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ABSTRACT

The major obstacle to use multicores for real-time applica-
tions is that we may not predict and provide any guarantee
on real-time properties of embedded software on such plat-
forms; the way of handling the on-chip shared resources such
as L2 cache may have a significant impact on the timing pre-
dictability. In this paper, we propose to use cache space iso-
lation techniques to avoid cache contention for hard real-time
tasks running on multicores with shared caches. We present a
scheduling strategy for real-time tasks with both timing and
cache space constraints, which allows each task to use a fixed
number of cache partitions, and makes sure that at any time
a cache partition is occupied by at most one running task. In
this way, the cache spaces of tasks are isolated at run-time.
As technical contributions, we present solutions for the sched-

uling analysis problem. For simplicity, the presentation will
focus on non-preemptive fixed-priority scheduling. However
our techniques can be easily adapted to deal with other sched-
uling strategies like EDF. We have developed a sufficient sched-
ulability test for non-preemptive fixed-priority scheduling for
multicores with shared L2 cache, encoded as a linear program-
ming problem. To improve the scalability of the test, we then
develop our second schedulability test of quadratic complex-
ity, which is an over approximation of the first test. To evalu-
ate the performance and scalability of our techniques, we use
randomly generated task sets. Our experiments show that the
first test which employs an LP solver can easily handle task
sets with thousands of tasks in minutes using a desktop com-
puter. It is also shown that the second test is comparable with
the first one in terms of precision, but scales much better due
to its low complexity, and is therefore a good candidate for
efficient schedulability tests in the design loop for embedded
systems or as an on-line test for admission control.

1. INTRODUCTION

It is predicted that multicores will be increasingly used in
future embedded systems for high performance and low energy
consumption. The major obstacle is that we may not predict
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and provide any guarantee on real-time properties of embed-
ded software on such platforms due to the on-chip shared re-
sources. Shared caches such as L2 cache are among the most
critical resources on multicores, which severely degrade the
timing predictability of multicore systems due to the cache
contention between cores.

For single processor systems, there are well-developed tech-
niques [30] for timing analysis of embedded software. Using
these techniques, the worst-case execution time (WCET) of
real-time tasks may be estimated, and then used for system-
level timing analyses like schedulability analysis. One major
problem in WCET analysis is how to predict the cache be-
havior, since different cache behaviors (cache hit or miss) will
result in different execution times of each instruction. The
cache behavior modeling and analysis for single-processor ar-
chitectures have been intensively studied in the past decades
and are supported now in most existing WCET analysis tools
[30]. Unfortunately the existing techniques for single proces-
sor platforms are not applicable for multicores with shared
caches. The reason is that a task running on one core may
evict the useful L2 cache content belonging to a task running
on another core and therefore the Worst-Case Execution Time
(WCET) of one task can not be estimated in isolation from
the other tasks as for single processor systems. Essentially,
the challenge is to model and predict the cache behavior for
concurrent programs (not sequential programs as for the case
of single processor systems) running on different cores.

To our best knowledge, the only known work on WCET
analysis for multicores with shared cache is [32], which is only
applicable to a very special application scenario and very sim-
ple hardware architecture (we will discuss its limitation in
Section 2). Researchers in the WCET analysis community
agree that “it will be extremely difficult, if not impossible,
to develop analysis methods that can accurately capture the
contention among multiple cores in a shared cache” [27].

The goal of this paper is not to solve the above challeng-
ing problem. Instead, we use cache partitioning techniques
such as page-coloring [8] combined with scheduling to isolate
the cache spaces of hard real-time tasks running simultane-
ously to avoid the interference between them. This yields
an efficient method — cache space isolation — to control the
shared cache access, in which a portion of the shared cache
is assigned to each running task, and the cache replacement
is restricted to each individual partition. For single-processor
multi-tasking systems, cache space isolation allows composi-
tional timing analysis where the WCET of tasks can be es-
timated separately using existing WCET analysis techniques
[11]. For multicores, to enable compositional timing analysis,
we need isolation techniques for all the shared resources. For



the on-chip bus bandwidth, techniques such as time-slicing
have been studied in e.g. [25]. In this paper, we shall focus
on shared caches only, and study the scheduling and analy-
sis problem for hard real-time tasks with timing and cache
space constraints, on multicores with shared L2 cache. We
assume that the shared cache is divided into partitions, and
further assume that the cache space size of each application
task has been estimated by, for example, the miss-rate/cache-
size curve or static analysis, and the WCET of each task is
obtained with its assigned cache space size. In the system
design phase, one can adjust tasks’ L2 cache space sizes (and
therefore their WCETSs) to improve the system real-time per-
formance, which can be built upon the schedulability analysis
techniques studied in this paper.

We shall present a cache-aware scheduling algorithm which
makes sure that at any time, any two running tasks’ cache
spaces are non-overlapped. A task can get to execute only
if it gets an idle core as well as enough space (not necessar-
ily continuous) on the shared cache. For the simplicity of
presentation, we shall focus on non-preemptive fixed-priority
scheduling. However, our results can be easily adapted to
other scheduling strategies such as EDF. Our fist technical
contribution is a sufficient schedulability test for multicores
with shared L2 cache, encoded as a linear programming prob-
lem. To improve its scalability, we then propose our second
schedulability test of quadratic complexity, which is an over
approximation of the first test. To evaluate the performance
and scalability of our techniques, we use randomly generated
task sets. Our experiments show that the first test which em-
ploys an LP solver can easily handle task sets with thousands
of tasks in minutes using a desktop computer. It is also shown
that the second test is comparable with the first one in terms
of precision, but scales much better due to its low complexity,
and therefore it is a good candidate for efficient schedulability
tests in the design loop for embedded systems.

The paper is structured as follows: Section 2 presents re-
lated work. Section 3 introduces the background of cache
space isolation and the task model, and Section 4 introduces
the scheduling algorithm FPca, as well as the analysis frame-
work. The two schedulability tests for FPca are presented
in Section 5 and Section 6. Section 7 presents performance
evaluation. Section 8 discusses extensions of the cache-aware
scheduling, and finally, conclusions are given in Section 9.

2. RELATED WORK

Since L2 misses affect the system performance to a much
greater extent than L1 misses or pipeline conflicts [18], the
shared cache contention may dramatically degrade the system
performance and predictability. Chandra et al. [14] showed
that a thread’s execution time may be up to 65% longer when
it runs with a high-miss-rate co-runner than with a low-miss-
rate co-runner. Such dramatic slowdowns were due to sig-
nificant increases in L2 cache miss rates experienced with a
high-miss-rate co-runner, as opposed to a low-miss-rate co-
runner.

L2 contention can be reduced by discouraging threads with
heavy memory-to-L2 traffic from being co-scheduled [18]. An-
derson et al. [2, 1, 12] applied the policy of encouraging
or discouraging the co-scheduling of tasks (or jobs), to im-
prove the cache performance and also to meet the real-time
constraints. All these works assumed that the WCETSs of
real-time threads are known in advance. However, although
improved cache performance can directly reduce average exe-
cution costs, it is still unknown how to obtain the WCET of
each real-time thread in their system model. Yan and Zhang
[32] is the only known work to studied the WCET analy-

sis problem for multicore systems with shared L2 cache. A
particular scenario is assumed that two tasks simultaneously
run on a dual-core processor with a direct-mapped shared
L2 instruction cache. However, their analysis technique is
quite limited: firstly, most of today’s multicore processors em-
ploy set-associative caches rather than direct-mapped cache
as their L2 cache; secondly, when the system contains more
cores and more tasks, their analysis will be extremely pes-
simistic; thirdly, their analysis technique can not handle tasks
in priority-driven scheduling systems.

In contrast with Anderson’s work, we employ cache space
isolation in the scheduling algorithms in this paper, to avoid
the cache accessing interference between tasks simultaneously
running on different cores, and therefore we can apply existing
analysis techniques to derive safe upper bounds of a task’s
WCET!, with which we can do safe schedulability analysis
for the task system.

The schedulability analysis problem of global multiproces-
sor scheduling has been intensively studied [3, 4, 9, 6, 21, 23].
These analysis techniques are also extended to deal with more
general cases, e.g., the global scheduling on 1-D FPGAs [16,
20], where a task may occupy multiple resources (columns on
FPGAS) during execution. However, all these techniques are
not applicable to our problem, since with cache space isola-
tion, tasks are actually scheduled on two resources: cores and
the shared cache.

Fisher et al. [19] studied the problem of static allocation
of periodic tasks onto a multiprocessor platform such that
on each processor, the total utilization of the allocated tasks
is no larger than 1, as well as the total memory size of the
allocated tasks does not exceed the processor’s memory ca-
pacity. Suhendra et al. [28] and Salamy et al. [26] studied
the problem of how to statically allocate and schedule a task
graph onto a MPSoC, in which each processor has a private
scratch-pad memory, to maximize the system throughput. In
summary, in the above work tasks are statically allocated to
processors, so the schedulability analysis problem is trivial
(reduced to the case of single processor scheduling). In our
paper, different instances of a task are allowed to run on dif-
ferent cores, so the schedulability analysis problem is more
difficult. In [27], several scheduling policies with shared cache
partitioning and locking are experimentally evaluated, how-
ever, the schedulability analysis problem was not studied.

3. PRELIMINARIES

In this section, we briefly describe the basic assumptions on
the hardware platform and application tasks, which our work
is based on.

3.1 Cache Space Partitioning

We assume a multicore containing a fixed number of proces-
sor cores sharing an on-chip cache. Note that this is usually an
L2 cache. We will not explicitly model core-local caches (usu-
ally L1) or other shared resources like interconnects. Since
concurrent accesses to the shared cache give raise to the prob-
lem of reduced predictability due to cache interference, we as-
sume the existence of a cache partitioning mechanism, allow-

'In this paper we focus on the interference caused by the
shared L2 cache, and there could be other interference be-
tween tasks running simultaneously. However, we believe the
scheduling algorithm and analysis techniques in this paper is
a necessary step towards completely avoiding interference be-
tween tasks running on multicores, and can be integrated with
techniques of performance isolation on other shared resources,
for instance, the work in [25] to avoid interference caused by
the shared on-chip bus.
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Figure 1: Cache Space Isolation and Page Coloring

ing to divide the cache space into non-overlapping partitions
for independent use by the computation tasks, see Figure 1(a).

Partitioning a cache shared among several tasks at the same
time is a concept which has already been used, most notably,
for reducing interference in order to improve average case per-
formance or to increase predictability in single-core settings
with preemption [31, 17, 10].

Different approaches may be used to achieve cache parti-
tioning. Assuming a k-associative cache that consists of [
cache sets with k£ cache lines each, one can distinguish set-
based [8] and associativity-based [15] partitioning. The first
one is also called row-based partitioning and assigns different
cache sets to different partitions. It therefore enables up to
| partitions and is thus quite fine-grained for bigger caches.
The second one assigns a certain amount of lines within each
cache set to different partitions and is also called column-based
partitioning, so it is rather coarse-grained with a maximum of
just k partitions. Mixtures of both variants are also possible.
The approaches can be software- or hardware-based and dif-
fer regarding additional hardware requirements, partitioning
granularity, influence on memory layout and the possibility as
well as complexity of on-line repartitioning.

Here we give a brief description of a set-based approach,
which is also known as page coloring. It has the advantage
of being entirely software-based by exploiting the translation
from virtual to physical memory addresses present in the vir-
tual memory system?. Assume a simple hardware-indexed
cache with cache line size of 2™! words and 2™2? cache sets,
so the least significant bits of the physical address will con-
tain m1 bits used as cache line offset and ms bits used as the
set number, see Figure 1(b). Further assume a virtual page
size of 2" words, so the n least significant bits of the virtual
address comprise the page offset. Consequently, all the other
(more significant) bits are the page number and will be trans-
lated by the virtual memory system via the page table into the
most significant bits of the physical address. If mq +ma2 > n
(which is the case with larger caches), a certain number of bits
used to address the cache set are actually “controlled” by the
virtual memory system, so that each virtual page can be (in-

2Note that this is just an example of how cache partitioning
can be achieved; by no means is virtual memory a necessity
to the results presented in this paper.

directly) mapped on a particular subset of all cache sets. The
n}lmlier ;)f available page colors by that method is therefore
2 mi ma 7n.

An example system supporting cache partitioning is re-
ported in [29], where the authors modified the Linux kernel
to support page-coloring based cache space isolation, in which
16 colors are supported, and conducted intensive experiments
on a Power 5 dual-core processor. Note that the method en-
forces a certain (physical) memory layout, since it influences
the choice of physical addresses. This restricts the memory
size available to each task, as well as flexibility for recoloring.
These problems can be compensated for by a simple rewiring
trick as described in [24]. Therefore it is reasonable for our
model to assume a cache with equally sized cache partitions
that can be assigned and reassigned arbitrarily during the
lifetimes of the tasks in question.

3.2 Task Model

Assume a multicore platform consisting of M cores and A
cache partitions, and a set 7 of independent sporadic tasks
whose numbers of cache partitions (cache space size needed)
and WCETs are known for the platform. We use 7; = (A;, C;,
D;, T;) to denote such a task where A; is the cache space
size, C; is the worst-case execution time (WCET), D; < T; is
the relative deadline for each release, and T; is the minimum
inter-arrival separation time also referred to as the period of
the task. We further assume that all tasks are ordered by
priorities, i.e., 7 has higher priority than 7; iff ¢ < j. The
utilization of a task 7; is U; = C;/T; and its slack S; = D;—C,
which is the longest delay allowed before actually running
without missing its deadline.

A sporadic task 7; generates a potentially infinite sequence
of jobs with successive job-arrivals separated by at least T;
time units. The a'® job of task 7; is denoted by J2, so we can
denote a job sequence of task 7; with (J}, JZ,...). We omit
«a and just use J; to denote a job of 7; if there is no need to
identify which job it is. Each job J; adheres to the conditions
A;, C; and D, of its task 7; and has additional properties
concerning absolute time points related to its execution, which
we denote with lower case letters: The release time, denoted
by ri, the deadline, denoted by d; and derived using d; =
ri + D;, and the latest start time, denoted by l; and derived
using l; = r; + S;. Finally, without loosing generality, we
assume that time is dense in our model.

4. CACHE-AWARE SCHEDULING

We present the basic scheduling algorithm studied in this
paper, and the analysis framework for the technical contri-
butions presented in the next sections. We should point out
that the simple scheduling algorithm itself is not the main
contribution of this work. Our contributions are in solving
the schedulability problem for this algorithm.

4.1 The Scheduling Algorithm FPc,

Since cache-related context-switch overhead of each task
due to preemption is usually hard to predict, we focus in this
paper on non-preemptive scheduling. The idea of cache space
isolation can be applied to many different traditional multi-
processor scheduling algorithms, and for simplicity reasons,
we will take the Non-preemptive Fixed Priority Scheduling as
the example in this paper.

The algorithm, the Cache-Aware Non-preemptive Fixed Pri-
ority Scheduling (FPca), is executed whenever a job finishes
or when a new job arrives. It always schedules the highest pri-
ority waiting job for execution, if there are enough resources
available. In particular, a job J; is scheduled for execution if:



Table 1: An example task set
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Figure 2: An example to illustrate FPca.

1. J; is the job of highest priority among all waiting jobs,
2. There is at least one core idle, and
3. Enough cache partitions, i.e. at least A;, are idle.

Note that, since we suppose D; < T; for each task, there is at
most one job of each task at any time instant.

Figure 2 shows an example of the task set in Table 1 sched-
uled by FPca (the scenario that all tasks are released to-
gether). Note that at time 0, the job Ji can not execute
according to the definition of FPca, although it is ready and
there is an idle core and enough idle cache partitions to fit it,
since it is not at the first position of the waiting queue, i.e.
there is a higher priority job (J3) waiting for execution. .J3
can not execute since there is not enough idle cache partitions
available. Thus, we note that FPca may waste resources as
it does not schedule lower priority ready jobs to execute in
advance of higher priority ready jobs even though there are
enough resources available to accomodate them. However, it
enforces a stricter priority ordering, which is in general good
for predictability. We name this kind of scheduling policy as
blocking-style scheduling.

Sometimes one may prefer to allow lower priority ready
jobs to execute in advance of higher priority ready jobs, if the
idle cache partitions are not enough to fit the higher priority
ones, to trade predictability for better resource utilization.
We name this kind of scheduling policy as non-blocking-style
scheduling.

For simplicity reasons, we will present the schedulability
analysis in context of FPca, which is blocking-style scheduling.
However, note that the schedulability analysis techniques are
applicable to both blocking-style scheduling and non-blocking-
style scheduling. Later in Section 8, we will discuss the com-
parison between them in more detail.

4.2 Problem Window Analysis

To check whether a given set of tasks can be scheduled
using the above algorithm without missing the deadline for
any job released, we shall study the time interval during which
an assumed deadline missing task is prevented from running.
Note that this interval is the so-called slack of the task, which
we shall also call the problem window [4].

In the following, we outline how the problem window can
be used for schedulability analysis in the case when tasks are
scheduled only on the cores or only on the shared cache parti-
tions. T'wo schedulability test conditions will be developed for

the two special cases. Then, in Section 5, we combine them
to deal with the general case.

4.2.1 The case without cache scheduling

A schedulability test for the case when the tasks are sched-
uled only on the cores can be derived as follows:

1. Assume M cores for execution of a task set 7 as de-
scribed before, but in the task model, the A;’s are 0
(alternatively the total number of cache partitions is
large enough such that no task will be blocked by a
busy cache).

2. Suppose that the task set 7 is unschedulable, then there
is a job sequence (J', Ji?, .. .) in which a job misses its
deadline. Let Jk, a job of 7k, be the first job missing its
deadline. Its release time is rx and the latest time point,
at which it would have needed to start running (but it
did not, since it is missing its deadline) is I = ri + Sk.
We define the time interval [rg,lx] of length Sy as the
problem window, as shown in Figure 3(a). The intuition
is that at all time points within the interval, each of the
cores must be occupied by another task, preventing Jj
from running.

3. To find out why Ji is not scheduled to run during the
window, we may estimate the work load or an upper
bound of this, generated by a task that may occupy a
core in the window. We denote such an upper bound by
I}, which is normally called the interference contributed
to Ji’s problem window by task 7;. The sum _, I is
an upper bound of the total work load interfering with
Ji in the problem window. We describe in detail how
to calculate such an upper bound in the next section. A
more precise calculation is given in the appendix.

4. We note that the non-preemptive fixed priority schedul-
ing algorithm (without cache) enjoys the work-conserving
property, that is, none of the M cores is idle if there is
some ready job waiting for execution. Therefore, Jj can
miss its deadline only if ), I. > Sk - M holds, i.e., the
whole area with diagonals in Figure 3(a) is occupied.
Otherwise, Ji is safe from ever missing its deadline,
i.e., 7x is schedulable, if the following condition holds:
i di < Sk M.

We may also view this last step in a different way. We know
that the sum of all work (of all tasks 7;) interfering with Jj is
bounded by Y, I, and it is in the worst case executed in par-
allel on M cores, thus preventing Ji from running. Therefore,
if we divide this sum 3, Ii by M, we get an upper bound on
the maximum time that job Ji can be delayed by other tasks.
We call this the interference time. Consequently, Jj is guar-
anteed to be schedulable, if this interference time is strictly
less than its slack, i.e., if the following condition holds:

1 i
MZI’“<S’“ (1)

By applying the above procedure to each task 7, € 7 (i.e.,
checking that the inequality holds for all tasks), one can con-
struct a sufficient schedulability test for the case without a
shared cache.

4.2.2  The case without core scheduling

The above problem window analysis can be generalized
to the case where each task occupies several computing re-
sources. In our scenario, one task can occupy several cache
partitions at once while executing.

To present the idea, let us assume for the moment that we
only care about the scheduling of the shared cache (suppose
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there are always enough cores for tasks to execute). A job J;
may start running as soon as it is the first one in the waiting
queue Quait, and the number of idle cache partitions is at
least A;. Otherwise, Ji in Quasit (it is now not necessarily
the first job) may have to wait, if the number of idle cache
partitions is less than max(Aq,..., Ax).

Note that we take the maximum over all higher priority
tasks here, since even though there might be Ay cache parti-
tions idle, there could be a job J; of higher priority (i < k)
in Quait that needs more cache partitions to run, but is pre-
vented from running, which in turn, prevents Ji from run-
ning, because of the blocking property of FPca. We define
this number as:

AP = max A;
i<k
Note that A}®* is the minimal number of idle cache partitions
needed in order that Ji is not blocked from running because of
a busy cache. Equivalently, the minimal number of busy cache
partitions that may block Ji from running, is A — Ap'®* + 1.

Therefore J can miss its deadline only if the whole area
with diagonals in Figure 3(b) is occupied. Since each task 7; is
occupying A; cache partitions while it is executing, we know
that Jx can miss its deadline only if the condition Zl AiI,i >
Sk (A — AP* 4+ 1) holds. Thus we have a test condition
for scheduling analysis when the shared cache is considered:
> AL < Sy - (A — AP 4-1).

Like in Section 4.2.1, we again prefer the view on that in
terms of interference time: We get an upper bound of the
interference time suffered by job Ji in the problem window
by dividing this sum of maximal total cache use ), A1 by
the minimal number of busy cache partitions (A — A;'** + 1)
throughout the problem window. This is, again, an upper
bound of the time, by which job Jx can be delayed by other
tasks. Thus, the schedulability test condition is:

1 i
A= Ape 1 2 Ak < S @

As we see now in Constraints (1) and (2), one can derive
test conditions for scheduling on cores and cache partitions
separately, once I} is known for each task 7;. Since in the
scheduling algorithm in question, FPca, the scheduling hap-

pens on cores and cache together, the conditions have to be
combined in a way that still makes for a safe schedulability

carry-in job body jobs czv-out job
I e de
Sk ‘

Problem Window

Figure 4: carry-in job, carry-out job and body jobs

test condition. In the following section, we will derive a novel
way of combining both conditions.

S. THE FIRST TEST: LP-BASED

In order to apply the problem window analysis to FPca, two
questions need to be answered:

1. How to compute I, i.e., an upper bound of the inter-
ference of each task ; in the problem window? We will
answer this question in Section 5.1.

2. How to determine whether the interference of all tasks is
large enough to prevent Jy, from executing in the problem
window? We will answer this question in Section 5.2.

5.1 Interference Calculation

The first question can be answered by categorizing each job
of 7; in the problem window into one of three types, as shown
in Figure 4:

body job: a job with both release time and deadline in the
problem window; All the body jobs together contribute
|Sk/T:] - C; to the interference.

carry-in job: a job with release time earlier than 7y, but
with deadline in the problem window; This job con-
tributes at most C; to the interference.

carry-out job: a job with release time in the problem win-
dow, but with deadline later than lj; This job also con-
tributes at most C; to the interference.

It follows that an upper bound of 7;’s interference in the prob-
lem window is given by

I = Q%J +2> - C;. (3)

We can derive a more precise computation of I} by carefully
identifying the worst-case scenario of each task’s interference,
which is given in the appendix.

5.2 Schedulability Test as an LP Problem

The answer of the second question is non-trivial, and is the
novel contribution of this paper.

As introduced in Section 4.2, the problem window analysis
can be applied to analyzing the scheduling on cores or on the
cache separately. However, if we consider the scheduling on
both cores and cache, it is generally unknown what the lower
bound of the occupied resources on each of them is, to cause
Ji to miss deadline. For example, in Figure 2, at time instant
0, the job Ji is ready for execution, but it can not execute
since the number of idle cache partitions on the shared cache
is not enough to accommodate it, so it is not true any longer
that all M cores must be busy during the problem window to
cause the considered task to miss its deadline.
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5.2.1 Dividing up the problem window

The key observation to our analysis is, that at each time
point in the problem window where the job Ji can not start
running, all cores are already occupied, or — wherever that is
not the case — enough cache partitions are occupied to prevent
Jr from running. This is expressed in the following lemma
about FPca:

LEMMA 1. Let Ji be a job that misses its deadline. Then
at any time instant in the problem window [rk, lx], at least one
of the following two conditions is true:

1. All M cores are occupied;

2. At least A — AR™ + 1 cache partitions are occupied.

PROOF. Suppose there is a time instant ¢ € [rg, ], such
that both of the above two conditions do not hold. Since J
misses its deadline, it cannot start executing in the problem
window, thus also not at t. Therefore, the waiting queue
Quait s not empty at t, since at least Jx is in Quait.

Let now J; be the first job in Quqit at time t. Since, for
FPca, the waiting queue is ordered in strict priority order, J;
is the highest priority job waiting. By assumption, there are
less than A — A;®* 4+ 1 cache partitions occupied, so there
are at least A}'®* partitions available. Further, A; < A" by
definition, and there is an idle core by assumption. Thus, J;
must be able to execute, contradicting the assumption that it
is waiting. [

Following these two conditions, we can now divide the prob-
lem window into two parts (see Figure 5):

1. a-intervals, in which all cores are busys;

2. B-intervals, in which at least one core is idle. Note that
it follows from Lemma 1, that during the B-intervals, at
least A — A®* 4 1 partitions of the shared cache are
occupied by a running task.

It is generally unknown at what length of the o~ and (-
intervals the maximal interference to Jj is achieved. We ap-
proach this by introducing a Linear Programming (LP) for-
mulation of our problem, to create a schedulability test for
FPca.

5.2.2 LP formulation

Suppose, as before, the task set 7 is unschedulable by FPca,
and Jy is the first task that is missing its deadline. The time
interval [rg, [x] is the problem window.

The LP formulation will use the following constants:

e M: the number of cores.

A: the total number of partitions on the shared cache.

A;: the number of cache partitions occupied by each
task 7;. (We also use the constant A}**, which is derived
from these as above.)

Ii: an upper bound of the interference by 7; in the prob-
lem window, which is computed as in Section 5.1 (or as
in the appendix) for each 7;.

Further, the following non-negative variables are used:

e «;: for each task 7;, we define a; as 7;’s accumulated
execution time during a-intervals.

e [3;: for each task 7, we define 3; as 7;’s accumulated
execution time during (-intervals.

During the a-intervals, all M cores are occupied. Further,
we know that ), a; equals to the total computation work of
all tasks during the a-intervals (which is the area with grids in
Figure 5). We can therefore express the accumulated length

of all a-intervals as:
1
ST 4)

During the B-intervals, at least A— A}**+1 cache partitions
are occupied. Further, >, A;0; is the total cache partition use
of all tasks during the S-intervals (which is an upper bound of
the area with diagonals in Figure 5). We can therefore express
an upper bound of the accumulated length of all G-intervals
as:

1
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Since Ji is not schedulable, we further know that the sum
of the accumulated lengths of the a- and S-intervals is at least
Sk. Thus, using the expressions from (4) and (5), it must hold
that:

s v B3] >
Zi (M“’*A—A;Cnax+15’) 2 Sk (©6)

We can use an LP solver to detect, if the «; and 3; variables
can be chosen in a way to satisfy this condition. If this is not
the case, then 7, would be schedulable. We can use the object
function of our LP formulation for that check:

Mazximize Z (%ai + ﬁnﬂl&x“ﬂz) (7
i — Ay

Thus, if the solution of the LP problem is smaller than Sk,
we can determine that 7 is schedulable.

So far, the variables «; and (3; are not bounded, so with-
out further constraints, the LP formulation will not have a
bounded solution (which would trivially render all tasks un-
schedulable). Therefore, we add constraints on the free vari-
ables, that follow directly from the structure of our schedula-
bility problem. We have three constraints:

p1: Interference Constraint We know that I,i is the upper
bound of the work done by 7; in the problem window,
so we have:

Vjia;+8; <1}

p2: Core Constraint The work done by a task in the a-
intervals can not be larger than the total accumulated
length of the a-intervals (see Expression (4)), so we
have:

Vj:ajS%Zai



p3: Cache Constraint The work done by a task in the -
intervals can not be larger than the total accumulated
length of the S-intervals. Thus, it can not be larger than
the upper bound of the total length of the S-intervals
(see Expression (5)), so we have:

1
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To test 71 for schedulability, we can now invoke an LP solver
on the LP problem defined by constraints ¢1 to 3 and the
object function in (7). By construction, we have a first schedu-
lability test for 7:

THEOREM 1  (THE FIRST TEST). For each task Ty, let Xk
denote the solution of the LP problem shown above. A task
set T is schedulable by FPca, if for each task T, € T it holds
that

Xk < Sk. (8)

6. THE SECOND TEST: CLOSED FORM

Although the LP-based test presented in the previous sec-
tion exhibits quite good scalability (as will be shown in Sec-
tion 7), simple test conditions are often preferred, in e.g.,
on-line admission control and efficient analysis in the systems
design loop. Thus, we will present a second schedulability
test, which can be seen as an over-approximation of the LP-
based test. It has quadratic computational complexity.

In the LP-based test, each task 7; finds its interference I,i
divided into the two parts «; and [3;, expressed by constraint
1. From the object function (7) one can see that if 1/M >
Ai/(A—AP* +1), 7; tends to contribute with as much «; as
possible, as long as 2 is respected; likewise in the opposite
case with 3;. However, since the accumulated lengths of the a-
and B-intervals (as used on the right hand sides of ¢2 and ¢3)
are also dependent on the unknown variables, it is in general
unknown how the «; and 3; variables are chosen to maximize
the interference time caused by all tasks. Therefore, the first
schedulability test employs the LP solver to help “searching
over all possible cases” for the maximal solution.

However, if we take out the constraints @2 and @3 from the
LP formulation, each task 7; will contribute oy = I}, 3; = 0
if 1/M > A;/(A— AP 4-1), or 3; = I}, a; = 0 otherwise, to
maximize the object function. With this observation, we can
derive a closed-form schedulability test which does not need
to solve a search problem:

THEOREM 2 (THE SECOND TEST). For each task 73 let

. 1 A; i
Xk ‘= ;max (ﬁ’iA—Ag’“-k 1) -,

A task set T is schedulable by FPcp, if for each task 7, € T it
holds that
Xk < Sk (9)
PrOOF. We prove the theorem indirectly. Let 7 be a task
set not schedulable by FPca, and Ji the deadline missing task
as before. We already know, that this implies the existence
of a solution for the LP problem, such that in particular, ¢1
to 3 hold, and the value of the object function satisfies the
following inequality:

1 A;
— a2t B > 8,
Z(M « +14_1411rgnax_i_1 5)—Sk

i

By relaxing the inequality, we get:

E m A . . ) >
- aX(n[’A_Al];ﬂax—’_l) (a1+ﬁl)—sk

M A-_Ar 11 If A |[IZ A, |7 A
2 1 4 1[4 36 1

Table 2: An example task set.

Now, we apply condition ¢;:

PR — . >
% max(M, — Amax 1) I, > Sk

*

Xk

The theorem follows. [

Note that the upper bound xj derived in the above theorem
is an over-approximation of the LP solution x in the previous
section. For example, consider a task set with the interference
parameters as stated in Table 2. The LP problem (from the
first test) has the following solution:

a1:4 /31:()
az=1 f[2=3
O£3=3 5323

This results in an upper bound of xx = 7, which is the value
of the object function. In the second test, for xj, each task
7; contributes all Tf as a; if 1I/M > A;/(A — AP* +1), and
as (3; otherwise, so we get the following bound:

3
T

Although the simple test condition is more pessimistic than
the LP-based test, we found by extensive experiments, that
the performance of the second test is very close to the LP-
based test in terms of acceptance ratio. We will show that in
Section 7. It follows that, for practical matters, the second
test does not lose much precision for most task sets, while be-
ing of comparatively low complexity (quadratic with respect
to the number of tasks).

1 1
r==-4 4+ --6=28
Xk B + +2

7. PERFORMANCE EVALUATION

At first we evaluate the performance of the proposed schedu-
lability tests in terms of acceptance ratio. We follow the
method in [5] to generate task sets: A task set of M + 1
tasks is generated and tested. Then we iteratively increase
the number of tasks by 1 to generate a new task set, and
all the schedulability tests are run on the new task set. This
process is iterated until the total processor utilization exceeds
M. The whole procedure is then repeated, starting with a new
task set of M + 1 tasks, until a reasonable sample space has
been generated and tested. This method of generating ran-
dom task sets produces a fairly uniform distribution of total
utilizations, except at the extreme end of low utilization.

Figure 6 shows the acceptance ratio of the first test (denoted
by “T-17), and second test (denoted by “T-2") and the sim-
ulation (denoted by “Sim”). Since it is not computationally
feasible to try all possible task release offsets and inter-release
separations exhaustively in simulations, all task release off-
sets are set to be zero and all tasks are released periodically,
and simulation is run for the hyper-period of all task peri-
ods. Simulation results obtained under this assumption may
sometimes determine a task set to be schedulable even though
it is not, but they can serve as a coarse upper bound of the
acceptance ratio.

The parameter setting in Figure 6(a) is as follows: the num-
ber of cores is 6; the number of cache partitions is 40; for each
task 75, T; is uniformly distributed in [10, 20], U; is uniformly
distributed in [0.1, 0.3] and A; is uniformly distributed in
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Figure 6: Acceptance Ratio: X-axis is total utilization }_, U;; Y-axis is acceptance ratio.

Table 3: Running time and peak memory usage of
Ipsolve to solve the LP formulation in the first test
Number of Tasks 4000 6000 8000 10000
Time in LP (s) 49.24 114.53 208.45 334.95
Mem. in LP (KB) | 20344 28876 37556 46664

[1,5], and we set Di = T'i. We can see that the performance
of the first test is a little better than the second test. In Figure
6(b), the range of U; is changed to [0.1,0.6] and other settings
are the same as Figure 6(a). In Figure 6(c), the range of A;
is changed to [2, 10] and other settings are the same as Figure
6(a). We can see that, in both cases, the acceptance ratio of
all the simulations and tests degrades a little bit when the
average utilization of tasks is slightly decreased, and the dif-
ference between the performance of the first test and second
test is even smaller. In summary we can see that the second
test does not lose too much precision, compared to the first
test condition.

As mentioned earlier, the second test is of O(N?) complex-
ity. The scalability of the first test is of our special concerns
since it employs the LP formulation. We use the open source
LP solver Ipsolve [7] to solve the LP formulation of the first
test. Table 3 shows the running time and maximal peak mem-
ory usage of Ipsolve with different task set scales. The exper-
iment is conducted on a normal desktop computer with an
Intel Core2 processor (2.83GHz) and 2G memory. The ex-
periments show that the first test can handle task sets with
thousands of tasks in minutes.

8. EXTENSIONS
8.1 Blocking vs. Non-blocking Scheduling

As we mentioned in Section 4.1, FPca may introduce a type
of resource wasting in certain situations, caused by a differ-
ence in tasks cache requirements, in combination with strict
adherence to priority ordering. The possible scenario is that
when the current idle cache is not enough to fit the first job
in the waiting queue (the highest-priority job among all ready
jobs), there could be some lower-priority job in the waiting
queue with a fitting cache requirement. In FPca as analyzed
so far, lower-priority waiting jobs are not allowed to start exe-
cution in advance of the first job in the waiting queue since the
priority ordering is enforced strictly. We call this sort of policy
the blocking-style scheduling. The blocking-style scheduling
would waste computing resources to guarantee the execution
order of waiting jobs, as we saw earlier in the example in
Figure 2. But it will not suffer from the unbounded priority
inversion problem due to the sharing of cache partitions as for
the non-blocking approach described below.

11727374 7 T3

) J;! misses deadline
core | J! Ji! ‘
core 2 Ji! ‘ i ‘
core 3 Ji
partition 1 Ji’ ‘ Ji B
partition 2 7!
partition 3
partition 4 Ji

Figure 7: The non-blocking version of FPca.

Alternatively, to improve resource utilization, a lower-prio-
rity waiting job may be allowed to start execution in advance
of the first job in the waiting queue, if the above described
situation occurs, which we call non-blocking-style scheduling.
Figure 7 shows how the task set in Table 1 is scheduled by the
non-blocking-style version of FPca. In this variant, the sched-
uler always runs the highest priority waiting job in the queue
among all jobs that can actually run, given their resource (i.e.
cache) constraints. This is done until there are no more jobs
of that kind. In the example in Figure 7, we can see that at
time instant 0, job J} starts execution although Ji can not
start.

From the predictability point of view, the blocking-style
scheduling is usually to be preferred, in which waiting jobs
start execution in strict priority orders. The reason is that 7,
may suffer more interference than it is the case in the blocking-
style scheduling, since in the non-blocking-style scheduling, a
lower priority task 7; can execute earlier than a higher pri-
ority task 75, and must run to completion because of non-
preemptive scheduling. As shown in Figure 7, due to the
advanced execution of Jj, the start time of J3 is delayed to
time 3, and J1 will finally miss its deadline. In the worst case,
this priority inversion effect could even cause unbounded in-
terference to a task with even the highest priority.

On the other hand, the non-blocking-style scheduling uti-
lizes resources better, since it always tries to utilize the com-
puting resources as much as possible. Regarding the com-
plexity at runtime, this comes with the cost that the sched-
uler needs to keep track of more than the head of the priority
queue, since lower priority tasks might be able to run. The
blocking-style variant is more lightweight, since only the head
of the priority queue needs to be checked.

The system designer can choose to use blocking-style or
non-blocking-style scheduling, as well as some compromise
policy as a mixture of these two alternatives, according to
the application requirement. It is out of the scope of this pa-
per to compare them in very detail. However, even though
the schedulability analysis techniques proposed in this paper



are done in the context of the blocking-style scheduling, they
are also applicable to the non-blocking-style scheduling. For
this, it is only necessary to incorporate some extra considera-
tion of the interference caused by the lower priority jobs that
may execute in advance of the analyzed job. More details on
this can be found in the appendix.

8.2 Other Scheduling Strategies

Besides FPca, cache space isolation can also be applied
to other scheduling algorithms, like EDF scheduling. The
schedulability analysis in that case can be achieved by tech-
niques which are similar to those introduced in this paper.
The detailed analysis derivation is shown in the appendix.

One can also apply cache space isolation in a way similar to
the partitioned multiprocessor scheduling [13]: each task is as-
signed to a core and a set of cache partitions in advance. One
reason for us to be interested in the partitioned scheduling
is that the shared cache on multicores could be non-uniform
in terms of accessing speed: data residing in the part of a
large cache close to the core could be accessed much faster
than data residing physically farther from the core. In [22],
it was shown in an example that in a 16-megabyte on-chip
L2 cache built in a 50-nanometer processor technology, the
closest bank could be accessed in 4 cycles while an access
to the farthest bank might take 47 cycles. Therefore, with
non-uniform shared cache, one should assign fixed cores and
cache blocks to each task for scheduling and to calculate their
WCETs. Due the page limitation in this paper, the discus-
sion about partitioned scheduling with cache space isolation
is also presented the appendix.

9. CONCLUSIONS

The broad introduction of multicores brings us many in-
teresting research challenges for embedded systems design.
One of these is to predict the timing properties of embed-
ded software on such platforms. One of the main obstacles
is the sharing of on-chip caches such as L2. The message of
this paper is that with proper resource isolation, it is possi-
ble to perform system-level schedulability analysis for multi-
core systems based on task-level timing analysis using existing
WCET analysis techniques. Our contributions include two ef-
ficient techniques for such analyses in the presence of a shared
cache. We may argue that hard real-time applications should
be placed in local caches such as L1. An interesting future
work is to develop techniques for estimating the cache space
requirements of tasks.

However, when there is not enough local cache space, the
techniques presented here will be needed. We believe that our
analysis techniques are also applicable to handle other types
of on-chip resources such as bus bandwidth. We leave this
for future work. As future work, we will also study how the
allocation of cache space size for individual tasks will influence
system-level performance and timing properties.
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APPENDIX
A.1 Improving the Interference Computation

The computation of I, an upper bound of the interference
caused by 7; over Ji, in Equation 3 (Section 5.1) is grossly
over pessimistic. In the following we will present a more pre-
cise computation of I} by carefully identifying the worst-case
scenario of 7;’s interference.

Recall that the problem window [ry,l] is a time frame of
a given length (Ix — v, = Si) for which we want to derive
a bound of how much interference a task 7; (or rather its
jobs) can cause to possibly prevent Jj from running. We can
compute If using the following lemma:

LEMMA 2. An upper bound of the interference contributed
by 7; in the problem window of length Sy can be computed by:

Sk 1< kNSE<C;
) Sp=C; ) ) . )

0 i=k

min(C}, Sk) i >k

where w = min (Ci,max (07 (Sk — Cs) mod T; — (T — Dl)))

PrOOF. The lemma is proved in the following cases:
1. i < k, i.e., 7’s priority is higher than 73’s.
If Si. < Cj, i.e., a job of 7; can execute even longer than
Ji’s slack, trivially I}, = S is a safe bound.
If Sy, > C, the worst-case for I} occurs when
(a) one of 7;’s jobs is released at I, — Ck,
(b) all jobs are released with period 75, and
(c) the carry-in job executes as late as possible.

See Figure 8. To see that this is indeed the worst-case,
we imagine to move the release times of 7;’s jobs left-
wards for a distance ¢ < T; — C; or rightwards for a
distance €” < Cj, to see if it is possible to increase I}, by
doing so. (It’s easy to see that moving 7;’s jobs’ releases
more in either direction creates a situation equivalent to
one of these two cases. Further, I} can not be increased
if the number of 7’s jobs in [rk,lx] is decreased, which
means we only need to consider the scenario that all jobs
are released periodically.) If it is moved leftwards by €',
7;’s interference can not increase at neither the left nor
the right end of the interval [rg,lx], so moving leftwards
for a distance €' < T; — C; will not increase the interfer-
ence. On the other hand, when moving rightwards by €",
the interference is increased by no more than € at the
left end, but decreased by €" at the right end, so moving
rightwards for a distance €” < C; will also not increase
the interference. In summary, based on the scenario in
Figure 8, I} can not be increased no matter how we move
the release time of ;. With this worst-case scenario, we
can see that the interference contributed by the carry-out
job is C, the number of the body jobs is | (Sk — Cs)/T5 ]
(each contributing C; interference), and the interference
contributed by the carry-in job is bounded by both C;
and the distance between r; and the carry-in job’s dead-
line. Thus, for each task 7; with ¢ < kA Sk > C;, we can
compute I{ by:
Sk — C;

I = LTJ Ci+Ci+w (11)

where w is defined as in Lemma, 2.

2. i =k, i.e., 7; is the analyzed task. Since Dy < T} holds
for each task 7, the other jobs of 7, can not interfere
with Jk, so in this case we have:

I =0 (12)

3. ¢ >k, i.e., 7;’s priority is lower than 7.
In FPca, a job J! with lower priority than Jj can inter-
fere with Ji only if it is released earlier than ri. There-
fore, 7; can only cause interference to Jx with at most
one job, so its interference is bounded by C;. The in-
terference is also bounded by the length of the problem
window Si. Thus, for i > k, we can compute I} by:

I} = min(Ci, Sk) (13)
|
A.2 Analysis of Non-blocking EDF Scheduling

As mentioned above, the analysis proposed in this paper can
also be applied to non-blocking-style scheduling and other
scheduling policies. Now we use the Non-blocking-style EDF
Scheduling (EDF2,) as an example to show this. The follow-
ing algorithm describe how EDFworks.

Figure 9 illustrates the examples of the scheduling sequences
of the task set in Table 4 scheduled by EDFEtAon a multi-core
platform with 3 processors and 8 colors.
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repeat
2:  Find the first J; € Quair With
(1) AvailCores > 1, and
(2) AvailColors > A;
Run J; if found
until No such J; in Quait left

Algorithm 1: EDFX,

Table 4: A task set example.

Task Di Ti Al Cz miT piT
m | 3 3 1 1 1 {17
™ |4 4 3 1 1 {1,2,3}
T3 6 6 2 2 2 3,4
mw | 8 8 5 2 2 {4,56,7,8}
Ts 10 10 2 2 3 7,8}
T.

only for P-EDF.

There are two differences between the analysis of FPcaand
EDFY:
e The minimal occupied cache space in G-intervals is A —
Ar + 1, instead of A — A + 1.

e The calculation of each task’s interference is different.

The first difference is because that in non-blocking-style
scheduling, if a task 7 is waiting, the idle space on cache can
not be larger than 7,. To address this difference, one should
just replace all A'** by Ag.

Now we address the second difference. From now on we use

For non-preemptive global EDF scheduling on multiproces-
sors (without cache space isolation), we have the observa-
tion that [21], if D; > Dy, a necessary condition for a job
Ji to cause interference to Ji is r; < ri < d;; if D; < Dy,
a necessary condition for J; to cause interference to Ji is
e < di <dg.

However, this observation does not hold for EDFY,. Figure
10 shows an counterexample, in which J; has higher priority
than Ji, while J; has lower priority than Ji. At time instant
Tk, Jn starts execution and occupies 2 colors. The idle color is
not enough for Ji, so Jix has to wait from ri. At time instant
r1, Ji is released and there is enough colors for it, so J; starts,
although its priority is lower than Ji. At time instant a,
the higher priority Jp, finished its execution, however since
preemption is not allowed, J, has to wait until J; finishes
its execution. Note that in this counterexample A; must be
smaller than Aj,. So with EDFE5we have the following Lemma:

LEMMA 3. If A; < Ak, a necessary condition for J; to
cause interference to Ji s [ri,d;) N [re,di) # 0; if Ai >
Ax AN D; > Dy, a necessary condition for J; to cause interfer-
ence to Ji isr; <rg < di; if Ai > A ND; < Dy, a necessary
condition for J; to cause interference to Ji is ri < d; < dk.
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Figure 9: The scheduling sequences by EDF¥,
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Figure 11: The worst case of I} if A; < Ay

In the light of Lemma 3, we will compute I} by Lemma 4
to 7. I} is computed by classified discussions to explore the
particular properties with different task parameter characters,
in order to obtain the If as accurately as possible. It is easy
to see that the worst-case work done by 7; occurs when 7; is
released periodically, so in the following we will consider 7; as
a periodic task.

LEMMA 4. For any task T; with
A < Ayg (14)
we can compute I}, by:
. Sk Sk < C;
o= { |52 | Ci 4 Ci 4 min(Cryw) - Sk > G (15)
where
w = max(0, (Sx — C;)mod T; — (T; — D;)) (16)
PRrROOF. By Lemma 3, we know a job J? of 7; with [r;,d;) N
[rk,dx) # @ may interfere with Jx. In the following we will
show that in this case the worst-case I}, occurs when one of

7i’s jobs is released at I — C;. We examine whether I} will
be increased if we move 7;’s releases leftwards for z (x < T3)
3.

3Moving Tiafs releases for any distance can be transformed to
an equal form of moving them rightwards (or leftwards) for
z (z < T3).



e If we move 7;’s releases leftwards for z1 (z1 < T3 —C5), at
the left end of the problem window, trivially the contri-
bution can not be increased; at the right end of the prob-
lem window, the contribution of J? is still Cj, the release
time of the Jf“ is no earlier than I + (T; — C;) — 1,
and since z1 < T; — Cj, it is still later than I, so JP!
has no contribution to If. Therefore there is no increase
of I} at the right end of the problem window. So moving
7’8 release time leftwards for z1 (z1 < T; — C;) will not
increase I..

e Moving 7;’s releases leftwards for x2 (T; — C; < z2 < T3)
has the same effect as moving 7;’s release time right-
wards for T; — x2. Since T; — C; < x2 < T;, we have
0 < T;—z2 < (. So at the right end of the problem win-
dow, the contribution of Jf is decreased by T; — x2 after
being moved rightwards for T; — z2; at the left end of the
problem window, I}, is at most increased by T; — z2. So
I will not be increased after moving 7;’s releases right-
wards for T; — z2 (T; — C; < 22 < T3).

In summary, I}, will not be increased if we move 7;’s releases
leftwards for = (z < T3). So a job of 7; is released at i, — C;
is the worst case for I},

If S, < C;, it is easy to see that I,i = S, as shown in
Figure 11-(a). Figure 11 (b) shows the worst case of I} with
Sk > C,;. The number of the jobs whose release time and

deadline are both in the problem window is {S ’“i OiJ; the
work done by the job whose deadline is later than Iy is C;;
the work done by the job whose release time is before r, and
deadline is later than ry is bounded by both C; and w, which
is the distance between r; and the deadline of this job. As
shown in Figure 11 (b), w equals to max (0, (Sx — Ci)mod T; —
(T — Dy)). O

LEMMA 5. For any task T; with
A > Ax AN D; > Dy, (17)
we can compute It by:
I;;1 = min(C;, Sy,) (18)

ProOOF. By Lemma 3, we know a job JF of r; with A; >
Ar AN D; > Dy can execute in the problem window only if
ri < rr < d;. So at most one job of 7; can execute in the
problem window, and this job must start execution before 7.
Therefore I1 is bounded by C; and the length of the problem
window. [J

LEMMA 6. For any task 75 (i # k) with

A; > Ak AND; < D ANS; > Cy (19)
we can compute I} by:
i Dy, .
1.2 = T * Cy + mln(Ch Dimod Tl) (20)

PrOOF. By Lemma 3, we know a job JP of r; with A; >
Ar AN D; < Dy can execute in the problem window only if
r < di < di. We will prove that the worst case of the
work done by 7; in the problem window occurs when one
of 7;’s job has its deadline at dp. Let Jf be the job with
its deadline at di. By the priority order, we know J may
interfere with Jj. Since S; > Cj, JP’s contribution to I,i is Cj.
Now we examine whether I} will be increased if we move all
7;'s releases leftwards for z (z < T;). After moving leftwards
for x (z < T3), at the right end of the problem window, the
contribution of J? is still C;; the deadline of J”*" is no earlier
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Figure 12: The worst case of I} if A; > Ay AS; > Cy

than at di +7; —, and since x < 75, it is still later than di, so
Jf’“ has no contribution to I%, so I} will not be increased at
the right end of the problem window. At the left end, trivially
I} is not increased. So Ii will not be increased after moving
7;’s releases leftwards for z (z < T;), so d? = di is the worst
case for I,i for tasks with D; < Di A S; > Ck.

Figure 12 shows this worst case of I,i with A; > Ax A S; >
Cr. We take the interval between the deadlines of two ad-

joining instances of 7; as a "unit”, then there are {%J such
Punits” in the time interval [ry, dx]. The work done by the job
whose release time is before r;, and deadline later than 7 i_s
bounded by both C; and Dy mod T;. So we can compute I,

by Equation 20. [

LEMMA 7. For any task 7; (i # k) with
Ai > A NS < Cy, (21)
we can compute It by Equation 15.

PROOF. Similar with Lemma 6, a job J? of 7; with A; > Ay
can execute in the problem window only if r, < d; < dg.
However, since S; < Cj, a part of J!’s work must be executed
out of the problem window if if df = dj,. In this case, the worst
case I,i occurs when rf-’ =1 — C; and I,i can be computed by
Equation 15. The proof is similar with Lemma 4 and omitted
here. [

In summary, we can compute I} for each task ; (i # k) by

_ I;;l A; > Ay AND; > Dy
I;i = ]}?2 A > A AND; < D ANS; > Chg (22)
10 otherwise

A.3 Partitioned Scheduling

Now we use the partitioned non-preemptive EDF scheduling
with cache isolation (P-EDFcafor short) as the example, to
show how to analysis the partitioned scheduling algorithms.
Now we introduce how P-EDFcaworks.

1: repeat

2:  Find the first J; € Quait with
(1) state(m;) = idle, and
(2) Ve € p; : state(c) = idle

3:  Run J; if found

4: until No such J; in Quait left

Algorithm 2: P-EDFca

Figure 13 illustrates the examples of the scheduling se-
quences of the task set in Table 1 scheduled by P-EDFcaon a
multi-core platform with 3 processors and 8 colors.
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Figure 13: The scheduling sequences by P-EDFca

In partitioned multiprocessor scheduling, once the tasks
partitioning is determined, the schedulability analysis prob-
lem is reduced to the subproblems of the schedulability anal-
ysis of each partition, which is the subset of tasks assigned to
the same processor, since the tasks in one partition are not
able to interfere with any task in another partition.

The situation is more complex in the partitioned cache-
aware scheduling.

P-EDF. Recall the task set example shown in Table 1, 7
may interfere with 7 since they both use the core 1 and color
1. Similarly, 72 may interfere with 73, 73 may interfere with 74,
and 74 may interfere with 75. So the partition-based analysis
is not applicable to P-EDFca, since the interference relation
can spread over tasks sharing recourses and lead to unneces-
sary large partitions. Furthermore, the tasks within one par-
tition do not execute in the same order as scheduled on the
single processor, therefore one can not directly apply schedu-
lability tests for single processor systems to each partition.

In the following we will present a schedulability test for
P-EDFcabased on the problem window analysis framework.

DEFINITION 1. Task 7;’s Direct Interfering Task Set, de-
noted by DS;, is defined as:

THEOREM 3. A task set T is schedulable with P-EDFcaif for
nay task T, € T we have

> Lo< S (24)

T, €DSy
in which I3.0 is defined by Equation 18 in Section 5.1.

PrOOF. We prove the theorem by contradiction. Suppose
a job Ji misses deadline, and let its problem window defined
as [ri,lx) like before.

Any job J; with [r;, d;)N[rk, di) may execute in the problem
window, therefore interfere with Ji. This is because a job J,
with lower priority than Jx may start to execute when some
of Ji’s resource are occupied by a job Jj with higher priority
than Jr. When Jj, is finished and J; is not, Ji still has to
wait since preemption is not allowed. So in the worst case J;
can contribute C; to Ji’s interference time. In this case, the
computation of I in Equation is guaranteed to be the upper
bound of the work done by task 7; in the problem window.
The proof is similar with Lemma 4, and is omitted here due
to space limitation.

By Condition 24, it is known that the work done by all the
tasks in DS in the problem window is not enough to cause Jj
to miss deadline, which contradicts with our assumption. [



