
Fixed-Priority Multiprocessor Scheduling:
Critical Instant, Response Time and Utilization Bound

Nan Guan
Uppsala University, Sweden

Email: nan.guan@it.uu.se

Wang Yi
Uppsala University, Sweden

Email: yi@it.uu.se

Abstract—The rapid development of multi-core processors
leads to a constantly increasing trend of deploying real-time
systems on multi-core platforms, to satisfy the dramatically
increasing high-performance and low-power requirements. This
trend demands effective and efficient multiprocessor real-time
scheduling techniques. The uniprocessor scheduling problem
has been well studied during the last 40 years. However the
multiprocessor scheduling problem to map tasks onto parallel
architectures is a much harder challenge. In this work, we
study several fundamental problems in multiprocessor schedul-
ing, namely the critical instant, bounded responsiveness, and
utilization bound.

I. INTRODUCTION

A real-time system is an information processing system

which has to respond to externally generated input stimuli

within a finite and specified period: the correctness depends

not only on the logical result but also on the time it was

delivered; the failure to respond is as bad as the wrong

response [12]. These systems are nowadays present in a wide

variety of embedded systems and cyber-physical systems, such

as automotive/avionic control systems, military applications

and environmental monitoring systems. A real-time system

typically consists of multiple recurrent processes. These recur-

rent processes may be invoked with different periods (different

frequencies). It is a challenging problem to decide how to

arrange the execution of these processes such that all of them

can meet their timing requirements at each invocation. This

problem is called real-time scheduling.

A milestone of the research on real-time scheduling is the

publication of Liu and Layland’s seminal paper [31] in 1973,

on the topic of real-time scheduling on uniprocessor systems.

Significant research efforts and advances have been made upon

on Liu and Layland’s fundamental framework in the last 40

years. Today, although there is still considerable research going

on, uniprocessor real-time scheduling theory can be viewed

as reasonably mature, with a large number of key results

documented in text books and successfully transferred into

industrial practice [17].

The rapid development of multi-core processors leads to

a constantly increasing trend of deploying real-time systems

on multi-core platforms, to satisfy the dramatically increasing

high-performance and low-power requirements. This trend

demands effective and efficient techniques for scheduling

real-time systems on multi-cores. The problem of schedul-

ing real-time workloads on parallel computing architectures

(e.g., multi-core processor) is called real-time multiprocessor

scheduling, or multiprocessor scheduling for short. Multipro-

cessor scheduling theory originates in the late 1960’s and early

1970’s. [30] noted that multiprocessor real-time scheduling is

intrinsically a much more difficult problem than uniprocessor

scheduling: “Few of the results obtained for a single processor
generalize directly to the multiple processor case; bringing in
additional processors adds a new dimension to the scheduling
problem. The simple fact that a task can use only one processor
even when several processors are free at the same time adds
a surprising amount of difficulty to the scheduling of multiple
processors.”

Ceaseless work has been done on multiprocessor scheduling

since 1960’s, and a burst of research efforts on this topic

start since late 1990’s, around the same time as the major

silicon vendors such as IBM and AMD start the development

of multi-core processors. Nowadays, the multiprocessor plat-

form is gradually becoming the default setting of the real-

time scheduling research. Despite the great effort made in

the last 40 years, the research on multiprocessor scheduling

problem is still far from mature. Many fundamental problems

in multiprocessor scheduling are still open.

The thesis of this research is to study the fundamental open

problems in multiprocessor scheduling. The target is to as

much as possible generalize the classical theoretical results of

uniprocessor scheduling to multiprocessor setting, such that

the well-established design/analysis framework and tools of

uniprocessor real-time systems can be easily adopted and ex-

tended to multi-core systems.We focus on a particular subclass

of real-time scheduling algorithms, fixed-priority scheduling,

in which each process is assigned a static priority and a

higher-priority process always has privilege for execution than

a lower-priority one. Fixed-priority is the most widely used

scheduling paradigm in industrial practise, and is the default

scheduler setting in mainstream real-time operating systems.

II. RELATED WORK

Multiprocessor scheduling are usually categorized into two

paradigms [14]: global scheduling, in which each task can

execute on any available processor at runtime, and partitioned

scheduling in which each tasks is assigned to a processor

beforehand, and at runtime each task can only execute on this

particular processor.

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.305

2464

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.305

2464

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.305

2470

Partitioned scheduling enjoys relatively easier design and

analysis: as soon as the system has been partitioned into

subsystems that will be executed on individual processors

each, the traditional uniprocessor real-time scheduling and

analysis techniques can be applied to each individual sub-

system/ processor. The system partitioning is similar to the

bin-packing problem [15], for which many efficient heuristics

are known despite of its general intractability. Much work

has been done on adopting different bin-packing heuristics

to multiprocessor scheduling problem [20], [33], [16], [11].

Similar to the bin-packing problem, partitioning scheduling

suffers resource waste due to fragmentation. Theoretically, the

worst-case utilization bound of partitioned scheduling can not

exceed 50% regardless of the local scheduling algorithm on

each processor [14].

On the other hand, global scheduling on average utilizes

computing resource better, and is more robust in the presence

of timing errors. However, the analysis of global scheduling

is significantly more difficult. Global scheduling algorithms

based on widely optimal uniprocessor scheduling algorithms

like RM and EDF suffer from the so-called Dhall effect [20],

namely some system with utilization arbitrarily close to 1 can

be infeasible by global RM/EDF scheduling no matter how

many processors are added to the system. A major obstacle

in precisely analyzing global scheduling and thereby fully

exploring its potential is that the critical instant in global

scheduling is in general unknown. Several attempts have been

made to exhaustively analyze global scheduling by either

explicit or symbolic state space enumeration [6], [21], [22],

but all run into serious scalability problem. A large body of

works have been done in efficient analysis of global scheduling

by over-approximation [5], [10], [9], [7], [8].

III. PROBLEM MODEL

We consider a sporadic task set τ consists of N sporadic

tasks running on a multiprocessor platform of M processors.

We use τi = 〈Ci, Di, Ti〉 to denote such a task where Ci

is the worst-case execution time (WCET), Di is the relative

deadline for each release, and Ti is the minimum inter-arrival

separation time also referred to as the period of the task. The

utilization of a task τi is Ui = Ci/Ti. We define the total

utilization of the task set as

Utotal =
∑

τi∈τ

Ui

An implicit-deadline task τi satisfies the restriction Di =
Ti, a constrained-deadline task τi satisfies Di ≤ Ti, whereas

an arbitrary-deadline task τi does not constrain the relation

between Di and Ti. We will consider all types.

We further assume that all tasks are ordered by priorities,

i.e., τi has higher priority than τj iff i < j. In this work

we consider preemptively scheduling, so a higher priority task

always has privilege for execution over a lower priority task.

A sporadic task τi generates a potentially infinite sequence

of jobs with successive job-arrivals separated by at least Ti

time units. Each job J adheres to the conditions Ci and Di

of its task τi and has additional properties of the release time,

denoted by r, the deadline, denoted by d (derived by d =
r + Di, and the finish time by f , which is the time instant

at which J just finished its execution. We define the response
time of J as the difference between its release and finish times

R = f − r. The worst-case response time (WCRT) Ri of task

τi is the maximal response time value among all jobs of τi in

all job sequences possible in the system.

Since Di is allowed to be larger than Ti, it is possible that

several jobs of a task are active (i.e., released but not yet

finished) simultaneously. We restrict that a job can execute

only if its precedent job has been already finished, to avoid

unnecessary working space conflict. This restriction is com-

monly adopted in the implementation of real-time operating

systems for multicores/multiprocessors, for instance, RTEMS

[32] and LITMUSRT [13].

IV. CRITICAL INSTANT

A. Uniprocessor Scheduling
A critical instant for a task is defined to be an instant at

which a request for that task will have the largest response

time [31]. The critical instant of fixed-priority uniprocessor

scheduling is presented in Liu and Layland’s seminal paper:

Theorem IV.1. [31] A critical instant for any task occurs
whenever the task is requested simultaneously with requests
for all higher priority tasks.

Due to the slight difference between the model in [31] and

this work, we shall add two extra (rather trivial) constraints to

obtain the critical instant for sporadic tasks:

• Each task always releases jobs as soon as possible.

• Each task always executes for worst-case execution time

The critical instant is one of the most important concept in

uniprocessor scheduling analysis. Despite the infinite states-

pace of a sporadic task set’s runtime behavior, the analysis

can be limited to one concrete scenario specified by the crit-

ical instant. The critical instant of fixed-priority uniprocessor

scheduling has also been generalized to different variants of

the standard sporadic tasks, e.g., non-preemptive tasks [18],

task system shared resource [35], and tasks with offsets [26].

B. Multiprocessor Scheduling
The critical instant of fixed-priority uniprocessor scheduling

does not necessarily lead to the worst-case response time

in global scheduling. First, the simultaneous release pattern

does not necessarily lead to the worst-case response time

[34]. Secondly, the as-soon-as-possible release pattern does not

necessarily lead to the worst-case response time [4]. Therefore,

one can not reduce the analysis to a concrete scenario as in

uniprocessor scheduling. One way to conduct the analysis in

the presence of an unknown critical instant is to (explicitly

or symbolically) enumerate all the possible system behavior

[6], [21], [22], which turned out to be very unscalable due to

the state-space explosion. In order to analyze real-life scale

applications, people resort to efficient approximate analysis,

which yields safe but conservative results.

246524652471

In [23], we developed approximate response time analysis

techniques for fixed-priority global scheduling based on the

concept of abstract critical instant, which can be describe as

follows:

• All higher priority tasks, except M − 1 of them, is

simultaneously requested.

• Each task always releases jobs as soon as possible.

• Each task always executes for worst-case execution time.

The abstract critical instant still does not provide precise

information about the worst-case release times of the higher

priority tasks, but we are left with a set among which the

real critical instant can be found – but this set is significantly

smaller than the whole space of possible job sequences.

V. BOUNDED RESPONSE TIME

A. Uniprocessor Scheduling

The response time of each task is bounded under fixed-

priority uniprocessor scheduling for any task system with:

Utotal ≤ 1

Recall that the utilization Ui = Ci/Ti of a task represents the

portion of the processing capacity needed by this task in the

long term. So if a task set has total utilization strictly smaller

than 1 (or has total utilization equal to 1 but requests less

workload than the worst case at runtime), in the long term the

total capacity requested by the task set is fewer than what the

processor provides, so the busy period (the continuous time

interval in which the processor is executing some task) will

terminate in a bounded time. If a task set has total utilization

equal to 1 and requests exactly the worst-case workload, then

under the critical instant (all tasks release together) the total

request in the time interval of length equal to the task set’s

least common period will be finished exactly at the end of this

interval, which implies the response time of each task is also

bounded.

B. Multiprocessor Scheduling

In multiprocessor scheduling, the condition

Utotal ≤M

implies the total capacity does not exceed what provided by the

processor platform. However, such a condition can not guar-

antee the bounded responsiveness under fixed-priority global

scheduling (neither the weaker condition Utotal < M) [19].

Therefore, it leaves open that under what kind of condition

the response time of a task is guaranteed to be bounded by

fixed-priority global scheduling.

In [23], we addressed the bounded responsiveness problem

of fixed-priority global scheduling. More specifically, we first

developed the general response time analysis techniques for

arbitrary deadline sporadic task systems, and then establish the

condition for the termination of such an analysis procedure.

The results can be summarized as follows:

Theorem V.1. The response time of a task τi is bounded if τi
satisfied the following condition:

∑

i<k

V k
i +M × Uk < M

where V k
i = min(Ui, 1− Uk) is the interfering utilization.

Intuitively, the item M×Uk addresses the resource waste in

the situation that all the other M −1 processors are idle when

the analyzed task is executing. The interfering utilization V i
k

restricts the utilization which is relevant for interference to the

part that is not running in parallel to the task in question.

VI. UTILIZATION BOUND

A. Uniprocessor Scheduling

Utilization bound of a scheduling algorithm is a value UB
such that any task set whose total utilization Utotal not exceed-

ing UB is guaranteed to be schedulable. In the seminal paper

[31], Liu and Layland discovered the utilization bound for (the

optimal algorithm of) fixed-priority uniprocessor scheduling

with implicit-deadline sporadic task systems:

Theorem VI.1. [31] A task set is schedulable by Rate Mono-
tonic (RM) scheduling if it holds

Utotal ≤ N × (2
1
N − 1)

The term N × (2
1
N − 1) is known as the famous Liu and

Layland utilization bound, which is monotonically decreasing

with respect to N and approaches 0.693 as N goes to infin-

ity. RM scheduling is the optimal fixed-priority uniprocessor

scheduling algorithm, and Liu and Layland utilization bound

is tight. So N × (2
1
N − 1) is the tight utilization bound for

fixed-priority uniprocessor scheduling in general.

B. Multiprocessor Scheduling

The utilization bound concept can be extended to multi-

processor scheduling: the utilization bound UB guarantees

that any task set whose total utilization normalized by the

number of processors (Utotal

M) is bounded by UB is schedula-

ble. Multiprocessor scheduling can be categorized into global

scheduling and partitioned scheduling. The standard global

scheduling version of RM suffers the so-called Dhall’s effect

[20], namely some system with utilization arbitrarily close to

1 can be unschedulable by global RM scheduling no matter

how many processors are added to the system, which implies

the utilization bound of global RM is arbitrarily close to

zero. The best known utilization bound of fixed-priority global

scheduling is 0.38 [2]. On the other hand, the utilization bound

of partitioned scheduling cannot exceed 0.5, which is the

same limit as in bin-packing problem. So neither global nor

partitioned scheduling achieves as high utilization bound as in

uniprocessor scheduling.

In [24], we developed a fixed-priority multiprocessor

scheduling algorithm SPA that generalizes the Liu and Lay-

land utilization bound to multiprocessor:

246624662472

Theorem VI.2. A task set is schedulable by SPA on M
processors if it holds

Utotal

M
≤ N × (2

1
N − 1)

SPA is in the category of semi-partitioned scheduling or

partitioned scheduling with task splitting [1], [27], [3], [28],

[29], in which most tasks are statically assigned to one fixed

processor as in partitioned scheduling, while a few number

of tasks are split into several subtasks, which are assigned

to different processors. Bin-packing problem will become

trivial if item splitting is allowed. However, semi-partitioned

scheduling is a much more difficult problem. The challenge

is that the scheduling algorithm must guarantee the serial

execution of a split task on different processors.

SPA uses the worst-fit bin-packing heuristics and increas-

ing priority order to allocate (a portion of) each task to

processors, and uses RM as the local scheduling on each

processor. The main insight for SPA to achieve the same

(optimal) utilization bound as in uniprocessor scheduling is

that, the worst-fit bin-packing and increasing priority order

guarantees that task splitting happens only with relatively

higher priority tasks. The higher priority tasks have larger

slack, and thereby can tolerant extra timing constraints for

guaranteeing the serial execution of different parts of a split

task on different processors. This result has been extended to

parametric utilization bounds that guarantees better resource

usage by exploring the knowledge of task parameters [25].

VII. FUTURE WORK

The following topics are in the scope our potential further

work directions:

• To further refine the abstract critical instant, in order to

obtain more precise response time analysis.

• To extend the so far obtained utilization bound results

to heterogenous multiprocessor platforms. Heterogenous

multiprocessor can be classified into uniformly heteroge-

nous and unrelated heterogenous multiprocessor plat-

forms [14]. Our preliminary work indicates the extension

of our results to unrelated heterogenous multiprocessors

would be especially challenging.

• To study the analysis of multiprocessor scheduling with

more general task models. Many applications deployed

on multi-cores are parallel programs, which can be rep-

resented by task graph models. We shall study extend

our abstract critical instant and response time analysis

techniques to these parallel applications.

REFERENCES

[1] J. Anderson, V. Bud, and U. Devi. An EDF-based scheduling algorithm
for multiprocessor soft real-time systems. In ECRTS, 2005.

[2] B. Andersson. Global static priority preemptive multiprocessor schedul-
ing with utilization bound 38%. In OPODIS, 2008.

[3] B. Andersson, K. Bletsas, and S. Baruah. Scheduling arbitrary-deadline
sporadic task systems multiprocessors. In RTSS, 2008.

[4] B. Andersson and J. Jonsson. Some insights on fixed-priority preemptive
non-partitioned multiprocessor scheduling. Technical Report, Chalmers
University of Technology., 2001.

[5] T. P. Baker. Multiprocessor EDF and deadline monotonic schedulability
analysis. In RTSS, 2003.

[6] T. P. Baker and M. Cirinei. Brute-force determination of multiprocessor
schedulability for sets of sporadic hard-deadline tasks. In OPODIS,
2007.

[7] S. K. Baruah. Techniques for multiprocessor global schedulability
analysis. In RTSS, 2007.

[8] S. K. Baruah and T. P. Baker. Schedulability analysis of global EDF.
In Real Time Systems, 2008.

[9] M. Bertogna and M. Cirinei. Response-time analysis for globally
scheduled symmetric multiprocessor platforms. In RTSS, 2007.

[10] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedulability analysis
of EDF on multiprocessor platforms. In ECRTS, 2005.

[11] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son. New strategies
for assigning real-time tasks to multiprocessor systems. In IEEE
Transactions on Computers, 1995.

[12] A. Burns and A. Wellings. Real-time systems and programming
languages. In Addison-Wesley, 3rd edition, 2001.

[13] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson.
Litmusrt: A testbed for empirically comparing real-time multiprocessor
schedulers. In RTSS, 2006.

[14] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah. A Categorization of Real-Time Multiprocessor Scheduling
Problems and Algorithms. 2004.

[15] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation
algorithms for bin packing: a survey. 1997.

[16] S. Davari and S. K. Dhall. On a periodic real time task allocation
problem. In Annual International Conference on System Sciences, 1986.

[17] R. I. Davis and A. Burns. A survey of hard real-time scheduling for
multiprocessor systems. In ACM Computer Survey, 2011.

[18] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien. Controller area
network (CAN) schedulability analysis: Refuted, revisited and revised.
In Real-Time Systems, 2007.

[19] U. Devi and J. Anderson. Tardiness bounds for global EDF scheduling
on a multiprocessor. In RTSS, 2005.

[20] S. K. Dhall and C. L. Liu. On a real-time scheduling problem. In
Operations Research, Vol. 26, No. 1, Scheduling, 1978.

[21] N. Guan, Z. Gu, Q. Deng, S. Gao, and G. Yu. Exact schedulabil-
ity analysis for static-priority global multiprocessor scheduling using
model-checking. In SEUS, 2007.

[22] N. Guan, Z. Gu, M. Lv, Q. Deng, and G. Yu. Exact schedulability
analysis of global scheduling on multiprocessor platforms by symbolic
model checking. In ISORC, 2008.

[23] N. Guan, M. Stigge, W. Yi, and G. Yu. New response time bounds of
fixed priority multiprocessor scheduling. In RTSS, 2009.

[24] N. Guan, M. Stigge, W. Yi, and G. Yu. Fixed-priority multiprocessor
scheduling with Liu & Layland’s utilization bound. In RTAS, 2010.

[25] N. Guan, M. Stigge, W. Yi, and G. Yu. Parametric Utilization Bounds
for Fixed-Priority Multiprocessor Scheduling. In IPDPS, 2012.

[26] M. G. H. J. Palencia Gutierrez. Schedulability analysis for tasks with
static and dynamic offsets. In RTSS, 1998.

[27] S. Kato and N. Yamasaki. Real-time scheduling with task splitting on
multiprocessors. In RTCSA, 2007.

[28] S. Kato and N. Yamasaki. Portioned EDF-based scheduling on multi-
processors. In EMSOFT, 2008.

[29] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. Partitioned fixed-priority
preemptive scheduling for multi-core processors. In ECRTS, 2009.

[30] C. L. Liu. Scheduling algorithms for multiprocessors in a hard real-time
environment. In JPL Space Programs Summary, 1969.

[31] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. In Journal of the ACM, 1973.

[32] O.-L. A. R. C. (OAR). RTEMS Applications C User’s Guide. 2001.
[33] Y. Oh and S. H. Son. Allocating fixed priority periodic tasks on

multiprocessor systems. In Real-Time Systems, 1995.
[34] R. M. S. Lauzac and D. Mosse. Comparison of global and partitioning

schemes for scheduling rate monotonic tasks on a multiprocessor. In
ECRTS, 1998.

[35] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. In IEEE Transactions on
Computers, 1990.

246724672473

