
New Schedulability Test Conditions for Non-preemptive Scheduling on
Multiprocessor Platforms

Technical Report May 2008

Nan Guan1, Wang Yi2, Zonghua Gu3 and Ge Yu1

1 Northeastern University, Shenyang, China
2 Uppsala University, Uppsala, Sweden

3 Hong Kong University of Science and Technology, Hong Kong, China

Abstract

We study the schedulability analysis problem for non-
preemptive scheduling algorithms on multiprocessors. To our
best knowledge, the only known work on this problem is the
test condition proposed by Baruah [1] (referred to as [BAR-
EDFnp]) for non-preemptive EDF scheduling, which will re-
ject a task set with arbitrarily low utilization if it contains a
task whose execution time is equal or greater than the mini-
mal relative deadline among all tasks. In this paper, we firstly
derive a linear-time test condition which avoids the problem
mentioned above, by building upon the work in [2] for preemp-
tive multiprocessor scheduling. This test condition works on not
only non-preemptive EDF, but also any other work-conserving
non-preemptive scheduling algorithms. Then we improve the
analysis and present test conditions of pseudo-polynomial time-
complexity for Non-preemptive Earliest Deadline First schedul-
ing (EDFnp) and Non-preemptive Fixed Priority scheduling
(FPnp) respectively. Experiments with randomly generated task
sets show that our proposed test conditions, especially the im-
proved test conditions, have significant performance improve-
ments compared with [BAR-EDFnp].

1 Introduction

Compared with preemptive scheduling, non-preemptive
scheduling and schedulability analysis have received consider-
able less attention in the research community. However, non-
preemptive scheduling is widely used in industry practice, and
it may be preferable to preemptive scheduling for a number of
reasons [3]: Non-preemptive scheduling algorithms are easier
to implement and have lower runtime overhead than preemptive
scheduling algorithms; the overhead of preemptive scheduling
algorithms is more difficult to characterize and predict than that
of non-preemptive scheduling algorithms due to inter-task in-
terference caused by caching and pipelining. These benefits of

non-preemptive scheduling are even more important on multi-
processor platforms, since the task migration overhead is higher
and more difficult to predict. However, this problem is much
less severe for non-preemptive scheduling, where each task in-
stance runs to completion on one processor, and task migration
only happens at task instance boundaries.

Non-preemptive scheduling is considered inferior for time
critical systems (partially) because of its poor responsiveness.
On a single processor platform, the most urgent task may not
get the processor for quite a long time due to non-preemptive
blocking, which could be deadly harmful for hard real time sys-
tems. However, the natural parallelism of multiprocessors can
mitigate the penalty of non-preemptive blocking. Even if sev-
eral processors are longtime occupied by tasks with large exe-
cution time, urgent tasks can execute on other processors. We
have conducted simulation experiments to compare the perfor-
mance of two well-known preemptive scheduling algorithms
EDF and DM, and their non-preemptive versions EDFnp and
DMnp on multiprocessors (details shown in Section 9). To our
surprise, for task sets in which the range of task execution time
is not very wide, the performance of EDFnp is very close to
EDF, and DMnp actually performs better than DM. Note that
we even have not accounted the context switch overhead in the
simulations. So we believe that, for a considerable part of real-
life applications on multiprocessor platforms, non-preemptive
scheduling could be a better choice with respect to real time
performance. This is yet another motivation for us to study
non-preemptive scheduling on multiprocessors.

In this work, we study the schedulability analysis problem
for sporadic task sets on identical multiprocessors with non-
preemptive scheduling. We focus on work-conserving schedul-
ing algorithms, i.e., it is not allowed to idle a processor if there
is some task instance awaiting for execution. Note that in the
context of multiprocessor scheduling, a work-conserving algo-
rithm is necessarily a global [4] algorithm. The only known
work on this problem is the test condition proposed by Baruah
[1] (referred to as [BAR-EDFnp]) for non-preemptive EDF



scheduling (referred to as EDFnp), which has quite poor perfor-
mance and suffers from the disadvantage of that task sets with
arbitrarily low utilization will be rejected if Cmax ≥ Dmin,
where Cmax is the maximal execution time among all tasks
and Dmin is the minimal relative deadline. In this paper we
develop new sufficient schedulability tests by building upon the
work in [5, 2] for preemptive scheduling algorithms. At first we
derive a test condition of linear-time complexity, which works
on any work-conserving non-preemptive scheduling algorithm,
and can avoid the [BAR-EDFnp]’s disadvantage mentioned
above. Then we derive improved test conditions for EDFnp

and FPnp (Non-preemptive Fixed Priority scheduling) respec-
tively, which are both of pseudo-polynomial time-complexity,
but have significant performance improvement compared with
[BAR-EDFnp].

The paper is structured as follows: Section 2 presents the
related work. Section 3 introduces the system model and our
analysis framework. We present our first general test condition
in Section 4, and then improve it for EDFnp and FPnp in Sec-
tion 5 and Section 6 respectively. The robust property of the
proposed tests is proved in Section 7. Section 8 presents perfor-
mance evaluation results and Section 9 use simulation to pro-
vide approximate performance comparison of preemptive and
non-preemptive scheduling algorithms. Finally, conclusions are
presented in Section 10.

2 Related Work

Preemptive Scheduling. All scheduling algorithms men-
tioned in this paragraph are within the context of ”global pre-
emptive”, for example, we refer to the ”global preemptive EDF”
as ”EDF” for short. Goossens et al. [6] introduced a schedula-
bility test of polynomial time-complexity for periodic task sets
scheduled by EDF based on the resource-augmentation tech-
niques [7]. Similar techniques are also used in [8], to de-
rive schedulability tests for tasks with limited utilization sched-
uled by RM. Baker [5] presented schedulability tests of both
EDF and DM by assuming that a given task τk’s task instance
misses deadline, and then determining necessary conditions on
the parameters of all the tasks to cause such a deadline miss.
Based on Baker’s idea, Bertogna et al. [9] observed that the
work done in parallel with a task instance do not need to be
accounted into its interference, and provided a new test con-
dition of polynomial time-complexity, which can occasionally
outperform Baker’s test condition. Baruah [2] extended Baker’s
approach to reduce the over-estimation of the so-called ”carry-
in”, and provided a test condition of pseudo-polynomial time-
complexity, which has much higher acceptance ratio than pre-
vious test conditions for task systems satisfying the following
conditions: the number of tasks n is significantly larger than
the number of processors m (i.e., n � m), or the parameters
of different tasks have widely varying orders of magnitude. Re-
cently, Baruah et al. [10, 11, 12] have developed a new ap-
proach based on Baker’s idea, which provides test conditions
(of pseudo-polynomial time-complexity or polynomial time-

complexity depending on different accuracy degrees) for both
EDF and DM , as well as some interesting resource augmenta-
tion bounds. Andersson et al. [13] first used the approximate re-
sponse time analysis for multiprocessor scheduling, which was
later improved by Bertogna et al. [14] by utilizing their obser-
vation in [9] and exploring task slack time to reduce the pes-
simistic degree in the computation of the approximate response
time. Similar to the exact response time analysis for single-
processor scheduling, the time-complexity of their approaches
is pseudo-polynomial.

Non-Preemptive Scheduling. For single-processor schedul-
ing, Jeffay et al. [3] considered non-preemptive algorithms
for scheduling periodic or sporadic task systems with rela-
tive deadline equal to period under the work-conserving as-
sumption and presented a exact schedulability test of pseudo-
polynomial time-complexity for periodic or sporadic task set
with the EDFnp scheduling algorithm on a single processor.
George et al. [15] study general task models in which rela-
tive deadlines and periods are not necessarily related, and es-
tablished exact schedulability tests for both EDFnp and FPnp

on a single processor of pseudo-polynomial time-complexity.
Recently, Baruah et al. [16] studied the schedulability analysis
for non-preemptive recurring tasks, which is the general form
of non-preemptive sporadic tasks, and showed that the non-
preemptive schedulability analysis can be reduced to a poly-
nomial number of preemptive schedulability analysis problems.
For multiprocessor scheduling, Baruah [1] proposed a sufficient
but not necessary polynomial-time schedulability test condition
[BAR-EDFnp] for global EDFnp for periodic task sets, which
can be easily generalized to sporadic task sets. [BAR-EDFnp]
used the technique similar to [6] and took into account the ex-
tra interference time caused by non-preemption. [BAR-EDFnp]
showed that a task set τ is EDFnp schedulable on m processors
if

Vsum(τ) ≤ m− (m− 1)Vmax(τ) (1)

where

Vsum(τ) =
∑
τi∈τ

Vi, Vmax(τ) = max
τi∈τ

Vi

Vi =
{

Ci

Di−Cmax
Di > Cmax

∞ Di ≤ Cmax

and Cmax is the maximum execution time among all tasks. It
is obvious that a task set with arbitrarily low utilization can
not pass the test if Cmax ≥ Dmin, where Dmin denotes the
minimal Di among all tasks. Intuitively, it means that for any
task instance Jk, if there is some task with execution time large
enough to cover its relative deadline Dk, Jk will definitely miss
its deadline, which is true for single processor scheduling, but
not necessarily true for multiprocessor scheduling, since even
if there are some processors longtime occupied by a task in-
stance with large Ci, other task instances can execute on other
processors to meet their deadlines.



dkto
cpu1
cpu2
cpu3

rk

Problem Window

at least one 
processor is idled

deadline miss 
occurs

execution of J k 

execution of other 
task instances

Ak Sk
lk time

(a) the problem window in non-preemptive scheduling

dkto
cpu1
cpu2
cpu3

rk

at least one 
processor is idled deadline miss 

occurs

Problem Window

execution of J k 

execution of other 
task instancesAk Dk

time

(b) the problem window in preemptive scheduling

Figure 1. the problem window in preemptive and
non-preemptive scheduling.

3 System Model and Analysis Framework

We adopt the discrete time model in this paper, i.e., any time
value t involved in scheduling and any task parameter is as-
sumed to be a non-negative integer value.

We assume that a multiprocessor platform consisting of m
identical processors. A sporadic task set τ consists of n spo-
radic tasks. A sporadic task is denoted by τi = (Ci, Di, Ti),
where Ci is the worst-case execution time, Di is the relative
deadline and Ti is the minimum inter-release separation, which
is also referred to as the period of the task, and we assume
Di ≤ Ti. We define Si = Di − Ci. The utilization of task
τi is defined as Ui = Ci

Ti
, and we use U(τ) to denote the sum of

Ui of all τi ∈ τ .
Such a sporadic task τi generates a potentially infinite se-

quence of task instances (also known as jobs) with successive
releases separated by at least Ti time units. We use Jp

i to denote
the pth instances of τi. We also use Ji to denote τi’s instance in
general if we do not want to specify which instance it is. Each
task instance has a release time (arrival time) ri and a absolute
deadline di = ri +Di. We use li = di−Ci to denote the latest
start time of task instance Ji, i.e., if Ji starts execution after li,
it must miss its deadline.

For fixed priority scheduling, we use P (τi) to denote τi’s
priority. We assume that every task has a unique priority in our
task system, and use P (τi) > P (τj) to denote that τi’s priority
is higher than τj’s.

We aim to analysis the schedulability of a sporadic task set
on multiprocessors with non-preemptive scheduling. As shown
in [3], exact feasibility-analysis of periodic task systems upon
non-preemptive systems is highly intractable, even upon single-
processors. So our goal is to obtain sufficient, rather than exact,
conditions for schedulability test.

In the following we will introduce the general framework of
our analysis, which is closely related to the work in [2] for pre-

dkrkto lkProblem Window

carry -out

body

...
carry - in

time

Figure 2. body, carry-in and carry-out of a task in
the problem window [to, lk].

emptive scheduling. Suppose a task set τ is non-schedulable,
and let Jk be the first task instance that misses deadline. Let
to denote the latest time-instant earlier than rk at which at least
one processor is idle and let Ak = rk − to. Since all processors
are idle when the system starts, so there always exists such a
to. Since preemption is not allowed, once a task instance starts
execution, it must run to completion without interruption. So if
Jk starts to execute before its latest start time lk, it must be able
to finish execution before deadline dk. Therefore, in order for
Jk to miss its deadline, all m processors must be continuously
busy in the time interval [to, lk]. What happens after lk has no
effect on the schedulability of Jk. We name the time interval
[to, lk] as problem window, as shown in Figure 1-(a).

The definition of problem window here is different from the
one in [2] for preemptive scheduling, where all m processors
must be continuously busy in the time interval [to, rk], but does
not have to be continuously busy in the time interval [rk, dk] as
long as the sum of the busy segments (shadow area in the figure)
is large enough to cause τk to miss its deadline, as shown in
Figure 1-(b).

The necessary condition for the deadline miss to occur is that
the worst-case work done in the problem window by all other
task instances in the task set τ except Jk, is larger than (Ak +
Sk) ∗ m (the shadow area in Figure 1-(a)). Since there is no
critical instant in multiprocessor scheduling, it is not possible
to find the worst-case situation without exhaustively simulating
the system. So we will compute the worst-case work done by
each task in the problem window, denoted by I(τi), and use the
sum of each I(τi) as an upper bound of the overall worst-case
work done in the problem window. The work done by of a task
τi in the problem window can be categorized into three types:

• body: the contribution of all task instances (called body in-
stance) with both release time and deadline in the problem
window; each task instance contributes to the workload in
that interval with a complete execution time Ck;

• carry-in: the contribution of at most one task instance
(called carry-in instance) with release time earlier than to
and deadline in the problem window; this task instance
contributes with the fraction of its execution time actually
executed in the problem window.

• carry-out: the contribution of at most one task instance
(called carry-out instance) with release time in the prob-
lem window and deadline later than lk; this task instance



contributes with the fraction of its execution time actually
executed in the problem window.

We always consider the work of a carry-in instance is exe-
cuted as late as possible and a carry-out instance is executed as
early as possible, as shown in Figure 2. This is a pessimistic but
safe approximation to account the work done by a task.

Since there is at least one processor idled at to, so at most
m − 1 tasks may cause the carry-in, and the remaining (n −
m + 1) tasks has no carry-in. We use I1(τi) to denote I(τi) if
τi has no carry-in instance, and use I2(τi) to denote I(τi) if τi

has a carry-in instance, and define:

Idf (τi) = I2(τi)− I1(τi) (2)

We sort all Idf (τi) in a non-increasing list, and use4m−1
Idf

to
denote the sum of the first (m−1) elements in this list, then we
can get a sufficient condition for τ to be schedulable:

Lemma 1. A task set τ is schedulable with work-conserving
non-preemptive scheduling algorithms on m processors, if for
any task τk and any Ak ≥ 0 the following condition is satisfied:∑

τi∈τ

I1(τi) +4m−1
Idf

< (Ak + Sk) ∗m (3)

4 The First Schedulability Test

To use Lemma 1 for schedulability test, we should compute
the LHS of Inequality 3 as well as solve the unknown variable
Ak in the inequality (The LHS of the inequality also implicitly
contains Ak).

Simple upper bounds of I1(τi) and I2(τi) can be obtained
by pessimistically accounting both the carry-in and carry-out
of a task τi as Ci and accounting the work done by its body
instances as bAk+Sk

Ti
cCi. At the same time, we observed that

as Ak increases, the proportion of the carry-in and carry-out in
the overall work done by a task in the problem window tends
to decrease, which implies that the adverse effect of the over-
estimation of the carry-in and carry-out is more severe with
small Ak + Sk values, of which the extreme case is Ak = 0.
We get our first test condition based on the observations above:

Theorem 1. [TEST-1] A task set τ is schedulable with work-
conserving non-preemptive scheduling algorithms on m pro-
cessors if:

U(τ) < m−
∑n

i Ci +4m−1
Ci

Smin
(4)

where
∑n

i Ci is the sum of all tasks’ Ci, Smin is the minimal
Si among all tasks; we sort all Ci in a non-increasing list, and
use 4m−1

Ci
to denote the sum of the first (m − 1) elements in

this list,

Proof. We prove the theorem by contradiction. Assume a task
set τ satisfies Inequality 4 but it is non-schedulable, and with a
task τk missing its deadline.

Since τk is non-schedulable, by Lemma 1 we have:∑
τi∈τ

I1(τi) +4m−1
Idf

≥ (Ak + Sk) ∗m (5)

The number of τi’s body instances in the problem window is
at most bAk+Sk

Ti
c, and the carry-in and the carry-out are both at

most Ci, so by the definition of I1(τi) and I2(τ2), we have:

I1(τi) ≤ b
Ak + Sk

Ti
c ∗ Ci + Ci ≤

Ak + Sk

Ti
∗ Ci + Ci ⇒

I1(τi) ≤ (Ak + Sk)Ui + Ci (6)

and

I2(τi) ≤ b
Ak + Sk

Ti
c ∗ Ci + 2Ci ≤

Ak + Sk

Ti
∗ Ci + 2Ci ⇒

I2(τi) ≤ (Ak + Sk)Ui + 2Ci (7)

so Idf (τi) = Ci, so we have 4m−1
Idf

= 4m−1
Ci

.
Therefore, we have

(Ak + Sk)U(τ) +
n∑
i

Ci +4m−1
Ci

≥ (Ak + Sk) ∗m (8)

and since Ak ≥ 0 and Sk ≥ Smin, we get

U(τ) ≥ m−
∑n

i Ci +4m−1
Ci

Smin

which contradicts our assumption that τ satisfies Inequality 4.

Note that [TEST-1] does not suffer from the disadvantage in
[BAR-EDFnp] that any task set with Cmax ≥ Dmin will be
rejected.

[TEST-1] works on any work-conserving non-preemptive
scheduling algorithm, since it does not rely on any scheduling
algorithm-specific property except requiring that no processor
can be idle if there is some task instance awaiting for execution.

Ui,
∑n

i Ci and Smin all can be computed in linear time,
and we can use linear-time selection [17] to compute 4m−1

Ci
,

so [TEST-1] is with linear-time complexity, which is the same
as [BAR-EDFnp]. [TEST-1] is still deeply pessimistic, since it
used very coarse bounds on I1(τi) and I2(τi). In Section 5 and
6, we will present less-pessimistic test conditions for EDFnp

and FPnp by deriving more precise bounds on I1(τi) and I2(τi),
where we assume each task τi exactly executes for Ci and its
instances are exactly released with separations of Ti, and later
in Section 7 we will show the test conditions are still correct if
this assumption is broken.

5 The Improved Test for EDFnp

In last section, we pessimistically assume that every carry-
out instance contributes to the overall work in the problem win-
dow. Actually, a carry-out instance can execute in the problem



window only if it can interfere with Jk, otherwise, it must exe-
cute after lk. Now we discuss the possible interference on a task
instance Jk in EDFnp. We assume the priority ties are broken
arbitrarily in the EDFnp scheduler.

Lemma 2. For EDFnp, if Di > Dk, the necessary condition
for Ji to cause interference to Jk is ri < rk, i.e., Ji must be
released earlier than Jk; if Di ≤ Dk, the necessary condition
for Ji to cause interference to Jk is di ≤ dk, i.e., Ji’s absolute
deadline must be no later than that of Jk.

Proof. There are two types of interference in non-preemptive
scheduling:

1. Interference caused by the priority order. A task instance
Ji can cause this kind of interference to Jk only if di ≤ dk.
Note that since we assume the priority ties are arbitrarily
broken, Ji may interfere with Jk if di = dk.

2. Interference caused by non-preemption blocking. A task
instance Ji can cause this kind of interference to Jk only
if Ji has already been running when Jk is released, which
implies ri < rk.

If Di > Dk, suppose ri ≥ rk, then Ji can not cause the second
type of interference; since Di > Dk, Ji’s deadline must be later
than dk, so it also can not cause the first type of interference.
If Di ≤ Dk, suppose di > dk, then Ji can not cause the first
type of interference; since Di ≤ Dk, Ji’s release time must
be later than rk, so it also can not cause the second type of
interference.

5.1 Computing I1(τi) for EDFnp

dkrkto Ak Dk

Tk Tk

time

Figure 3. the worst case of I1(τi) if i = k.

At first we compute I1(τi) with i = k, i.e., the worst-case
work done by τk’s body instances. As shown in Figure 3, the
number of τk’s body instances is bAk

Tk
c, so we have

I1
1 (τi) = bAk

Tk
c ∗ Ck (9)

Next we will compute I1(τi) with i 6= k. The following
Lemma shows the worst case of I1(τi) of a task τi with i 6= k.

Lemma 3. The worst case of I1(τi) (i 6= k) occurs when one
of τi’s instances is released at the time-instant to.

Proof. To prove the worst case of I1(τi) occurs when one of
τi’s instances is released at the time-instant to, we should prove
that based on this case, moving all τi’s releases rightwards for
a distance x (x < Ti) will not increase I1(τi)1.

1Moving τi’s releases for any distance can be transformed to an equal form
of moving them rightwards (or leftwards) for x (x < Ti).

dkrkto Ak
lk

Ti Ti Di

Sk

a 1
Ak+Dk

time

(a) α1 > Ak + Dk

dkrkto Ak
lkSk

Ak+Dk

Ti

(Ak+Sk) mod T i

Di

a 1
Ti

time

(b) α1 ≤ Ak + Dk

Figure 4. the worst case of I1(τi) if Di ≤ Dk.

We use Jp
i to denote the first body instance of τi. At the

left end of the problem window, Jp−1
i ’s release time is to −

Ti + x after being moved rightwards for x. Since x < Ti,
Jp−1

i ’s release time is still earlier than to, and by the definition
of I1(τi), J

p−1
i has no contribution to I1(τi) after being moved,

so there is no increase to I1(τi) at the left end of the problem
window. At the right end of the problem window, trivially there
is no increase to I1(τi). So moving all τi’s releases rightwards
for a x (x < Ti) will not increase I1(τi).

Now we compute I1(τi) (i 6= k) in this worst case:

1. Di ≤ Dk. By Lemma 2, we know a task instance of τi

with Di ≤ Dk can interfere with Jk only if its deadline is
no later than dk. We use α1 to denote the distance between
to and the deadline of the τi’s last instance released before
lk:

α1 = bAk + Sk

Ti
c ∗ Ti + Di (10)

(a) α1 > Ak + Dk. As shown in Figure 4(a), the dead-
line of τi’s last instance released in the problem win-
dow is later than dk, so it has no contribution to
I1(τi). The number of τi’s instances contributing to
I1(τi) is bAk+Sk

Ti
c. So we have:

I2
1 (τi) = bAk + Sk

Ti
c ∗ Ci (11)

(b) α1 ≤ Ak + Dk. As shown in Figure 4(b), the
deadline of τi’s last instance released in the prob-
lem window is no later than dk, so it contributes to
I1(τi), and the contribution is bounded by both Ci



and (Ak + Sk)mod Ti. So we have:

I3
1 (τi) = bAk + Sk

Ti
c∗Ci+min(Ci, (Ak+Sk)mod Ti)

(12)

dkrkto Ak
lkSk

Ti Ti Di
a 2

time

(a) α2 ≥ Ak > 0

dkrkto Ak
lkSk

Ti Ti

(Ak+Sk) mod T i

Di

a 2

time

(b) α2 < Ak

Figure 5. the worst case of I1(τi) if Di > Dk.

2. Di > Dk By Lemma 2, we know an instance of τi with
Di > Dk can interfere with Jk only if its release time is
earlier than rk. We use α2 to denote the distance between
to and the release time of τi’s last instance released in the
problem window:

α2 = bAk + Sk

Ti
c ∗ Ti (13)

(a) Ak = 0. If Ak = 0, then to = rk. Since Di >
Dk, any task instance released no earlier than to has
deadline later than dk, so can not interfere with Jk.
So in this case I1(τi) = 0.

(b) α2 ≥ Ak > 0. As shown in Figure 5(a), the re-
lease time of τi’s last instance released in the prob-
lem window is no earlier than rk, so it can not inter-
fere with Jk. The number of τi’s instances contribut-
ing to I1(τi) is bAk+Sk

Ti
c. So in this case I1(τi) is

computed by Equation 11.

(c) α2 < Ak. As shown in Figure 5(b), the release time
of τi’s last instance released in the problem window
is earlier than rk, so it contributes to I1(τi), and its
contribution is bounded by both Ci and (Ak + Sk)
mod Ti. So in this case I1(τi) is computed by Equa-
tion 12.

By the discussions above, we can compute I1(τi) for EDFnp

by:

I1(τi) =


0 Di > Dk ∧Ak = 0
I1
1 (τi) i = k

I2
1 (τi) (i 6= k ∧Di ≤ Dk ∧ α1 > Ak + Dk)

∨(Di > Dk ∧ α2 ≥ Ak > 0)
I3
1 (τi) otherwise

(14)
where I1

1 (τi), I2
1 (τi), I3

1 (τi), α1 and α2 are defined in Equation
9, 11, 12, 10 and 13 respectively.

5.2 Computing I2(τi) for EDFnp

dkrkto Ak Dk

(Ak+Dk) mod Tk

time

Tk Tk Tk

Figure 6. the worst case of I2(τi) if i = k.

At first we compute I2(τi) with i = k, i.e., the worst-case
woke done by τk’s carry-in and body instances. As shown in
Figure 6, if we take the interval between the deadlines of two
adjoining instances of τi as a ”unit”, there are bAk+Dk

Tk
c such

”units” in the time interval [to, dk]. The carry-in is bounded by
both Ck and (Ak + Dk)mod Tk. At the same time, the work
done by Jk itself should be subtracted. So for τi with i = k, we
have:

I1
2 (τi) = bAk + Dk

Tk
c∗Ck+min(Ck, (Ak+Dk)mod Tk)−Ck

(15)
In the following we will compute I2(τi) with i 6= k in

Lemma 4, 5 and 6.

dkrkto
Ak

lk

Ti
(Ak+Dk) mod T i Si

Ck
r i

p di
p

Ti Ti

Dk
time

Figure 7. the worst case of I2(τi) if Di ≤ Dk∧Si >
Ck.

Lemma 4. The worst case of I2(τi) (i 6= k) occurs when one
of τi’s instance has its deadline at dk, if

Di ≤ Dk ∧ Si > Ck (16)

and in this case we can compute I2(τi) by:

I2
2 (τi) = bAk + Dk

Ti
c∗Ci+min(Ci, (Ak+Dk)mod Ti) (17)



Proof. Let Jp
i be the instance with its deadline at dk, and by

Lemma 2, we know Jp
i may interfere with Jk. As shown in

Figure 7, since Si > Ck, Jp
i ’s contribution to I2(τi) is Ci.

Now we examine whether I2(τi) will be increased if we
move all τi’s releases leftwards for x (x < Ti).

After moving leftwards for x (x < Ti), at the right end of the
problem window, the contribution of Jp

i is still Ci; the deadline
of Jp+1

i is at dk + Ti − x, and since x < Ti, it is still later
than dk, so has no contribution to I2(τi), so I2(τi) will not be
increased at the right end of the problem window. At the left
end, trivially there is no increased to I2(τi). So I2(τi) will not
be increased after moving τi’s releases leftwards for x (x <
Ti), so dp

i = dk is the worst case for I2(τi) for tasks with Di ≤
Dk ∧ Si > Ck.

As shown in Figure 7, we take the interval between the dead-
lines of two adjoining instances of τi as a ”unit”, then there are
bAk+Dk

Tk
c such ”units” in the time interval [to, dk]. The carry-

in is bounded by both Ci and (Ak + Dk)mod Ti. So we can
compute I2(τi) by Equation 17.

dkrkto Ak-1 lk

Ti

max(0, (Ak-1) mod T i - (Ti - Di))
Ci

Sk Ck

r i
p di

p

Ti

Ti-Di

Ak

time

Figure 8. the worst case of I1(τi) if Di > Dk∧Sk ≥
Ci.

Lemma 5. The worst case of I2(τi) (i 6= k) occurs when one
of τi’s instance is released at rk − 1, if

Di > Dk ∧ Sk ≥ Ci (18)

and in this case we can compute I2(τi) by:

I3
2 (τi) =

{
Ci − 1 Ak = 0
(bAk−1

Ti
c+ 1) ∗ Ci + υ Ak > 0 (19)

where

υ = min(Ci,max(0, (Ak − 1)mod Ti − (Ti −Di))) (20)

Proof. Let Jp
i be τi’s task instance released at rk− 1, as shown

in Figure 8. By Lemma 2 we know Jp
i can interfere with Jk.

Since Sk ≥ Ci, the contribution of Jp
i is Ci.

Now we examine whether I2(τi) will be increased if we
move all τi’s releases leftwards for x (x < Ti).

After moving leftwards for x (x < Ti), at the right end of
the problem window, the contribution of Jp

i is still Ci; the re-
lease time of Jp+1

i is rk−1+Ti−x, since x < Ti, it is still not

earlier than rk, so Jp+1
i has no contribution to I2(τi). There-

fore, I2(τi) will not be increased at the right end of the problem
window. At the left end, trivially the contribution will not be
increased. So I2(τi) will not be increased after moving τi’s re-
leases leftwards for x (x < Ti), so rp

i = rk − 1 is the worst
case for I2(τi) for tasks with Di > Dk ∧ Sk ≥ Ci.

If Ak > 0, as shown in Figure 8, the number of τi’s body
instances is bAk−1

Ti
c, the carry-out is Ci, the carry-in is bounded

by both Ci and the distance between to and the deadline of the
carry-in instance, which equals to max(0, (Ak − 1)mod Ti −
(Ti − Di)). If Ak = 0, I2(τi) = Ci − 1. So we can compute
I2(τi) by Equation 19.

dkrkto Ak
lk

Ti

max(0, (Ak+Sk-Ci) mod T i - (Ti-Di))
Ci

Sk

Ti

Ti-Di

Si

Ck

r i
p di

p

time

(a) Di ≤ Dk ∧ Si ≤ Ck

dkrkto Ak
lk

Ti

max(0, (Ak+Sk-Ci) mod T i - (Ti-Di))
Ci

Sk

Ti

Ti-Di

Ck

r i
p di

p

time

(b) Di > Dk ∧ Sk < Ci

Figure 9. the worst case of I2(τi) if Di ≤ Dk∧Si ≤
Ck or Di > Dk ∧ Sk < Ci.

Lemma 6. The worst case of I2(τi) (i 6= k) occurs when one
of τi’s instances is released at lk − Ci, if

(Di ≤ Dk ∧ Si ≤ Ck) ∨ (Di > Dk ∧ Sk < Ci) (21)

and in this case we compute I2(τi) by:

I4
2 (τi) =

{
Ak + Sk Ak + Sk ≤ Ci

bAk+Sk−Ci

Ti
c ∗ Ci + Ci + ω Ak + Sk > Ci

(22)
where

ω = min(Ci,max(0, (Ak + Sk − Ci)mod Ti − (Ti −Di)))
(23)

Proof. At first we will show that if rp
i = lk−Ci, J

p
i contributes

Ci to I2(τi):

• Di ≤ Dk ∧ Si ≤ Ck. As shown in Figure 9(a), since
Si ≤ Ck, we have dp

i ≤ dk, so Jp
i can interfere with Jk,

and since Si ≤ Ck, the contribution of Jp
i is Ci.



• Di > Dk ∧ Sk < Ci. As shown in Figure 9(b), since
Sk ≤ Ci, we have rp

i ≤ rk, so Jp
i can interfere with Jk,

and since Sk ≤ Ci, the contribution of Jp
i is Ci.

Now we examine whether I2(τi) will be increased if we
move all τi’s releases leftwards for x (x < Ti):

• If we move τi’s releases leftwards for x1 (x1 < Ti − Ci),
at the left end of the problem window, trivially the contri-
bution can not be increased; at the right end of the problem
window, the contribution of Jp

i is still Ci, the release time
of the Jp+1

i is lk+(Ti−Ci)−x1, and since x1 < Ti−Ci, it
is still later than lk after moving, so Jp+1

i has contribution
to I2(τi). Therefore there is no increase of I2(τi) at the
right end of the problem window. So moving τi’s release
time leftwards for x1 (x1 < Ti − Ci) will not increase
I2(τi).

• Moving τi’s releases leftwards for x2 (Ti−Ci ≤ x2 < Ti)
has the same effect as moving τi’s release time rightwards
for Ti − x2. Since x2 (Ti − Ci ≤ x2 < Ti), we have
0 < Ti − x2 ≤ Ci. So at the right end of the problem
window, the contribution of Jp

i is decreased by Ti − x2

after being moved rightwards for Ti−x2; at the left end of
the problem window, I2(τi) is at most increased by Ti−x2.
So I2(τi) will not be increased after moving τi’s releases
rightwards for Ti − x2 (Ti − Ci ≤ x2 < Ti).

In summary, I2(τi) will not be increased if we move τi’s
releases leftwards for x (x < Ti). So rp

i = lk −Ci is the worst
case for I2(τi).

If As + Sk ≤ Ci, it is easy to see I2(τi) = Ak + Sk. If
As + Sk > Ci, the number of body instance is bAk+Sk−Ci

Ti
c;

the carry-out is Ci; the carry-in is bounded by both Ci and the
distance between to and the deadline of the carry-in instance,
which equals to max(0, (Ak + Sk −Ci)mod Ti − (Ti −Di)).
So we can compute I2(τi) by Equation 22.

By the discussions above, we can compute I2(τi) for EDFnp

by:

I2(τi) =


I1
2 (τi) i = k

I2
2 (τi) i 6= k ∧Di ≤ Dk ∧ Si > Ck

I3
2 (τi) Di > Dk ∧ Sk ≥ Ci

I4
2 (τi) otherwise

(24)

where I1
2 (τi), I2

2 (τi), I3
2 (τi) and I4

2 (τi) are defined in Equation
15, 17, 19, 22 respectively.

5.3 A New Test Condition for EDFnp

By now we have obtained a sufficient schedulability test con-
dition for EDFnp by Lemma 1 and the computation of I1(τi)
and I2(τi) above:

Theorem 2. [TEST-EDFnp] A task set is EDFnp schedulable
on m identical processors if for any task τk and for any Ak we
have: ∑

τi∈τ

I1(τi) +4m−1
Idf

< (Ak + Sk) ∗m (25)

where I1(τi) and I2(τi) are defined in Equations14 and 24.

For any given τk and Ak, the LHS of Condition 25 can be
evaluated in time linear with n, since the time for computing
I1(τi), I2(τi) and Idf(τi) for each τi is O(n), and we can use
linear-time selection [17] to compute4m−1

Idf
. The next theorem

tells us the range of Ak that should be tested:

Theorem 3. For any task set with U(τ) < m, if condition 25
is to be violated for any Ak, then it is violated for some Ak that
satisfies the condition below:

Ak ≤
∑n

i Ci +4m−1
Ci

m− U(τ)
− Sk (26)

Proof. As shown in Section 4 (Inequality 6, 7), we know:

I1(τi) ≤ (Ak + Sk) ∗ Ui + Ci

I2(τi) ≤ (Ak + Sk) ∗ Ui + 2Ci

If Condition 25 is violated, it must be true that
n∑
i

Ci +4m−1
Ci

+ (Ak + Sk)U(τ) ≥ (Ak + Sk)m

⇒ Ak ≤
∑n

i Ci +4m−1
Ci

m− U(τ)
− Sk

Since Ak is a non-negative integer, Condition 25 can be
checked in time pseudo-polynomial to the task parameters, for
all task systems τ for which U(τ) is bounded by a constant
strictly less than the number of processors m.

As mentioned in Section 4, the effect of the over-estimation
of the carry-in and carry-out is more severe with smaller Ak +
Sk values. So one should check the tasks in increasing order
of their Sks, and in increasing order of Aks for each task, to
advance the testing efficiency. We have tested task sets consist-
ing of one hundred of tasks with each Ti uniformly distributed
in [10, 2000]. The tests of 1,000,000 such task sets are finished
in several minutes. We believe this rates suggest that [TEST-
EDFnp] is not only applicable to off-line schedulability test,
but also a good candidate for on-line admission control with
moderate-scale task systems.

6 The Improved Test for FPnp

The following lemma shows the possible interference on
caused by lower-priority tasks in FPnp.

Lemma 7. A task instance Ji with P (τi) < P (τk) can interfere
with Jk of τk only if Ji is released before rk.



6.1 Computing I1(τi) for FPnp

If i = k, the computation of I1(τi) is the same as in Equa-
tion 9:

I1
1 (τi) = bAk

Tk
c ∗ Ck

Now we compute I1(τi) with i 6= k. The conclusion of
Lemma 3 also works for FPnp, i.e., the worst case of I1(τi)
occurs when one of τi’s instance is released at to. Now we
compute I1(τi) in this worst case.

dkrkto Ak
lkSk

Ti Ti Di
a 2

time

(a) α2 ≥ Ak

dkrkto Ak
lkSk

Ti Ti

(Ak+Sk) mod T i

Di

a 2

time

(b) α2 < Ak

Figure 10. P (τi) < P (τk).

1. P (τi) < P (τk) We still use α2 to denote the distance be-
tween to and the release time of τi’s last instance released
in the problem window:

α2 = bAk + Sk

Ti
c ∗ Ti

(a) Ak = 0. If Ak = 0, then to = rk. Since
P (τi) < P (τk), any instance released at or later than
to can not interfere with Jk. So we know in this case
I1(τi) = 0.

(b) α2 ≥ Ak > 0. In this case, the release time of the
last instance released in the problem window is not
earlier than rk, so by Lemma 7 we know it can not
interfere with Jk, so we can compute I1(τi) by Equa-
tion 11.

I2
1 (τi) = bAk + Sk

Ti
c ∗ Ci

(c) α2 < Ak. In this case, the release time of the last
instance that released in the problem window is ear-
lier than rk, so by Lemma 7 we know it can interfere
with Jk, so we can compute I1(τi) by Equation 12.

I3
1 (τi) = bAk + Sk

Ti
c∗Ci+min(Ci, (Ak+Sk)mod Ti)

2. P (τi) > P (τk). If P (τi) > P (τk), any τi’s instance re-
leased in the problem window can contribute to I1(τi). So
we can compute I1(τi) by Equation 12.

I3
1 (τi) = bAk + Sk

Ti
c ∗ Ci + min(Ci, (Ak + Sk)mod Ti)

So we have :

I1(τi) =


0 P (τi) < P (τk) ∧Ak = 0
I1
1 (τi) i = k

I2
1 (τi) P (τi) < P (τk) ∧ α2 ≥ Ak > 0

I3
1 (τi) otherwise

(27)

6.2 Computing I2(τi) for FPnp

When i = k, the computation of I2(τi) is the same as Equa-
tion 15.

I1
2 (τi) = bAk + Dk

Tk
c∗Ck+min(Ck, (Ak+Dk)mod Tk)−Ck

In the following we will compute I2(τi) with i 6= k in
Lemma 8 and 9. Their proofs are similar with the proofs in
Section 5.2.

dkrkto Ak-1 lk

Ti

((Ak-1)0 mod T i - (Ti - Di))0
Ci

Sk Ck

r i
n di

n

Ti

Ti-Di

Ak

time

Figure 11. P (τi) < P (τk) ∧ Sk ≥ Ci.

Lemma 8. For task with P (τi) < P (τk) ∧ Sk ≥ Ci, the worst
case of I2(τi) occurs when one of τi’s instances is released at
the time-instant rk−1. We can compute I2(τi) by Equation 19:

I3
2 (τi) =

{
Ci − 1 Ak = 0
(bAk−1

Ti
c+ 1) ∗ Ci + υ Ak > 0

where

υ = min(Ci,max(0, (Ak − 1)mod Ti − (Ti −Di)))

Lemma 9. For tasks with P (τi) > P (τk) or P (τi) < P (τk) ∧
Ci > Sk, the worst case of I2(τi) occurs when one of the τi’s
instance is released at the time-instant lk−Ci. We can compute
I2(τi) by Equation 22:

I4
2 (τi) =

{
Ak + Sk Ak + Sk ≤ Ci

bAk+Sk−Ci

Ti
c ∗ Ci + Ci + ω Ak + Sk > Ci

where

ω = min(Ci,max(0, (Ak + Sk − Ci)mod Ti − (Ti −Di)))



dkrkto Ak
lk

Ti

((Ak+Sk-Ci)0 mod T i - (Ti-Di))0
Ci

Sk

Ti

Ti-Di

Ck

r i
n di

n

time

Figure 12. P (τi) > P (τk) or P (τi) < P (τk)∧Ci > Sk

So we have :

I2(τi) =

 I1
2 (τi) i = k

I3
2 (τi) P (τi) < P (τk) ∧ Sk ≥ Ci

I4
2 (τi) otherwise

(28)

6.3 A New Test Condition for FPnp

By now we have obtained a sufficient schedulability test con-
dition for FPnp by Lemma 1 and the computation of I1(τi) and
I2(τi) for FPnp above:

Theorem 4. [TEST-FPnp] A task set is FPnp schedulable on
m processors if for any task τk and for any Ak we have:∑

τi∈τ

I1(τi) +4m−1
Idf

< (Ak + Sk) ∗m (29)

where I1(τi) and I2(τi) are computed by Equation 27 and 28
respectively.

Its computational complexity is the same as [TEST-EDFnp].

7 Robustness

A scheduling algorithm is said to be execution time robust
(inter-release separation robust) if decreasing the execution
times (increasing the inter-release separation) of task instances
in a schedulable task set does not lead to deadline violations.

The robustness property is important. If a scheduling algo-
rithm is robust, then the system designer only needs to consider
the boundary values (Ci and Ti) to determine if the system is
schedulable, rather than consider the every possible execution
time in the interval [BCET, WCET] or consider the infinitely
many possible inter-release time separations in [Ti,∞).

Non-preemptive scheduling of periodic tasks is neither ex-
ecution time robust nor inter-release separation robust if the
scheduling algorithm is work-conserving. Therefore, any exact
schedulability test for work-conserving scheduling algorithms,
is necessarily non-robust. However, a sufficient but not nec-
essary schedulability test can be robust in the sense that if a
sporadic task system is guaranteed by this test to meet all dead-
lines with their WCETs and minimal inter-release separations,
then it is guaranteed to continue to meet all deadlines even if
some of the execution requirements are decreased or some of
the release separations are increased. In the following we will
show that the tests proposed in this paper are robust.

dkrkto

Ak

lk

Sk Ck

x1

x2

x1-x2
time

execution 
time as x1

execution 
time as x2

Figure 13. decreasing execution time

Theorem 5. The schedualbiility tests [TEST-EDFnp] and
[TEST-FPnp] are both execution time and inter-release sepa-
ration robust.

Proof. At first, when we test the schedulability of a task τk,
we only need to consider Sk = Dk − Ck in the test condi-
tions, rather than consider every possible value of Sk. This
observation is quite straightforward: if a task instance can start
execution no later than lk, it must be schedulable if it’s actual
execution time is smaller than Ck.

In the following, we will show when we test the schedula-
bility of a task τk, it is adequate to only consider the WCET
Ci and minimal inter-release separation Ti for the interfering
task τi. It is easy to see that I1

1 (τi), I2
1 (τi), I3

1 (τi), I1
2 (τi),

I2
2 (τi), I3

2 (τi) are all monotonically non-decreasing with re-
spect to Ci and monotonically non-increasing with respect to
Ti, and I4

2 (τi) is monotonically non-increasing with respect to
Ti. The only case we will elaborate on is that I4

2 (τi) is mono-
tonically non-decreasing with respect to Ci. As shown in Figure
13, when the execution time of τi is decreased from x1 to x2,
τi’s releases should be moved rightwards for x1 − x2 to keep
the release time of τi’s carry-out instance being lk − x2, so at
the left end of the problem window, I4

2 (τi) is at most increased
by x1 − x2. At the same time, the contribution of each body
instance and the carry-out instance is decreased by x1 − x2, so
I4
2 (τi) will not be increased. So I4

2 (τi) is monotonically non-
decreasing with respect to Ci.

8 Performance Evaluation

The only known schedulability test condition for EDFnp is
[BAR-EDFnp], and there is no known test condition for FPnp

to our best knowledge. So we will compare [BAR-EDFnp]
with our proposed test conditions [TEST-1], [TEST-EDFnp]
and [TEST-FPnp]. [TEST-EDFnp] and [TEST-FPnp] are supe-
rior to [TEST-1], which means a task set accepted by [TEST-
1] can also be accepted by [TEST-EDFnp] and [TEST-FPnp].
In general, our new test conditions is incomparable to [BAR-
EDFnp], i.e., we can construct a task set accepted by our test
conditions but rejected by [BAR-EDFnp], as well as a task set
accepted by [BAR-EDFnp] but rejected by ours. In the follow-
ing we will use randomly generated task sets to compare the
average performances, in terms of acceptance ratio, of these



test conditions. Additionally, we will also compare the perfor-
mance of the test conditions for EDFnp with the test condition
(referred as to [BASE-EDF]) in [2] for preemptive EDF, which
is the base of the analysis in this paper.

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 60
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

T otal Utilization

Ac
cep

tan
ce 

Ra
tio

 (%
)

T EST -1
BAR-EDF np

T EST -EDF np

BASE-EDF

T EST -FP np

(a) 0.1 ≤ Ui ≤ 0.4, 10 ≤ Ti ≤ 20

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 60
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

T otal Utilization

Ac
cep

tan
ce 

Ra
tio

 (%
)

T EST -1
BAR-EDF np

T EST -EDF np

BASE-EDF

T EST -FP np

(b) 0.1 ≤ Ui ≤ 0.6, 10 ≤ Ti ≤ 20

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 60
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

T otal Utilization

Ac
cep

tan
ce 

Ra
tio

 (%
)

T EST -1
BAR-EDF np

T EST -EDF np

BASE-EDF

T EST -FP np

(c) 0.1 ≤ Ui ≤ 0.4, 10 ≤ Ti ≤ 100

Figure 14. performance comparison of the test
conditions

We follow the method in [18] to generate task sets: A task
set of m + 1 tasks was generated, and tested. Then we increase
the task number by 1 to generate a new task set, and all the
schedulability tests were run on the new task set. This process
was repeated until the total processor utilization exceeded m.
The whole procedure was then repeated, starting with a new

task set of m + 1 tasks, until 1,000,000 task sets have been
generated and tested. This method of generating random task
sets produces a fairly uniform distribution of total utilizations,
except at the extreme end of low utilization.

The task parameter setting in Figure 14(a) is as follows: The
processor number is 6; for each task, Ti is uniformly distributed
in [10, 20], the ratio between Di and Ti is uniformly distributed
in [0.8, 1], and Ui is uniformly distributed in [0.1, 0.4]. In
this experiment, [TEST-1] performs slightly better than [BAR-
EDFnp], and they are clearly outperformed by the improved
test conditions. [BASE-EDF] outperforms all test conditions
for non-preemptive scheduling, since more interference caused
by non-preemption blocking should be taken into account in the
tests for non-preemptive scheduling.

In Figure 14(b), we change the range of Ui to [0.1, 0.6] and
keep other settings same as in Figure 14(a). It is shown that
as the average task utilization increases, the performance of
[BAR-EDFnp] degrades, while the effect on our proposed test
conditions is much smaller. The reason is that [BAR-EDFnp]
is more sensitive to the Cmax value. A interesting phenomena
shown in this experiment is that [TEST-EDFnp] performs very
close to (even a little better than) [BASE-EDF]. The reason is
that the length of the problem window in the analysis of non-
preemptive scheduling is Ci shorter than in the analysis of pre-
emptive scheduling, which compensates the extra interference
caused by non-preemption blocking in some degree. As dis-
cussed in Section 6.3, most of the failures in the testing occurs
with small Ak + Sk values, so this compensation is significant
when Sk is relatively small.

In Figure 14(c), we change the range of Ti to [10, 100] based
on the setting in Figure 14(a), which means different tasks have
a wider varying scale range. In this case, the performance of all
test conditions for non-preemptive scheduling degrades rapidly,
while the effect on [BASE-EDF] is trivial. This result accords
with the intuition that tasks with long execution time are harm-
ful to the schedulability of short-urgent tasks due to the non-
preemptive blocking.

By the above experiments, we can see that the test condi-
tions proposed in this paper, especially the improved test con-
ditions, have a significant performance improvement compared
with [BAR-EDFnp]. In general, the performance of our pro-
posed test conditions is inferior to the test condition [BASE-
EDF], which is for preemptive scheduling, while in some spe-
cial cases, the performance of [TEST-EDFnp] is close to (or
better than) [BASE-EDF].

9 Simulation Experiments

In the following, we will compare the performance of dif-
ferent scheduling algorithms by simulations. For hard real-
time systems, the performances of the test conditions are usu-
ally considered to make more sense than the absolute perfor-
mance of the scheduling algorithms. However, studying the
performance characteristics of the scheduling algorithms will
disclose their ”potentials” and may inspirit the development of



0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

EDF
DM
NP-EDF
NP-DM

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 40
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

T otal Utilization

Ac
cep

tan
ce 

Ra
tio

 (%
)

EDF
DM

DM n p
EDFn p

(a) 10 ≤ Ti ≤ 20

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

EDF
DM
NP-EDF
NP-DM

0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 60
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

T otal Utilization

Ac
cep

tan
ce 

Ra
tio

 (%
)

EDF
DM

DM n p
EDFn p

(b) 16 ≤ Ti ≤ 128

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

EDF
DM
NP-EDF
NP-DM

0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 60
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

T otal Utilization

Ac
cep

tan
ce 

Ra
tio

 (%
)

EDF
DM
EDFn p
DM n p

(c) 16 ≤ Ti ≤ 512

Figure 15. performance comparison of preemp-
tive and non-preemptive scheduling by simula-
tions

new scheduling and analysis techniques.

Figure 15 shows the comparison of the performance of two
well-known preemptive scheduling algorithms, EDF and DM,
and their non-preemptive versions, EDFnp and DMnp. In the
simulation of each task set, we set all tasks’ release offsets as
0, task inter-release separation as Ti and task execution time as
the Ci, and check the task set till its hyper-period. Even though
these assumptions do not guarantee to generate the worst-case
scenario in terms of schedulability, they are adopted since it is
not computationally feasible to try all possible task release off-

sets, task inter-release times or task execution times. Therefore,
the simulation result can at best be viewed as an approximation
of the real performance of a scheduling algorithm without any
guarantee of correctness.

The parameter setting of the experiment in Figure 15(a) is
as follows: Ti is uniformly distributed in [10, 30]; the ratio be-
tween Di and Ti is uniformly distributed in [0.8, 1]; Ui is uni-
formly distributed in [0.1, 0.4]. From Figure 15 (a), we can
see that the performance of EDFnp is very close to EDF, while
DMnp is actually better than DM. We also tried other prior-
ity assignment policies for fixed-priority scheduling (such as
random assignment, slack time monotonic, computation time
monotonic, inverse computation time monotonic etc.), and with
all of them FPnp outperforms FP more or less. Note that we
even have not taken the context switch overhead into account in
these simulations.

In Figure 15(b) and 15(c), we examine their performance
when different tasks have wider varying scale ranges. It is not
feasible to have Ti uniformly distributed in a very wide range,
which may lead to very large hyper-periods. Instead, we set
each task period as 2e, where e is uniformly distributed in [4, 7]
and [4, 9] in Figure 15(b) and 15(c) respectively, correspond-
ingly, the task periods are in the range of [16, 128] and [16, 512]
respectively. Again, the results obtained by this approach are
only approximations of the real performances of the scheduling
algorithms.

By these simulation experiments, we can see that for task
sets with narrow task scale ranges, non-preemptive schedul-
ing is potentially a better choice. As the range of task scales
being enlarged the performance of non-preemptive scheduling
degrades. This observation encourages us to study new schedul-
ing policies such as grouping tasks with similar scales and then
scheduling each group on a subset of the processors, which
could be our future work.

10 Conclusions

As observed by Baruah [2], ”global scheduling is funda-
mentally different from, and seems much more difficult than
partitioned scheduling”. In this paper, we take another stab at
this tough problem by presenting new schedulability test condi-
tions for work-conserving (necessarily global) non-preemptive
scheduling on multiprocessor platforms, by building upon the
techniques of Baker [5] and Baruah [2]. We firstly derive a
linear-time test condition which works on any work-conserving
non-preemptive scheduling algorithms. Then we improve the
analysis and present test conditions of pseudo-polynomial time-
complexity for EDFnp and FPnp, which significantly outper-
form the existing result.

The pessimism of the analysis in this paper mainly comes
from the assumption that worst-case interferences by all tasks
happen simultaneously, which is actually not necessary. As fu-
ture work, we plan to employ ILP or SAT methods to iden-
tify impossible scenarios, in order to obtain less-pessimistic
schedulability tests.



References

[1] S. K. Baruah, “The non-preemptive scheduling of periodic
tasks upon multiprocessors,” Real-Time Syst., 2006.

[2] S. K. Baruah, “Techniques for multiprocessor global
schedulability analysis,” in RTSS, 2007.

[3] K. Jeffay, D. F. Stanat, and C. U. Martel, “On non-
preemptive scheduling of periodic and sporadic tasks,” in
RTSS, 1991.

[4] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Ander-
son, and S. Baruah, A Categorization of Real-Time Multi-
processor Scheduling Problems and Algorithms. 2004.

[5] T. P. Baker, “Multiprocessor edf and deadline monotonic
schedulability analysis,” in RTSS, 2003.

[6] J. Goossens, S. Funk, and S. Baruah, “Priority-driven
scheduling of periodic task systems on multiprocessors,”
Real-Time Syst., vol. 25.

[7] C. A. Phillips, C. Stein, E. Torng, and J. Wein, “Opti-
mal time-critical scheduling via resource augmentation,”
in STOC, 1997.

[8] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority
scheduling on multiprocessors,” in RTSS, 2001.

[9] M. Bertogna, M. Cirinei, and G. Lipari, “Improved
schedulability analysis of edf on multiprocessor plat-
forms,” in ECRTS, 2005.

[10] S. K. Baruah and T. P. Baker, “Schedulability analysis of
global edf,” in Real Time Systems, 2008.

[11] S. K. Baruah and T. P. Baker, “Global edf schedulability
analysis of arbitrary sporadic task systems,” in ECRTS,
2008.

[12] S. K. Baruah and N. Fisher, “Global fixed-priority
scheduling of arbitrary-deadline sporadic task system,” in
ICDCN, 2008.

[13] B. Andersson and J. Jonsson, “Some insights on
fixed-priority preemptive non-partitioned multiprocessor
scheduling,” Technical Report 01-2, Chalmers University
of Technology., 2001.

[14] M. Bertogna and M. Cirinei, “Response-time analysis for
globally scheduled symmetric multiprocessor platforms,”
in RTSS, 2007.

[15] L. George, N. Rivierre, and M. Spuri, “Preemptive and
non-preemptive real-time uni-processor scheduling,” in
Technical Report, INRIA, 1996.

[16] S. K. Baruah and S. Chakraborty, “Schedulability analy-
sis of non-preemptive recurring real-time tasks,” in WP-
DRTS, 2006.

[17] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E.
Tarjan, “Time bounds for selection,” Journal of Computer
and System Sciences, 1973.

[18] T. P. Baker, “A comparison of global and partitioned edf
schedulability tests for multiprocessors,” in Technical Re-
port, 2005.


