
Replace this �le with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Universality of R-automata with Value Copying 1

Parosh Aziz Abdulla, Pavel Krcal and Wang Yi2

Dept. of Information Technology,
Uppsala University, Sweden

Abstract

R-automata are �nite state machines extended with counters which can be incremented or reset to zero
along the transitions. The universality question asks whether there is a constant D such that all words are
accepted by some run along which no counter exceeds D. It has been shown in [AKY08] that this question is
decidable. In this paper, we add one more operation to R-automata, namely the operation which can copy
the value of a counter into another one. The result of this paper is a reduction of the universality problem
for R-automata with value copying to universality of R-automata, thus rendering the problem decidable.
The reduction replaces copy operations by non-deterministic resets together with a mechanism ensuring
that the number of such replacements is bounded between each two resets of a value.

Keywords: Distance automata with resets and copying, universality, decidability.

1 Introduction

Finite state machines usually serve as word acceptors, where the accepting condition

is expressed in terms of the last reached state. For the acceptance of a word, it does

not matter what has happened along the run, as long as we end up in an accepting

state. One can also introduce a notion of the cost into �nite automata by setting

a price on each transition. The cost of a run is then the sum of the costs of the

transitions. The cost of a word is the minimum of the costs of all accepting runs for

this word. One way of bringing this concept into the automata model is to introduce

counters which accumulate the cost along the runs.

A �rst such extension � distance automata of Hashiguchi [Has82] � contained

one counter which could only be incremented. The operations on the counter are

either increment (+1) or leaving the counter unchanged (0). Recently, this model

was extended to several counters which can be also reset (r) � nested distance desert

automata [Kir05], B-automata [BC06], and R-automata [AKY08]. In this work, we

add new operations (∗j) where j is a counter name. These operations copy the

content of the counter j into the counter to which this operation is applied.

1 This work has been partially supported by the EU CREDO project.
2 Email: {parosh,pavelk,yi}@it.uu.se

c©2008 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:pavelk@it.uu.se

Abdulla, Krcal, Yi

Questions asked for these automata are concerned with the existence of bounds

on the costs (i.e., counter values). The limitedness problem is to decide whether

there is a bound such that all accepted words are accepted by a run along which

no counter exceeds this bound. The universality problem is a special case of the

limitedness problem, i.e., the question whether there is a bound such that all words

are accepted by a run along which no counter exceeds this bound. This problem

has been shown decidable for R-automata in [AKY08] using the factorization forest

theorem [Sim90]. Here we show the decidability of the universality problem for

R-automata with value copying by reducing it to the universality problem of R-

automata (without copying).

The main idea of the reduction is to replace the copy instructions by resetting

and swapping the values. We non-deterministically either reset the destination of

the copy instruction or swap the values of the involved counters and reset the source

of the copy instruction. There is a mechanism which ensures that the number of

such resets is bounded along the lifetime of each value, i.e., from the beginning (a

reset) of a value until its end (the next reset or overwrite by a copy). By this, we

can decrease the cost only by a constant ratio.

The motivation for this particular class of counter automata comes from the

sampled semantics of timed automata [KP05,AKY07]. A sampled semantics given

by a sampling rate ε = 1/f for some positive integer f allows time to pass only

in steps equal to multiples of ε. The number of di�erent clock valuations within

one clock region (a bounded set of valuations) for a pair of clocks corresponds to a

counter. It is �nite for any ε while in�nite in the standard (dense time) semantics of

timed automata. Timed automata can generate runs along which clocks are forced

to take di�erent values from the same clock region. This is done by forcing a pair of

clocks to increase/decrease their di�erence (an increment of a counter), keep exactly

the same di�erence (a counter is left unchanged), forget about the previous di�erence

(a counter reset), or assume the di�erence of some other clock pair (a counter copy).

Related work. Di�erent proofs of the decidability of the limitedness problem

for distance automata are reported in [Has90,Leu91,Sim94]. The last of these results

[Sim94] is based on the factorization forest theorem [Sim90,Col07,Kuf08]. Distance

automata were extended in [Kir04,Kir05] with additional counters which can be

reset following a hierarchical discipline resembling parity acceptance conditions. R-

automata form a superclass of this extension. Universality of a similar type of

automata for tree languages is studied in [CL08] study universality of a similar type

of automata for tree languages. B-automata [BC06] contain counters which can be

incremented and reset in the same way as in R-automata, but they accept in�nite

words such that the counters are bounded along an in�nite accepting computation.

The main result is that B-automata can be complemented.

2 Preliminaries

First, we introduce the model of RC-automata and its unparameterized semantics.

Then we introduce the parameterized semantics, the languages accepted by the

automaton, and the universality problem.

2

Abdulla, Krcal, Yi

RC-automata. RC-automata are �nite state machines extended with counters.

A transition may increase the value of a counter, leave it unchanged, reset it back

to zero, or copy it into another counter. The automaton on its own does not have

the capability of testing the values of the counters. However, the semantics of these

automata is parameterized by a natural number D which de�nes an upper bound

on counter values which may appear along the computations of the automaton. Let

N denote the set of non-negative integers. Let for a given number n of counters,

E = {0, 1, r} ∪ {∗m|1 ≤ m ≤ n} be the set of operations on a counter. An RC-

automaton with n counters is a 5-tuple A = 〈S,Σ,∆, s0, F 〉 where S is a �nite set

of states, Σ is a �nite alphabet, ∆ ⊆ S × Σ× E × S is a transition relation, s0 ∈ S
is an initial state, and F ⊆ S is a set of �nal states.

Transitions are labeled (together with a letter) by an e�ect on the counters.

The symbol 0 corresponds to leaving the counter value unchanged, the symbol 1
represents an increment, the symbol r represents a reset, and a symbol ∗m means

that the value of this counter is set to the value of the counter m. The operations

0, 1, and r take place �rst and after that the values are copied. An RC-automaton

which does not contain any copy operations is called an R-automaton.

We use t, t1, . . . to denote elements of En which we call e�ects. By πi(t) we

denote the i-th projection of t. Without loss of generality, we assume that the value

of a counter is never directly copied into itself (πi(t) 6= ∗i). A path is a sequences of

transitions (s1, a1, t1, s2),(s2, a2, t2, s3), . . . , (sm, am, tm, sm+1), such that ∀1 ≤ i ≤
m.(si, ai, ti, si+1) ∈ ∆. A state si will be referred to as the i-th state of the path.

An example of an RC-automaton is given in Figure 1.

s0 s1

s2

a, (1, 0)

b, (r, ∗1)a, (0, 1)

b, (0, 1)

a, (0, r)

Fig. 1. An R-automaton with two counters.

Unparameterized semantics. We de�ne an operation⊕ on the counter values:

for any k ∈ N, k ⊕ 0 = k, k ⊕ 1 = k + 1, and k ⊕ r = 0. We extend this operation

to n-tuples and copy operations as follows. For a t ∈ E , let t̂ be an e�ect with all

copy instruction replaced by 0, i.e., πi(t̂) = πi(t) if πi(t) ∈ {0, 1, r} and πi(t̂) = 0
otherwise. For a t ∈ E and (c1, . . . , cn) ∈ Nn, (c1, . . . , cn) ⊕ t = (c′1, . . . , c

′
n), where

c′i = cm ⊕ πm(t̂) if πi(t) = ∗m and c′i = ci ⊕ πi(t) otherwise.
The operational semantics of an RC-automaton A = 〈S,Σ,∆, s0, F 〉 is given by

a labeled transition system (LTS) JAK = 〈Ŝ,Σ, T, ŝ0〉, where the set of states Ŝ

contains pairs 〈s, (c1, . . . , cn)〉, s ∈ S, ci ∈ N for all 1 ≤ i ≤ n, with the initial state

ŝ0 = 〈s0, (0, . . . , 0)〉. The transition relation is de�ned by (〈s, (c1, . . . , cn)〉, a, 〈s,
(c′1, . . . , c

′
n)〉) ∈ T if and only if 〈s, a, t, s′〉 ∈ ∆ and (c′1, . . . , c

′
n) = (c1, . . . , cn) ⊕ t.

We shall call the states of the LTS con�gurations. We write 〈s, (c1, . . . , cn)〉 a−→
〈s, (c′1, . . . , c′n)〉 if (〈s, (c1, . . . , cn)〉, a, 〈s, (c′1, . . . , c′n)〉) ∈ T . We extend this notation

3

Abdulla, Krcal, Yi

also for words, 〈s, (c1, . . . , cn)〉 w−→ 〈s, (c′1, . . . , c′n)〉, where w ∈ Σ+.

Paths in an LTS are called runs to distinguish them from paths in the underly-

ing RC-automaton. Observe that the LTS contains in�nitely many states, but the

counter values do not in�uence the computations, since they are not tested any-

where. In fact, for any RC-automaton A, JAK is bisimilar to A considered as a �nite

automaton (without counters and e�ects).

Parameterized Semantics. Next, we de�ne the D-semantics of RC-automata.

The parameter D is a bound on the counter values which can occur along any run.

For a given D ∈ N, let ŜD be the set of con�gurations restricted to the con�gu-

rations which do not contain a counter exceeding D, i.e., ŜD = {〈s, (c1, . . . , cn)〉|
〈s, (c1, . . . , cn)〉 ∈ Ŝ and (c1, . . . , cn) ≤ (D, . . . ,D)} (≤ is applied componentwise).

For an RC-automatonA, theD-semantics ofA, denoted by JAKD, is JAK restricted to
ŜD. We write 〈s, (c1, . . . , cn)〉 a−→D 〈s, (c′1, . . . , c′n)〉 to denote the transition relation

of JAKD. We extend this notation for words, 〈s, (c1, . . . , cn)〉 w−→D 〈s, (c′1, . . . , c′n)〉
where w ∈ Σ+.

Language. The (unparametrized or D-) language of an RC-automaton is the

set of words which can be read along the runs in the corresponding LTS ending in an

accepting node (a node whose �rst component is an accepting state). Formally, for

a run ρ in JAK, let l(ρ) denote the concatenation of the labels along this run. A run

ρ = 〈s0, (0, . . . , 0)〉 −→∗ 〈s, (c1, . . . , cn)〉 is accepting if s ∈ F . The unparametrized

language accepted by an RC-automaton A is L(A) = {l(ρ)|ρ is an accepting run

in JAK}. For a given D ∈ N, the D-language accepted by an RC-automaton A is

LD(A) = {l(ρ)|ρ is an accepting run in JAKD}. The unparametrized language of

the RC-automaton from Figure 1 is ab∗a∗. The 2-language of this automaton is

a(ε+ b+ bb+ bbb)a∗.
Problem De�nition. Now we can ask the question about language universality

of an RC-automaton A parameterized by D, i.e., is there a natural number D such

that LD(A) = Σ∗.

3 Expressiveness

We argue that the expressive power of the RC-automata is bigger than that of R-

automata, where the expressivity takes into account the counter values. Let us

for a given RC-automaton de�ne the cost of a run as the maximum counter value

which occurs along this run and the cost of a word w to be the minimum of the

costs of its accepting runs (and +∞ if the word is not accepted). We say that two

RC-automata are cost equivalent if the cost of each word is the same for both of

them. In Figure 2 we give an example of an RC-automaton such that there is no

cost equivalent R-automaton.

Let us assume that there is a cost equivalent R-automaton A′ with k counters.

Let us consider the words of the form ax1by1cax2by2c . . . axkbyk . For big enough values

of x1, y1, x2, . . . , yk, we can pump these values so that each accepting run over of A′

over the original word can be extended to an accepting run over the pumped word

(a straightforward consequence of the pumping lemma for �nite state automata).

Clearly, the cost of these words in A is max{y1, x1 + y2, x1 + x2 + y3, . . . , x1 + · · ·+
xk−1 + yk, x1 + · · ·+ xk}.

4

Abdulla, Krcal, Yi

s0

a, (1, 0)

c, (0, ∗2)

b, (0, 1)

Fig. 2. An RC-automaton A which does not have a cost equivalent R-automaton.

The counters in A′ have to count all of these values in each run of A′ over such a

word. If there is a run in which one of these values is skipped then we can pump the

last summand in this value to make it the maximum. Since the control structure

of the automaton (the states) cannot distinguish between di�erent results of the

pumping, this maximum will be missed by A′. We claim that for each of these

values we need a special counter, contradicting thus the assumption that A′ has

k counters. If a counter calculates x1 + · · · + xi−1 + yi then it cannot be reused

for any later value, since there is no way how could this counter learn about the

value of xi (the corresponding part axi has already been read). Thus, by pumping

the appropriate subword, we can always show that the cost of the pumped word

accepted by A′ is not equal to the cost of this word in A.

4 Universality

The main result of the paper is the decidability of the universality problem for

RC-automata formulated in the following theorem.

Theorem 4.1 For a given RC-automaton A, the question whether there is D ∈ N
such that LD(A) = Σ∗ is decidable.

In order to avoid unnecessary technical complications in the main part of the

proof, we restrict ourselves to RC-automata with at most one copy operation in

each e�ect. We show how to extend the proof to the general model at the end of

this section. We reduce the universality problem for (restricted) RC-automata to the

universality problem of R-automata, for which it has been shown that this problem

is decidable [AKY08].

4.1 Construction

As the �rst step, we extend each R-automaton with a variable called parent pointer

for each counter and with the ability to swap the values of the counters. The parent

pointers range over {null} ∪ {1, . . . , n}, where n is the number of the counters. We

observe that for each R-automaton one can encode the value swapping and the parent

pointers into the states. To express the encoding more formally, let us assume that

the transitions in the semantics LTS are labeled also by the counter values (in the

order encoded by the automaton) and the parent pointers. For each extended R-

automaton A, we can build an R-automaton A with |S| ·n! ·2n states bisimilar to A.

Moreover, any number of value swaps and parent pointer operations can be encoded

along each transition of A′ together with standard updates (increments, resets). A′

can also branch upon the values of the parent pointers.

5

Abdulla, Krcal, Yi

Now we can present the reduction by constructing an extended R-automaton A′

(which uses counter value swapping and the parent pointers) for each RC-automaton

A such that A′ is universal if and only if A is universal. A′ has all the states of A

together with an error sink (a non-accepting state with no outgoing transitions

except for the self-loops labeled by Σ and e�ects (0, . . . , 0)), it has the same initial

state and the same set of accepting states as A. To de�ne the transitions, we need

to encode the copying using the tools of extended R-automata. To do this, we

replace each copy by a reset, possibly with some (non-deterministic) value swapping

and bookkeeping of the parent pointers. The parent pointers will help us to check

whether all the non-deterministic choices were done correctly.

For each transition of A we construct the simulating transitions and also possibly

some transitions going to the error sink. Let us denote the simulated transition of A

by s
a,t−→ s′, where t = (e1, . . . , en), and the constructed simulating transition of A′

by s
a,t′,sp−→ s′ labeled by an e�ect t′ = (e′1, . . . , e

′
n), possibly swapping some counter

values and manipulating the parent pointers (denoted by sp).

If t contains a copy operation then there are two simulating transitions for one

simulated transition giving the simulating automaton a non-deterministic choice.

We describe several steps which have to be performed to simulate the e�ect t in

this case. The purpose of talking about several sequentially applied steps is to set

the priority on competing rules, but all these steps can be performed along one

simulating transition.

First, we take care of copying. Let ei = ∗j (because of our restriction, there is at
most one such i). We check whether there is a counter with the parent pointer set to

i. If it is the case, we move to the error sink. Otherwise, we create two transitions

corresponding to the non-deterministic choice of one of the numbers i and j. For

the choice of j, we set e′i = r (the i-th counter is reset), e′j = ej , and we set the i-th

parent pointer to j. For the choice of j, we swap the values of the counters i and j,

we copy the value of j's parent pointer into i's parent pointer, we change the value

of all parent pointers with value j to i, we set e′j = r (the j-th counter is reset),

e′i = ej , and �nally we set the j's parent pointer to i.

Secondly, for all i such that ei = r, we set e′i = r and the i-th parent pointer

is set to null. Then we check for all these indices i whether there is a counter with

the parent pointer set to i. If it is the case, we move to the error sink. For all other

indices i, i.e., ei ∈ {0, 1} and i 6= j, we set e′i = ei.

If t does not contain any copy instruction we set t′ = t and for each reset perform

the same bookkeeping as in the previous case. For all i such that ei = r, we set the

i-th parent pointer to null. Then we check for all these indices i whether there is a

counter with the parent pointer set to i. If it is the case, we move to the error sink.

4.2 Proof of Correctness

Intuitively, the choice of the counter in the copy instruction tells that the value in

this counter will be destroyed by a reset or overwritten by a copy instruction later

than in the counter which was not chosen. The structure of the copies is captured

by the parent pointers in the following sense. If the counter i points to the counter

j then i contains an immediate copy of j (but possibly modi�ed by increments) and

6

Abdulla, Krcal, Yi

its value will be destroyed earlier than the value in j. The automaton ends in the

error sink if it witnesses a violation of some of these implicit claims, i.e., the value

in the counter i is destroyed earlier than the value in the counter j.

First, we formalize the concept of the evolution of a value and de�ne the corre-

sponding runs. Then we show existence of corresponding accepting runs. Later on

we use the fact that the parent pointers along the simulating traces have a special

structure to show the correctness of the simulation.

De�nition 4.2 For a path p of length |p| and two natural numbers 1 ≤ i < j ≤ |p|,
a total function vt : {i, i + 1, . . . , j} −→ {1, . . . , n} is a value trace if for all k such

that i ≤ k < j, t is the e�ect on the transition between the k-th and k + 1-st state
on p, vt(k) = a, vt(k+ 1) = b, the following holds: if a 6= b then πb(t) = ∗a, if a = b

then πb(t) ∈ {0, 1, r}, and if a = b and k < j − 1 then πb(t) ∈ {0, 1}.

We also talk about a value trace along a run. Then we mean a value trace along a

path which has induced the run. We order value traces by the set inclusion on their

domains (e.g., vt : {2, 3} −→ {1, . . . , n} is smaller than vt : {2, 3, 4} −→ {1, . . . , n}
regardless of the actual function values). We de�ne the length of a value trace as

the size of its domain.

A value trace follows a value from some time point during its evolution (in-

crements, copying) in the RC-automaton. A value trace ends before the value is

overwritten by a copy operation or at the moment when the value is reset. The

distinction between the destruction of a value by either rewriting or resetting is re-

lated to the order in which we check the parent pointers in the construction of the

simulating transitions.

Now we de�ne the correspondence between accepting runs in an RC-automaton

A and in its corresponding R-automaton A′. We say that a run ρ of A over w

and a run ρ′ of A′ over w are corresponding if for all i the i-th transitions of ρ, ρ′

are obtained by executing the transitions s
a,t−→ s′ and s

a,t′,sp−→ s′, where s
a,t′,sp−→ s′

is a simulating transition of s
a,t−→ s′. We show that for each accepting run of

one automaton there is an accepting corresponding run of the other automaton. It

follows immediately from the de�nitions that for each accepting run of A′ there is

exactly one accepting corresponding run of A.

The other direction is more complicated, because we have to show that A′ can

choose correct values for non-deterministic choices in the copy instruction so that it

does not end up in the error sink. For each accepting run ρ of A, we construct an

accepting run ρ′ of A′ as follows. We label each counter j in the k-th state of ρ (for

all k ≤ |ρ|) by the length of a maximal value trace vt with domain being a subset

of [k, |ρ|] and vt(k) = j (this label is called expectancy). A′ takes the simulating

transition for each transition of ρ (according to the rules above) and when it has to

choose between i and j (ei = ∗j) along a transition ending in the k-th state, then it

chooses i if and only if the expectancy of i in k is greater than the expectancy of j in

k (expectancy rule). We show that this is a valid de�nition, i.e., the corresponding

run of A′ does not end up in the error sink. The main step in the proof is to show

that the parent pointers always point to the counters with not smaller expectancy

than that of the counter which owns the parent pointer.

7

Abdulla, Krcal, Yi

Lemma 4.3 For each accepting run ρ of A there is an accepting corresponding run

ρ′ of A′.

Proof. We prove by induction that for each pre�x of ρ there is a simulating run

which does not contain the error state such that for any state along ρ′ and any two

counters i, j in this state, if the parent pointer of i points to j then the expectancy

of j is not smaller than that of i. Such a simulating run for |ρ| will also be accepting.
The basic step (i.e., the pre�x length is 0) is trivial. For the induction step, let

us assume that there is a simulation of the pre�x of length k satisfying the induction

hypothesis. To simulate the k + 1-st transition, we follow the expectancy rule.

The copy instruction does not lead into to the error sink, because of the induction

hypothesis. The non-deterministic choice is performed according to the vt function,

so the result again satis�es the induction hypothesis. The transfer of the parent

pointers does not violate it either, because expectancy of j in k is equal to 1 plus

the maximum of the expectancies of i and j in k + 1. The resets do not bring us

to the error sink, because of the induction hypothesis. No new parent pointers are

established, so the result again satis�es the induction hypothesis. The other e�ects

result in decrementing the expectancy, which preserves the induction hypothesis for

all the pointers inherited from the previous state as well as for the pointers changed

by the copy instruction. 2

Let us introduce the parent pointer relation →p for a state of A′ as a relation on

counters where i→pj if and only if the parent pointer of i is set to j.

Lemma 4.4 Let ρ be an accepting run of A and ρ′ be a corresponding accepting run

of A′. Then the transitive closure of →p is antire�exive in all the states of ρ′.

Proof. We prove by induction that for each pre�x of ρ there is a simulating run

which does not contain the error state such that for any state along ρ′, the transitive

closure of →p is antire�exive. Such a simulating run for |ρ| will also be accepting.

The basic step is trivial, →p is empty. For the induction step, we need to check

that one simulation step does not violate the antire�exivity. The resets make →p

smaller and 0, 1 do not change it. In the copy instruction, we introduce one new

pointer, but we know that nothing points to i. In the �rst case, we set i's parent

pointer to j, which cannot introduce a loop, since nothing points to i. In the second

case, since we have redirected all the pointers pointing to j to i, there is nothing

pointing to j and newly introduced j→pi cannot create a loop. Also, since there

was nothing pointing to i previously, the only pointers pointing to i now are those

that previously pointed to j. 2

This leads to the following de�nition of ranks. For a counter i in a state of A′

we de�ne rank(i) inductively by rank(i) = 0 if the parent pointer of i is null and
rank(i) = rank(j) + 1 if i→pj. From Lemma 4.4, we have that the ranks are

well-de�ned and it follows directly from the de�nition that the rank of a counter

is always bounded by the number of the counters. Now we can formulate a lemma

saying that the ranks never increase along a value trace.

Lemma 4.5 Let ρ be an accepting run of A, ρ′ be a corresponding accepting run of

A′ and vt be a value trace. Then for k ≤ l, rank(vt(k)) ≤ rank(vt(l)).

8

Abdulla, Krcal, Yi

Proof. By induction on l− k. The basic step: l = k and rank(vt(k)) = rank(vt(l)).
The induction step: because of the checks for the reset, we never increase any

rank by a reset. 0, 1 also do not increase any rank. Copy decreases the rank of the

"shorter" (with reset value) branch, keeps the rank for the "longer" one (the one

which keeps the value). Because of the careful manipulation with the pointers, also

no ranks which depend on the rank of the longer branch change. 2

The main property of the reduction is stated in the following lemma.

Lemma 4.6 Let A be a restricted RC-automaton with n counters and A′ be the

simulating R-automaton. For each D and for each word w, w ∈ LD(A) ⇒ w ∈
LD(A′) and w ∈ Ln·D(A)⇐ w ∈ LD(A′).

Proof. "⇒": from Lemma 4.3 we know that for each accepting run ρ of A over

w there is a corresponding accepting run ρ′ of A′ over w. It follows directly from

the construction that for all k ≤ |ρ|, the counter values in the k-th state of ρ′ are

bounded by the counter values in the k-th state of ρ. All the operations are simulated

faithfully, except for possibly more resets (in the copy operations) along ρ′.

"⇐": by contraposition, let us for each D consider a word w such that w /∈
Ln·D(A). Any accepting run ρ′ of A′ over w must satisfy Lemma 4.5 (because it

corresponds to an accepting run ρ of A over w). Let vt be a maximal value trace

for a value which exceeds n ·D in ρ. We study the evolution of this value in ρ′. It

is simulated faithfully except for some possible resets in the copy instructions. But

for each such reset, the rank of the counter strictly decreases. Therefore, there can

be at most n− 1 such resets and there must be a state in which this value exceeds

D. 2

An immediate consequence of this lemma is the correctness of the reduction.

Corollary 4.7 Let A be a restricted RC-automaton and A′ be the simulating R-

automaton. There is a D such that LD(A) = Σ∗ if and only if there is a D′ such

that LD′(A′) = Σ∗.

Now we show that the result holds also for RC-automata with any number of

copying in each step. Let us view the relation "i is copied to j" induced by one e�ect

as a directed graph (counters are nodes, there is an edge from i to j). Because each

node can have at most one incoming edge, such a graph is a collection of simple loops

with isolated paths outgoing from them (nodes with no incoming edge are considered

as degenerated loops). We can split application of such an e�ect into several steps

as follows. First, we perform all increments. Then we pick one of the counters j

such that j has no outgoing edge and it has an (exactly one) incoming edge from

i. We copy the value of i to j and leave all other counters unchanged, which can

be described by the e�ect (0, . . . , ∗i, . . . , 0), where ∗i is on the j-th position. Then

we remove the edge connecting i and j and continue to pick another such counter.

When there is no node j with no outgoing edge and with an incoming edge, there

still might be loops in the copying graph. We simply swap the counter values and

the parent pointers in the loops. Then we �nally perform the resets in the e�ect,

together with checking and updating the parent pointers. Because of the order in

which we have copied the counters, the e�ect of the sequence of transitions with at

9

Abdulla, Krcal, Yi

most one copy instruction is the same as that of the original transition. Also, the

correctness does not depend on the order in which we choose the edges. A careful

analysis shows that this sequence of transitions can be encoded into one simulating

transition in R-automata with value swapping and parent pointers.

5 Conclusions

We have de�ned RC-automata as an extension of R-automata � �nite state machines

with counters which can be incremented or reset to zero along the transitions � by

the ability to copy the value of a counter into another counter. The universality

problem for these automata is to decide whether there is a constant D such that all

words are accepted by some run along which no counter exceeds D. We have shown

that this problem is decidable for RC-automata by reducing it to the universality

problem for R-automata, show decidable in [AKY08].

References

[AKY07] Parosh Abdulla, Pavel Krcal, and Wang Yi. Sampled universality of timed automata. In Proc. of
FOSSACS'07, volume 4423 of LNCS, pages 2�16. Springer-Verlag, 2007.

[AKY08] Parosh Abdulla, Pavel Krcal, and Wang Yi. R-automata. In Proc. of CONCUR'08, Toronto,
Canada., LNCS. Springer�Verlag, 2008. To appear.

[BC06] Mikolaj Boja«czyk and Thomas Colcombet. Bounds in omega-regularity. In LICS'06, pages
285�296. IEEE Computer Society Press, 2006.

[CL08] Thomas Colcombet and Christof Löding. The non-deterministic Mostowski hierarchy and
distance-parity automata. In ICALP'08, volume 5126 of LNCS, pages 398�409. Springer, 2008.

[Col07] Thomas Colcombet. Factorisation forests for in�nite words. In FCT'07, LNCS, pages 226�237.
Springer, 2007.

[Has82] Kosaburo Hashiguchi. Limitedness theorem on �nite automata with distance functions. Journal
of Computer and System Sciences, 24(2):233�244, 1982.

[Has90] Kosaburo Hashiguchi. Improved limitedness theorems on �nite automata with distance functions.
Theoretical Computer Science, 72(1):27�38, 1990.

[Kir04] Daniel Kirsten. Distance desert automata and the star height one problem. In FoSSaCS'04,
volume 2987 of LNCS, pages 257�272. Springer�Verlag, 2004.

[Kir05] Daniel Kirsten. Distance desert automata and the star height problem. Informatique Theorique
et Applications, 39(3):455�509, 2005.

[KP05] Pavel Krcal and Radek Pelanek. On sampled semantics of timed systems. In Proc. of FSTTCS'05,
volume 3821 of LNCS, pages 310�321. Springer-Verlag, 2005.

[Kuf08] Manfred Ku�eitner. The height of factorization forests. In Proc. of MFCS'08, Toru«, Poland.,
LNCS. Springer�Verlag, 2008. To appear.

[Leu91] Hing Leung. Limitedness theorem on �nite automata with distance functions: an algebraic proof.
Theoretical Computer Science, 81(1):137�145, 1991.

[Sim90] Imre Simon. Factorization forests of �nite height. Theoretical Computer Science, 72(1):65�94,
1990.

[Sim94] Imre Simon. On semigroups of matrices over the tropical semiring. Informatique Theorique et
Applications, 28(3-4):277�294, 1994.

10

	Introduction
	Preliminaries
	Expressiveness
	Universality
	Construction
	Proof of Correctness

	Conclusions
	References

