the second and third phase of RM-TS, tasks are assigned
in increasing priority order and no task will be assigned to P \ P™(r;) before
all processors in ™ (7;) are full. We also know that these pre-assigned tasks are
all on processors in P”(7;), since in the first phase of RM-TS tasks are assigned
in decreasing priority order (all processors in P \ P"(7;) have been “occupied”
by pre-assigned tasks with higher priorities than 7; and will not host other lower-
priority pre-assign tasks). Therefore, we know that all tasks contributing to ¥/ (13)
are pre-assigned tasks on processors in P> (7;) \ PR (7;). We further know that
each pre-assigned processor has one pre-assigned task, and each task has a utiliza-
tion of at most () (our assumption stated in the beginning of Section 5). Thus,
we have:

UP(r) < (IPP(7a)] = [PR(D)) - Q(7) (1)

By replacing >, ; U; by U< (7;) + WA (;) in (10) and applying (11), we get:
(i) > (PR = 1) - () (12)

So far we have derived a lower bound for U (7;). In the following, we will
also derive an upper bound for it. We consider the utilizations of all processors in
PR (Tf) We use the observation that all normal tasks with lower priority than 7;
have already been assigned to some processor in P (Tf) when assigning 7;. Recall
that as defined in the previous section, we use X3 . to denote the utilization sum of
tasks on ij with lower priority than 7;, and X the utilization sum of tasks on P;
with lower priority than 7;. We further use 7 (7;) to denote the set of processors
in PR (7}) that do not hold any part of ;. For each processor Py € P* (1;) we use
X4 to denote the utilization sum of tasks on P, with lower priority than 7;. With
this notation, ¥ (7;) can be written as:

U(r) =Xe+ Y X, + Xy 13)

Jj€(1,B;] PyePF (1;)

Both sums can be expressed or bounded as follows:

Z Xp; = Z UBp;) — Uy

J€(1,B;4] J€[1,B;]
DX YD Uy
Pq€PT () PePT (14)

Using both in (13) gives us an upper bound for ¥ (7;):
bod
Xt X um) U Y

F€[1,B;] PyePF (1)

U(Pg) = U (i) (14)

We combine the lower bound (12) and upper bound (14) to get:
Xet D0 UP)=U M+ 7 UP) > (PR~ 1) Q(r)
JE€[1,B;] PgePT (1;)
15)
For the last part of the proof, we note that also our general assumption (9) for the
lemma can be written using these utilization sums:

UP)+ D UB)+ Y UP) <[PR(ED|-Q(7)
JE[1,B;] PgePF (7;)
By applying this to (15) we have
UP) — X; < Q1) — UMW

3

&Y+ UL < Q1) = U (since U(P:) = Xy + Ut + Y3)

3

Proved. [

5.2.1 Base Case

Now we start the main proof with its base case. The proof strategy
is: We assume that the total assigned utilization of normal pro-
cessors is below the expected bound, by which we can derive the
absence of bottlenecks on some processors in PN This contradicts
the fact that there is at least one bottleneck on each processor after
a failed partitioning procedure.

First, Lemma 4 still holds for normal processors under RM-TS,
i.e., a bottleneck on a normal processor with assigned utilization
lower than €(7) is neither a non-split task nor a body subtask. This
is because the partitioning procedure of RM-TS on normal pro-
cessors is exactly the same as RM-TS/light and one can reuse the
reasoning for Lemma 4 here. In the following, we focus on the
difficult case of tail subtasks.

Lemma 9. Suppose there are remaining tasks after the second
phase of RM-TS. Let 7! be a tail subtask assigned to P,. If both
the following conditions are satisfied

> ur) <[PV (16)

P,ePN
U(P) < Q1) a7
then T} is not a bottleneck on P,.

Note the difference between Lemma 9 and its counterpart Lemma
6 in RM-TS/light: In Lemma 9, we need both Condition (16) and
(17), while in Lemma 6 we only need (16). This is because in
RM-TS/light all tasks are assumed to be light, while here we also
need to deal with heavy tasks. The proof idea for heavy tasks is to
utilize the pre-assign condition, which provides the information on
the utilization sum of all the processors in PN,

Proof. We prove by contradiction: We assume the lemma does not hold for one or
more tasks, and let 7; be the lowest-priority one among these tasks.

Similar with the proof of its counterpart in RM-TS/light (Lemma 6), we will first
show that all processors hosting 7;’s body subtasks have assigned utilization at least
(7). We do this by contradiction. Assume U(P,;) < (7). Since 7! does
not satisfy the lemma, both of the preconditions of the lemma must be true for Tf,
particularly (16) must be true. (16) together with our assumption U(ij) < Q(7)
implies the tail subtasks on P are not bottlenecks (the tail subtasks on ij all
satisfy this lemma, since they all have lower priorities than 7;, and by assumption
T; is the lowest-priority task does not satisfy this lemma). By Lemma 4 (which still
holds for normal processors as discussed above), we know a bottleneck of P, . is
neither a non-split task nor a body subtask. So we can conclude that there is no
bottleneck on Pb]., which is a contradiction. Therefore, we have proved that all
processors hosting 7;’s body subtasks have assigned utilization at least (7).

In the following we will prove 77 is not a bottleneck, by deriving Condition (3)
and apply Lemma 5 to Tf. T; is either light or heavy. For the case 7; is light, the
proof is exactly the same as for Lemma 6, since the second phase of RM-TS works
in exactly the same way as RM-TS/light. Note that to prove for the light task case,
only Condition (16) is needed (the same as in Lemma 6).

In the following we consider the case that 7; is heavy, which is the new challenge
of this proof. We distinguish two cases:

. phody 5 QUT)—O(7)
onz 1-0(7)

By definition, P (7;) = PN since Tf is assigned to a normal processor.
And since 7; is heavy, by Condition (16) and Lemma 8 we have:

Y; + U} < Q(r) — U (18)

In order to derive Condition (3) of Lemma 5, which indicates Tit is not a
bottleneck, we only need to prove

Q(r) — U < o(r)(1 — Ur*w)
& (1- (MU > (1) - e(r)
o phody 5 A7) — O(7)

T 1-09(n)

which is obviously true due to the precondition of this case. So Condition (3)
holds for this case.

R bod Q(1)—O6(7)
U < e

First, Condition (17) can be rewritten as

X+ Y+ Ul <Q(r) (19)

(since O(7) < 1)

Since all processors hosting 7;’s body subtasks have assigned utilization at
least (1) (proved in above), we have

> Xp, + UM > B Q(r)
J€E[1,B;]

Since at each step of the second phase of RM-TS, we always select the pro-
cessor with the minimal assigned utilization to assign the current (sub)task,
we have X; > X b for each X by - Therefore we have

BiX: + UM > B, - Q(r)
=X >Q(r) — Uibmiy (since B; > 1)
combining which and (19) we get
Y; + U < U
Now, to prove Condition (3), we only need to show
Ut < o(r)(1 — Ut

body (T)

U;
< ~—14+06(7)

Due to the precondition of this case U; POty < %(G)T()T)

prove

we only need to

() —e() _ _6)

1-0(r) ~— 1+06(n)
< Q1) — O(7) + O(1) - Q(r) — O(7)? < O(r) — O(7)?
20(T1)
“0m = T@m

which is true since Q(7) is assumed to be at most in RM-TS. So in

this case Condition (3) also holds.

Thew

In summary, in both cases we have proved that Condition (3) holds, and by applying
Lemma 5 we know Tf is not a bottleneck. O

Now we are ready to prove the base case:

Lemma 10. Suppose there are remaining tasks after the second
phase of RM-TS (there exists at least one bottleneck on each nor-
mal processor). We have:

> up)

PePN

> [PN]-Q(7)

Proof. We prove by contradiction. We assume that

ST ury) < |PN-Q(r)
PyePN

then there is at least one processor Py in PN such that U (Py) < Q(7). By Lemma
5 (which still holds for processors in PN as discussed above) we know a bottleneck
of Py is neither a non-split task nor a body subtask, and by Lemma 9 we know a
bottleneck of Py is not a tail-subtask either. So we can conclude that there is no
bottleneck on Py, which forms the contradiction. O

5.2.2 Inductive Step

We start with a useful property concerning the pre-assigned tasks’
local priorities.

Lemma 11. Suppose P,, is a pre-assigned processor. If

> UP) = Pomal - QA7) (20)

Py€P>m41

then the pre-assigned task on P, has the lowest priority among all
tasks assigned to Py,.

Proof. Let 7; be the pre-assigned task on P,,. Since 7; is pre-assigned, we know
that it satisfies the Pre-assign Condition:

Uj < (PP(r)l = 1) - Q(1)
;; ’ Tf—"
>m+1

Using this with assumption (20) we have:

> UPY =D U; @1

PyEP> mt1 G>i

which means the total capacity of the processors with larger indices is enough to
accommodate all lower-priority tasks.

By the partitioning algorithm, we know that no tasks, except 7; which has been
pre-assigned already, will be assigned to Py, before all processors with larger in-
dices are full. So we know that no task with priority lower than 7; will be assigned
to P, O

Now we start the main proof of the inductive step.

Lemma 12. We use RM-TS to partition task set 7. Suppose there
are remaining tasks after processor Py, is full (there exists at least
one bottleneck on P,,). If

> UP) = Pl - Q) (22)

Py€P>mi1

then we have

) 2 [Pzml| - Q(7)

> u,

P,€P>m

Proof. We prove by contradiction. Assume

ST UP) < [Poml- Q1) (23)
PyEP>

With assumption (22) this implies the bound on Py, ’s utilization:
U(Pm) < T) (24)

As before, with (24) we want to prove that a bottleneck on Py, is neither a non-
split task, a body subtask nor a tail subtask, which forms a contradiction and com-
pletes the proof. In the following we consider each type individually.

We first consider non-split tasks. Again, the deflatable parametric utilization
bound Q(7) is sufficient to guarantee the schedulability of non-split tasks, although
the relative deadlines of split subtasks on this processor may change. Thus, (24)
implies that a non-split task cannot be a bottleneck of Pp,.

Then we consider body subtasks. By Lemma 11 we know the pre-assigned task
has the lowest priority on P,,. We also know that all normal tasks on Py, have lower
priority than the body subtask, since in the third phase of RM-TS tasks are assigned
in increasing priority order. Therefore, we can conclude that the body subtask has
the highest priority on P, and cannot be a bottleneck.

At last we consider tail subtasks. Let ‘rf be a tail subtask assigned to Pp,. We
distinguish the following two cases:

. rrbod o(r)
U < et

The inductive hypothesis (22) guarantees with Lemma 11 that the pre-
assigned task has the lowest priority on Py, so X; contains at least the uti-
lization of this pre-assigned task, which is heavy. So we have:

x, > 20

‘Zirem &

We can rewrite (24) as Xy + Y + U} < Q(7) and apply it to (25) to get:

Yi 4 Ut < Q(r) — % 26)
Recall that (r) is restricted by an upper bound in RM-TS:
o) < ook
9l - T2 <01 - Toa)
= Q(r) — % <O(r)(1— Uty (Since Uty < %)

And by (26) we have Y; + U} < ©(7)(1 — Uf')dy). By Lemma 5 we know

7} is not a bottleneck.

R Ufody > (1)

= 14+0(7)
Since U; > Ufody > 15)((_;(2,_) we know in this case 7; is a heavy

task. By the inductive hypothesis (22) and Lemma 8 we know (P™(r;) =
quepzmﬂ U(Py) since Py, is a pre-assigned processor):

Yi +Uf < Q(r) — U

200r) __ pybody (since a(r) < 2007))

Lviiut< 280 _20(1)_
Y < Tem Y S1vem

By the precondition of this case Udey > 20 we have

= 1+406(7)’

20(7) bod bod
T@(T) —Ui v < e(m)(1 —Ui y)

Applying this to above we get Y; + U} < O(7)(1 — Uf”dy). By Lemma 5

we know 7} is not a bottleneck.

In summary, we have shown that in both cases the tail subtask 7} is not a bottle-
neck of Pp,. So we can conclude that there is no bottleneck on P,,, which results
in a contradiction and establishes the proof. O

5.2.3 Utilization Bound

Lemma 10 (base case) and Lemma 12 (inductive step) inductively
proved that after a failed partitioning, the total utilization of all pro-
cessors is at least M - Q(7). And since there are (sub)tasks in not
assigned to any processor after a failed partitioning, 7’s normalized
utilization Uy (1) is strictly larger than Q(7). So we have:

Lemma 13. Any task set T with normalized utilization Ups (1) <
Q(7) can be successfully partitioned by RM-TS.

Now we will show that a task set is guaranteed to be schedulable
if it is successfully partitioned by RM-TS.

Lemma 14. [f a task set is successfully partitioned by RM-TS, the
tasks on each processor are schedulable by RMS.

Proof. Similar with RM-TS/light, the tasks on each normal processor are schedu-
lable by RMS, which is guaranteed by the algorithm Assign(rF, ;).

On pre-assigned processors, Assign(Ti’“, P,) guarantees all tasks are can meet
deadlines, under the assumption that the body subtask (if there is one) on a pre-
assigned processor has the highest priority on that processor. In the following we
will show that this assumption is true, and thereby establish the proof.

Let P, be a pre-assigned processor involved in the third phase of RM-TS, and a

b;
body subtask 7, is assigned to Py. By Lemma 10 and 12 we can inductively prove
that the total assigned utilization of processors in P> g1 is atleast P> g4 1]-Q(7).
And by Lemma 11 we know a pre-assigned task on processors P, has the lowest

_— . Lo b;
priority on that processor, particularly, has lower priority than 7,7 . We also know
that all other tasks on P, have lower priority than Tib 7, since tasks are assigned in

increasing priority order and 7,” is the last one assigned to Py. In summary we
know a body subtask has the highest priority on its host processor. O

By now we have proved that any task with total utilization no
larger than (7) can be successfully partitioned by RM-TS, and all
tasks can meet deadline if they are scheduled on each processor by
RMS. So we can conclude the utilization bound of RM-TS:

Theorem 15. Given a deflatable parametric utilization bound

Q(r) < 12_?@(2) derived from the task set T’s parameters. If

Uni () < Q(7)
then 7 is schedulable by RM-TS.

6 Conclusions and Future Work

We have developed new fixed-priority multiprocessor schedul-
ing algorithms overstepping the Liu and Layland utilization bound.
The first algorithm RM-TS/light can achieve any deflatable para-
metric utilization bound for light task sets. The second algorithm
RM-TS gets rid of the light restriction and work for any task set,
if the bound is under a threshold 1196((72). Further, the new algo-
rithms use exact analysis RTA, instead of the worst-case utilization
threshold as in [13], to determine the maximal workload assigned
to each processor. Therefore, the average-case performance is sig-
nificantly improved. As future work, we will extend our algorithms
to deal with task graphs specifying dependency constraints and task
communication.

References

[1] J. Anderson, V. Bud, and U.C. Devi. An EDF-based scheduling algorithm for
multiprocessor soft real-time systems. In ECRTS, 2005.

[2] B. Andersson. Global static priority preemptive multiprocessor scheduling
with utilization bound 38%. In OPODIS, 2008.

[3] B. Andersson, S. Baruah, and J. Jonsson. Static priority scheduling on multi-
processors. In RTSS, 2001.

[4] B. Andersson and K. Bletsas. Sporadic multiprocessor scheduling with few
preemptions. In ECRTS, 2008.

[5] B. Andersson, K. Bletsas, and S. Baruah. Scheduling arbitrary-deadline spo-
radic task systems multiprocessors. In RTSS, 2008.

[6] B. Andersson and E. Tovar. Multiprocessor scheduling with few preemptions.
In RTCSA, 2006.

[7]1 T. P. Baker. An analysis of EDF schedulability on a multiprocessor. IEEE
Transaction on Parallel and Distributed Systems, 2005.

[8] T.P. Baker and S. Baruah. Sustainable multiprocessor scheduling of sporadic
task systems. In ECRTS, 2009.

[9] S.Baruah and A. Burns. Sustainable schedulability analysis. In RTSS, 2006.

[10] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah.
A Categorization of Real-Time Multiprocessor Scheduling Problems and Al-
gorithms. 2004.

[11] D. Chen, A. K. Mok, and T. W. Kuo. Utilization bound revisited. In IEEE
Transaction on Computers, 2003.

[12] S. K. Dhall and C. L. Liu. On a real-time scheduling problem. In Operations
Research, Vol. 26, No. 1, Scheduling, 1978.

[13] N. Guan, M. Stigge, W. Yi, and G. Yu. Fixed-priority multiprocessor schedul-
ing with Liu & Layland’s utilization bound. In RTAS, 2010.

[14] S. Kato and N. Yamasaki. Semi-partitioned fixed-priority scheduling on mul-
tiprocessors. In RTAS, 2009.

[15] S. Kato, N. Yamasaki, and Y. Ishikawa. Semi-partitioned scheduling of spo-
radic task systems on multiprocessors. In ECRTS, 2009.

[16] T. W. Kuo and A. K. Mok. Load adjustment in adaptive real-time systems. In
RTSS, 1991.

[17] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. Partitioned fixed-priority pre-
emptive scheduling for multi-core processors. In ECRTS, 2009.

[18] S. Lauzac, R. Melhem, and D. Mosse. An efficient rms admission control and
its application to multiprocessor scheduling. In /PPS, 1998.

[19] J.P.Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm:
Exact characterization and average case behavior. In RTSS, 1989.

[20] C.L.LiuandJ. W. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. In Journal of the ACM, 1973.

[21] J. W. S. Liu. Real-time systems. Prentice Hall, 2000.

