
Fixed-Priority Multiprocessor Scheduling with Liu & Layland’s Utilization Bound

Nan Guan†‡, Martin Stigge†, Wang Yi†‡ and Ge Yu‡

†Department of Information Technology, Uppsala University, Sweden
‡Department of Computer Science and Technology, Northeastern University, China

Abstract—Liu and Layland discovered the famous utilization
bound N(2

1
N − 1) for fixed-priority scheduling on single-

processor systems in the 1970’s. Since then, it has been a
long standing open problem to find fixed-priority scheduling
algorithms with the same bound for multiprocessor systems.
In this paper, we present a partitioning-based fixed-priority
multiprocessor scheduling algorithm with Liu and Layland’s
utilization bound.

Keywords-real-time systems; utilization bound; multiproces-
sor; fixed priority scheduling

I. INTRODUCTION

Utilization bound is a well-known concept first introduced
by Liu and Layland in their seminal paper [19]. Utilization
bound can be used as a simple and practical way to test
the schedulability of real-time task sets, as well as a good
metric to evaluate the “quality” of a scheduling algorithm.
It was shown that the utilization bound of Rate Monotonic
Scheduling (RMS) on single processors is N(2

1
N − 1). For

simplicity of presentation we let Θ(N) = N(2
1
N − 1).

Multiprocessor scheduling are usually categorized into
two paradigms [10]: global scheduling, in which each task
can execute on any available processor in the run time, and
partitioned scheduling in which each tasks is assigned to a
processor beforehand, and during the run time each task can
only execute on this particular processor. Although global
scheduling on average utilizes computing resource better,
the best known utilization bound of global fixed-priority
scheduling is only 38% [3], which is much lower than the
best known result of partitioned fixed-priority scheduling
50% [7]. 50% is also known as the maximum utilization
bound for both global and partitioned fixed-priority schedul-
ing [4], [20]. Although there exist scheduling algorithms,
like the pfair family [2], [9], offering utilization bounds of
100%, these scheduling algorithms are not priority-based
and incur much higher context-switch overhead [11].

Recently a number of works have been done on the semi-
partitioned scheduling, which can exceed the maximum
utilization bound 50% of the partitioned scheduling. In semi-
partitioned scheduling, most tasks are statically assigned to
one fixed processor as in partitioned scheduling, while a

This work was partially sponsored by CoDeR-MP, UPMARC, and NSF
of China under Grant No. 60973017 and 60773220.

Corresponding author: Wang Yi, yi@it.uu.se.

few number of tasks are split into several subtasks, which
are assigned to different processors. A recent work [18]
has shown that the worst-case utilization bound of semi-
partitioned fixed-priority scheduling can achieve 65%, which
is still lower than 69.3% (the worst-case value of Θ(N)
when N is increasing to the infinity). This gap is even larger
with a smaller N .

In this paper, we propose a new fixed-priority schedul-
ing algorithm for multiprocessor systems based on semi-
partitioned scheduling, whose utilization bound is Θ(N).
The algorithm uses RMS on each processor, and has the
same task splitting overhead as in previous works [18], [15],
[16].

We first propose a semi-partitioned fixed-priority schedul-
ing algorithm, whose utilization bound is Θ(N) for a class
of task sets in which the utilization of each task is no larger
than Θ(N)/(1 + Θ(N)). This algorithm assigns tasks in
decreasing period order, and always selects the processor
with the least workload assigned so far among all processors,
to assign the next task. Then we remove the constraint on
the utilization of each task, by introducing an extra task
pre-assigning mechanism; the algorithm can achieve the
utilization bound of Θ(N) for any task set.

The rest of the paper is structured as follows: Section
II reviews the prior work on semi-partitioned scheduling;
Section III introduces the notations and the basic concept of
semi-partitioned scheduling. The first and second proposed
algorithms, as well as their worst-case utilization bound
properties, are presented in Section IV and V respectively.
Finally, the conclusion is made in Section VI.

II. PRIOR WORK

Semi-partitioned scheduling has been studied with both
EDF scheduling [1], [8], [5], [6], [13], [14], [17] and fixed-
priority scheduling [15], [16], [18].

The first semi-partitioned scheduling algorithm is EDF-
fm [1] for soft real-time systems based on EDF scheduling.
Andersson et al. proposed EKG [8] for hard real-time
systems, in which split tasks are forced to executed in certain
time slots. Later EKG was extended to sporadic and arbitrary
deadline task systems [5] [6] with the similar idea. Kato et al.
proposed EDDHP and EDDP [13] [14] in which split tasks
are scheduled based on priority rather than time slots. The
worst-case utilization bound of EDDP is 65%. Later Kato et

al. proposed EDF-WM, which can significantly reduce the
context switch overhead against previous work.

There are relatively fewer works on the fixed-priority
scheduling side. Kato et al. proposed RMDP [15] and
DMPM [16], both with the worst-case utilization bound of
50%. which is the same as the partitioned scheduling without
task splitting. Recently, Lakshmanan et al. [18] proposed the
algorithm PDMS HPTS DS, which can achieve the worst-
case utilization bound of 65%, and can achieve the bound
69.3% for a special type of task sets only containing “light”
tasks. They also conducted case studies on an Intel Core
2 Duo processor to characterize the practical overhead of
task-splitting, and showed that the cache overheads due to
task-splitting can be expected to be negligible on multi-core
platforms.

III. BASIC CONCEPTS

We first introduce the processor platform and task model.
The multiprocessor platform consists of M identical pro-
cessors {P1, P2, ...PM}. A task set τ = {τ1, τ2, ..., τN}
consists of N independent tasks. Each task τi is a 2-tuple
〈Ci, Ti〉, where Ci is the worst-case execution time, Ti is the
minimum inter-release separation (also called period). Ti is
also τi’s relative deadline.

Tasks in τ are sorted in non-decreasing period order, i.e.,
j > i ⇒ Tj ≥ Ti. Since our proposed algorithms use rate-
monotonic scheduling (RMS) as the scheduling algorithm
on each processor, we can use the task indices to represent
the task priorities, i.e., τi has higher priority than τj if and
only if i < j. The utilization of each task τi is defined as
Ui = Ci/Ti.

We recall the classical result of Liu and Layland [19]: On
a single-processor system, each task set τ with∑

τi∈τ
Ui ≤ N(2

1
N − 1)

is schedulable using rate-monotonic scheduling (RMS).
The utilization bound of our proposed semi-partitioned

scheduling algorithm is built upon this result. In the re-
mainder of this paper, we use Θ(N) to denote the above
utilization bound for N tasks:

Θ(N) = N(2
1
N − 1) (1)

We further define the utilization of a task set τ in
multiprocessor scheduling on M processors as

U(τ) =
∑
τi∈τ

Ui/M (2)

For simplicity of presenting our algorithms, we assume
each task τi ∈ τ has utilization Ui ≤ Θ(N). Note that
this assumption does not invalidate our results on task sets
containing tasks with utilization higher than Θ(N): If in a
task set with U(τ) ≤ Θ(N) there are tasks with a higher
(individual) utilization than Θ(N), we can just let them run

2

1 τi1

τi2

3 τi3

r

r r+Ri
1

d
Ti -Ri

1-Ri
2

Ti Ri
1

r

Ri
1

Ri
2

r+Ri
1+Ri

2

Figure 1. Subtasks

each exclusively on an own processor. The remaining task
set on the remaining processors still has a utilization of at
most Θ(N). If we are able to show its schedulability, then
together this results in the desired bound Θ(N) for the full
task set.

A semi-partitioned scheduling algorithm consists of two
parts: the partitioning algorithm, which determines how
to split and assign each task (or rather each of its parts)
to a fixed processor, and the scheduling algorithm, which
determines how to schedule the tasks assigned to each
processor.

With the partitioning algorithm, most tasks are assigned
to a processor and only execute on this processor at run
time. We call these tasks non-split tasks. Other tasks are
called split tasks, which are split into several subtasks. Each
subtask of split task τi is assigned to (thereby executes on)
a different processor, and the sum of the execution time of
all subtasks equals Ci. For example, in Figure 1 the task
τi is split into three subtasks τ1

i , τ2
i and τ3

i , executing on
processor P1, P2 and P3, respectively.

The subtasks of a task need to be synchronized to execute
correctly. For example, in Figure 1, τ2

i can not start exe-
cution until τ1

i is finished. This equals deferring the actual
ready time of τ2

i by up to R1
i (relative to τi’s original release

time), where R1
i is the worst-case response time of τ1

i . One
can regard this as shortening the actual relative deadline of
τ2
i by up to R1

i . Similarly, the actual ready time of τ3
i is

deferred by up to R1
i +R2

i , and τ3
i ’s actual relative deadline

is shortened by up to R1
i +R2

i . We use τki to denote the kth

subtask of a split task τi, and define τki ’s synthetic deadline
as

4ki = Ti −
∑

l∈[1,k−1]

Rli (3)

Thus, we represent each subtask τki by a 3-tuple
〈cki , Ti,4ki 〉, in which cki is the execution time of τki , Ti
is the original period, 4ki is the synthetic deadline. For
consistency, each non-split task τi can be represented by
a single subtask τ1

i with c1i = Ci and 41
i = Ti.

The normal utilization of a subtask τki is Uki = cki /Ti,
and we define another new metric, the synthetic utilization

V ki , to describe τki ’s workload with its synthetic deadline:

V ki = cki /4ki (4)

We call the last subtask of τi its tail subtask, denoted by τ ti
and other subtasks its body subtasks, as shown in Figure 1.
We use τ bj

i to denote the jth body subtask. We use τi 7→ Pq
to denote that τi is assigned to processor Pq , and say that
Pq is the host processor of τi.

A task set τ is schedulable under a semi-partitioned
scheduling algorithmA, if after assigning tasks to processors
by A’s partitioning algorithm, each task τi ∈ τ can meet its
deadline under A’s scheduling algorithm.

IV. THE FIRST ALGORITHM SPA1

A significant difference between SPA1 and the algorithms
in previous work is that SPA1 employs a “worst-fit” parti-
tioning, while all previous algorithms employ a “first-fit”
partitioning [18], [15], [16].

The basic procedure of “first-fit” partitioning is as follows:
one selects a processor, and assign tasks to this processor
as much as possible to fill its capacity, then pick the
next processor and repeat the procedure. In contrast, the
“worst-fit” partitioning always selects the processor with the
minimal total utilization of tasks that have been assigned to
it, so the occupied capacities of all processors are increased
roughly “in turn”.

The reason for us to prefer worst-fit partitioning is intu-
itively explained as follows. A subtask τki ’s actual deadline
(4ki) is shorter than τi’s original deadline Ti, and the sum
of the synthetic utilizations of all τi’s subtasks is larger than
τi’s original utilization Ui, which is the key difficulty for
semi-partitioned scheduling to achieve the same utilization
bound as on single-processors. With worst-fit partitioning,
the occupied capacity of all processors are increased “in
turn”, and task splitting only occurs when the capacity of a
processor is completely “filled”. Then, if one partitions all
tasks in increasing priority order, the split tasks in worst-
fit partitioning will generally have relatively high priority
levels on each processor. This is good for the schedulability
of the task set, since the tasks with high priorities usually
have better chance to be schedulable, so they can tolerate the
shortened deadlines better. Consider an extreme scenario: if
one can make sure that all split tasks’ subtasks have the
highest priority on their host processors, then there is no
need to consider the shortened deadlines of these subtasks,
since, being of the highest priority level on each processor,
they are schedulable anyway. Thus, as long as the split
tasks with shorten deadlines do not cause any problem,
Liu and Layland’s utilization bound can be easily achieved.
The philosophy behind our proposed algorithms is making
the split subtasks get as high priority as possible on each
processor.

In contrast, with the first-fit partitioning, a split subtask
may get quite low priority on its host processors1. For in-
stance, with the algorithm in [18] that achieves the utilization
bound of 65%, in the worst case the second subtask of a split
task will always get the lowest priority on its host processor.

As will be seen later in this section, SPA1 does not
completely solve the problem. More precisely, SPA1 is
restricted to a class of light task sets, in which the utilization
of each task is no larger than Θ(N)/(1+Θ(N)). Intuitively,
this is because if a task’s utilization is very large, its tail
subtask might still get a relatively low priority on its host
processor, even using worst-fit partitioning. (We will solve
this problem with SPA2 in Section V.)

In the following, we will introduce SPA1 as well as its
utilization bound property. The remaining part of this section
is structured as follows: we first present the partitioning
algorithm of SPA1, and show that any task set τ satisfying
U(τ) ≤ Θ(N) can be successfully partitioned by SPA1.
Then we introduce how the tasks assigned to each processor
are scheduled. Next, we prove that if a light task set is suc-
cessfully partitioned by SPA1, then all tasks can meet their
deadlines under the scheduling algorithm of SPA1. Together,
this implies that any light task set with U(τ) ≤ Θ(N) is
schedulable by SPA1, and finally indicates the utilization
bound of SPA1 is Θ(N) for light task sets.

1: if U(τ) > Θ(N) then abort
2: UQ := [τ1

N , τ
1
N−1, ..., τ

1
1]

3: Ψ[1...M] := all zeros
4: while UQ 6= ∅ do
5: Pq := the processor with the minimal Ψ
6: τki := pop front(UQ)
7: if (Uki + Ψ[q] ≤ Θ(N)) then
8: τki 7→ Pq
9: Ψ[q] := Ψ[q] + Uki

10: else
11: split τki into two parts τki and τk+1

i such that
Uki + Ψ[q] = Θ(N)

12: τki 7→ Pq
13: Ψ[q] := Θ(N)
14: push front(τk+1

i , UQ)
15: end if
16: end while
Algorithm 1: The partitioning algorithm of SPA1.

A. SPA1: Partitioning and Scheduling

The partitioning algorithm of SPA1 is very simple, which
can be briefly described as follows:

1Under the algorithms in [16], a split subtask’s priority is artificially
advanced to the highest level on its host processor, which breaks down the
RMS priority order and thereby leads to a lower utilization bound.

• We assign tasks in increasing priority order, and always
select the processor on which the total utilization of
tasks have been assigned so far is minimal among all
the processors.

• When a task (subtask) can not be assigned entirely to
the current selected processor, we split it into two parts
and assign the first part such that the total utilization
of the current selected processor is Θ(N), and assign
the second part to the next selected processor.

The precise description of the partitioning algorithm is
in Algorithm 1. UQ is the list accommodating unassigned
tasks, sorted in increasing priority order. UQ is initialized
by {τ1

N , τ
1
N−1, ..., τ

1
1 }, in which each element τ1

i = 〈c1i =
Ci, Ti,41

k = Ti〉 is the initial subtask form of task τi. Each
element Ψ[q] in the array Ψ[1...M] denotes the sum of the
utilization of tasks that have been assigned to processor Pq .

The work flow of SPA1 is as follows. In each loop
iteration, we pick the task at the front of UQ, denoted by τki ,
which has the lowest priority among all unassigned tasks. We
try to assign τki to the processor Pq , which has the minimal
Ψ[q] among all elements in Ψ[1...M]. If

Uki + Ψ[q] ≤ Θ(N)

then we can assign the entire τki to Pq , since there is enough
capacity available on Pq . Otherwise, we split τki into two
subtasks τki and τk+1

i , such that

Uki + Ψ[q] = Θ(N)

(Note that with Uki = cki /Ti we denote the utilization of
subtask τki .) We further set Ψ[q] := Θ(N), which means
this processor Pq is full and we will not assign any more
tasks to Pq .

Then we insert τk+1
i back to the front of UQ, to assign it

in the next loop iteration. We continue this procedure until
all tasks have been assigned.

It is easy to see that all task sets below the desired
utilization bound can be successfully partitioned by SPA1:

Lemma 1. Any task set with

U(τ) ≤ Θ(N) (5)

can be successfully partitioned to M processors with SPA1.

Note that there is no schedulability guarantee in the
partitioning algorithm. It will be proved in next subsection.

After the tasks are assigned (and possibly split) to the
processors by the partitioning algorithm of SPA1, they will
be scheduled using RMS on each processor locally, i.e., with
their original priorities. The subtasks of a split task respect
their precedence relations, i.e., a split subtask τki is ready for
execution when its preceding subtask τk−1

i on some other
processor has finished.

∆i
k∑ ci

j
j<k

∑ ci
j

j<k
∆i

k

release of τi ready for τik release of τi ready for τik

Ti

Figure 2. Each subtask τk
i can be viewed as an independent task with

period of Ti and deadline of 4k
i .

B. Schedulability

We first show an important property of SPA1:

Lemma 2. After partitioning according to SPA1, each body
subtask has the highest priority on its host processor.

Proof: In the partitioning algorithm of SPA1, task
splitting only occurs when a processor is full. Thus, after
a body task was assigned to a processor, there will be no
more tasks assigned to it. Further, the tasks are partitioned
in increasing priority order, so all tasks assigned to the
processor before have lower priority.

By Lemma 2, we further know that the response time of
each body subtask equals its execution time, so the synthetic
deadline 4ti of each tail subtask τ ti is calculated as follows:

4ti = Ti −
∑

j∈[1,B]

cbji = Ti − (Ci − cti) (6)

So we can view the scheduling in SPA1 on each pro-
cessor without considering the synchronization between the
subtasks of a split task, and just regard every split subtask
τki as an independent task with period Ti and a shorter
relative deadline 4ki calculated by Equation (6), as shown
in Figure 2.

In the following we prove the schedulability of non-split
tasks, body subtasks and tail subtasks, respectively.

1) Non-split Tasks:

Lemma 3. If task set τ with U(τ) ≤ Θ(N) is partitioned
by SPA1, then any non-split task of τ can meet its deadline.

Proof: The tasks on each processor are scheduled by
RMS, and the sum of the utilization of all tasks on a
processor is no larger than Θ(N). Further, the deadlines of
the non-split tasks are unchanged and therefore still equal
their periods. Thus, each non-split task is schedulable.

Note that although the synthetic deadlines of other sub-
tasks are shorter than their original periods, this does not
affect the schedulability of the non-split tasks, since only the
periods of these subtasks are relevant to the schedulability
of the non-split tasks.

2) Body Subtasks:

Lemma 4. If task set τ with U(τ) ≤ Θ(N) is partitioned
by SPA1, then any body subtask of τ can meet its deadline.

Proof: The body subtasks have the highest priorities
on their host processors and will therefore always meet

... ...

Pb1 Pb2 PbB Pt

Θ(N)

Xb1 Xb2 XbB Xt

Ui
bBUi

b2Ui
b1

Y t

Ui
t

low
priority

high
priority

Figure 3. Illustration of Xbj , Xt and Y t

their deadlines. (This holds even though the deadlines were
shortened because of the task splitting).

3) Tail Subtasks:
Now we prove the schedulability for an arbitrary tail

subtask τ ti , during which we only focus on τ ti , but do
not consider whether other tail subtasks are schedulable
or not. Since the same reasoning can be applied to every
tail subtask, the proofs guarantee that all tail subtasks are
schedulable.

Suppose task τi is split into B body subtasks and one
tail subtask. Recall that we use τ bj

i , j ∈ [1, B] to denote the
jth body subtask of τi, and τ ti to denote τi’s tail subtask.
U
bj

i = c
bj

i /Ti and U ti = cti/Ti denotes τ
bj

i ’s and τ ti ’s
original utilization respectively.

Additionally, we use the following notations (cf. Fig-
ure 3):
• For each body subtask τ bj

i , let Xbj denote the sum of
the utilizations of all the tasks τk assigned to P bj with
lower priority than τ bj

i .
• For the tail subtask τ ti , let Xt denote the sum of the

utilizations of all the tasks assigned to P t with lower
priority than τ ti .

• For the tail subtask τ ti , let Y t denote the sum of the
utilizations of all the tasks assigned to P t with higher
priority than τ ti .

We can use these now for the schedulability of the tail
subtasks:

Lemma 5. Suppose a tail subtask τ ti is assigned to proces-
sor Pt. If τ ti satisfies

Y t · Ti/4ti + V ti ≤ Θ(N), (7)

then τ ti can meet its deadline.

Proof: The proof idea is as follows: We consider the
set Γ consisting of τ ti and all tasks with higher priority
than τ ti on the same processor, i.e., the tasks contributing
to Y t. For this set, we construct a new task set Γ̃, in which
the tasks’ periods that are larger than 4ti are all reduced
to 4ti. The main idea is to first show that the counterpart
of τ ti is schedulable with this new set Γ̃ by RMS because
of the utilization bound, and then to prove this implies the
schedulability of τ ti in the original set Γ.

(a) Γ (b) Γ̃

Figure 4. Illustration of Γ̃

In particular, let Pt be the processor to which τ ti is
assigned. We define Γ as follows:

Γ = {τkh | τkh 7→ Pt ∧ h ≤ i} (8)

We now give the construction of Γ̃: For each task τkh ∈ Γ,
we have a counterpart τ̃kh in Γ̃. The only difference is that
we possibly reduce the periods:

c̃kh = ckh, T̃h =

{
Th, if Th ≤ 4ti
4ti, if Th > 4ti

We also keep the same priority order of tasks in Γ̃ as their
counterparts in Γ, which is still a rate-monotonic ordering.

Figure 4 illustrates the construction. In Figure 4(a), Γ
contains three tasks. τ1 has a period that is smaller than
4ti, and τ2 has a larger one. Further, τ ti is contained in Γ.
According to the construction, Γ̃ in Figure 4(b) has also
three tasks τ̃1, τ̃2 and τ̃ ti , where only the periods of τ̃2 and
τ̃ ti are reduced to 4ti.

Now we show the schedulability of τ̃ ti in Γ̃. We do this
by showing the sufficient upper bound of Θ(N) on the total
utilization of Γ̃.

U(Γ̃) =
∑
τk

h∈Γ

ckh/T̃h =
∑

τk
h∈Γ\{τt

i }

ckh/T̃h + V ki (9)

We now do a case distinction for tasks τ̃kh ∈ Γ̃, according
to whether their periods were reduced or not.
• If Th ≤ 4ti, we have T̃h = Th. Since Ti > 4ti, we

have:

ckh/T̃h = ckh/Th = Ukh < Ukh · Ti/4ti

• If Th > 4ti, we have T̃h = 4ti. Because of the priority
ordered by periods, we have Th ≤ Ti. Thus:

ckh/T̃h = ckh/4ti ≤ ckh/Th · Ti/4ti = Ukh · Ti/4ti

Both cases lead to ckh/T̃h ≤ Ukh · Ti/4ti, so we can apply
this to (9) from above:

U(Γ̃) ≤
∑

τk
h∈Γ\{τt

i }

Ukh · Ti/4ti + V ki (10)

Since Y t =
∑
τk

h∈Γ\{τt
i }
Ukh , we have:

U(Γ̃) ≤ Y t · Ti/4ti + V ti

Finally, by the assumption from Condition (7) we know that
the right-hand side is at most Θ(N), and thus U(Γ̃) ≤
Θ(N). Therefore, τ̃ki is schedulable. Note that in Γ̃ there
could exist other tail subtasks whose deadlines are shorter
than their periods. However, this does not invalidate that
the condition U(Γ̃) ≤ Θ(N) is sufficient to guarantee the
schedulability of τ̃ ti under RMS.

Now we need to see that this implies the schedulability of
τ ti . Recall that the only difference between Γ and Γ̃ is that
the period of a task in Γ is possibly larger than its counterpart
in Γ̃. So the interference τ ti suffered from the higher-priority
tasks in Γ, is no larger than the interference τ̃ ti suffered in
Γ̃, and since the deadlines of τ̃ ti and τ ti are the same, we
know the schedulability of τ̃ ti implies the schedulability of
τ ti .

It remains to show that Condition (7) holds, which was the
assumption for this lemma and thus a sufficient condition for
tail subtasks to be schedulable. As in the introduction of this
section, this condition does not hold in general for SPA1,
but only for certain light task sets:

Definition 1. A task τi is a light task if

Ui ≤
Θ(N)

1 + Θ(N)
.

Otherwise, τi is a heavy task.
A task set τ is a light task sets if all tasks in τ are light

tasks.

Lemma 6. Suppose a tail subtask τ ti is assigned to proces-
sor Pt. If τi is a light task, we have

Y t · Ti/4ti + V ti ≤ Θ(N).

Proof: We will first derive a general upper bound on
Y t based on the properties of Xbj , Xt and the subtasks’
utilizations. Based on this, we derive the bound we want to
show, using the assumption that τi is a light task.

For deriving the upper bound on Y t, we note that as soon
as a task is split into a body subtask and a rest, the processor
hosting this new body subtask is full, i.e., its utilization is
Θ(N). Further, each body subtask has by construction the
highest priority on its host processor, so we have:

∀j ∈ [1, B] : U bj

i +Xbj = Θ(N)

We sum over all B of these equations, and get:∑
j∈[1,B]

U
bj

i +
∑

j∈[1,B]

Xbj = B ·Θ(N) (11)

Now we consider the processor containing τ ti , denoted by
Pt. Its total utilization is Xt+U ti +Y t and is at most Θ(N),
i.e.,

Xt + U ti + Y t ≤ Θ(N).

We combine this with (11) and get:

Y t ≤
∑
j∈[1,B] U

bj

i

B
+

∑
j∈[1,B]X

bj

B
− U ti −Xt (12)

In order to simplify this, we recall that during the par-
titioning phase, we always select the processor with the
smallest total utilization of tasks that have been assigned
to it so far. (Recall line 5 in Algorithm 1). This implies
Xbj ≤ Xt for all subtasks τ bj

i . Thus, the sum over all Xbj

is bounded by B ·Xt and we can cancel out both terms in
(12):

Y t ≤
∑
j∈[1,B] U

bj

i

B
− U ti

Another simplification is possible using that B ≥ 1 and that
τi’s utilization Ui is the sum of the utilizations of all of its
subtasks, i.e.,

∑
j∈[1,B] U

bj

i = Ui − U ti :

Y t ≤ Ui − 2 · U ti
We are now done with the first part, i.e., deriving an upper
bound for Y t. This can easily be transformed into an upper
bound on the term we are interested in:

Y t · Ti
4ti

+ V ti ≤ (Ui − 2 · U ti) ·
Ti
4ti

+ V ti (13)

For the rest of the proof, we try to bound the right-hand
side from above by Θ(N) which will complete the proof.
The key is to bring it into a form that is suitable to use the
assumption that τi is a light task.

As a first step, we use that the synthetic deadline of τ ti is
the period Ti reduced by the total computation time of τi’s
body subtasks, i.e., 4ti = Ti − (Ci − cti), cf. Equation (6).
Further, we use the definitions Ui = Ci/Ti, U ti = cti/Ti
and V ti = cti/4ti to derive:

(Ui − 2 · U ti) ·
Ti
4ti

+ V ti =
Ci − cti

Ti − (Ci − cti)
Since cti > 0, we can find a simple upper bound of the
right-hand side:

Ci − cti
Ti − (Ci − cti)

=
Ti

Ti − (Ci − cti)
− 1 <

Ti
Ti − Ci

− 1

Since τi is a light task, we have

Ui ≤
Θ(N)

1 + Θ(N)
and by applying Ui = Ci/Ti to the above, we can obtain

Ti
Ti − Ci

− 1 ≤ Θ(N)

Thus, we have established that Θ(N) is an upper bound of
Y t · Ti

4t
i

+ V ti with which we started in (13).
From Lemmas 5 and 6 it follows directly the desired

property:

Lemma 7. If task set τ with U(τ) ≤ Θ(N) is partitioned
by SPA1, then any tail subtask of a light task of τ can meet
its deadline.

4

3
b

5

3
t

2

1

Figure 5. The tail subtask of a task with large utilization may have a low
priority level

C. Utilization Bound

By Lemma 1 we know that a task set τ can be successfully
partitioned by the partitioning algorithm of SPA1 if U(τ) is
no larger than Θ(N). If τ has been successfully partitioned,
by Lemma 3 and 4 we know that all the non-split task and
body subtasks are schedulable. By Lemma 7 we know a tail
subtask τki is also schedulable if τi is a light task. Since, in
general, it is a priori unknown which tasks will be split, we
pose this constraint of being light to all tasks in τ to have
a sufficient schedulability test condition:

Theorem 1. Let τ be a task set only containing light tasks.
τ is schedulable with SPA1 on M processors if

U(τ) ≤ Θ(N) (14)

In other words, the utilization bound of SPA1 is Θ(N)
for task sets only containing tasks with utilization no larger
than Θ(N)/(1 + Θ(N)).

Θ(N) is a decreasing function with respect to N , which
means the utilization bound is higher for task sets with fewer
tasks. We use N∗ to denote the maximal number of tasks
(subtasks) assigned to each processor, so Θ(N∗), which
is strictly larger than Θ(N), also serves as the utilization
bound of each processor. Therefore we can use Θ(N∗)
to replace Θ(N) in the derivation procedure above, and
get that the utilization bound of SPA1 is Θ(N∗) for task
sets only containing tasks with utilization no larger than
Θ(N∗)/(1 + Θ(N∗)).

V. THE SECOND ALGORITHM SPA2

In this section we introduce our second semi-partitioned
fixed-priority scheduling algorithm SPA2, which has the uti-
lization bound of Θ(N) for task sets without any constraint.

As discussed in the beginning of Section IV, the key point
for our algorithms to achieve high utilization bounds is to
make each split task get a priority as high as possible on its
host processor. With SPA1, the tail subtask of a task with
very large utilization could have a relatively low priority on
its host processor, as the example in Figure 5 illustrates. This
is why the utilization bound of SPA1 is not applicable to
task sets containing heavy tasks.

Table I
AN EXAMPLE TASK SET

Task Ci Ti Heavy Task? Priority
τ1 3 4 yes highest
τ2 4.25 10 no middle
τ3 4.25 10 no lowest

To solve this problem, we propose the second semi-
partitioned algorithm SPA2 in this section. The main idea
of SPA2 is to pre-assign each heavy task whose tail subtask
might get a low priority, before partitioning other tasks,
therefore these heavy tasks will not be split.

Note that if one simply pre-assigns all heavy tasks, it is
still possible for some tail subtask to get a low priority level
on its host processor. Consider the task set in Table I with 2
processors, and for simplicity we assume Θ(N) = 0.8, and
Θ(N)/(1 + Θ(N)) = 4/9. If we pre-assign the heavy task
τ1 to processor P1, then assign τ2 and τ3 by the partitioning
algorithm of SPA1, the task partitioning looks as follows:

1) τ1 7→ P1,
2) τ3 7→ P2,
3) τ2 can not be entirely assigned to P2, so it is split

into two subtasks τ1
2 = 〈3.75, 10, 10〉 and τ2

2 =
〈0.5, 10, 6.25〉, and τ1

2 7→ P2,
4) τ2

2 7→ P1.
Then the tasks on each processor are scheduled by RMS.
We can see that the tail subtask τ2

2 has the lowest priority
on P1 and will miss its deadline due to the higher priority
task τ1. However, if we do not pre-assign τ1 and just do the
partitioning with SPA1, this task set is schedulable.

To overcome this problem, a more sophisticated pre-
assigning mechanism is employed in our second algorithm
SPA2. Intuitively, SPA2 pre-assigns exactly those heavy
tasks for which pre-assigning them will not cause any tail
subtask to miss deadline. This is checked using a simple test.
Those heavy tasks that don’t satisfy this test will be assigned
(and possibly split) later together with the light tasks. The
key for this to work is, that for these heavy tasks, we can
use the property of failing the test in order to show that their
tail subtasks will not miss the deadlines either.

A. SPA2: Partitioning and Scheduling

We first introduce some notations. If a heavy task τi is
pre-assigned to a processor Pq in SPA2, we call τi as a
pre-assigned task, otherwise a normal task, and call Pq as
a pre-assigned processor, otherwise a normal processor.

The partitioning algorithm of SPA2 contains three steps:
1) We first pre-assign the heavy tasks that satisfy a

particular condition to one processor each.
2) We do task partitioning with the remaining (i.e. nor-

mal) tasks and remaining (i.e. normal) processors
using SPA1 until all the normal processors are full.

3) The remaining tasks are assigned to the pre-assigned
processors; the assignment selects one processor to

1: if U(τ) > Θ(N) then abort
2: PQ := [P1, P2, ..., PM]
3: PQpre := ∅
4: UQ := ∅
5: Ψ[1...M] := all zeros
6: for i := 1 to N do
7: if τi is heavy ∧

∑
j>i Uj ≤ (|PQ| − 1) ·Θ(N) then

8: Pq := pop front(PQ)
9: Pre-assign τi to Pq

10: push front(Pq , PQpre)
11: Ψ[q] := Ψ[q] + Ui

12: else
13: push front(τ1

i , UQ)
14: end if
15: end for
16: while UQ 6= ∅ do
17: τk

i := pop front(UQ)
18: if ∃Pq ∈ PQ : Ψ[q] 6= Θ(N) then
19: Pq := the element in PQ with the minimal Ψ
20: else
21: Pq := pop front(PQpre)
22: end if
23: if Uk

i + Ψ[q] ≤ Θ(N) then
24: τk

i 7→ Pq

25: Ψ[q] := Ψ[q] + Uk
i

26: if Pq came from PQpre then
27: push front(Pq , PQpre)
28: end if
29: else
30: split τk

i into two parts τk
i and τk+1

i such that
Uk

i + Ψ[q] = Θ(N)
31: τk

i 7→ Pq

32: Ψ[q] = Θ(N)
33: push front(τk+1

i , UQ)
34: end if
35: end while
Algorithm 2: The partitioning algorithm of SPA2.

assign as many tasks as possible, until it becomes full,
then select the next processor.

The precise description of the partitioning algorithm of
SPA2 is shown in Algorithm 2. We first introduce the data
structures used in the algorithm:

• PQ is the list of all processors. It is initially
[P1, P2, ..., PM] and processors are always taken out
and put back in the front.

• PQpre is the list to accommodate pre-assigned proces-
sors, initially empty.

• UQ is the list to accommodate the unassigned tasks
after Step 1). Initially it is empty, and during Step 1),
each task τi that is determined not to be pre-assigned
will be put into UQ (already in its subtask form τ1

i).
• Ψ[1...M] is an array, which has the same meaning as

in SPA1: each element Ψ[q] in the array Ψ[1...M]
denotes the sum of the utilization of tasks that have
been assigned to processor Pq .

In Step 1) (lines 6 to 15), each task τi in τ is visited in
increasing index order, i.e., decreasing priority order. If τi is

a heavy task, we evaluate the following condition (line 7):∑
j>i

Uj ≤ (|PQ| − 1) ·Θ(N) (15)

in which |PQ| is the number of processors left in PQ so
far. A heavy task τi is determined to be pre-assigned to a
processor if this condition is satisfied. The intuition for this
is: If we pre-assign this task τi, then there is enough space
on the remaining processors to accommodate all remaining
lower priority tasks. That way, no lower priority tail subtask
will end up on the processor which we assign τi to.

Step 2) and 3) are both in the while loop of line 16 ∼ 35.
In Step 2), the remaining tasks (which are now in UQ) are
assigned to normal processors (the ones in PQ). Only as
soon as all processors in PQ are full, the algorithm enters
Step 3), in which tasks are assigned to processors in PQpre
(decision in lines 18 to 22).

The operation of assigning a task τki (lines 23 to 34) is
basically the same as in SPA1. If τki can be entirely assigned
to Pq without task splitting, then τki 7→ Pq and Ψ[q] is
updated (lines 24 to 28). If Pq is a pre-assigned processor,
Pq is put back to the front of PQpre (lines 26 to 28), so that
it will be selected again in the next loop iteration, otherwise
no putting back operation is needed since we never take out
elements from PQ, but select the proper one in it (line 19).

If τki can not be assigned to Pq entirely, τki is split into
a new τki and another subtask τk+1

i , such that Pq becomes
full after the new τki being assigned to it, and then we put
τk+1
i back to UQ (see lines 29 to 33).

Note that there is an important difference between as-
signing tasks to normal processors and to pre-assigned
processors. When tasks are assigned to normal processors,
the algorithm always selects the processor with the minimal
Ψ (the same as in SPA1). In the contrast, when tasks are
assigned to pre-assigned processors, always the processor
at the front of PQpre is selected, i.e., we assign as many
tasks as possible to the processor in PQpre whose pre-
assigned task has the lowest priority, until it is full. As
will be seen later in the schedulability proof, this particular
order of selecting pre-assigned processors, together with the
evaluation of Condition (15), is the key to guarantee the
schedulability of heavy tasks.

It is easy to see that any task set below the desired
utilization bound can be successfully partitioned by SPA2:

Lemma 8. Any task set with

U(τ) ≤ Θ(N)

can be successfully partitioned to M processors with SPA2.

After describing the partitioning part of SPA2, we also
need to describe the scheduling part. It is the same as
SPA1: on each processor the tasks are scheduled by RMS,
respecting the precedence relations between the subtasks of
a split task, i.e., a subtask is ready for execution as soon

as the execution of its preceding subtask has been finished.
Note that under SPA2, each body subtask is also with the
highest priority on its host processor (will be proved later
in Lemma 11), which is the same as in SPA1. So we can
view the scheduling on each processor as the RMS with a
set of independent tasks, in which each subtask’s deadline
is shortened by the sum of the execution time of all its
preceding subtasks.

B. Properties

In the following, we present some properties of SPA2,
that will be used to prove the schedulability of task sets that
can be partitioned using SPA2. The first property follows
directly from SPA2’s partitioning algorithm.

Lemma 9. Let τi be a heavy task, and there are η pre-
assigned tasks with higher priority than τi. Then we know
• If τi is a pre-assigned task, it satisfies∑

j>i

Uj ≤ (M − η − 1) ·Θ(N) (16)

• If τi is not a pre-assigned task, it satisfies∑
j>i

Uj > (M − η − 1) ·Θ(N) (17)

Lemma 10. Each pre-assigned task has the lowest priority
on its host processor.

Proof: Without loss of generality, We sort all processors
in a list Q as follows: we first sort all pre-assigned processors
in Q, in decreasing priority order of the pre-assigned tasks
on them; then the normal processors follow in Q in an
arbitrary order. We use Px to denote the xth processor in
Q. Suppose τi is a heavy task pre-assigned to Pq .
τi is a pre-assigned task, and the number of pre-assigned

task with higher priority than τi is q − 1, so by Lemma 9
we know the following condition is satisfied:∑

j>i

Uj ≤ (M − q) ·Θ(N) (18)

In the partitioning algorithm of SPA2, normal tasks are
assigned to pre-assigned processors only when all normal
processors are full, and the pre-assigned processors are
selected in increasing priority order of the pre-assigned
tasks on them, so we know only when the processors
Pq+1...PM are all full, normal tasks can be assigned to
processor Pq . The total capacity of processors Pq+1...PM
are (M − q) · Θ(N) (in our algorithms a processor is full
as soon as the total utilization on it is Θ(N)), and by (18),
we know when we start to assign tasks to Pq , the tasks with
lower priority than τi all have been assigned to processors
Pq+1...PM , so all normal tasks (subtasks) assigned to Pq
have higher priorities than τi.

Lemma 11. Each body subtask has the highest priority on
its host processor.

Proof: Since all normal tasks are assigned in increasing
priority order, and a task is split only when the processor
is full, we know a body subtask has higher priority than
all normal tasks on its host processor. If this body subtask
is assigned to a pre-assigned processor, by Lemma 10 we
know its priority is also higher than the pre-assigned task
on this processor. So a body subtask has the highest priority
on its host processor.

C. Schedulability

Now we will prove the schedulability of a task set τ which
has been successfully partitioned by SPA2. To this end, we
will prove the schedulability of non-split tasks (Lemma 12),
body subtasks (Lemma 13) and tail subtasks (Lemma 14)
respectively.

Lemma 12. If task set τ with U(τ) ≤ Θ(N) is partitioned
by SPA2, then any non-split task can meet its deadline.

The proof is the same as for SPA1 (Lemma 3).

Lemma 13. If task set τ with U(τ) ≤ Θ(N) is partitioned
by SPA2, then any body subtask can meet its deadline.

Proof: By Lemma 11 we know that under SPA2 a body
subtask has the highest priority on its host processor, so it
will meet its deadline anyway.

Lemma 14. If task set τ with U(τ) ≤ Θ(N) is partitioned
by SPA2, then any tail subtask can meet its deadline.

Proof: For space reason, we only briefly describe the
proof idea. The detailed proof is given in the full version of
this paper [12].

We distinguish three cases:
1) τi is light, and Pt is a normal processor,
2) τi is light, and Pt is a pre-assigned processor,
3) τi is heavy.
Case 1) can be proved in the same way as Lemma 6 for

SPA1, since both the partitioning and scheduling algorithm
of SPA2 on normal processors are the same as SPA1.

To prove Case 2) and 3), we notice that to make a tail
subtask τ ti schedulable, we should make the total utilization
of tasks interfering with τ ti as small as possible. In other
words, we should let the total utilization of tasks on Pt with
lower priority than τ ti to be as high as possible. With Case 2),
the pre-assigned task on Pt is heavy (with high utilization),
and has lower priority than τ ti (by Lemma 10), therefore the
total utilization of tasks with lower priority on Pt is high
enough to prevent τ ti from missing deadline. With Case 3),
by Lemma 9 we know that if a heavy task was not pre-
assigned under the SPA2’s partitioning algorithm, it satisfies
Condition (17), which guarantees the total utilization of all
tasks with lower priority than τi is high enough to prevent
τ ti from missing deadline.

D. Utilization Bound

Now we know that any task set τ with U(τ) ≤
Θ(N) can be successfully partitioned on M processors by
SPA2 (Lemma 8). We also know that if τ is successfully par-
titioned, all the non-split tasks (Lemma 12), body subtasks
(Lemma 13) and tail subtasks (Lemma 14) can meet their
deadlines under SPA2’s scheduling algorithm. Therefore we
have the following theorem:

Theorem 2. τ is schedulable by SPA2 on M processors if

U(τ) ≤ Θ(N)

So Θ(N) is SPA2’s utilization bound for any task set. For
the same reason as presented at the end of Section IV-C, we
can use Θ(N∗), the maximal number of tasks (subtasks)
assigned to each processor, to replace Θ(N) in Theorem 2.

E. Task Splitting Overhead

With the algorithms proposed in this paper, a task could
be split into more than two subtasks. However, since the task
splitting only occurs when a processor is full, for any task
set that is schedulable by SPA2, the number of task splitting
is at most M − 1, which is the same as in previous semi-
partitioned fixed-priority scheduling algorithms [18], [15],
[16], and as shown in the case study conducted in [18], this
overhead can be expected negligible on multi-core platforms.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a semi-partitioned fixed-
priority scheduling algorithm for multiprocessor systems,
with the well-known Liu and Layland’s utilization bound
N(2

1
N − 1) for RMS on single processors. The algorithm

enjoys the following property. If the utilization bound is
used for the schedulability test, and a task set is determined
schedulable by fixed-priority scheduling on a single proces-
sor of speed M , it is also schedulable by our algorithm on
M processors of speed 1 (under the assumption that each
task’s execution time on the processors of speed 1 is still
smaller than its deadline). Note that the utilization bound test
is only sufficient but not necessary. As future work, we will
challenge the problem of constructing algorithms holding
the same property with respects to the exact schedulability
analysis.

REFERENCES

[1] J. Anderson, V. Bud, and U.C. Devi. An edf-based scheduling
algorithm for multiprocessor soft real-time systems. In
ECRTS, 2005.

[2] J. Anderson and A. Srinivasan. Mixed pfair/erfair scheduling
of asynchronous periodic tasks. In Journal of Computer and
System Sciences, 2004.

[3] B. Andersson. Global static priority preemptive multipro-
cessor scheduling with utilization bound 38%. In OPODIS,
2008.

[4] B. Andersson, S. Baruah, and J. Jonsson. Static priority
scheduling on multiprocessors. In RTSS, 2001.

[5] B. Andersson and K. Bletsas. Sporadic multiprocessor
scheduling with few preemptions. In ECRTS, 2008.

[6] B. Andersson, K. Bletsas, and S. Baruah. Scheduling
arbitrary-deadline sporadic task systems multiprocessors. In
RTSS, 2008.

[7] B. Andersson and J. Jonsson. The utilization bounds of parti-
tioned and pfair static-priority scheduling on multiprocessors
are 50%. In ECRTS, 2003.

[8] B. Andersson and E. Tovar. Multiprocessor scheduling with
few preemptions. In RTCSA, 2006.

[9] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel.
Proportionate progress: A notion of fairness in resource
allocation. In Algorithmica, 1996.

[10] John Carpenter, Shelby Funk, Philip Holman, Anand Srini-
vasan, James Anderson, and Sanjoy Baruah. A Categorization
of Real-Time Multiprocessor Scheduling Problems and Algo-
rithms. 2004.

[11] U. Devi and J. Anderson. Tardiness bounds for global edf
scheduling on a multiprocessor. In RTSS, 2005.

[12] N. Guan, M. Stigge, W. Yi, and G. Yu. Fixed-priority
multiprocessor scheduling with liu & layland’s utiliza-
tion bound. In Technical Report, Uppsala University,
(http://user.it.uu.se/∼yi), 2010.

[13] S. Kato and N. Yamasaki. Real-time scheduling with task
splitting on multiprocessors. In RTCSA, 2007.

[14] S. Kato and N. Yamasaki. Portioned edf-based scheduling on
multiprocessors. In EMSOFT, 2008.

[15] S. Kato and N. Yamasaki. Portioned static-priority scheduling
on multiprocessors. In IPDPS, 2008.

[16] S. Kato and N. Yamasaki. Semi-partitioned fixed-priority
scheduling on multiprocessors. In RTAS, 2009.

[17] S. Kato, N. Yamasaki, and Y. Ishikawa. Semi-partitioned
scheduling of sporadic task systems on multiprocessors. In
ECRTS, 2009.

[18] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. Partitioned
fixed-priority preemptive scheduling for multi-core proces-
sors. In ECRTS, 2009.

[19] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. In Journal
of the ACM, 1973.

[20] D. Oh and T. P. Baker. Utilization bounds for n-processor
rate monotone scheduling with static processor assignment.
In Real-Time Systems, 1998.

