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Abstract—Future embedded real-time systems will be deployed
on multi-core processors to meet the dramatically increasing high-
performance and low-power requirements. This trend appeals to
generalize established results on uniprocessor scheduling, partic-
ularly the various utilization bounds for schedulability test used
in system design, to the multiprocessor setting. Recently, this has
been achieved for the famous Liu and Layland utilization bound
by applying novel task splitting techniques. However, parametric
utilization bounds that can guarantee higher utilizations (up
to 100%) for common classes of systems are not yet known
to be generalizable to multiprocessors as well. In this paper,
we solve this problem for most parametric utilization bounds
by proposing new task partitioning algorithms based on exact
response time analysis. In addition to the worst-case guarantees,
as the exact response time analysis is used for task partitioning,
our algorithms significantly improve average-case utilization over
previous work.

I. INTRODUCTION

It has been widely accepted that future embedded real-

time systems will be deployed on multi-core processors, to

satisfy the dramatically increasing high-performance and low-

power requirements. This trend demands effective and efficient

techniques for the design and analysis of real-time systems on

multi-cores.

A central problem in the real-time system design is timing
analysis, which examines whether the system can meet all

the specified timing requirements. Timing analysis usually

consists of two steps: task-level timing analysis, which for

example calculates the worst-case execution time of each task

independently, and system-level timing analysis (also called

schedulability analysis), which determines whether all the

tasks can co-exist in the system and still meet all the time

requirements.

One of the most commonly used schedulability analysis

approach is based on the utilization bound, which is a safe

threshold of the system’s workload: under this threshold the

system is guaranteed to meet all the time requirements. The

utilization-bound-based schedulability analysis is very effi-

cient, and is especially suitable to embedded system design

flow involving iterative design space exploration procedures.

A well-known utilization bound is the N(21/N − 1) bound

for RMS (Rate Monotonic Scheduling) on uni-processors,

discovered by Liu and Layland in the 1970’s [25]. Recently,

this bound has been generalized to multiprocessors scheduling

by a parti-tioning-based algorithm [16].

The Liu and Layland utilization bound (L&L bound for

short) is pessimistic: There are a significant number of task

systems that exceed the L&L bound but are indeed schedula-

ble. This means that system resources would be considerably

under-utilized if one only relies on the L&L bound in system

design.

If more information about the task system is available in

the design phase, it is possible to derive higher parametric
utilization bounds regarding known task parameters. A well-

known example of parametric utilization bounds is the 100%
bound for harmonic task sets [26]: If the total utilization of

a harmonic task set τ is no greater than 100%, then every

task in τ can meet its deadline under RMS on a uni-processor

platform. Even if the whole task system is not harmonic, one

can still obtain a significantly higher bound by exploring the

“harmonic chains” of the task system [21]. In general, during

the system design, it is usually possible to employ higher

utilization bounds with available task parameter information

to better utilize the resources and decrease the system cost.

As will be introduced in Section III, quite a number of

higher parametric utilization bounds regarding different task

parameter information have been derived for uni-processor

scheduling.

This naturally raises an interesting question: Can we gener-

alize these higher parametric utilization bounds derived for

uni-processor scheduling to multiprocessors? For example,

given a harmonic task system, can we guarantee the schedu-

lability of the task system on a multiprocessor platform of M
processors, if the utilization sum of all tasks is no larger than

M?

In this paper, we will address the above question by propos-

ing new RMS-based partitioned scheduling algorithms (with

task splitting). Generalizing the parametric utilization bounds

from uni-processors to multiprocessors is challenging, even

with the insights from our previous work generalizing the L&L
bound to multiprocessor scheduling. The reason is that task

splitting may “create” new tasks that do not comply with the

parameter properties of the original task set, and thus invalidate

the parametric utilization bound specific to the original task

set’s parameter properties. Section III presents this problem in

detail. The main contribution of this paper is a solution to this

problem, which generalizes most of the parametric utilization

bounds to multiprocessors.

The approach of this paper is generic in the sense that it

works irrespective of the form of the parametric utilization
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bound in consideration. The only restriction is a threshold on

the parametric utilization bound value when some task has a

large individual utilization; apart from that, any parametric uti-

lization bound derived for single-processor RMS can be used

to guarantee the schedulability of multiprocessors systems

via our algorithms. More specifically, we first proposed an

algorithm generalizing all known parametric utilization bounds

for RMS to multiprocessors, for a class of “light” task sets

in which each task’s individual utilization is at most
Θ(τ)

1+Θ(τ) ,

where Θ(τ) = N(21/N − 1) is the L&L bound for task set τ .

Then we proposed the second algorithm that works for any task

set and all parametric utilization bounds under the threshold
2Θ(τ)
1+Θ(τ)

1.

Besides the improved utilization bounds, another advantage

of our new algorithms is the significantly improved average-

case performance. Although the algorithm in [16] can achieve

the L&L bound, it has the problem that it never utilizes more

than the worst-case bound. The new algorithms in this paper

use exact analysis, i.e., Response Time Analysis (RTA), instead

of the utilization bound threshold as in the algorithm of [16],

to determine the maximal workload on each processor. It is

well-known that on uni-processors, by exact schedulability

analysis, the average breakdown utilization of RMS is around

88% [24], which is much higher than its worst-case utilization

bound 69.3%. Similarly, our new algorithm has much better

performance than the algorithm in [16].
Related Work: Multiprocessor scheduling is usually cat-

egorized into two paradigms [11]: global scheduling, where

each task can execute on any available processor at run time,

and partitioned scheduling, where each task is assigned to a

processor beforehand, and at run time each task only executes

on its assigned processor. Global scheduling on average uti-

lizes the resources better. However, the standard RMS and

EDF global scheduling strategies suffer from the Dhall effect

[14], which may cause a task system with arbitrarily low

utilization to be unschedulable. Although the Dhall effect can

be mitigated by, e.g., assigning higher priorities to tasks with

higher utilizations as in RM-US [4], the best known utilization

bound of global scheduling is still quite low: 38% for fixed-

priority scheduling [3] and 50% for EDF-based scheduling

[7]. On the other hand, partitioned scheduling suffers from the

resource waste similar to the bin-packing problem: the worst-

case utilization bound for any partitioned scheduling can not

exceed 50%. Although there exist scheduling algorithms like

the Pfair family [10], [2], the LLREF family [13], [15] and the

EKG family [5], [6], offering utilization bounds upto 100%,

these algorithms incur much higher context-switch overhead

than priority-driven scheduling, which is unacceptable in many

real-life systems.

Recently, a number of works [1], [6], [5], [17], [18], [19],

[20], [22], [16] have studied partitioned scheduling with task
splitting, which can overcome the 50% limit of the strict

partitioned scheduling. In this class of scheduling algorithms,

1When N goes to infinity, Θ(τ)
.
= 69.3%,

Θ(τ)
1+Θ(τ)

.
= 40.9% and

2Θ(τ)
1+Θ(τ)

.
= 81.8%

while most tasks are assigned to a fixed processor, some tasks

may be (sequentially) divided into several parts and each part

is assigned and thereby executed on a different (but fixed)

processor. In this category, the utilization bound of the state-

of-the-art EDF-based algorithm is 65% [17], and our recent

work [16] has achieved the L&L bound (in the worst case

69.3%) for fixed-priority based algorithms.

II. BASIC CONCEPTS

We consider a multiprocessor platform consisting of M pro-

cessors P = {P1, P2, ...PM}. A task set τ = {τ1, τ2, ..., τN}
complies with the L&L task model: Each task τi is a 2-tuple

〈Ci, Ti〉, where Ci is the worst-case execution time and Ti is

the minimal inter-release separation (also called period). Ti is

also τi’s relative deadline. We use the RMS strategy to assign

priorities: tasks with shorter periods have higher priorities.

Without loss of generality we sort tasks in non-decreasing

period order, and can therefore use the task indices to represent

task priorities, i.e., i < j implies that τi has higher priority than

τj . The utilization of each task τi is defined as Ui = Ci/Ti,

and the total utilization of task set τ is U(τ) =∑N
i=1 Ui. We

further define the normalized utilization of a task set τ on a

multiprocessor platform with M processors:

UM (τ) =
∑
τi∈τ

Ui/M

Note that the subscript M in UM (τ) reminds us that the sum

of all tasks’ utilizations is divided by the number of processors

M .

A partitioned scheduling algorithm (with task splitting)

consists of two parts: the partitioning algorithm, which de-

termines how to split and assign each task (or rather each of

its parts) to a fixed processor, and the scheduling algorithm,

which determines how to schedule the tasks assigned to each

processor at run time.

With the partitioning algorithm, most tasks are assigned to

a processor (and thereby will only execute on this processor

at run time). We call these tasks non-split tasks. The other

tasks are called split tasks, since they are split into several

subtasks. Each subtask of a split task τi is assigned to (and

thereby executes on) a different processor, and the sum of the

execution times of all subtasks equals Ci. For example, in

Figure 1 task τi is split into three subtasks τ1i , τ2i and τ3i ,

executing on processor P1, P2 and P3, respectively.

The subtasks of a task need to be synchronized to execute

correctly. For example, in Figure 1, τ2i should not start

execution until τ1i is finished. This equals deferring the actual

ready time of τ2i by up to R1
i (relative to τi’s original release

time), where R1
i is τ1i ’s worst-case response time. One can

regard this as shortening the actual relative deadline of τ2i by

up to R1
i . Similarly, the actual ready time of τ3i is deferred by

up to R1
i +R2

i , and τ3i ’s actual relative deadline is shortened

by up to R1
i +R2

i . We use τki to denote the kth subtask of a

split task τi, and define τki ’s synthetic deadline as

Δk
i = Ti −

∑
l∈[1,k−1]

Rl
i. (1)
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Fig. 1. An Illustration of Task Splitting.

Thus, we represent each subtask τki by a 3-tuple 〈Ck
i , Ti,Δ

k
i 〉,

in which Ck
i is the execution time of τki , Ti is the original

period and Δk
i is the synthetic deadline. For consistency, each

non-split task τi can be represented by a single subtask τ1i
with C1

i = Ci and Δ1
i = Ti. We use Uk

i = Ck
i /Ti to denote

a subtask τki ’s utilization.

We call the last subtask of τi its tail subtask, denoted by τ ti
and the other subtasks its body subtasks, as shown in Figure

1. We use τ
bj
i to denote the jth body subtask.

We use τ(Pq) to denote the set of tasks τi assigned to

processor Pq , and say Pq is the host processor of τi. We use

U(Pq) to denote the sum of the utilization of all tasks in τ(Pq).
A task set τ is schedulable under a partitioned scheduling

algorithm A, if (i) each task (subtask) has been assigned to

some processor by A’s partitioning algorithm, and (ii) each

task (subtask) is guaranteed to meet its deadline under A’s

scheduling algorithm.

III. PARAMETRIC UTILIZATION BOUNDS

On uni-processors, a Parametric Utilization Bound (PUB
for short) Λ(τ) for a task set τ is the result of applying a

function Λ(·) to τ ’s task parameters, such that all the tasks in

τ are guaranteed to meet their deadlines on a uni-processor

if τ ’s total utilization U(τ) ≤ Λ(τ). We can overload this

concept for multiprocessor scheduling by using τ ’s normalized

utilization UM (τ) instead of U(τ).
There have been several PUBs derived for RMS on uni-

processors. The following are some examples:

• The famous L&L bound, denoted by Θ(τ), is a PUB
regarding the number of tasks N : Θ(τ) = N(21/N − 1)

• The harmonic chain bound: HC-Bound(τ) = K(21/K −
1) [21] , where K is the number of harmonic chains in

the task set. The 100% bound for harmonic task sets is a

special case of the harmonic chain bound with K = 1.

• T-Bound(τ) [23] is a PUB regarding the number of tasks

and the task periods: T-Bound(τ) =
∑N

i=1

T ′
i+1

T ′
i
+2· T ′

1

T ′
N
−

N , where T ′i is τi’s scaled period [23].

• R-Bound(τ) [23] is similar to T-Bound(τ), but uses

a more abstract parameter r, the ratio between the

minimum and maximum scaled period of the task set:

R-Bound(τ) = (N − 1)(r1/(N−1) − 1) + 2/r − 1.

We observe that all the above PUBs have the following

property: for any τ ′ obtained by decreasing the execution times

Fig. 2. Partitioning a harmonic task set results in a nonharmonic task set on
some processor.

of some tasks of τ , the bound Λ(τ) is still a valid utilization

bound to guarantee the schedulability of τ ′. We call a PUB
holding this property a deflatable parametric utilization bound

(called D-PUB for short)2. We use the following lemma to

precisely describe this property:

Lemma 1. Let Λ(τ) be a D-PUB derived from the task set τ .
We decrease the execution times of some tasks in τ to get a new
task set τ ′. If τ ′ satisfies U(τ ′) ≤ Λ(τ), then it is guaranteed
to be schedulable by RMS on a uni-processor.

The deflatable property is very common: Actually all the

PUBs we are aware of are deflatable, including the ones listed

above and the non-closed-form bounds in [12]. The deflatable

property is of great relevance in partitioned multiprocessor

scheduling, since a task set τ will be partitioned into several

subsets and each subset is executed on a processor individually.

Further, due to the task splitting, a task could be divided

into several subtasks, each of which holds a portion of the

execution demand of the original task. So the deflatable

property is clearly required to generalize a utilization bound

to multiprocessors.

However, the deflatable property by itself is not sufficient

for the generalization of a PUB Λ(τ) to multiprocessors.

For example, suppose the harmonic task set τ in Figure 2-

(a) is partitioned as in Figure 2-(b), where τ2 is split into

τ12 and τ22 . To correctly execute τ2, τ12 and τ22 need to be

synchronized such that τ22 never starts execution before its

predecessor τ12 is finished. This can be viewed as shortening

τ22 ’s relative deadline for a certain amount of time from τ2’s

original deadline, as shown in Figure 2-(c). In this case, τ22
does not comply with the L&L task model (which requires

the relative deadline to equal the period), so none of the

parametric utilization bounds for the L&L task model are

applicable to processor P2. In [16], this problem is solved by

2There is a subtle difference between the deflatable property and the (self-
)sustainable property [9], [8]. The deflatable property does not require the
original task set τ to satisfy U(τ) ≤ Λ(τ). U(τ) is typically larger than
100% since τ will be scheduled on M processors. Λ(τ) is merely a value
obtained by applying the function Λ(·) to τ ’s parameters, and will be used
to each individual processor.
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representing τ22 ’s period by its relative deadline, as shown in

Figure 2-(d). This transforms the task set {τ1, τ22 } into a L&L
task set {τ1, τ2∗2 }, with which we can apply the L&L bound.

However, this solution does not in general work for other

parametric utilization bounds: In our example, we still want

to apply the 100% bound which is specific to harmonic task

sets. But if we use τ22 ’s deadline 6 to represent its period, the

task set {τ1, τ2∗2 } is not harmonic, so the 100% bound is not

applicable. This problem will be solved by our new algorithms

and novel proof techniques in the following sections.

IV. THE ALGORITHM FOR LIGHT TASKS

In the following we introduce the first algorithm RM-
TS/light, which achieves Λ(τ) (any D-PUB derived from τ ’s

parameters), if τ is light in the sense of an upper bound on

each task’s individual utilization as follows.

Definition 1. A task τi is a light task if Ui ≤ Θ(τ)
1+Θ(τ) , where

Θ(τ) denotes the L&L bound. Otherwise, τi is a heavy task.
A task set τ is a light task set if all tasks in τ are light. Θ(τ)

1+Θ(τ)

is about 40.9% as the number of tasks in τ grows to infinity.

For example, we can instantiate this result by the 100% uti-

lization bound for harmonic task sets: Let τ be any harmonic
task set in which each task’s individual utilization is no larger

than 40.9%. τ is schedulable by our algorithm RM-TS/light
on M processors if its normalized total utilization UM (τ) is

no larger than 100%.

A. Algorithm Description
The partitioning algorithm of RM-TS/light is quite simple.

We describe it briefly as follows:

1) Tasks are assigned in increasing priority order. We

always select the processor on which the total utilization

of the tasks that have been assigned so far is minimal
among all processors.

2) A task (subtask) can be entirely assigned to the current

processor, if all tasks (including the one to be assigned)

on this processor can meet their deadlines under RMS.

3) When a task (subtask) cannot be assigned entirely to the

current processor, we split it into two parts3. The first

part is assigned to the current processor. The splitting is

done such that the portion of the first part is as big as

possible, guaranteeing no task on this processor misses

its deadline under RMS; the second part is left for the

assignment in the step.

Note that the difference between RM-TS/light and the algo-

rithm in [16] is that, RM-TS/light uses the exact response

time analysis, instead of the utilization threshold, to determine

whether a (sub)task can fit in a processor without causing

deadline miss.

Algorithm IV-A and IV-A describe the partitioning al-

gorithm of RM-TS/light in pseudo-code. At the beginning,

tasks are sorted (and will therefore be assigned) in increasing

3In general a task may be split into more than two subtasks. Here we mean
at each step the currently selected task (subtask) is split into two parts.

priority order, and all processors are marked as non-full which

means they still can accept more tasks. At each step, we

pick the next task in order (the one with the lowest priority),

select the processor with the minimal total utilization of

tasks that have been assigned so far, and invoke the routine

Assign(τki , Pq) to do the task assignment. Assign(τki , Pq)
first verifies that after assigning the task, all tasks on that

processor would still be schedulable under RMS. This is done

by applying exact schedulability analysis of calculating the

response time Rh
j of each (sub)task τkj on Pq after assigning

this new task τki , and compare Rh
j to its (synthetic) deadline

Δh
j . If the response time does not exceed the synthetic deadline

for any of the tasks on Pq , we can conclude that τki can safely

be assigned to Pq without causing any deadline miss. Note

that a subtask’s synthetic deadline Δk
j may be different from

its period Tj . After presenting how the overall partitioning

algorithm works, we will show how to calculate Δk
j easily.

Algorithm 1 The partitioning algorithm of RM-TS/light.
1: Task order τ1N , . . . , τ11 by increasing priorities

2: Mark all processors as non-full
3: while exists an non-full processor and an unassigned task

do
4: Pick next unassigned task τki ,

5: Pick non-full processor Pq with minimal U(Pq)
6: Assign(τki , Pq)
7: end while
8: If there is an unassigned task, the algorithm fails,

otherwise it succeeds.

Algorithm 2 The Assign(τki , Pq) routine.

1: if τ(Pq) with τki is still schedulable then
2: Add τki to τ(Pq)
3: else
4: Split τki via (τki , τ

k+1
i ) := MaxSplit(τki , Pq)

5: Add τki to τ(Pq)
6: Mark Pq as full
7: τk+1

i is the next task to assign

8: end if

If τki cannot be entirely assigned to the currently selected

processor Pq , it will be split into two parts using routine

MaxSplit(τki , Pq): the first part that makes maximum use of

the selected processor, and a remaining part of that task, which

will be subject to assignment in the next iteration. The desired

property here is that we want the first part to be as big as

possible such that, after assigning it to Pq , all tasks on that

processor will still be able to meet their deadlines. In order

to state the effect of MaxSplit(τki , Pq) formally, we introduce

the concept of a bottleneck:

Definition 2. A bottleneck of processor Pq is a (sub)task
that is assigned to Pq , and will become unschedulable if we
increase the execution time of the task with the highest priority
on Pq by an arbitrarily small positive number.
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Note that there may be more than one bottleneck on a pro-

cessor. Further, since RM-TS/light assigns tasks in increasing

priority order, MaxSplit always operates on the task that has

the highest priority on the processor in question. So we can

state:

Definition 3. MaxSplit(τki , Pq) is a function that splits τki
into two subtasks τki and τk+1

i such that:

1) τki can now be assigned to Pq without making any task
in τ(Pq) unschedulable.

2) After assigning τki , Pq has a bottleneck.

MaxSplit can be implemented by, for example, performing

a binary search over [0, Ck
i ] to find out the maximal portion

of τki with which all tasks on Pq can meet their deadlines. A

more efficient implementation of MaxSplit was presented in

[22], in which one only needs to check a (small) number of

possible values in [0, Ck
i ]. The complexity of this improved

implementation is still pseudo-polynomial, but in practice it is

very efficient.

The while loop in RM-TS/light terminates as soon as all

processors are “full” or all tasks have been assigned. If the

loop terminates due to the first reason and there are still

unassigned tasks left, the algorithm reports a failure of the

partitioning, otherwise a success.

Calculating Synthetic Deadlines: Now we show how to

calculate each (sub)task τki ’s synthetic deadline Δk
i , which was

left open in the above presentation. If τki is a non-split task,

its synthetic deadline trivially equals its period Ti.

We consider the case that τki is a split subtask. Since tasks

are assigned in increasing order of priorities, and a processor is

full after a body subtask is assigned to it, we have the following

lemma:

Lemma 2. A body subtask has the highest priority on its host
processor.

A consequence is that, the response time of each body

subtask equals its execution time, and one can replace Rl
i

by Cl
i in (1) to calculate the synthetic deadline of a subtask.

Especially, we are interested in the synthetic deadlines of tail

subtasks (we don’t need to worry about a body subtask’s

synthetic deadline since it has the highest priority on its host

processor and is schedulable anyway). The calculation is stated

in the following lemma.

Lemma 3. A tail subtask τ ti ’s synthetic deadline Δt
i is

calculated by

Δt
i = Ti − Cbody

i

where Cbody
i is the execution time sum of τi’s body subtasks.

Scheduling at Run Time: At runtime, the tasks will be

scheduled according to the RMS priority order on each pro-

cessor locally, i.e., with their original priorities. The subtasks

of a split task respect their precedence relations, i.e., a split

subtask τki is ready for execution when its preceding subtask

τk−1
i on some other processor has finished.

From the presented partitioning and scheduling algorithm

of RM-TS/light, it is clear that successful partitioning implies

schedulability (remember that for split tasks, the synchroniza-

tion delays have been counted into the synthetic deadlines,

which are the ones used in the response time analysis to

determine whether a task is schedulable). We state this in the

following lemma:

Lemma 4. Any task set that has been successfully partitioned
by RM-TS/light is schedulable.

B. Utilization Bound
We will now prove that RM-TS/light has the utilization

bound of Λ(τ) for light task sets, i.e., if a light task set τ is

not successfully partitioned by RM-TS/light, then the sum of

the assigned utilizations of all processors is at least4 M ·Λ(τ).
In order to show this, we assume that the assigned utilization

on some processor is strictly less than Λ(τ). We prove that

this implies there is no bottleneck on that processor. This is

a contradiction, because each processor with which MaxSplit
has been used must have a bottleneck. We also know that

MaxSplit was used for all processors, since the partitioning

failed.

In the following, we assume Pq to be a processor with an

assigned utilization of U(Pq) < Λ(τ). A task on Pq is either

a non-split task, a body subtask or a tail subtask. The main

part of the proof consists of showing that Pq cannot have a

bottleneck of any type.

As the first step, we show this for non-split tasks and

body subtasks (Lemma 5), after which we deal with the more

difficult case of tail subtasks (Lemma 7).

Lemma 5. Suppose task set τ is not schedulable by RM-
TS/light, and after the partitioning phase it holds for a
processor Pq that

U(Pq) < Λ(τ) (2)

Then a bottleneck of Pq is neither a non-split task nor a body
subtask.

Proof: By Lemma 2 we know that the body subtask has

the highest priority on Pq , so it can never be a bottleneck.

For the case of non-split tasks, we will show that Condi-

tion (2) is sufficient for their deadlines to be met. The key

observation is that although some split tasks on this processor

may have a shorter deadline than period, this does not change

the scheduling behavior of RMS, so Λ(τ) is still sufficient to

guarantee the schedulability of a non-split task. For a more

precise proof, we use Γ to denote the set of tasks on Pq , and

construct a new task set Γ∗ corresponding to Γ such that each

non-split task τi in Γ has a counterpart in Γ∗ that is exactly

the same as τi, and each split subtask in Γ has a counterpart in

Γ∗ with deadline changed to equal its period. It’s easy to see

that Γ∗ can be obtained by decreasing some tasks’ execution

times in the original task set τ (a task in τ but not Γ∗ can be

4By this, the normalized utilization of τ strictly exceeds Λ(τ), since there
are (sub)tasks not assigned to any of the processors after a failed partitioning.
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considered as the case that we decrease its execution time to

0). By Lemma 1 and Condition (2) we know, the deflatable

utilization bound Λ(τ) guarantee Γ∗’s schedulability. Thus,

if the execution time of the highest-priority task on Pq is

increased by an arbitrarily small amount ε such that the

total utilization still does not exceed Λ(τ), Γ∗ will still be

schedulable. Recall that the only difference between Γ and Γ∗

is the subtasks’ deadlines, and since the scheduling behavior

of RMS does not depend on task deadlines (remember that at

this moment we only want to guarantee the schedulability of

non-split tasks), we can conclude that each non-split task in

Γ is also schedulable, which is still the true after increasing ε
to the highest priority task on Pq .

In the following we prove that in a light task set, a bottleneck

on a processor with utilization lower than Λ(τ) is not a tail

subtask either. The proof goes in two steps: We first derive in

Lemma 6 a general condition guaranteeing that a tail subtask

can not be a bottleneck; then we conclude in Lemma 7 that a

bottleneck on a processor with utilization lower than Λ(τ) is

not a tail subtask, by showing that the condition in Lemma 6

holds for each of these tail subtasks.

We use the following notation: Let τi be a task split into

B body subtasks τ b1i ...τ bBi , assigned to processors Pb1 ...PbB

respectively, and a tail subtask τ ti assigned to processor Pt.

The utilization of the tail subtask τ ti is U t
i =

Ct
i

Ti
, and the

utilization of a body subtask τ
bj
i is U

bj
i =

C
bj
i

Ti
. We use U body

i

to denote the total utilization of τi’s all body subtasks:

U body
i =

∑
j∈[1,B]

U
bj
i = Ui − U t

i

For the tail subtask τ ti , let Xt denote the total utilization of

all (sub)tasks assigned to Pt with lower priority than τ ti , and

Yt the total utilization of all (sub)tasks assigned to Pt with

higher priority than τ ti .

For each body subtask τ
bj
i , let Xbj denote the total utiliza-

tion of all (sub)tasks assigned to Pbj with lower priority than

τ
bj
i . (We do not need Ybj , since by Lemma 2 we know no task

on Pbj has higher priority than τi.)
We start with the general condition identifying non-

bottleneck tail subtasks.

Lemma 6. Suppose a tail subtask τ ti is assigned to processor
Pt and Θ(τ) is the L&L bound. If

Yt + U t
i < Θ(τ) · (1− U body

i ) (3)

then τ ti is not a bottleneck of processor Pt.

Proof: The lemma is proved by showing τ ti is still

schedulable after increasing the utilization of the task with

the highest priority on Pt by a small number ε such that :

(Yt+ ε) +U t
i < Θ(τ) · (1−U body

i ) (note that one can always

find such an ε). By the definition of U body
i and Δt

i, this equals

((Yt + ε) + U t
i ) · Ti/Δ

t
i < Θ(τ) (4)

The key of the proof is to show that Condition (4) still

guarantees that τ ti can meet its deadline. Note that one can

not directly apply the L&L bound Θ(τ) to the task set Γ
consisting of τ ti and the tasks contributing to Yt, since τ ti ’s

deadline is shorter than its period, i.e., Γ does not comply with

the L&L task model. In our proof, this problem is solved by

the “period shrinking” technique [16]: we transform Γ into a

L&L task set Γ∗ by reducing some of the task periods, and

prove that the total utilization of Γ∗ is bounded by the LHS

of (4), and thereby bounded by Θ(τ). On the other hand, the

construction of Γ∗ guarantees that the schedulability of Γ∗

implies the schedulability of τ ti . See [16] for details about the

“period shrinking” technique.

Note that in Condition (3) of Lemma 6, the L&L bound

Θ(τ) is involved. This is because in its proof we need to use

the L&L bound Θ(τ), rather than the higher parametric bound

Λ(τ), to guarantee the schedulability of the constructed task

set Γ∗ where some task periods are decreased. For example,

suppose the original task set is harmonic, the constructed

set Γ∗ may not be harmonic since some of task periods are

shortened to Δt
i, which is not necessarily harmonic with other

periods. So the 100% bound of harmonic task sets does not

apply to Γ∗. However, Θ(τ) is still applicable, since it only

depends on, and is monotonically decreasing with respect to

the task number.

Having this lemma, we now show that a tail subtask τ ti
cannot be a bottleneck either, if its host processor’s utilization

is less than Λ(τ), by proving Condition (3) for τ ti

Lemma 7. Let τ be a light task set unschedulable by RM-
TS/light, and let τi be a split task whose tail subtask τ ti is
assigned to processor Pt. If

U(Pt) < Λ(τ) (5)

then τ ti is not a bottleneck of Pt.

Proof: The proof is by contradiction. We assume the

lemma does not hold for one or more tasks, and let τi be the

lowest-priority one among these tasks, i.e., τ ti is a bottleneck of

its host processor Pt, and all tail subtasks with lower priorities

are either not a bottleneck or on a processor with assigned

utilization at least Λ(τ).

Recall that {τ bji }j∈[1,B] are the B body subtasks of τi, and

Pt and {Pbj}j∈[1,B] are processors hosting the corresponding

tail and body subtasks. Since a body task has the highest

priority on its host processor (Lemma 3) and tasks are assigned

in increasing priority order, all tail subtasks on processors

{Pbj}j∈[1,B] have lower priorities than τi.
We will first show that all processors {Pbj}j∈[1,B] have an

individual assigned utilization at least Λ(τ). We do this by

contradiction: Assume there is a Pbj with U(Pbj ) < Λ(τ).
Since tasks are assigned in increasing priority order, we know

any tail subtask on Pbj has lower priority than τi. And

since τi is the lowest-priority task violating the lemma and

U(Pbj ) < Λ(τ), we know any tail subtask on Pbj is not a

bottleneck. At the same time, U(Pbj ) < Λ(τ) also implies the

non-split tasks and body subtasks on Pbj are not bottlenecks

either. (by Lemma 5). So we can conclude that there is no

bottleneck on Pbj which contradicts the fact there is at least
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one bottleneck on each processor. So the assumption of Pbj ’s

assigned utilization being lower than Λ(τ) must be false, by

which we can conclude that all processors hosting τ ti ’s body

tasks have assigned utilization at least Λ(τ). Thus we have:

∑
j∈[1,B]

(U
bj
i +Xbj )︸ ︷︷ ︸
U(Pbj

)

≥ B · Λ(τ) (6)

Further, the assumption from Condition (5) can be rewritten

as:

Xt + Yt + U t
i < Λ(τ) (7)

We combine (6) and (7) into:

Xt + Yt + U t
i <

1

B

∑
j∈[1,B]

(U
bj
i +Xbj )

Since the partitioning algorithm selects at each step the pro-

cessor on which the so-far assigned utilization is minimal, we

have ∀j ∈ [1, B] : Xbj ≤ Xt. Thus, the inequality can be

relaxed to:

Yt + U t
i <

1

B

∑
j∈[1,B]

U
bj
i

We also have B ≥ 1 and U body
i =

∑
j∈[1,B] U

bj
i , so:

Yt + U t
i < U body

i

Now, in order to get to Condition (3), which implies τ ti is

not a bottleneck (Lemma 6), we need to show that the RHS of

this inequality is bounded by the RHS of Condition (3), i.e.,

that:

U body
i ≤ Θ(τ)(1− U body

i )

It is easy to see that this is equivalent to the following, which

holds since τi is by assumption a light task:

U body
i ≤ Θ(τ)

1 + Θ(τ)

By now we have proved Condition (3) for τ ti and by Lemma

6 we know τ ti is not a bottleneck on Pt, which contradicts to

our assumption.

We are ready to present RM-TS/light’s utilization bound.

Theorem 8. Λ(τ) is a utilization bound of RM-TS/light for
light task sets, i.e., any light task set τ with

UM (τ) ≤ Λ(τ)

is schedulable by RM-TS/light.

Proof: Assume a light task set τ with UM (τ) ≤ Λ(τ)
is not schedulable by RM-TS/light, i.e., there are tasks not

assigned to any of the processors after the partitioning pro-

cedure with τ . By this we know the sum of the assigned

utilization of all processors after the partitioning is strictly less
than M · Λ(τ), so there is at least one processor Pq with a

utilization strictly less than Λ(τ). By Lemma 5 we know the

bottleneck of this processor is neither a non-split task nor a

body subtask, and by Lemma 7 we know the bottleneck is not

a tail subtask either, so there is no bottleneck on this processor.

This contradicts the property of the partitioning algorithm, that

all processors to which no more task can be assigned must have

a bottleneck.

V. THE ALGORITHM FOR ANY TASK SET

In this section, we introduce RM-TS, which removes the

restriction to light task sets in RM-TS/light. We will show

that RM-TS can achieve a D-PUB Λ(τ) for any task set

τ , if Λ(τ) does not exceed
2Θ(τ)
1+Θ(τ) . In other words, if one

can derive a D-PUB Λ′(τ) from τ ’s parameters under uni-

processor RMS, RM-TS can achieve the utilization bound of

Λ(τ) = min(Λ′(τ), 2Θ(τ)
1+Θ(τ) ). Note that

2Θ(τ)
1+Θ(τ) is decreasing

respect to N , and it is around 81.8% when N goes to infinity.

For example, we can instantiate our result by the harmonic

chain bound K(21/K − 1):

• K = 3. Since 3(21/3 − 1) ≈ 77.9% < 81.8%, we know

that any task set τ in which there are at most 3 harmonic

chains is schedulable by our algorithm RM-TS on M
processors if its normalized utilization UM (τ) is no larger

than 77.9%.

• K = 2. Since 2(21/2 − 1) ≈ 82.8% > 81.8%, we know

81.8% can be used as the utilization bound in this case:

any task set τ in which there are at most 2 harmonic

chains is schedulable by our algorithm RM-TS on M
processors if its normalized utilization UM (τ) is no larger

than 81.8%.

So we can see that despite an upper bound on Λ(τ), RM-TS
still provides significant room for higher utilization bounds.

For simplicity of presentation, we assume each task’s uti-

lization is bounded by Λ(τ). Note that this assumption does

not invalidate the utilization bound of our algorithm for task

sets which have some individual task’s utilization above Λ(τ)5.

RM-TS adds a pre-assignment mechanism to handle the

heavy tasks. In the pre-assignment, we first identify the heavy

tasks whose tail subtasks would have low priority if they were

split, and pre-assign these tasks to one processor each, which

avoids the split. The identification is checked by a simple test

condition, called pre-assign condition. Those heavy tasks that

do not satisfy this condition will be assigned (and possibly

split) later, together with the light tasks. Note that the number

of tasks need to be pre-assigned is at most the number of

processors. This will be clear in the algorithm description.

We introduce some notations. If a heavy task τi is pre-

assigned to a processor Pq , we call τi a pre-assigned task
and Pq a pre-assigned processor, otherwise τi a normal task
and Pq a normal processor.

A. Algorithm Description

The partitioning algorithm of RM-TS contains three phases:

5One can let tasks with a utilization more than Λ(τ) execute exclusively on
a dedicated processor each. If we can prove that the utilization bound of all
the other tasks on all the other processors is Λ(τ), then the utilization bound
of the overall system is also at least Λ(τ).
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1) We first pre-assign the heavy tasks that satisfy the pre-
assign condition to one processor each, in decreasing

priority order.

2) We do task partitioning with the remaining (i.e. normal)

tasks and remaining (i.e. normal) processors similar to

RM-TS/light until all the normal processors are full.

3) The remaining tasks are assigned to the pre-assigned

processors in increasing priority order; the assignment

selects the processor hosting the lowest-priority pre-

assigned task, to assign as many tasks as possible until

it is full, then selects the next processor.

The pseudo-code of RM-TS is given in Algorithm V-A. At

the beginning of the algorithm, all the processors are marked

as normal and non-full. In the first phase, we visit all the

tasks in decreasing priority order, and for each heavy task we

determine whether we should pre-assign it or not, by checking

the pre-assign condition:∑
i<j

Uj ≤ (|P�(τi)| − 1) · Λ(τ) (8)

where |P�(τi)| is the number of processors marked as normal
at the moment we are checking for τi. If this condition is

satisfied, we pre-assign this heavy task to the current selected

processor, which is the one with the minimal index among all

normal processors, and mark this processor as pre-assigned.

Otherwise, we do not pre-assign this heavy task, and leave it to

the following phases. The intuition of the pre-assign condition

(8) is: We pre-assign a heavy task τi if the total utilization of

lower-priority tasks is relatively small, since otherwise its tail

subtask may end up with a low priority on the corresponding

processor. Note that, no matter how many heavy tasks are

there in the system, the number of pre-assigned tasks is at

most the number of processors: after |P�(τi)| reaching 0, the

pre-assign condition never holds, and no more heavy task will

be pre-assigned.

In the second phase we assign the remaining tasks to normal
processors only. Note that the remaining tasks are either light

tasks or the heavy tasks that do not satisfy the pre-assign

condition. The assignment policy in this phase is the same as

for RM-TS/light: We sort tasks in increasing priority order, and

at each step select the normal processor Pq with the minimal

assigned utilization. Then we do the task assignment: we either

add τki to τ(Pq) if τki can be entirely assigned to Pq , or split

τki and assigns a maximized portion of it to Pq otherwise.

In the third phase we continue to assign the remaining tasks

to pre-assigned processors. There is an important difference

between the second phase and the third phase: In the second

phase tasks are assigned by a “worst-fit” strategy, i.e., the

utilization of all processors are increased “evenly”, while

in the third phase tasks are now assigned by a “first-fit”

strategy. More precisely, we select the pre-assigned processor

which hosts the lowest-priority pre-assigned task of all non-full

processors. We assign as much workload as possible to it, until

it is full, and then move to the next processor. This strategy

is one of the key points to facilitate the induction-based proof

of the utilization bound in the next subsection.

Algorithm 3 The partitioning algorithm of RM-TS.

1: Mark all processors as normal and non-full

// Phase 1: Pre-assignment
2: Sort all tasks in τ in decreasing priority order

3: for each task in τ do
4: Pick next task τi
5: if DeterminePreAssign(τi) then
6: Pick the normal processor with the minimal index Pq

7: Add τi to τ(Pq)
8: Mark Pq as pre-assigned
9: end if

10: end for

// Phase 2: Assign remaining tasks to normal processors
11: Sort all unassigned tasks in increasing priority order

12: while there is a non-full normal processor

and an unassigned task do
13: Pick next unassigned task τi
14: Pick the non-full normal processor Pq with minimal

U(Pq)
15: Assign(τki , Pq)
16: end while

// Phase 3: Assign remaining tasks to pre-assigned pro-
cessors
// Remaining tasks are still in increasing priority order

17: while there is a non-full pre-assigned processor

and an unassigned task do
18: Pick next unassigned task τi
19: Pick the non-full pre-assigned processor Pq with the

largest index

20: Assign(τki , Pq)
21: end while

22: If there is an unassigned task, the algorithm fails,

otherwise it succeeds.

Algorithm 4 The DeterminePreAssign(τi) routine.

1: P�(τi) := the set of normal processors at this moment

2: if τi is heavy then
3: if

∑
j>i Uj ≤ (|P�(τi)| − 1) · Λ(τ) then

4: return true
5: end if
6: end if
7: return false

After these three phases, the partitioning fails if there still

are unassigned tasks left, otherwise it is successful. At run-

time, the tasks assigned to each processor are scheduled by

RMS with their original priorities, and the subtasks of a split

task need to respect their precedence relations, which is the

same as in RM-TS/light.
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Note that, when Assign calculates the synthetic deadlines

and verifies whether the tasks assigned to a processor are

schedulable, it assumes that any body subtask has the highest

priority on its host processor, which has been proved true

for RM-TS/light in Lemma 2. It is easy to see that this

assumption also holds for the second phase of RM-TS (the task

assignment on normal processors), in which tasks are assigned

in exactly the same way as RM-TS/light. But it is not clear

for this moment whether this assumption also holds for the

third phase or not, since there are pre-assigned tasks already

assigned to these pre-assigned processors in the first phase,

and there is a risk that a pre-assigned task might have higher

priority than the body subtask on that processor. However, as

will be shown in the proof of Lemma 14, a body subtask
on a pre-assigned processor has the highest priority on its
host processor, thus routine Assign indeed performs a correct

schedulability analysis for task assignment and splitting, by

which we know any task set successfully partitioned by RM-
TS is guaranteed to meet all deadlines at run-time.

B. Utilization Bound

The proof of the utilization bound Λ(τ) for RM-TS. follows

a similar pattern as the proof for RM-TS/light, by assuming

a task set τ that can’t be completely assigned. The main

difficulty is that we now have to deal with heavy tasks as

well. Recall that the approach in Section IV was to show

an individual utilization of at least Λ(τ) on each single
processor after an “overflowed” partitioning phase. However,

for RM-TS, we will not do that directly. Instead, we will show

the appropriate bound for sets of processors.

We first introduce some additional notation. Let’s assume

that K ≥ 0 heavy tasks are pre-assigned in the first phase

of RM-TS. Then P is partitioned into the set of pre-assigned
processors:

PP := {P1, . . . , PK}

and the set of normal processors:

PN := {PK+1, . . . , PM}.

We also use

P≥q := {Pq, . . . , PM}

to denote the set of processors with index of at least q.

We want to show that, after a failed partitioning procedure of

τ , the total utilization sum of all processors is at least M ·Λ(τ).
We do this by proving the property

∑
Pj∈P≥q

U(Pj) ≥ |P≥q| · Λ(τ)

by induction on P≥q for all q ≤ K, starting with base case

q = K, and using the inductive hypothesis with q = m + 1
to derive this property for q = m. When q = 1, it implies the

expected bound M · Λ(τ) for all the M processors.

1) Base Case

The proof strategy of the base case is: We assume that

the total assigned utilization of normal processors is below

the expected bound, by which we can derive the absence of

bottlenecks on some processors in PN . This contradicts the

fact that there is at least one bottleneck on each processor after

a failed partitioning procedure.

First, Lemma 5 still holds for normal processors under RM-
TS, i.e., a bottleneck on a normal processor with assigned

utilization lower than Λ(τ) is neither a non-split task nor a

body subtask. This is because the partitioning procedure of

RM-TS on normal processors is exactly the same as RM-
TS/light and one can reuse the reasoning for Lemma 5 here.

In the following, we focus on the difficult case of tail subtasks.

Lemma 9. Suppose there are remaining tasks after the second
phase of RM-TS. Let τ ti be a tail subtask assigned to Pt. If
both the following conditions are satisfied∑

Pq∈PN
U(Pq) < |PN | · Λ(τ) (9)

U(Pt) < Λ(τ) (10)

then τ ti is not a bottleneck on Pt.

Proof: We prove by contradiction: We assume the lemma

does not hold for one or more tasks, and let τi be the lowest-

priority one among these tasks.

Similar with the proof of its counterpart in RM-TS/light
(Lemma 7), we will first show that all processors hosting

τi’s body subtasks have assigned utilization at least Λ(τ). We

do this by contradiction. We assume U(Pbj ) < Λ(τ), and

by Condition (9) we know the tail subtasks on Pbj are not

bottlenecks (the tail subtasks on Pbj all satisfy this lemma,

since they all have lower priorities than τi, and by assumption

τi is the lowest-priority task does not satisfy this lemma). By

Lemma 5 (which still holds for normal processors as discussed

above), we know a bottleneck of Pbj is neither a non-split

task nor a body subtask. So we can conclude that there is

no bottleneck on Pbj , which is a contradiction. Therefore, we

have proved that all processors hosting τi’s body subtasks have

assigned utilization at least Λ(τ). This results will be used later

in this proof.

In the following we will prove τ ti is not a bottleneck, by

deriving Condition (3) and apply Lemma 6 to τ ti . τi is either

light or heavy. For the case τi is light, the proof is exactly

the same as for Lemma 7, since the second phase of RM-TS
works in exactly the same way as RM-TS/light. Note that to

prove for the light task case, only Condition (9) is needed (the

same as in Lemma 7).

In the following we consider the case that τi is heavy. We

prove in two cases:

• U body
i ≥ Λ(τ)−Θ(τ)

1−Θ(τ)
Since τi is a heavy task but not pre-assigned, it failed

the pre-assign condition, satisfying the negation of that
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condition: ∑
j>i

Uj > (|P�(τi)| − 1) · Λ(τ) (11)

We split the utilization sum of all lower-priority tasks in

two parts: Uα, the part contributed by pre-assigned tasks,

and Uβ , the part contributed by normal tasks. By the

partitioning algorithm construction, we know the Uβ part

is on normal processors and the Uα part is on processors

in P�(τi) \ PN , We further know that each pre-assigned

processor has one pre-assigned task, and each task has a

utilization of at most Λ(τ) (our assumption stated in the

beginning of Section V). Thus, we have:

Uβ ≤ (|P�(τi)| − |PN |) · Λ(τ) (12)

By replacing
∑

j>i Uj by Uα+Uβ in (11) and applying

(12), we get:

Uα > (|PN | − 1) · Λ(τ) (13)

The assigned utilizations on processors in PN consists of

three parts: (i) the utilization of tasks with lower priority

than τi, (ii) the utilization of τi, and (iii) the utilization

of tasks with higher priority than τi. We know that part

(i) is Uα, part (ii) is Ui, and the part (iii) is at least Yt.

So we have

Uα + Ui + Yt ≤
∑

Pq∈PN
U(Pq) (14)

By Condition (9), (13) and (14) we get

Ui + Yt ≤ Λ(τ)

In order to use this to derive Condition (3) of Lemma 6,

which indicates τ ti is not a bottleneck, we need to prove

Λ(τ)− U body
i ≤ Θ(τ)(1− U body

i )

⇔ U body
i ≥ Λ(τ)−Θ(τ)

1−Θ(τ)
(since Θ(τ) < 1)

which is obviously true by the precondition of this case.

• U body
i < Λ(τ)−Θ(τ)

1−Θ(τ)
First, Condition (10) can be rewritten as

Xt + Yt + U t
i < Λ(τ) (15)

Since all processors hosting τi’s body subtasks have

assigned utilization at least Λ(τ) (proved in above), we

have ∑
j∈[1,Bi]

Xbj + U body
i > Bi · Λ(τ)

Since at each step of the second phase, RM-TS always

selects the processor with the minimal assigned utilization

to assign the current (sub)task, we have Xt ≥ Xbj for

each Xbj . Therefore we have

BiXt + U body
i ≥ Bi · Λ(τ)
⇒ Xt ≥ Λ(τ)− U body

i (since Bi ≥ 1)

combining which and (15) we get

Yt + U t
i < U body

i

Now, to prove Condition (3) of Lemma 6, which indicates

τ ti is not a bottleneck, we only need to show

U body
i ≤ Θ(τ)(1− U body

i )

⇔ U body
i ≤ Θ(τ)

1 + Θ(τ)

Due to the precondition of this case U body
i < Λ(τ)−Θ(τ)

1−Θ(τ) ,

we only need to prove

Λ(τ)−Θ(τ)

1−Θ(τ)
≤ Θ(τ)

1 + Θ(τ)

⇔ Λ(τ) ≤ 2Θ(τ)

1 + Θ(τ)

which is true since Λ(τ) is assumed to be at most
2Θ(τ)
1+Θ(τ)

in RM-TS.

In summary, we know τ ti is not a bottleneck.

By the above reasoning, we can establish the base case:

Lemma 10. Suppose there are remaining tasks after the
second phase of RM-TS (there exists at least one bottleneck
on each normal processor). We have:∑

Pq∈PN
U(Pq) ≥ |PN | · Λ(τ)

2) Inductive Step
We start with a useful property concerning the pre-assigned

tasks’ local priorities.

Lemma 11. Suppose Pm is a pre-assigned processor. If∑
Pq∈P≥m+1

U(Pq) ≥ |P≥m+1| · Λ(τ) (16)

then the pre-assigned task on Pm has the lowest priority
among all tasks assigned to Pm.

Proof: Let τi be the pre-assigned task on Pm. Since τi is

pre-assigned, we know that it satisfies the pre-assign condition:

∑
j>i

Uj ≤ (|P�(τi)| − 1︸ ︷︷ ︸
|P≥m+1|

) · Λ(τ)

Using this with (16) we have:∑
Pq∈P≥m+1

U(Pq) ≥
∑
j>i

Uj (17)

which means the total capacity of the processors with larger

indices is enough to accommodate all lower-priority tasks.

By the partitioning algorithm, we know that no tasks, except

τi which has been pre-assigned already, will be assigned to Pm

before all processors with larger indices are full. So no task

with priority lower than τi will be assigned to Pm.

Now we start the main proof of the inductive step.
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Lemma 12. We use RM-TS to partition task set τ . Suppose
there are remaining tasks after processor Pm is full (there
exists at least one bottleneck on Pm). If∑

Pq∈P≥m+1

U(Pq) ≥ |P≥m+1| · Λ(τ) (18)

then we have ∑
Pq∈P≥m

U(Pq) ≥ |P≥m| · Λ(τ)

Proof: We prove by contradiction. Assume∑
Pq∈P≥m

U(Pq) < |P≥m| · Λ(τ) (19)

With assumption (18) this implies the bound on Pm’s utiliza-

tion:

U(Pm) < Λ(τ) (20)

As before, with (20) we want to prove that a bottleneck

on Pm is neither a non-split task, a body subtask nor a tail

subtask, which forms a contradiction and completes the proof.

In the following we consider each type individually.

We first consider non-split tasks. Again, Λ(τ) is sufficient

to guarantee the schedulability of non-split tasks, although

the relative deadlines of split subtasks on this processor may

change. Thus, (20) implies that a non-split task cannot be a

bottleneck of Pm.

Then we consider body subtasks. By Lemma 11 we know

the pre-assigned task has the lowest priority on Pm. We also

know that all normal tasks on Pm have lower priority than

the body subtask, since in the third phase of RM-TS tasks

are assigned in increasing priority order. Therefore, we can

conclude that the body subtask has the highest priority on Pm,

and cannot be a bottleneck.

At last we consider tail subtasks. Let τ ti be a tail subtask

assigned to Pm. We distinguish the following two cases:

• U body
i < Θ(τ)

1+Θ(τ)
The inductive hypothesis (18) guarantees with Lemma 11

that the pre-assigned task has the lowest priority on Pm,

so Xt contains at least the utilization of this pre-assigned

task, which is heavy. So we have:

Xt ≥ Θ(τ)

1 + Θ(τ)
(21)

We can rewrite (20) as Xt + Yt + U t
i < Λ(τ) and apply

it to (21) to get:

Yt + U t
i < Λ(τ)− Θ(τ)

1 + Θ(τ)
(22)

Recall that Λ(τ) is restricted by an upper bound in RM-
TS:

Λ(τ) ≤ 2Θ(τ)

1 + Θ(τ)

⇔ Λ(τ)− Θ(τ)

1 + Θ(τ)
≤ Θ(τ)(1− Θ(τ)

1 + Θ(τ)
)

By applying U body
i < Θ(τ)

1+Θ(τ) to above we have

Λ(τ)− Θ(τ)

1 + Θ(τ)
< Θ(τ)(1− U body

i )

And by (22) we have Yt + U t
i < Θ(τ)(1 − U body

i ). By

Lemma 6 we know τ ti is not a bottleneck.

• U body
i ≥ Θ(τ)

1+Θ(τ)
Since τi is a heavy task but not pre-assigned, it failed

the pre-assign condition, satisfying the negation of that

condition: ∑
j>i

Uj > (|P�(τi)| − 1) · Λ(τ) (23)

We split the utilization sum of all lower-priority tasks in

two parts: Uβ , the part contributed by tasks on P≥m, Uα,

the part contributed by pre-assigned tasks on P\P≥m. By

the partitioning algorithm construction, we know the Uα

part is on processors in P�(τi) \ P≥m, We further know

that each pre-assigned processor has one pre-assigned

task, and each task has a utilization of at most Λ(τ) (our

assumption stated in the beginning of Section V). Thus,

we have:

Uβ ≤ (|P�(τi)| − |P≥m|) · Λ(τ) (24)

By replacing
∑

j>i Uj by Uα+Uβ in (11) and applying

(12), we get:

Uα > (|P≥m| − 1) · Λ(τ) (25)

The assigned utilizations on processors in P≥m consists

of three parts: (i) the utilization of tasks with lower

priority than τi, (ii) the utilization of τi, and (iii) the

utilization of tasks with higher priority than τi. We know

that part (i) is Uα, part (ii) is Ui, and the part (iii) is at

least Yt. So we have

Uα + Ui + Yt ≤
∑

Pq∈P≥m

U(Pq) (26)

By (19), (25) and 26 we have:

Yt + Ui < Λ(τ)

⇔ Yt + U t
i < Λ(τ)− U body

i

⇒ Yt + U t
i <

2Θ(τ)

1 + Θ(τ)
− U body

i

(
Λ(τ) ≤ 2Θ(τ)

1 + Θ(τ)

)

By the precondition of this case U body
i ≥ Θ(τ)

1+Θ(τ) , we

have

2Θ(τ)

1 + Θ(τ)
− U body

i ≤ Θ(τ)(1− U body
i )

Applying this to above we get Yt+U t
i < Θ(τ)(1−U body

i ).
By Lemma 6 we know τ ti is not a bottleneck.

In summary, we have shown that in both cases the tail

subtask τ ti is not a bottleneck of Pm. So we can conclude that

there is no bottleneck on Pm, which results in a contradiction

and establishes the proof.
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3) Utilization Bound
Lemma 10 (base case) and Lemma 12 (inductive step)

inductively proved that after a failed partitioning, the total

utilization of all processors is at least M · Λ(τ). And since

there are (sub)tasks not assigned to any processor after a failed

partitioning, τ ’s normalized utilization UM (τ) is strictly larger
than Λ(τ). So we can conclude:

Lemma 13. Given a task set τ and a D-PUB Λ(τ) ≤ 2Θ(τ)
1+Θ(τ) .

τ can be successfully partitioned by RM-TS if its normalized
utilization UM (τ) is bounded by Λ(τ).

Now we will show that a task set is guaranteed to be

schedulable if it is successfully partitioned by RM-TS.

Lemma 14. If a task set is successfully partitioned by RM-TS,
the tasks on each processor are schedulable by RMS.

Proof: RM-TS uses routine Assign for task assignment

and splitting, which assumes a body subtask has the highest

priority on its host processor (this has been shown to be

true for RM-TS/light in Lemma 2, so in RM-TS/light a

successfully partitioning implies the schedulability). In RM-
TS, this assumption is clearly true for normal processors, on

which the task assignment is exactly the same as RM-TS/light.
In the following, we will show this assumption is also true for

pre-assigned processors.
Let Pq be a pre-assigned processor involved in the third

phase of RM-TS, and a body subtask τ
bj
i is assigned to Pq .

By Lemma 10 and 12 we can inductively prove that the total

utilization of processors in P≥q+1 is at least |P≥q+1| · Λ(τ).
So by Lemma 11 we know a pre-assigned task on processors

Pq has the lowest priority on that processor, particularly, has

lower priority than τ
bj
i . We also know that all other tasks on

Pq have lower priority than τ
bj
i , since tasks are assigned in

increasing priority order and τ
bj
i is the last one assigned to

Pq .
In summary we know that after partitioned by RM-TS, any

body subtask has the highest priority on its host processor.

So Assign indeed performs a correct task assignment and

splitting, which guarantees that all deadlines can be met at

run-time.
By now we have proved that any task with total utilization

no larger than Λ(τ) can be successfully partitioned by RM-
TS, and all tasks can meet deadline if they are scheduled on

each processor by RMS. So we can conclude the utilization

bound of RM-TS:

Theorem 15. Given a parametric utilization bound Λ(τ) ≤
2Θ(τ)
1+Θ(τ) derived from the task set τ ’s parameters. If

UM (τ) ≤ Λ(τ)

then τ is schedulable by RM-TS.

Proof: Directly follows Lemma 13 and 14.

VI. CONCLUSIONS

We have developed new fixed-priority multiprocessor

scheduling algorithms overstepping the Liu and Layland uti-

lization bound. The first algorithm RM-TS/light can achieve

any sustainable parametric utilization bound for light task sets.

The second algorithm RM-TS gets rid of the light restriction

and work for any task set, if the bound is under a threshold
2Θ(τ)
1+Θ(τ) . Further, the new algorithms use exact analysis RTA,

instead of the worst-case utilization threshold as in [16], to

determine the maximal workload assigned to each proces-

sor. Therefore, the average-case performance is significantly

improved. As future work, we will extend our algorithms

to deal with task graphs specifying task dependencies and

communications.
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