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Abstract—Most previous work in cache analysis for WCET
estimation assumes a particular replacement policy called LRU.
In contrast, much less work has been done for non-LRU policies,
since they are generally considered to be very “unpredictable”.
However, most commercial processors are actually equipped with
these non-LRU policies, since they are more efficient in terms of
hardware cost, power consumption and thermal output, but still
maintaining almost as good average-case performance as LRU.

In this work, we study the analysis of MRU, a non-LRU
replacement policy employed in mainstream processor architec-
tures like Intel Nehalem. Our work shows that the predictability
of MRU has been significantly underestimated before, mainly
because the existing cache analysis techniques and metrics,
originally designed for LRU, do not match MRU well. As our
main technical contribution, we propose a new cache hit/miss
classification, k-Miss, to better capture the MRU behavior, and
develop formal conditions and efficient techniques to decide the
k-Miss memory accesses. A remarkable feature of our analysis
is that the k-Miss classifications under MRU are derived by
the analysis result of the same program under LRU. Therefore,
our approach inherits all the advantages in efficiency, precision
and composability of the state-of-the-art LRU analysis techniques
based on abstract interpretation. Experiments with benchmarks
show that the estimated WCET by our proposed MRU analysis
is rather close to (5% ∼ 20% more than) that obtained by the
state-of-the-art LRU analysis, which indicates that MRU is also
a good candidate for the cache replacement policy in real-time
systems.

I. INTRODUCTION

Hard real-time systems are subjected to strict timing anal-
ysis, in which a fundamental problem is to bound the worst-
case execution time (WCET) of programs [25]. To derive safe
and tight WCET bounds, the analysis must take into account
the cache architecture of the target processor. However, the
cache analysis problem of statically determining whether each
memory access is a hit or a miss is a challenging problem.

Much work has been done on cache analysis for WCET
estimation in the last two decades. A vast majority of these
works assume a particular cache replacement policy, called
LRU (Least-Recently-Used), for which researchers have devel-
oped successful analysis techniques to precisely and efficiently
predict cache hits/misses [24]. In contrast, much less attention
has been paid to other replacement policies like MRU [17],
FIFO [6] and PLRU [11]. In general, research in the field of
real-time systems assumes LRU as the default cache replace-
ment policy. The main reason is that these non-LRU policies
are considered to be much less predictable than LRU [18],

[26], and it would be very difficult to develop precise and
efficient analyses for them.

However, most commercial processors actually do not em-
ploy the LRU cache replacement policy. The reason is that
LRU requires more complex logic in hardware implemen-
tation, which results in higher hardware cost, power con-
sumption, thermal output and latency. On the other hand, the
non-LRU replacement policies like MRU, FIFO and PLRU
have simpler implementation logic, but still have almost as
good average-case performance as LRU. Therefore, hardware
manufacturers tend to choose these non-LRU replacement
policies in the processor design, especially for embedded
systems that are subject to strict cost, power and thermal
constraints.

In this work, we study the analysis of one of the most
widely used cache replacement policies, called MRU1. MRU
has been employed in mainstream processor architectures like
Intel Nehalem (the architecture codename of processors like
Intel Xeon, Core i5 and i7) [4]. A previous work comparing
the average-case performance of cache replacement policies
with the SPEC CPU2000 benchmark showed that MRU has
as good average-case performance as LRU, and is superior to
other non-LRU policies like FIFO and PLRU [1]. To the best
of our knowledge, there has been no previous work on the
analysis of MRU in the context of WCET estimation. The
only relevant work is [18], a general study on the timing
predictability of different cache replacement policies, which
indicates that MRU is a very “unpredictable” one.

However, this work will show that the predictability of
MRU actually has been significantly underestimated. This is
mainly because the state-of-the-art cache analysis techniques,
originally designed for LRU, are not suitable for MRU. The
bottom line of the LRU analysis is to determine whether the
accesses related to a particular memory reference are always
hits or not (except the first access that may be a cold miss).
Such a classification is highly effective for LRU caches since
most memory references under LRU indeed exhibit such a
“black or white” behavior. In this work we will show that

1The name of the MRU replacement policy is inconsistent in literatures.
Sometimes, this policy is called Pseudo-LRU because it can be seen as
a kind of approximation of LRU. However, we use the name MRU to
keep consistency with previous works in WCET research [18], [19], and to
distinguish it from another Pseudo-LRU policy PLRU [11] which uses tree
structures to store access history information.



many memory references under MRU exhibit a more nuanced
behavior: a small number of the accesses are misses while all
the other accesses are hits. By the existing analysis framework
based on the “black or white” classification, such a behavior
has to be treated as if all the accesses are misses, which
inherently leads to very pessimistic analysis results.

In this paper, we introduce a new cache hit/miss classi-
fication k-Miss (at most k accesses are misses while all the
others are hits), to more precisely capture the nuanced behavior
in MRU. As our main technical contribution, we establish
formal conditions to determine whether a memory reference
is a k-Miss, and develop techniques to efficiently check these
conditions and thus determine the k-Miss memory references.
A remarkable feature of our technique is using the cache
analysis results of the same program under LRU replacement
to derive the k-Miss classifications under MRU replacement.
Therefore, our technique inherits the advantages in efficiency,
precision and composability from the state-of-the-art LRU
analysis techniques based on abstract interpretation (AI) [24].

We have conducted experiments with benchmark programs
on instruction caches to evaluate the effectiveness of our
proposed analysis, as well as the predictability of the MRU
replacement policy. The experiments show that the estimated
WCET by our MRU analysis is very close to (5% ∼ 20% more
than) that obtained by the state-of-the-art LRU analysis. This
suggests that MRU is also a good candidate for instruction
cache replacement in real-time systems, especially considering
MRU’s other advantages in hardware cost, power consumption
and thermal output. Although the experimental evaluation in
this paper focuses on instruction caches, we believe this work
is a significant step towards the efficient and precise analysis of
MRU for both instruction and data caches, since the properties
of MRU disclosed in this paper and our analysis technique
generally hold for both. The evaluation and refinement of the
techniques in this paper for data caches is left as future work.

A. Related Work
Most previous work on cache analysis for static WCET

estimation assumes the LRU replacement policy. Early work
[16] uses the ILP-only approach where the cache behavior
prediction is formulated as part of the overall linear program.
This approach suffers from serious scalability problems due to
the exponential complexity of ILP, and can not handle realistic
programs on modern processors. A milestone in the research
of static WCET estimation is separating cache analysis by
abstract interpretation (AI) and path analysis by implicit path
enumeration based on basic blocks [24]. Such a framework,
which is very efficient and precise for LRU caches, forms
the common foundation for later research in cache analysis
for WCET estimation. For example, it has been extended and
refined to deal with loops [2], [3], data caches [21], [13], multi-
level caches [10], [22], and shared caches [15], [20].

In contrast, much less work has been done for non-LRU
caches. Although some progress has been made in the analysis
of policies like FIFO [6], [7] and PLRU [8], in general
these analyses are significantly less precise than for LRU.

(a) On the basis of individ-
ual entries.

(b) On the basis of basic blocks.

Fig. 1. An example control-flow-graph.

To the best of our knowledge, there has been no work on
the analysis of MRU. The only relevant work is [18], which
is a general study of the predictability of different policies.
This work defines several metrics to evaluate the predictability
of different replacement policies including LRU, MRU, FIFO
and PLRU. Based on these metrics, all the non-LRU policies
appear to be significantly less predictable than LRU.

Finally, we refer to [25] for a comprehensive survey on
WCET analysis techniques and tools, which covers many
relevant references that are not listed here due to the space
limit.

II. BASIC CONCEPTS

For simplicity of presentation, we assume a fully-associative
cache. However, the analysis techniques of this paper are
directly applicable to set-associative caches, since the memory
references mapped to different cache sets do not affect each
other, and each cache set can be treated as a fully-associated
cache and analyzed independently.

The cache consists of L cache lines. The memory content
that fits into one cache line is called a memory block. Each
instruction or data accessed by the program is called a memory
reference, and we assume that in general a memory block may
contain multiple memory references.

The program is represented by a control-flow-graph (CFG)
G = (N,E), where N is the set of entries and E the set
of directed edges. We use ni to denote an entry. The CFG
can also be represented as a digraph of basic blocks. Each
basic block BBi contains a number of sequentially executed
entries. Fig. 1 shows the two different forms of CFG. The
letters a, b, · · · inside each entry denote the memory block
accessed by the entry. Note that several entries may access the
same memory block since a memory block in general contains
multiple memory references and a memory reference may be
visited at different places in the program.

When the program accesses a memory reference (an entry in
the CFG), the processor first checks whether the memory block
containing this memory reference is in the cache. If yes, it is a
hit, and the program directly accesses this memory reference
from the cache. Otherwise, it is a miss, and the memory block
containing this memory reference is first installed in the cache
before the program accesses it.



Fig. 2. Illustration of LRU cache update, where the left part is a cache miss
and the right part is a cache hit.

A memory block only occupies one cache line regardless
how many times it is accessed. So the number of different
memory blocks in an access sequence is important to the cache
behavior. We use the following concept to reflect this:

Definition II.1 (Stack Length). The Stack Length of a memory
access sequence p, denoted by sl(p), is the number of different
memory blocks accessed in p.

For example, the stack length of the access sequence
a→ b→ c→ a→ d→ a→ b→ d

is 4, since only a, b, c and d are accessed in this sequence.
The number of memory blocks in a program is typically

far greater than the number of cache lines, so a replacement
policy must decide which block to replace upon a miss. In the
following we describe the LRU and MRU replacement policies
respectively.

A. LRU Replacement
The LRU replacement policy always stores the most re-

cently accessed memory block in the first cache line. When
the program accesses a memory block s, if s is not in the cache
(miss), then all the memory blocks in the cache will be shifted
one position to the next cache line (the memory block in the
last cache line is removed from the cache), and s is installed
to the first cache line. If s is in the cache already (hit), then
s is moved to the first cache line and all memory blocks that
were stored before s’s old position will be shifted one position
to the next cache line. Fig. 2 illustrates the update upon an
access to memory block s in an LRU cache of 4 lines. In the
figure, the uppermost block represents the first (lowest-index)
cache line and the lowermost block is the last (highest-index)
one. All the figures in this paper will follow this convention.

A metric defined in [18] to evaluate the predictability of a
replacement policy is the minimal life span (mls), the minimal
number of different memory blocks required to evict a just
visited memory block out of the cache (not counting the access
that brought the just visited memory block into the cache). It
is known that [18]:

Lemma II.2. The mls of LRU is L.

The mls metric can be directly used to determine cache
hits/misses for a memory access sequence: if the stack length
of the sequence between two successive accesses to the same
memory block is smaller than mls, then the later access must
be a hit. For example, for a memory access sequence

a→ b→ c→ c→ d→ a→ e→ b

on an LRU cache with L = 4, we can easily conclude that the
second access to memory block a is a hit since the sequence
between two accesses to a is b → c → c → d, which has

Fig. 3. Illustration of MRU cache update.

stack length 3, while the second access to b is a miss since
the stack length of the sequence c → c → d → a → e is 4.
Clearly, replacement policies with larger mls are preferable,
and the upper bound of mls is L.

B. MRU Replacement
For each cache line, the MRU replacement policy stores

an extra MRU-bit, to approximately represent whether this
cache line was recently visited. An MRU-bit being 1 indicates
that this line was recently visited, while being 0 indicates the
opposite. Whenever a cache line is visited, it’s MRU-bit will
be set to 1. Eventually there will be only one MRU-bit being 0
in the cache. When the cache line with the last MRU-bit being
0 is visited, this MRU-bit is set to 1 and all the other MRU-bits
change back from 1 to 0, which is called a global-flip.

More precisely, when the program accesses a memory block
s, MRU replacement first checks whether s is already in the
cache. If yes, then s will still be stored in the same cache
line and its MRU-bit is set to 1 regardless of its original
state. If s is not in the cache, MRU replacement will find
the first cache line whose MRU-bit is 0, then replaces the
originally stored memory block in it by s and set its MRU-
bit to 1. After the above operations, if there still exists some
MRU-bit being 0, the remaining cache lines’ states are kept
unchanged. Otherwise, all the remaining cache lines’ MRU-
bits are changed from 1 to 0, which is a global-flip. Note that
the global-flip operation guarantees that at any time there is
at least one MRU-bit in the cache being 0.

In the following we present the MRU replacement policy
formally. Let M be the set of all the memory blocks accessed
by the program plus an element representing emptiness. The
MRU cache state can be represented by a function C :
{1, · · · , L} → M × {0, 1}. We use C(i) to denote the state
of the ith cache line. For example, C(i) = (s, 0) represents
that cache line i currently stores memory block s and its
MRU-bit is 0. Further, we use C(i).ω and C(i).β to denote
the resident memory block and the MRU-bit of cache line i.
The update rule of MRU replacement can be described by
the following steps, where C and C′ represent the cache state
before and after the update upon an access to memory block
s, respectively, and δ denotes the cache line where s should
be stored after the access:

1) If there exists h s.t. C(h).ω = s, then let δ ← h,
otherwise let δ = h s.t. C(h).β = 0 and C(j).β = 1 for
all j < h.

2) C′(δ)← (s, 1)
3) If C(h).β = 1 for all h, then let C′(j) ← (C(j).ω, 0)

for all j 6= δ (i.e., global-flip), otherwise C′(j)← C(j)
for all j 6= δ.

Fig. 3 illustrates the MRU cache replacement with a cache
of 4 lines. First the program accesses memory block f , which



Fig. 4. An example showing that the mls of MRU is 2.

is not in the cache yet. The first cache line with MRU-bit being
0 is cache line 2, so f will replace b and the corresponding
MRU-bit is set to 1. Since there are still other cache lines with
MRU-bit being 0, all the other cache lines stay unchanged.
Then the program accesses d, which is already in the 4th

cache line. In this case, d is still stored in the same cache
line, and its MRU-bit keeps 1. Finally, the program accesses
c, which is also in the cache. So c stays in the same cache line,
and its MRU-bit is changed to 1. However, at this moment all
the other cache lines’ MRU-bits are 1, so the global-flip is
triggered, which changes all the other MRU-bits from 1 to 0.

In the MRU cache, the MRU-bit can roughly represent how
old the corresponding memory block is, and the replacement
always tries to evict a memory block that is relatively old.
So MRU can be seen as an approximation of LRU. However,
such an approximation results in a very different mls [18]:

Lemma II.3. The mls of MRU is 2.

This is illustrated in Fig. 4, where only two memory blocks
e and f are enough to evict a just-visited memory block s. It is
easy to extend this example to a cache with an arbitrarily large
number of cache lines, where we still only need two memory
blocks to evict s. Due to this property, MRU has been believed
to be a very unpredictable replacement policy, and to our best
knowledge it has never been seriously considered as a good
candidate for timing-predictable architectures.

III. A REVIEW OF THE ANALYSIS FOR LRU

As mentioned in Section I, a remarkable feature of the MRU
analysis proposed in this paper is using the analysis results of
the same program under LRU to derive the cache behavior un-
der MRU. Thus, before presenting our new analysis technique,
we first provide a brief review of the state-of-the-art analysis
technique for LRU.

Exact cache analysis suffers from a serious state space
explosion problem, so researchers focused on approximation
techniques, separating path analysis and cache analysis for
scalability [24]. The path analysis requires an upper bound on
the timing delay of an entry whenever it is executed. Therefore,
the main purpose of the LRU cache analysis is to decide cache
hit/miss classification (CHMC) for each entry:

AH: Always-Hit. The entry’s memory access is always a
hit whenever it is executed.

FM: First-Miss. The entry’s memory access is a miss for
the first execution, but always a hit afterwards. This
classification is useful to handle “cold misses” in
loops.

AM: Always-Miss. The entry’s memory access is always
a miss whenever it is executed.

Fig. 5. Illustration of Maximal Stack Distance.

NC: Non-Classified. The entry can not be classified into
any of the above categories. These entries have to be
treated as AM in later phases of the analysis.

Among the above CHMC, we call AH and FM positive
classification since they ensure that (the major portion of) the
memory accesses of an entry to be hits, while we call AM and
NC negative classification.

Recall that the mls of LRU is L (Lemma II.2), and that one
can directly use this property to decide the CHMC for an entry
in a linear access sequence. However, a CFG is generally an
arbitrary digraph, and there may be multiple paths between two
entries. We use the following concept to capture the maximal
number of different memory blocks that are accessed between
two entries accessing the same memory block in the CFG.

Definition III.1 (Maximal Stack Distance). Let ni and nj be
two entries accessing the same memory block s. The Maximal
Stack Distance from ni to nj , denoted by dist(ni, nj), is:

dist(ni, nj) =

{
max{sl(p) | p ∈ Π(ni, nj)} Π(ni, nj) 6= ∅

−1 Π(ni, nj) = ∅

where Π(ni, nj) is the set of paths that:
• Start with ni and end with nj ,
• Do not contain other entries accessing s apart from ni

and nj .

For example, the CFG in Fig. 5 contains three entries n1,
n3 and n7 accessing the same memory block s. We have
dist(n1, n7) = 5 since Π(n1, n7) contains a path

n1 → n4 → n5 → n8 → n4 → n6 → n8 → n4 → n7

in which {s, a, c, d, e} are accessed. We have dist(n1, n3) = 2
since n1 → n2 → n3 is the only path in Π(n1, n3) (any other
path from n1 to n3 does not satisfy the second condition for
Π). We have dist(n3, n7) = −1 since any path from n3 to n7
has to go though n1 which also accesses s.

Now one can use the maximal stack distance to decide the
CHMC: we can decide nj to be a positive classification (AH or
FM), if dist(ni, nj) ≤ L holds for any entry ni that accesses
the same memory block s as nj . This is because no matter
which path ni is visited via, there are not enough different
memory blocks to evict s since the last access to s.

However, the problem of computing the maximal stack
distance with a digraph is highly intractable. Therefore, the
LRU analysis resorts to an over-approximation by abstract
interpretation. The main idea is to define an abstract cache
state and iteratively traverse the program until the abstract state
converges to a fixed point, and use the abstract state of this



fixed point to determine the CHMC. There are mainly three
fix-point analyses:
• Must analysis to determine AH entries.
• May analysis to determine AM entries.
• Persistence analysis to determine FM entries.

An entry is a NC if it can not be classified by any of the
above analyses. We refer to the reference [5] for a detailed
introduction to these fix-point analyses.

Finally, the CHMCs are used to calculate the timing delay
of each basic block, which will be encoded into implicit path
enumeration by ILP formulas, or other constraint forms, to
calculate the WCET of the program. The encoding for AH
and AM/NC is rather straightforward: we count the cache hit
delay for AH entries and cache miss delay for AM/NC entries.
To encode the FM entries, one can use the VIVU technique
[23], which unrolls a loop into the head part representing the
first iteration, and the body part representing the remaining
iterations. The FM entry is counted as a miss in the head part
and a hit in the body part. We refer to the reference [23] for
a detailed introduction to implicit path enumeration.

IV. THE NEW ANALYSIS OF MRU
In this section we present our new analysis for MRU. First

we will show that the existing CHMC in the LRU analysis
as introduced in the last section is actually not suitable to
capture the cache behavior under MRU, and thus we introduce
a new positive classification k-Miss. Then we introduce the
conditions for an entry to be k-Miss, and show how to
efficiently check these conditions. Finally we present the
overall flow of our proposed analysis based on the above
results.

A. New Classification: k-Miss
First we consider the example in Fig. 6-(a). We can easily

see that dist(n1, n1) = 4, i.e., at most 4 different memory
blocks appear in each iteration of the loop, no matter which
branch is taken. Since 4 is larger than 2 (the mls of MRU),
n1 can not be decided as a positive classification using mls.

Now we have a closer look into this example, considering
a particular execution sequence in which the two branches are
taken alternatively, as shown in Fig. 6-(b). Assume that the
memory blocks initially stored in the cache (denoted by “?”)
are all different from the ones that appear in Fig. 6-(a), and
initial MRU-bits are shown in the first cache state of Fig. 6-(b).

We can see that the first three executions of s are all misses.
The first miss is a cold miss which is unavoidable anyway
under our initial cache state assumption. However, the second
and third accesses are both misses because s is evicted by
other memory blocks of the program. Indeed, entry n1 can
not be determined as AH or FM, and one has to put it into the
negative classification category and assume that it is always a
miss whenever it is executed.

However, if the sequence continues, we can see that when
n1 is visited for the fourth time, s is actually in the cache,
and most importantly, the access of n1 will always be a
hit afterwards (we do not show a complete picture of this

(a) A CFG example.

(b) Cache update with a possible execution sequence where the two branches
are taken alternatively.

Fig. 6. An example motivating the k-Miss classification.

sequence, however, this can be easily seen by simulating the
update for a long enough sequence until a cycle appears).

The existing positive classification AH and FM are in-
adequate to capture the behavior of entries like n1 in the
above example, which only encounters a smaller number of
misses, but will eventually go into a stable state of being
always hit. Such behavior is actually quite common under the
MRU replacement. Therefore, the analysis of MRU will be
inherently very pessimistic if one only relies on the AH and
FM classification to claim cache hits.

Motivated by the above phenomenon, we define a new
positive classification to more precisely capture the cache
behavior under MRU:
k-Miss: Among all the memory accesses of the entry, at

most k of them are misses, while all the others are
hits.

Note that for a k-Miss entry, the k times misses do not
necessarily occur at the first k accesses of the entry. It allows
the case that the misses and the hits appear alternatively, as
long as the total number of misses does not exceed k.

B. Conditions for k-Miss

In the following we will introduce the conditions for an
entry to be classified as k-Miss. We start with the following
properties of the MRU replacement:

Lemma IV.1. If the number of cache lines is L, then there are
L different memory blocks between two successive global-flips
(including the ones triggering these two global-flips).

Proof: Right after a global-flip, there are L − 1 cache
lines whose MRU-bits are 0. In order to have the next flip,
all these cache lines of which the MRU-bits are 0 need to
be accessed, i.e., it needs L− 1 different memory blocks that
are also different from the one causing the first global-flip. So



Fig. 7. Illustration of Lemma IV.1.

(a) a particular path from nx to ny

(b) the position of s is moved one step down when it is loaded back to
the cache

Fig. 8. Illustration of Lemma IV.2

in total L different memory blocks are involved in the access
sequence between two successive global-flips.

We illustrate the intuition of Lemma IV.1 by the example in
Fig. 7 with L = 4. The access to memory block a triggers the
first global-flip, after which there are 3 MRU-bits being 0. To
trigger the next global-flip, these three MRU-bits have to be
changed to 1, which needs another 3 different memory blocks.
So the total number of different memory blocks involved in
the access sequence between these two flips is 4.

Lemma IV.2. Suppose that under the MRU replacement, at
some point memory block s is accessed by nx at cache line i
(either miss or hit), and the next access to s is a miss caused
by ny upon which s is installed to cache line j. We have j > i
if the following condition holds:

dist(nx, ny) ≤ L. (1)

Fig. 8 illustrates the intuition of Lemma IV.2, where nx and
ny are two entries accessing the same memory block s and
satisfying Condition (1). We focus on a particular path nx →
n1 → n2 → n3 → ny . Fig. 8-(b) shows the cache update
along this path: first nx accesses s in the second cache line.
After s is evicted out of the cache and is loaded back again, it
is installed to the third cache line, which is one position below
the previous one. In the following we give a formal proof of
the lemma.

Proof: We use the term event to refer to a cache access.
Let event ex be the access to s at cache line i by nx as stated
in the lemma, and event ey the installation of s to cache line j
by ny . We prove the lemma by contradiction, assuming j ≤ i.

The first step is to prove that there are at least two global-
flips in the event sequence {ex+1, · · · , ey−1} (ex+1 denotes
the event right after ex and ey−1 the event right before ey).

Before ey , s has to be first evicted out of the cache. Let
event ev denote such an eviction of s, which occurs at cache
line i. By the MRU replacement rule, a memory block can
be evicted from the cache only if the MRU-bit of its resident
cache line is 0. So we know C(i).β = 0 right before ev .

On the other hand we also know that C(i).β = 1 right after
event ex. And since only a global-flip can change an MRU-

bit from 1 to 0, we know that there must exist at least one
global-flip among the events {ex+1, · · · , ev−1}.

Then we focus on the event sequence {ev, · · · , ey−1}. We
distinguish two cases:
• i = j. Right after the eviction of s at cache line i (event
ev), the MRU-bit of cache line i is 1. On the other hand,
just before the installation of s to cache line j (event ey),
the MRU-bit of cache line j must be 0. Since i = j,
there must be at least one global-flip among the events
{ev+1, · · · , ey−1}, in order to change the MRU-bit of
cache line i = j from 1 to 0.

• i > j. By the MRU replacement rule, we know that
just before s is evicted in event ev , it must be true that
∀h < i : C(h).β = 1, and particularly C(j).β = 1. On
the other hand, just before the installation of s in event
ey , the MRU-bit of cache line j must be 0. Therefore,
there must be at least one global-flip among the events
{ev, · · · , ey−1}, in order to change the MRU-bit of cache
line j from 1 to 0.

In summary, there is at least one global-flip among the events
{ev, · · · , ey−1}.

Therefore, we can conclude that there are at least two
global-flips among the events {ex+1, · · · , ey−1}. By Lemma
IV.1 we know that at least L different memory blocks are
accessed in {ex+1, · · · , ey−1}. Since ey is the first access
to memory block s after ex, there is no access to s in
{ex+1, · · · , ey−1}, so at least L+ 1 different memory blocks
are accessed in {ex, · · · , ey}.

Let p be the path that leads to the event sequence
{ex, · · · , ey}. Clearly, p starts with nx and ends with ny . We
also know that no other entry along p, apart from nx and ny ,
accesses s, since ey is the first event accessing s after ex.
So p is a path in Π(nx, ny) (Definition III.1), and we know
dist(nx, ny) ≥ sl(p). Combining this with Condition (1) we
have

sl(p) ≤ L. (2)

This contradicts with that at least L + 1 different memory
blocks are accessed in {ex, · · · , ey} as we concluded above.

To see the significance of Lemma IV.2, we consider a special
case where a CFG only contains one entry n accessing the
memory block s and dist(n, n) ≤ L as shown in Fig. 9-(a).
In this case, by Lemma IV.2 we know that each time s is
accessed, there are only two possibilities:
• the access to s is a hit, or
• the access to s is a miss and s is installed to a cache line

with a strictly larger index than before.
So we can conclude that s can only be a miss for at most L
times since the position of s can only “move downwards” for
a limited number of times which is bounded by the number
of cache lines.

However, in general there could be more than one entry in
the CFG accessing the same memory block, where Lemma
IV.2 can not be directly applied to determine the k-Miss
classification. Consider the example in Fig. 9-(b), where two



(a) (b)

Fig. 9. An example illustrating the usage of Lemma IV.2

entries n1 and n2 both access the same memory block s, and
we have dist(n1, n2) ≤ L and dist(n2, n1) > L. In this case,
we can not classify n2 as a k-Miss, although Lemma IV.2 still
applies to the path from n1 to n2. The is because Lemma IV.2
only guarantees the position of s will “move downwards” each
time n2 encounters a miss, but the position of s may “move
upwards” (since dist(n2, n1) > L), which breaks down the
memory block’s movement monotonicity.

In order to use Lemma IV.2 to determine the k-Miss
classification in the general case, we need to guarantee a global
movement monotonicity of a memory block among all the
related entries. This can be done by examining the condition
of Lemma IV.2 for all the entries in a strongly connected
component (maximal strongly connected subgraph) together,
as described in the following theorem:

Theorem IV.3. Let SCC be a strongly connected component
in the CFG, let S be the set of entries in SCC accessing the
memory block s. The total number of misses caused by all the
entries in S is at most L if the following condition holds:

∀nx, ny ∈ S : dist(nx, ny) ≤ L. (3)

Proof: Let ef and el be the first and last event launched
by some entry in S during the whole program execution. Since
S is a subset of the strongly connected component SCC, any
event accessing s in the event sequence {ef , · · · , el} has to
be also launched by some entry in S (otherwise there will be
a cycle including entries both inside and outside SCC, which
contradicts that SCC is a strongly connected component).

By Condition (3) and Lemma IV.2 we know that, among the
events {ef , · · · , el} whenever the access to s is a miss, s will
be installed to a cache line with a strictly larger index than
before. Since the cache contains only L cache lines, there are
at most L misses of s in {ef , · · · , el}. Therefore, the entries
in S have at most L misses in total.

Theorem IV.3 provides the condition to have an upper bound
on the total number misses of a group of entries, which can be
easily relaxed to that each of these entries can be individually
classified as an L-Miss (k-Miss with k = L):

Corollary IV.4. Let SCC be a strongly connected component
in the CFG, let S be the set of entries in SCC accessing the
memory block s. Each entry in S can be classified as L-Miss
if the following condition holds:

∀nx, ny ∈ S : dist(nx, ny) ≤ L. (4)

We do such a relaxation to facilitate a simple implicit
path enumeration formulation based on basic blocks. It is
also possible to directly encode Theorem IV.3 into implicit

path enumeration to obtain less-pessimistic analysis results
at the cost of a more complicated (thus less scalable) ILP
formulation, which will not be further explored in this paper.

C. Efficient k-Miss Determination
Corollary IV.3 gives us the condition to determine whether

an entry is an L-Miss (k-Miss with k = L). The major
task of checking this condition is to calculate the Maximal
Stack Distance dist(). As we mentioned in Section III, the
exact calculation of dist() is highly intractable (that is why
the analysis of LRU relies on AI to obtain over-approximate
classification). For the same reason, we will also resort to over-
approximation to efficiently check the conditions of L-Miss.

The main idea is to first do the Must/Persistence analysis
for the same program under LRU replacement, and then use
the AH/FM classification under LRU to derive the L-Miss
classification under MRU.

Lemma IV.5. Let ny be an entry that accesses memory
block s and is classified as AH/FM by the Must/Persistence
analysis under the LRU replacement. For any entry nx that
also accesses s, if there exists a cycle in the CFG including
nx and ny , then it must be true that

dist(nx, ny) ≤ L.

Proof: We prove by contradiction. Let nx be an entry that
also accesses s and there exists a cycle in the CFG including
nx and ny . We assume that

dist(nx, ny) > L. (5)

By the definition of dist(nx, ny) we know that there must
exists a path from nx to ny which does not contain any
other entry accessing r apart from nx and ny (otherwise
dist(nx, ny) = −1). Let p the path that leads to the maximal
stack distance from nx to ny , i.e., sl(p) = dist(nx, ny).

By our assumption (5), we know there are strictly more
than L different memory blocks along p. This implies that
under the LRU replacement, whenever ny is reached via path
p, s is not in the cache. Furthermore, ny can be reached
via path p repeatedly since there exists a cycle including
nx and ny . This contradicts with that ny is classified as
AH/FM by the Must/Persistence analysis under LRU, since
Must/Persistence yields safe classification (in the real exe-
cution, an AH entry does not have cache misses and a FM
entry only has at most one miss) [24].

Theorem IV.6. Let SCC be a strongly connected component
in the CFG, and S the set of entries in SCC that access the
same memory block s. If all the entries in S are classified
as AH/FM by the Must/Persistence analysis under the LRU
replacement, then each of these entries can be classified as
L-Miss under the MRU replacement.

Proof: Let nx, ny be two arbitrary entries in S, so both of
them access the memory block s and are classified as AH/FM
by the Must/Persistence analysis under LRU. Since S is a
subset of a strongly connected component, we also know nx



(a) After step 1). (b) After step 2). (c) After step 3).

Fig. 10. Illustration of the overall analysis flow.

and ny are included in a cycle in the CFG. Therefore, by
Lemma IV.5 we know

dist(nx, ny) ≤ L.

Since nx, ny are arbitrarily chosen, the above conclusion holds
for any pair of entries in S. Therefore, by Corollary IV.4 we
know that each entry in S can be classified as L-Miss.

Actually, Theorem IV.6 can be extended to the form of
using the maximal memory block ages produced in the
Must/Persistence analysis under LRU to derive k-Miss clas-
sifications under MRU with smaller k values. However, in this
work we only use the original form of Theorem IV.6 for the
L-Miss classification, which already gives very precise WCET
estimation as we will show in Section V.

D. The Overall Analysis of MRU
Now we introduce the overall analysis flow for the MRU

cache, which are in the following four major steps:
1) Do the AI analysis for the program under LRU.
2) Use the results obtained in step 1) to derive the k-Miss

classification entries under MRU (Theorem IV.6).
3) Revise the classifications of the “prefetched” entries that

are obviously AH.
4) Encode the classifications obtained from the above steps

into the implicit path enumeration ILP formulation to
calculate the WCET.

In the following we introduce each step in detail.
In the first step, we do the AI cache analysis for the CFG

assuming an LRU cache with the same number of cache lines.
For example, Fig. 10-(a) shows the classification for the entries
in the CFG under LRU with L = 4. We assume that each
memory block contains two memory references, and in the
figure the entries sharing the same memory block are covered
by the same grey box.

Then in the second step, we transform the result obtained
in step 1) into the k-Miss classifications for MRU using
Theorem IV.6. Fig. 10-(b) shows the result of the transfor-
mation from Fig. 10-(a). Note that although both the entries
“00400320” and “00400324” access the same memory block
and “00400320” is an AM, we still can use Theorem IV.6 to
classify “00400324” as a 4-Miss since they are not in the same
strongly connected component.

(a) original CFG (b) unrolled for FM (c) unrolled for k-Miss

Fig. 11. VIVU for FM and k-Miss

The third step is to revise the classification of the entries that
are obviously AH due to the “prefetching” by the preceding
entries accessing the same memory block. If an entry is in the
same basic block as its preceding entry that access the same
memory block, this entry can be immediately classified as AH
under either LRU or MRU. Fig. 10-(c) shows the results of
the revision. Note that although “00400320” and “00400324”
also share the same memory block, “00400324” can not be
classified as AH since they are in different basic blocks.

By now, we have determined the CHMC for all the entries:
the k-Miss entries determined in step 2), the AH entries
determined in step 3) and remaining entries which are AM/NC.

In the last step, we encode CHMC obtained from the above
steps into the implicit path enumeration ILP formulation. The
k-Miss entries can be handled by a similar approach as the
VIVU in the LRU analysis (see Section III). The new problem
is that the cache misses of a k-Miss entry do not necessarily
occur in the first k iterations of the loop, and if a basic block
contains more than one k-Miss entry, the cache-misses of
these entries may occur in different iterations. So it seems the
implicit path enumeration has to be done on the individual
entry level, instead of the basic block level as the original
LRU analysis [24]. However, actually we can still encode
the implicit path enumeration on the basis of basic blocks,
assuming that all the misses of a k-Miss entry occur in the first
k iterations, as shown in Fig. 11-(c). This particular scenario
exactly captures the worst case among all the possible cases
and indeed yields a safe WCET estimation.

V. EXPERIMENTAL EVALUATION

A. Methodology

We evaluate the performance of our proposed MRU analysis
with programs2 from the Mälardalen Real-Time Benchmark
suite [9]. All the experiments are conducted with instruction
caches. However, the theoretical results of this work also
directly apply to data caches, and we leave the evaluation for
data caches as future work.

2Some programs in the benchmark are not included in our experiments
since the CFG construction engine (from Chronos [14]) used in our prototype
does not support programs with particular structures like recursion and switch-
case very well. Some loop bounds in the programs can not be automatically
inferred by the CFG construction engine, which are manually set to be 50.



TABLE I
EXPERIMENT RESULTS.

LRU analysis by AI MRU analysis in this work Baseline analysis
Program AM AM exceeding AM exceeding

AH FM +NC WCET AH k-Miss +NC WCET LRU analy. AH FM +NC WCET LRU analy.
adpcm 1262 80 1319 14,302,899 1159 84 1419 14,482,260 1.25% 1159 0 1503 14,601,582 2.09%

bs 36 28 14 3,938 35 29 14 4,658 18,28% 35 0 43 12,278 211.78%
bsort 61 54 22 587,350 55 60 22 588,835 0.25% 55 0 82 2,046,718 248,47%
cnt 94 63 45 398,170 85 72 45 399,919 0.44% 85 0 117 1,371,981 244,57%
crc 225 173 64 212,398 198 200 64 216,532 1.95% 198 0 264 801,804 277,50%
edn 427 157 312 58,321,260 415 166 312 58,348,791 0.05% 415 0 481 59,119,344 1.37%

expint 103 89 35 88,026 91 101 35 89,439 1.61% 91 0 136 309,966 252.13%
fdct 321 76 250 166,662 320 77 250 168,723 1.24% 320 0 327 200,187 20.12%

fibcall 25 12 17 1,503 20 17 17 1,845 22.75% 20 0 34 4,356 189.82%
fir 66 51 28 116,927 62 55 28 118,322 1.19% 62 0 83 402,728 244.43%

insertsort 51 33 22 258,289 48 36 22 259,261 0.38% 48 0 58 873,169 238.06%
janne 32 26 16 122,040 29 29 16 122,772 0.60% 29 0 45 463,850 280.08%

jfdctint 341 22 328 205,571 339 24 328 206,156 0.28% 339 0 352 214,868 4.52%
matmult 133 114 40 12,665,170 124 123 40 12,668,329 0.02% 124 0 163 42,420,529 234.94%
minver 376 101 325 60,177,371 350 113 339 60,318,356 0.23% 350 0 452 42,420,529 234.94%
ndes 570 97 454 6,131,554 501 117 503 6,665,202 8.70% 501 0 620 6,793,656 10.80%
ns 73 39 43 500,833,778 68 44 43 500,834,957 <0.01% 68 0 87 1,716,732,788 242.78%

nsichneu 3920 1 4044 2,611,872 3606 3 4356 2,752,290 5.38% 3606 0 4359 2,752,290 5.38%
prime 165 26 59 8,097 99 92 59 9,807 21.12% 99 0 151 27,537 240.09%
qsort 217 0 241 29,830,054 212 0 246 29,853,463 0.08% 212 0 246 29,853,463 0.08%
qurt 362 270 109 20,043 295 337 109 23,508 17.29% 295 0 446 66,816 233.36%

select 189 0 215 26,811,978 174 2 228 29,198,796 8.90% 174 0 228 29,198,796 8.90%
sqrt 49 37 21 6,588 42 44 21 7,638 15.94% 42 0 65 22,090 235.37%

statemate 656 6 810 231,197 561 18 893 250,655 8.42% 561 0 911 250,655 8.42%
ud 255 137 155 68,705,001 241 144 162 69925032 1.78% 241 0 306 78,495,453 14.25%

average 5.74% 135.03%

We compare the estimated WCET obtained by the state-of-
the-art LRU analysis based on abstract interpretation (Must
and May analysis in [24], Persistence analysis in [3]) and
that obtained by our MRU analysis. If the estimated WCET
by our MRU analysis is sufficiently close to that by the LRU
analysis, then it is fair to claim that MRU is also a good
candidate for the instruction cache replacement policy in real-
time embedded systems. At the same time, such a comparison
can also evaluate the precision of our MRU analysis, since it
is known that i) LRU and MRU have essentially the same
performance [1] and, ii) the LRU analysis is very precise
(typically with 5% ∼ 10% WCET over-estimation) [24].

To do such experiments, it may be unauthentic to only com-
pare the estimated WCET by the LRU analysis and our MRU
analysis, since under certain hardware configurations such a
comparison may not provide useful information. Consider an
extreme case: the cache is very small and all the memory
accesses are always misses regardless of the underlying re-
placement policy. In this case, the estimated WCET by the
LRU analysis and our MRU analysis will be exactly the same.
However, such a result provides no information about the
predictability of MRU or the precision of our MRU analysis.

To solve this problem, we introduce a “baseline” analysis
into the comparison, to show the actual gain of our MRU
analysis. The baseline analysis only explores the AH entries
due to the “prefetching” by their preceding entries in the same
memory block, and assumes all other entries to be AM. The
comparison between the LRU analysis and our MRU analysis
is considered to be meaningful only if the gap between the
LRU analysis and the baseline is sufficiently large.

B. Results

The experiments of Table I use the same hardware setting
as in [24]: We assume a 1K bytes set-associative instruction
cache, and each set has 4 ways. Each instruction is 4 bytes,
and each cache line (memory block) is 8 bytes. We assume
a perfect pipeline in the processor, and all the instructions
have the same execution delay of 1 cycle. The memory access
penalty is 1 cycle upon a hit, and 10 cycles upon a miss.

Table I summarizes the number of entries with different
classifications and the estimated WCETs of the LRU anal-
ysis by abstract interpretation [24], [3], the MRU analysis
in this work and the baseline WCET estimation mentioned
above. For the MRU and baseline analysis, we also cal-
culate the corresponding excesses over the LRU analysis
in percentage (the “exceeding LRU” columns in the table).
For example, the estimated WCET by our MRU analysis
of program adpcm is 14, 482, 260, which is (14, 482, 260 −
14, 302, 899)/14, 302, 899 = 1.25% more than the estimation
14, 302, 899 by the LRU analysis.

From the table we can see that most positive classifications
(AH and FM) in the LRU analysis still remain positive in
our MRU analysis (AH and k-Miss). For most programs the
estimated WCET by our MRU analysis is very close to that by
the LRU analysis. The difference is 5.74% on average. On the
other hand, the gap between the baseline and the LRU analysis
is indeed very large: the estimated WCET by the baseline
analysis is on average 135.03% more than that obtained by
the LRU analysis.

The k-Miss classification used in our MRU analysis is
sensitive to k, which is the number of ways (cache lines) in



each cache set according to Theorem IV.6. In general, a larger
k may increase the estimated WCET by our MRU analysis
since it leads to more misses (in the estimation) for each
k-Miss entry. Therefore, we also conduct experiments with
8-way and 16-way caches (with the same total cache size
but different number of cache sets). The estimated WCET by
our MRU analysis is on average 10.42% and 20.47% more
than that obtained by the LRU analysis for 8-way and 16-
way caches respectively, and in both cases the gap between
the baseline analysis and the LRU analysis is similar with
the case of 4-way caches. Note that it is very uncommon to
use set-associative caches with more than 16 ways in realistic
processors, especially the ones used in embedded systems,
since a large number of ways will significantly increase the
hardware cost and power consumption, but provides little
performance benefit [12]. By the above experiment results we
can see that the estimated WCET by our MRU analysis is
quite close to that by LRU analysis under common hardware
setting, which indicates that MRU is also a good candidate for
the cache replacement policy in real-time embedded systems,
especially considering MRU’s other advantages in hardware,
power and thermal efficiency.

As presented earlier in the paper, our analysis is based on the
framework with separated cache and path analysis, and uses
the analysis results under LRU to derive cache classifications
under MRU. Therefore, our MRU analysis is as efficient as the
state-of-the-art LRU analysis. In our experiments, the analysis
of each program can terminate within one second.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we study the WCET analysis with the MRU
cache replacement policy, which is used in mainstream proces-
sor architectures like Intel Nehalem. The MRU replacement
has received little attention in real-time system research, as
it is generally believed to be very unpredictable. This work
discloses that actually the predictability of MRU has been
significantly underestimated before, which is mainly because
the cache hit/miss classification in existing cache analysis tech-
niques, originally designed for LRU, does not match the MRU
cache behavior well. The main technical contribution of this
work is to define a new cache hit/miss classification k-Miss to
more precisely capture the MRU behavior, and develop formal
conditions and efficient techniques to determine the k-Miss
memory references. A remarkable feature of our technique
is to derive the k-Miss classifications under MRU by the
analysis results of the same program under LRU. Experiments
with programs from the Mälardalen Real-Time Benchmark
suite on instruction caches indicate that our analysis yields
precise cache hit/miss prediction. And most importantly, the
experiments show that the predictability of MRU, explored by
our analysis technique, is rather close to LRU. This suggests
that processor platforms with MRU cache replacement are also
a good candidate for real-time systems.

As future work, we will improve our MRU analysis pre-
cision by further exploring the k-Miss classifications with
smaller k values (as discussed at the end of Section IV-C),

and bounding the total number of misses for a group of entries
(directly using Theorem IV.3). We also plan to evaluate and
refine our analysis for data caches.
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