
Modeling and Analysis of Thread-Pools ?

in an Industrial Communication Platform

Frank S. de Boer1, Immo Grabe2;1, Mohammad Mahdi Jaghoori1,
Andries Stam3, and Wang Yi4

1 CWI, Amsterdam, The Netherlands
2 Christian-Albrechts-University Kiel, Germany

3 Almende, The Netherlands
4 University of Uppsala, Sweden

Abstract. Thread pools are often used as a pattern to increase the
throughput and responsiveness of software systems. Implementations
of thread pools may differ considerably from each other, which urges
the need to analyze these differences in a formal manner. We use an
object-oriented paradigm to model different thread pools in the context
of the ASK system, an industrial communication platform. We use be-
havioral interfaces, high-level behavioral specifications for the objects, as
a starting-point for analysis. Based on these behavioral interfaces, func-
tional aspects are modeled in Creol, a high-level modeling language for
concurrent objects. It can be used to simulate the behaviors of the ASK
system for debugging, testing, and formal verification. Based on the Creol
model, we have constructed a real-time model of the ASK system in Up-
paal. The real-time model has been used to check the schedulability of
the thread pools with respect to the behavioral interfaces.

1 Introduction

Thread pools are an important design pattern used frequently in industrial prac-
tice to increase the throughput and responsiveness of software systems, as for
instance in the ASK system [4]. The ASK system is an industrial communica-
tion platform providing mechanisms for matching users requiring information
or services with potential suppliers. A thread pool administrates a collection
of computation units referred to as threads and assigns tasks to them. This
administration includes dynamic creation or removal of such units, as well as
scheduling the tasks based on a given strategy like ‘first come first served’ or
priority based scheduling.

In this paper, we propose the use of the Credo tool suite in order to capture
the various aspects of thread pools and provide a general framework for their
analysis. The Credo tool suite offers a methodology for the top-down design
and compositional analysis of dynamically reconfigurable systems of concurrent
? This work has been supported by the EU-project IST-33826 Credo: Modeling and

analysis of evolutionary structures for distributed services.

objects [11]. We tailor Credo methodology to model and analyze the thread
pools in ASK. The core of this methodology consists of two different executable
modeling languages:

Creol [13] is a high-level object-oriented modeling language for describing the
interactions between concurrent objects. Creol focuses on modeling the data
and control flow thus reflecting the architectural issues of the implementation
at a high level of abstraction. It abstracts from scheduling issues.

Timed Automata [3] are used to model scheduling policies as well as the be-
havioral interfaces of objects which describe the timings of incoming mes-
sages and their deadlines. At this level, we abstract from architectural details
of the model and focus on schedulability analysis (no deadline miss).

After modeling in Creol and analyzing schedulability with timed automata,
we need to establish the conformance between the two models. This is achieved
by testing. Test cases are generated from behavioral interface specifications. As
observed, the behavioral interfaces are central to the analyses in Credo.

Modeling the Architecture The ASK system has been developed and evolved over
years; different subsystems of ASK use specialized thread pools to address issues
like the size of the pool, dynamic creation of threads, load balancing, etc. The
implementation of ASK contains thousands of lines of C code, that are difficult to
understand and analyze. In this paper, we provide a high-level Creol model that
is only tens of lines of Creol code with less distracting implementation details,
and is thus more amenable to analysis.

The intended use of the Creol modeling language is to provide a formal
object-oriented solution to modeling distributed software systems [13, 8]. The
Creol modeling language is implemented by means of an interpreter given in
Maude [5] and supported by an Eclipse modeling and analysis environment (de-
veloped in the Credo project [7]) which includes a compiler and type-checker, a
simulation platform that allows both closed world and open world simulation as
well as guided simulation, and a graphic display of the simulations.

In Creol, objects are concurrent, i.e., conceptually, each object encapsulates
its own processor. Therefore, each object has a single thread of execution. Creol
objects communicate by asynchronous message passing. The message queue is
implicit in the objects. Furthermore, the scheduling policy is underspecified, i.e.,
messages in the queue are processed in a nondeterministic order. The running
method can voluntarily release the processor using special commands allowing
another message to be scheduled. For example, a method can test whether an
asynchronous call has been completed, and if not, release the processor; thus
modeling synchronous calls.

The abstraction from the internal message queue of each object and the
related scheduling policies is one of the most important characteristics of Creol
which allows for abstractly modeling a variety of thread pools. In this paper, we
give an example of an abstract model in Creol of a basic pool where the threads
share the task queue. The shared task queue is naturally represented implicitly

inside a Creol object (called a resource-pool) that basically forwards the queued
tasks to its associated threads also represented as Creol objects (called monks).

Analyzing Schedulability We perform schedulability analysis on the automata
models of thread pools; this verifies whether tasks are performed within their
deadlines. In the context of the ASK system, schedulability ensures that the
response times for service requests are always bounded by the deadlines. We use
Uppaal [16] for this purpose. To analyze the schedulability of thread pools, their
behavioral interfaces are modeled with timed automata. A behavioral interface
describes the (expected) arrival times and the deadlines of the tasks; namely, the
workload on the thread pool. A given scheduling policy, e.g., earliest deadline
first (EDF), is also specified with timed automata. This determines where to
insert a newly generated task in the message queue of the resource-pool object.
The tasks correspond to the monks in the Creol model.

We provide two approaches to schedulability analysis of thread pools. Once
the threads are assumed to run in parallel. This is in line with the assumption
in Creol that monk objects, representing the threads, have dedicated processors.
Next, we model a situation in which all threads share the same processor. In this
case, we model a time-sharing CPU allocation scheme to the concurrent threads.
To this end, we use one extra clock for each thread to compute the idle times
when it is preempted.

Finally, we test conformance between the timed automata models and the
underlying Creol models by generating test cases from the behavioral interfaces.
We use the test cases to drive the execution of the Creol model extended with
an abstract implementation of the given scheduling policy on the simulation
platform.

Related work The schedulability analysis in this paper can be seen as the
continuation of our previous work [12] on modular analysis of a single-threaded
concurrent object with respect to its behavioral interface. In this paper, we ex-
tend the schedulability analysis to the case of a multi-threaded scheduler (rep-
resenting an object-oriented thread pool).

Schedulability has been studied for actor languages [18] and event driven dis-
tributed systems [10]. Unlike these works, we work with non-uniformly recurring
tasks as in task automata [9] which fits better the nature of message passing
in object-oriented languages. The main difference is that in our work, multiple
objects share the same task queue. These objects are once modeled as using the
same processor, therefore scheduled using a time-sharing policy; next we model
them as using independent processors, therefore each object runs in parallel to
the others.

The work of [6, 15] is based on extracting automata from code for schedula-
bility analysis. However, they deal with programming languages and timings are
usually obtained by profiling the real system. Our work is applied on high-level
model. Therefore, our main focus is on studying different scheduling policies
and design decisions. Credo offers techniques for testing conformance with the
C code [1], which is not covered in this paper.

Outline In section 2 we give a short introduction to timed automata and the
Creol language. The current implementation of the ASK system is explained
in section 3. We model the different features and the scheduling of selected
thread pools of the ASK system in section 4. Schedulability analysis and testing
of conformance between the Creol model of a thread-pool and it behavioral
interface is discussed in section 5. We conclude with section 6.

2 Preliminaries

2.1 Timed Automata

In this section, we define timed automata. We use timed automata for specify
behavioral interfaces and perform schedulability analysis.

Definition 1 (Timed Automata). Suppose B(C) is the set of all clock con-
straints on the set of clocks C. A timed automaton over actions � and clocks C
is a tuple hL; l0;�!; Ii representing

– a finite set of locations L (including an initial location l0);
– the set of edges �!� L� B(C)�� � 2C � L; and,
– a function I : L 7! B(C) assigning an invariant to each location.

An edge (l; g; a; r; l0) implies that action ‘a’ may change the location l to l0 by
resetting the clocks in r, if the clock constraints in g (as well as the invariant of
l0) hold. Since we use Uppaal [16], we allow defining variables of type boolean
and bounded integers. Variables can appear in guards and updates.

A timed automaton is called deterministic if and only if for each a 2 �, if
there are two edges (l; g; a; r; l0) and (l; g0; a; r0; l00) from l labeled by the same
action a then the guards g and g0 are disjoint (i.e., g ^ g0 is unsatisfiable).

Networks of timed automata. A system may be described as a collection of timed
automata communicating with each other. In these automata, the action set is
partitioned into input, output and internal actions. The behavior of the system
is defined as the parallel composition of those automata A1 k � � � k An. Semanti-
cally, the system can delay if all automata can delay and can perform an action if
one of the automata can perform an internal action or if two automata can syn-
chronize on complementary actions (inputs and outputs are complementary). In
a network of timed automata, variables can be defined locally for one automaton,
globally (shared between all automata), or as parameters to the automata.

A location can be marked urgent in an automaton to indicate that the au-
tomaton cannot spend any time in that location. This is equivalent to resetting
a fresh clock x in all of its incoming edges and adding an invariant x � 0 to
the location. In a network of timed automata, the enabled transitions from an
urgent location may be interleaved with the enabled transitions from other au-
tomata (while time is frozen). Like urgent locations, committed locations freeze
time; furthermore, if any process is in a committed location, the next step must
involve an edge from one of the committed locations.

IF ::= interface Nf(Par)g?finherits Inhg?

begin fwith N Msig+g? end
Inh ::= fN f(E)g?g+

;

Par ::= ffvg+
; : N g+

;

Msig ::= op Nf(fin Parg? fout Parg?)g?

CL ::= class Nf(Par)g?

fcontracts Inhg? finherits Inhg?

begin Vdcl?ffwith N g? Mtdg� end
Vdcl ::= var ffvg+

; : N f= eg?g+
;

Mtd ::= fMsig == fVdcl ; g? Sg+

g ::= b j t? j :g j g ^ g

p ::= x:m j m
S ::= � j s;S
s ::= (S) j V := E j skip

j v := new N(E) j !p(E)
j t!p(E) j t?(V) j p(E;V)
j if b then S else S end
j await g j await t?(V)
j await p(E;V) j release

Fig. 1. BNF grammar for Creol. Curly brackets are used as meta parenthesis, super-
script ? for optional parts, superscript * for repetition zero or more times, whereas
f:::g+

; denotes repetition one or more times with , as delimiter. Identifiers N denote
interface, class, type, or method names. Capitalized terms such as E, V , and S, denote
lists of the syntactic categories of the corresponding lower-case terms [13, 14].

2.2 Creol

The (simplified) syntax of Creol is given in Fig. 1. Here we introduce the basic
concepts of Creol. A comprehensive presentation of the formal semantics of Creol
(given in rewrite logic, see [13]) is beyond the scope of this paper.

Creol objects are typed by interfaces, whereas classes can implement (indi-
cated by the keyword contracts) as many interfaces as necessary. Co-interfaces
are used to restrict possible callers, i.e. if a co-interfaces is specified only ob-
jects implementing the co-interface are allowed to call methods in the scope of
the interface. A co-interface is specified by the keyword with. The combination
of interfaces as types and co-interfaces enforces type-safe communication. Creol
provides the keyword this to refer to the actual object and the keyword caller to
refer to a caller of a method. In Creol concurrent objects communicate via asyn-
chronous method calls. After sending an asynchronous method call, e.g. t!p(E)
where t denotes a future to retrieve the value later and p(E) the method call,
the process continues execution. The return value of a method call is retrieved
via a get operation on the future, e.g. t?(V) where t denotes the future and V
the variables to store the result in. Note that get is a blocking operation, i.e. the
process blocks until the return value of the method call is computed. A process
can also test a method call for termination, e.g. await t?(V). In case the future
has been calculated the statement is equivalent to t?(V). In case the future has
not yet been calculated the statement releases control over the processor. We
use p(E;V) as a shorthand for t!p(E); t?(V) and await p(E;V) as a shorthand
for t!p(E); await t?(V).

Each object in Creol, upon creation, starts its active behavior by executing
its run operation if defined. When receiving a method call a new process is
created inside the object to handle the method call. The processes inside an
object are interleaved by means of processor release points. A processor release
point is reached if a process terminates or reaches a special condition. The await

1 interface Simple begin
2 with Simple op cal lMe
3 with Any op re sponse
4 end

6 class Easy contracts Simple begin
7 op run == await this . cal lMe ()
8 with Simple op cal lMe == ! cal ler . r e sponse ()
9 with Any op re sponse == skip

10 end

Fig. 2. A simple Creol model

keyword opens such a condition. If the condition is false the processor is released
otherwise the process continues. The conditions can also query method calls for
termination, e.g. await t?(V). A process which has not yet started its execution
or which is waiting on a condition, that is true, is called enabled. Upon processor
release an enabled process is (nondeterministically) chosen to start/continue its
execution.

Creol is backed by its formal operational semantics and its strong typing
allows for dynamic class upgrades [19]. Since Creol semantics is given in rewrite
logic [17], Creol specifications can be executed and analyzed on the Maude [5]
platform. Maude is a rewrite engine that can perform analysis like simulation,
model checking, etc., on transition systems specified using rewrite logic.

Fig. 2 shows a simple Creol model. The Simple interface defines a callMe
operation that can be called only by instances of type Simple, while the response
operation does not require any special co-interface. The run method in a class
defines its active behavior; thus the class Easy starts with calling its own callMe
operation. It waits until the call to callMe has terminated.

3 ASK System

ASK is an industrial software system for connecting people to each other. The
system uses intelligent matching functionality in order to find effective connec-
tions between requesters and responders in a community. ASK has been devel-
oped by Almende [2], a Dutch research company focusing on the application
of self-organisation techniques in human organisations and agent-oriented soft-
ware systems. The system is marketed by ASK Community Systems [4]. ASK
provides mechanisms for matching users requiring information or services with
potential suppliers. Based on information about earlier established contacts and
feedback of users, the system learns to bring people into contact with each other
in the most effective way. Typical applications for ASK are workforce planning,

customer service, knowledge sharing, social care and emergency response. Cus-
tomers of ASK include the European mail distribution company TNT Post,
the cooperative financial services provider Rabobank and the world’s largest
pharmaceutical company Pfizer. The amount of people using a single ASK con-
figuration varies from several hundreds to several thousands.

An Overview of the ASK System

The primary goal of the ASK system is to connect people to other people in the
most effective way. The system acts as a mediator in establishing the contacts:
people can contact the system via various media like telephone or email, and the
system itself is also able to contact people via those media. In determining the
effectiveness of contact establishment, multiple aspects play a role. For example,
the rating of human knowledge and skills is important in cases where people
request contact with specialists or service providers. In these cases, the ASK
system is able to ask participants for feedback on the quality of service after the
contact. This feedback can be used for optimization of subsequent requests of
the same kind. A different role is played by time schedules, which indicate when
certain people can be reached for certain purposes. The ASK system differenti-
ates between regular plannings and ad-hoc schedules caused by sudden events
or delays. Different communication media play another role. In most ASK con-
figurations, voice communication (phone, VoIP) is the primary communication
medium used, but different media like email and SMS are supported by ASK as
well. Moreover, people can own various phone numbers and email addresses, for
which they can indicate preferences and time or service dependent usage con-
straints. The ASK system is able to exploit knowledge about the reacheability
of people via specific media, for example in the context of emergency response
systems, where people must be contacted within a certain time window. In gen-
eral, learning from past experiences of all kinds and forecasting based on these
experiences plays a crucial role in ASK.

The software of ASK can be technically divided into three parts: the web
front-end, the database and the contact engine (see Figure 3). The web front-
end acts as a configuration dashboard, via which typical domain data like users,
groups, phone numbers, mail addresses, interactive voice response menus, ser-
vices and scheduled jobs can be created, edited and deleted. This data is stored
in a database, one for each configuration of ASK. The feedback of users and
the knowledge derived from earlier established contacts are also stored in this
database. Finally, the contact engine consists of a quintuple of components Re-
ception, Matcher, Executer, Resource Manager and Scheduler, which handle in-
bound and outbound communication with the system and provide the intelligent
matching and scheduling functionality.

The “heartbeat” of the contact engine is the Request loop, indicated with
thick arrows. Requests loop through the system until they are fully completed.
The Reception component determines which steps must be taken by ASK in order
to fulfil (part of) a request. The Matcher component searches for appropriate
participants for a request. The Executer component determines the best way

Contact Engine

Resource
Manager

Reception Matcher Executer Scheduler

phone
connec

toids

email
connec

toids

sms
connec

toids

scheduler
connec

toids

Domain
Data

file
connec

toids

Web
Frontend

Fig. 3. ASK System Overview

in which the participants can be connected. ASK clearly separates the medium
and resource independent request loop from the level of media-specific resources
needed for fulfilling the request, called connectoids (e.g., a connected phone line, a
sound file being played, an email being written, an SMS message to be sent). The
Resource Manager component acts as a bridge between these two levels. Finally,
a separate Scheduler component schedules requests based on job descriptions in
the database.

Thread-Pools in ASK

Each component in the ASK system is equipped with a thread-pool called an
abbey. The threads within the pool are called monks. Two types of abbeys are
currently in use, although many more have been created in the past at Almende:

– The so-called Determinate Abbey (Dabbey) uses a fixed amount of monks,
which get their tasks from a task array with an amount of “slots” equal to
the number of monks. The operation to put a task in an empty slot in the
task array blocks if no empty slot is available.

– Another type of abbey is the Self-scaling Abbey (Sabbey). This abbey uses
an infinite task queue and a variable amount of monks. Monks are created
and “poisoned” at run-time by a special monk called the shepherd, which
does so by keeping track of the ratio between the amount of tasks to be
handled and the amount of available monks.

4 Modeling

4.1 Object-Oriented Modeling

The low-level models explicitly express all implementation-level details like locks
on global variables, explicit tasks and explicit task queues, etc. In this section, we
show the low-level Creol model of the Determinate Abbey in order to illustrate
the need abstraction.

In the Determinate Abbey, tasks and monks are kept in explicit lists, and
tasks are explicitly implemented. This can be seen in the code fragment shown
in Figure 4: The Dabbey class contains two class variables DabbeyTaskList and
DabbeyMonkList, which are used to hold the tasks-to-be-executed and the (fixed)
set of monks. As we will see in the more abstract model, it is possible to use the
message queue of an object to implicitly represent a task queue. Also, we can
easily abstract away from an explicit list of monks.

In the low-level model, an array of tasks is “mimicked” in Creol by using a
list, an index for the list and a replace method to replace values at a specific index
in the list. This is shown in Figure 5. The methods testAndSetCreating, testAnd-
SetBusy, setTaskOpen, setTaskReady and setTask all contain replace statements.
In this manner, we realize an explicit representation of an array in terms of
a simple list. For purposes of functional analysis of the thread-pool, the fact
that we use an array is an implementation detail and irrelevant for analyzing
its functionality. Figure 5 also shows that the task list contains methods which
correspond to primitive “test-and-set” operations. Thereby, we model locks on
the array. At a functional modeling level, this behavior is in fact irrelevant as
well.

The low-level model of the Self-scaling Abbey is even more complex. Tasks
and Monks are kept in queues, while a triplet of counters is used to count the
number of tasks, monks and busy monks. Creation and deletion of monks is done
by a “shepherd” monk. Monks are killed by letting them execute a “poison” task,

1 interface Dabbey inherits Abbey begin
2 end

4 class Dabbey (s i z e : Int) contracts Dabbey begin
5 var t a s k L i s t : DabbeyTaskList ;
6 var monkList : DabbeyMonkList ;
7 op i n i t ==
8 t a s k L i s t := new DabbeyTaskList (s i z e) ;
9 monkList := new DabbeyMonkList (s i z e , t a s k L i s t)

10 with Any op dispatchTask (in task : Task) ==
11 var i : Int ;
12 t a s k L i s t . testAndSetCreat ing (; i) ;
13 t a s k L i s t . setTask (i , task ;) ;
14 t a s k L i s t . setTaskOpen (i ;)
15 end

Fig. 4. A class for the Low-level Determinate Abbey

1 class DabbeyTaskList (s i z e : Int) contracts DabbeyTaskList
2 begin
3 . . .
4 with Dabbey op testAndSetCreat ing (out index : Int) ==
5 await readyCounter > 0 ;
6 index := index (s ta t e s , ”READY”) ;
7 s t a t e s := r e p l a c e (s t a t e s , ”CREATING” , index) ;
8 readyCounter := readyCounter � 1
9 with DabbeyMonk op testAndSetBusy (out index : Int) ==

10 await openCounter > 0 ;
11 index := index (s t a t e s , ”OPEN”) ;
12 s t a t e s := r e p l a c e (s t a t e s , ”BUSY” , index) ;
13 openCounter := openCounter � 1
14 with Dabbey op setTaskOpen (in index : Int) ==
15 s t a t e s := r e p l a c e (s t a t e s , ”OPEN” , index) ;
16 openCounter := openCounter + 1
17 with DabbeyMonk op setTaskReady (in index : Int) ==
18 s t a t e s := r e p l a c e (s t a t e s , ”READY” , index) ;
19 readyCounter := readyCounter + 1
20 . . .
21 end

Fig. 5. The TaskList class for the Low-level Determinate Abbey

1 class ShepherdTask (
2 taskId : Int , taskCounter : Counter , monkCounter : Counter ,
3 busyCounter : Counter , mmax: Int , mrate : Int ,
4 taskQueue : SabbeyTaskQueue , monkQueue : SabbeyMonkQueue)
5 contracts ShepherdTask
6 begin
7 op shepherdLoop ==
8 . . .
9 taskCounter . va l (; t) ; monkCounter . va l (;m) ;

10 busyCounter . va l (; mbusy) ; mfree := m � mbusy ;
11 i f ((m < mmax) && ((mfree � t) < (m / mrate))) then
12 amountToCreate := t � mfree + (m / mrate) ;
13 i f (amountToCreate > (mmax � m)) then
14 amountToCreate := mmax �m
15 end ;
16 monkQueue . createMonks (amountToCreate ;)
17 end ;
18 i f (mfree > (m / 2)) then
19 task := new PoisonTask (0) ;
20 taskQueue . enqueueTask (task ;)
21 end ;
22 release ;
23 shepherdLoop (;)
24 . . .
25 end

Fig. 6. The Shepherd task class of the Self-scaling Abbey

which causes the monk to cease to exist. In Figure 6, the infinite shepherd task
is shown. Once this task is executed by a monk, that monk acts as the shepherd
in the abbey. Note in particular the large amount of class parameters, which are
needed inside the task for managing the amount of monks in the monk queue.
In fact, the dynamicity of the amount of monks, which is in itself an important
property of the Self-scaling Abbey, can be modeled in a far more implicit and
abstract manner. The focus should be on the principle of and constraints on
creation and deletion, instead of on the specific solution as implemented in the
ASK system.

High-Level Models As a high-level base model, we created a Minimal Abbey
(Mabbey), as shown in Figure 7. The Mabbey acts as the “mother” of all abbeys

1 class Monk(myPool : ResourcePool) contracts Monk begin
2 op run == ! myPool . r eque s t ()
3 with ResourcePool op task == skip ; run (;)
4 end
5 class ResourcePool (nofMonks : Int) contracts ResourcePool
6 begin
7 var freeMonks : Set [Monk] ;
8 op i n i t == var monk : Monk ; var n : Int := nofMonks ;
9 freeMonks := fg ;

10 while (n>0) do monk:=new Monk(this) ; n:=n�1 end
11 op chooseMonk (out monk : Monk) == await ˜ isempty (freeMonks) ;
12 monk := choose (freeMonks) ;
13 freeMonks := remove (freeMonks , monk)
14 op task == var monk : Monk ; chooseMonk (; monk) ; ! monk . task ()
15 with Monk op r eque s t == freeMonks := add (freeMonks , cal ler)
16 with Outside op addTask == ! task ()
17 end

Fig. 7. The high-level Minimal Abbey

1 class ResourcePool (nofMonks : Int , maxNofMonks : Int)
2 contracts ResourcePool begin
3 var freeMonks : Set [Monk] ; var nofTasks : Int ;
4 var nofMonks : Int ;
5 . . .
6 op task == var monk : Monk ; chooseMonk (; monk) ;
7 ! monk . task () ; nofTasks := nofTasks � 1
8 op poisonTask ==
9 var monk : Monk ; chooseMonk (; monk) ; ! monk . poisonTask ()

10 op shepherd == var monk : Monk ;
11 await (nofTasks>nofMonks �2) j j (#(freeMonks)>nofMonks / 2) ;
12 i f (nofTasks > nofMonks �2) then
13 i f (nofMonks < maxNofMonks) then
14 monk := new Monk(this) ; nofMonks := nofMonks + 1
15 end else i f (nofMonks > 1) then
16 poisonTask (;) ; nofMonks := nofMonks � 1
17 end end
18 . . .
19 with Outside op addTask ==
20 nofTasks := nofTasks + 1 ; ! task () ; ! shepherd ()
21 end

Fig. 8. ResourcePool class for the high-level Self-scaling Abbey

– the Determinate Abbey and the Self-scaling Abbey are derived from it, as well
as other types of abbeys. The two most important classes are the Monk class and
the ResourcePool class. Their class specifications and interfaces they contract are
shown in Figure 7.

The task list is modeled implicitly, in terms of the message queue of the
object. By using the proper way of messaging, i.e. synchronous or asynchronous,
blocking and non-blocking behavior for inserts in the queue can be modeled.
The size of the queue can be limited by means of a class variable nofTasks which
represents the number of tasks currently in the task queue (this construct is used
in the Determinate Abbey). A list for the monks is not modeled: it is not needed
at this level of abstraction. A variable freeMonks is used to hold all monks which
are currently not executing a task. Based on simple requests issued by the monks
themselves, the monks are added to the list of free monks. Tasks are modeled
in terms of simple methods inside the monk class – this is enough, as for our
analysis the functional differences between tasks, as opposed to the differences
between thread-pools, is irrelevant.

4.2 Real-Time Modeling in Uppaal

In this section, we model a thread-pool using timed automata in Uppaal. We use
these Uppaal models in the next section for schedulability analysis of real-time
models of the ASK system. We model a thread-pool as a scheduler automaton
taking tasks from a queue and dispatching them among concurrent threads. This
model can be seen as an extension of the framework for schedulability analysis
of concurrent objects [12] to a situation in which objects share the message/task
queue.

We separate the task queue in two parts: an execution part and a buffer. The
execution part includes the tasks that are being executed. This part needs one
slot for each thread and is therefore as big as the number of threads; we assume
a fixed number of threads given a priori. Before beginning their execution, tasks
are queued based on a given scheduling strategies, e.g., EDF, FPS, etc., in the
rest of the queue (i.e., the buffer part).

In the rest of this section, we show two approaches in modeling concurrent
threads sharing a task queue. At a higher level of abstraction, we can assume
that the threads run in parallel as if each has its own processing unit. We can al-
ternatively model a time-sharing scheduling policy where the ‘executing’ threads
share the processor; therefore, each task runs a period of time before it is inter-
rupted by the scheduler to run the next one. In both cases, when a task reaches
the execution part, it will not be put back to the buffer part. We call this weak
non-preemption, i.e., in the special case of one thread, it behaves like a non-
preemptive scheduler. The scheduler (responsible for dispatching methods) and
the queue (responsible for receiving messages) can be modeled in one automaton
or separately.

Time-Sharing. In this model, execution threads share one CPU. Therefore, the
tasks in the execution part of the queue are interleaved. At its turn, each active

r1:=6
c1:=0

r2:=3
c2:=0

r3:=5
c3:=0

t1

t2

t3

r1+=2
r2+=2

r1+=1
r3+=1 r1+=2

r1=c1 r3=c3
r3+=2

c2=r2

Error

(qc<=quantum && c[turn]<=r[turn])
 || q[turn]==EMPTY

q[turn]!=EMPTY &&
qc==quantum &&
comp[turn]>quantum
qc := 0,
update_turn(quantum)

c[turn] == r[turn] &&
q[turn] != EMPTY
rem := comp[turn],
qc := 0, shift(turn,TRD),
update_turn(rem)

msg : int[0,MSG],
sender : int [0,2]

tail < MAX

invoke[msg][s][sender] ?
insertInvoke(msg, sender)

tail == MAX

i : int[0,MAX-1]
x[i] > d[i] &&
counter[i] > 0

(a) Executing three tasks (quantum = 2) (b) Scheduler including a queue

Fig. 9. Modeling a time-sharing scheduler for a thread-pool

thread gets a fixed time slot (called a quantum) for execution. Then the active
thread is preempted to give the control to the next thread for execution. Note
that before entering the execution part of the queue, no preemption can occur,
i.e., once a task is in the execution part it cannot be put back into the buffer
part.

In this model, each task is modeled only as a computation time. This abstrac-
tion is necessary to enable the modeling of preemption of tasks at any arbitrary
time (i.e., the selected quantum). Figure 9.(a) shows how three threads are sched-
uled. The up-arrows show when a task is assigned to a thread. A down-arrow
indicates the completion of the task, after which the thread remains idle in this
scenario. The tasks assigned to t1, t2 and t3 have the computation times of 6,
3 and 5, respectively, and the preemption quantum is 2.

To keep track of execution and idle times of active threads, we associate to
each thread a clock c and an integer variable r; r holds the expected response
time of the task at every given moment. A task finishes when its clock reaches
the expected response time value. As shown in the diagram, when a task is
released the corresponding clock and response-time variable are reset at the
next quantum; the clock is reset to zero and r is given the computation time
of the task. The hatched pattern is used in this diagram when a thread has the
CPU, whereas the dark solid parts show the idle time of an active thread. At
every context-switch (shown by dashed lines), the response-time variables of all
idle threads are increased by the quantum value, as shown below:

for (i = 0; i < TRD; i++) {
if (q[i] != EMPTY) {

if (i != turn) r[i] += quantum;
else comp[ca[i]] -= quantum; // remaining computation time

} }

The first check q[i] != EMPTY makes sure that the thread i is active, i.e., a
task is assigned to it. The variable turn shows the thread that we just running.
For threads i != turn the response time r[i] is increased, whereas for the
thread that is just stopped we update the remaining computation time, namely

Error

counter[i] > 0
&& x[i] > d[i]

tail == MAX

invoke[msg][s][sender] ? delegate[msg][s][t] ?

msg : int[0,MSG],
t : int[0,TRD−1]

i : int[0,MAX−1]

msg : int[0,MSG],
sender : int [0,2]

tail < MAXtail < MAX

insertInvoke(msg, sender) insertDelegate(msg, t)

i < tail &&
forall (m : int[TRD,MAX−1])
(x[ca[i]] − x[ca[m]] > d[ca[i]] − d[ca[m]])

finish[t][s]? start[q[t]][t][s]!

finish[t][s]?

contextSwitch(t,TRD)

i:int[TRD,MAX−1]

tail <= TRD

contextSwitch(s, t, i)

(a) A queue shared between threads (b) An EDF scheduler

Fig. 10. A scheduler for parallel threads in Uppaal

comp. The value of comp is used when a task finishes before a quantum is reached,
e.g., tasks t2 and t3. In this case, the response time of other threads is increased
by comp instead of quantum.

Finally the variable turn is updated at every context-switch, such that the
next active thread is selected. If it happens that there are no more active threads,
i.e., the last task just finished, turn will keep its old value, as modeled in the
for loop below:

turn = (turn + 1) % TRD;
for (i=0; q[turn]==EMPTY && i<TRD-1; i++) {

turn = (turn + 1) % TRD;
}

Figure 9.(b) shows the model of the queue combined with the time-sharing
scheduler. Since tasks are only modeled as a computation time, they cannot
generate subtasks and therefore no delegate channel is needed (cf. parallel
threads). The clock qc is used for handling the quantum time slots. The invariant
on the initial location of the automaton ensures progress when a context-switch
should occur and on the other hand it doesn’t deadlock when the queue is empty
(q[turn]==EMPTY).

The scheduling policy can be modeled in the insertInvoke function. In this
model, the deadline or priority values for tasks can be modeled statically. When
modeling the task generation pattern, the computation and deadline values for
tasks should be given.

Parallel Threads. In this model, every thread is assumed to have a dedicated
processing unit, but they share one task queue. This model is more accurate when
we can rely on the fact that the real system will run on a multi-core CPU and
each thread will in fact run in parallel to the others. In this model, the queue
and the scheduling strategy are modeled in separate automata. Figure 10.(a)
shows a queue of size MAX which stores the tasks in the order of their arrival. This
automaton is parameterized in s which holds the identity of the object. It accepts
any message from any sender on the invoke channel, using the Uppaal ‘select’
statement on msg and sender. To check for deadlines, a clock x is assigned to each

task in the queue, which is reset when the task is added, i.e., in insertInvoke
function.

The delegate channel is dedicated to self calls creating subtasks that inherit
the parent’s deadline. To identify the parent, it receives the thread identity
as t. Inheriting the deadline is modeled by reusing the clock assigned to the
thread t. The number of tasks (and subtasks) assigned to clock x[i] is stored in
counter[i]. This is handled in the insertDelegate function. The queue goes
to Error state if the a task misses its deadline (x[i] > d[i]) or the queue is
full.

Figure 10.(b) shows how a scheduling strategy can be implemented. This
automaton should be replicated for every thread, thus parameterized in t as
well as the object identity s. The different instances of this automaton will be
assigned each to one slot in the queue, namely q[t]. This example models an
EDF (earliest deadline first) scheduling strategy. The remaining time to the
deadline of a task at position i in the queue is obtained by x[ca[i]]-d[ca[i]].
When the thread t finishes its current task (finish[t][s]), it selects the next
task from the buffer part of the queue for execution by putting it in q[t]; next,
it is started (start[q[t]][t][s]).

5 Analysis

5.1 Schedulability Analysis of the Automata Model

Schedulability analysis is checking whether tasks can be accomplished before
their deadlines. In this section, we analyze the schedulability of the timed au-
tomata models of thread pools given in the previous section. In order to perform
schedulability analysis, we need to specify the tasks as well as their generation
pattern. Tasks in this model correspond to the methods of monk objects (cf.
the Creol models in Section 4). The task generation pattern or the environment
modeling is to capture work load for the ASK system and is specified as a timed
automaton. Such a timed automaton specifying the task generation patterns
serves as the behavioral interface of the given abbey. In this section, we assume
two threads and therefore two instances of the monk object.

Figure 11 shows two models of behavioral interfaces for our model of thread
pools. In these diagrams, Right shows the identity of an object in the environ-
ment that sends messages task1 and task2 to the resource pool under analysis;

x2 > 4

invoke[task1][self][Right]!
deadline=D1, x2 = 0

x1 > 8
invoke[task2][self][Right]!
deadline=D2, x1 = 0

x2 > 9
invoke[task1][self][Right]!

deadline=D1, x2 = 0

x1 > 9

invoke[task2][self][Right]!
deadline=D2, x1 = 0

Fig. 11. Generating task instances sequentially (left) or in parallel (right)

the identity of the thread pool is given as self. In one model, the tasks are gen-
erated independently with an inter-arrival time of at least 9 time units between
every two occurrences of the instances of the same task type. In the other model,
tasks are generated one after the other in a sequential manner.

To perform schedulability analysis by model checking, we need to find a
reasonable queue length to make the model finite. The execution part of the
queue is as big as the number of threads, and the buffer part is at least of size
one. As in single-threaded situation of objects [12], a system is schedulable only
if does not put more than dDmax=Bmine messages in its queue, where Dmax is
the biggest deadline in the system, and Bmin is the best-case execution time of
the shortest task. As a result, schedulability is equivalent to the Error state not
being reachable with a queue of length dDmax=Bmine. Therefore, schedulability
analysis does not depend on whether an upper bound on queue length is assumed
(Dabbey) or not (Sabbey). When analyzing the Determinate Abbeys (Dabbeys),
one can assume a smaller queue bound if necessary to check for queue overflow
situations.

To use the time-sharing model of a thread pool, a task is modeled as a
computation time. The two task types are given the computation times of 3 and
6 time units. This model is analyzed with a queue length of three where two
concurrent threads are assumed. Given the behavioral interface with parallel
task generation, the minimum deadline for which the model is schedulable is
7 and 9 for task1 and task2, respectively. For sequential task generation, the
deadlines can be reduced to 5 and 6 for task1 and task2, respectively.

When the thread pool for parallel threads is applied, one can model tasks as
timed automata; two simple task models are given in Figure 12.(a). In this model,
task1 has a computation time of between 2 to 3 time units, and task2 takes 6
time units to execute. Using either of the two behavioral interfaces above, the
model is schedulable with the deadlines 3 and 6 for task1 and task2, respectively.
In parallel generation of tasks, parallel threads can handle the tasks faster, and
therefore, smaller deadlines are needed for schedulability. It turns out that the
parallelism of the threads does not affect the schedulability of tasks that are
created sequentially.

More complicated models can include sub-task generation. Figure 12.(b)
shows a model of task1 which creates an instance of task2. The schedulability

x <= 3

finish[t][self]!

start[task1][t][self]?
x = 0

x >= 2

delegate[task2][self][t]!

x <= 6

finish[t][self]!

start[task2][t][self]?
x = 0

x >= 6
x <= 3

finish[t][self]!

start[task1][t][self]?
x = 0

x >= 2
delegate[task2][self][t]!

(a) Modeling tasks as computation times (b) Generating a subtask

Fig. 12. Modeling tasks (corresponding to monks) for parallel threads

analysis of this model with a queue length of three fails due to queue overflow.
This implies that a deterministic abbey with a too small buffer size can fail.
By increasing the size of the queue to four, the model will be schedulable given
a deadline of 9 to the task1 (and task2 still needs a deadline of 6). This shows
that a self-scaling abbey can perform better in situations that tasks can generate
subtasks.

5.2 Conformance Testing

Finally, we sketch a general methodology for testing conformance between a
high-level Abbey and its behavioral interface. Consider for example the Resour-
cePool class for the high-level Minimal Abbey and its behavioral interface which
describes in terms of a timed automaton the expected task generation patterns.

From the behavioral interface we can generate sequences of time-stamped
tasks with their deadlines of the form

(t1; task(d1)); : : : ; (tn; task(dn))

where ti denotes the time at which a task has been queued with deadline di.
Note that the semantics of timed automata are exactly defined in terms of such
sequences ([]).

We next apply the test case to the ResourcePool class in the Maude inter-
preter extended with an implementation of the scheduler. Such an implemen-
tation only requires the definition of a sort for representing time. We then can
check whether the ResourcePool class does in fact forward the tasks as specified
by the scheduler. Assuming the time-sharing model, the actual schedulings of
the tasks corresponding to the test case can be obtained by simulation of the
(synchronous) product of scheduler and the timed automaton representing the
test case.

6 Conclusion

In this paper, we employed the Credo methodology for the design and analysis
of thread-pools in an industrial communication platform. This methodology is
based on a separation of concerns between high-level modeling of architectural
features of thread pools (in Creol) and their analysis for schedulability (using
timed automata). We use timed automata to specify scheduling policies whereas
the high-level concurrent object based Creol models abstract from scheduling
concerns.

We bridge the gap between these two levels of modeling by testing con-
formance. Behavioral interfaces are central to the analyses. Thread pools are
analyzed with respect to the task generation pattern given in the behavioral
interfaces, modeling the work-load. The test cases for conformance checking are
also derived from behavioral interfaces.

Future work consist first of all of an implementation of the method for testing
conformence between a Creol model of a thread-pool and the timed automata

models. Another line of future research consists of real-time extensions of the
Creol language itself to support a full development cycle. Thus, one can generate
code for application-specific schedulers from Creol models.

References

1. B. Aichernig, A. Griesmayer, R. Schlatte, and A. Stam. Modeling and testing
multi-threaded asynchronous systems with Creol. In 2nd Workshop on Harnessing
Theories for Tool Support in Software (TTSS’08), ENTCS, 2009. to appear.

2. The Almende research company. http://www.almende.com/.
3. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.
4. The ASK community systems. http://www.ask-cs.com/.
5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.

Quesada. Maude: specification and programming in rewriting logic. Theoretical
Computer Science, 285(2):187–243, 2002.

6. E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venter, D. Weil, and S. Yovine. TAXYS:
A tool for the development and verification of real-time embedded systems. In
G. Berry, H. Comon, and A. Finkel, editors, Proc. Computer Aided Verification
(CAV01), volume 2102 of LNCS, pages 391–395. Springer, 2001.

7. Credo - modeling and analysis of evolutionary structures for distributed services.
http://credo.cwi.nl/.

8. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
R. D. Nicola, editor, ESOP, volume 4421 of LNCS, pages 316–330. Springer, 2007.

9. E. Fersman, P. Krcal, P. Pettersson, and W. Yi. Task automata: Schedulability,
decidability and undecidability. Information and Computation, 205(8):1149–1172,
2007.

10. J. J. G. Garcia, J. C. P. Gutierrez, and M. G. Harbour. Schedulability analysis of
distributed hard real-time systems with multiple-event synchronization. In Proc.
12th Euromicro Conference on Real-Time Systems, pages 15–24. IEEE, 2000.

11. I. Grabe, M. M. Jaghoori, B. Aichernig, C. Baier, T. Blechmann, F. de Boer,
A. Griesmayer, E. B. Johnsen, J. Klein, S. Klüppelholz, M. Kyas, W. Leister,
R. Schlatte, A. Stam, M. Steffen, S. Tschirner, L. Xuedong, and W. Yi. Credo
methodology. Modeling and analyzing a peer-to-peer system in Credo. In 3rd
International Workshop on Harnessing Theories for Tool Support in Software
(TTSS’09), ENTCS, 2009. To appear.

12. M. M. Jaghoori, F. S. de Boer, T. Chothia, and M. Sirjani. Schedulability of
asynchronous real-time concurrent objects. J. Logic and Alg. Prog., 78(5):402 –
416, 2009.

13. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling, 6(1):35–58, 2007.

14. E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model
for distributed concurrent systems. Theoretical Computer Science, 365(1-2):23–66,
2006.

15. C. Kloukinas and S. Yovine. Synthesis of safe, QoS extendible, application specific
schedulers for heterogeneous real-time systems. In Proc. 15th Euromicro Con-
ference on Real-Time Systems (ECRTS 2003), pages 287–294. IEEE Computer
Society, 2003.

16. K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. STTT, 1(1-
2):134–152, 1997.

17. J. Meseguer. Conditioned rewriting logic as a united model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

18. L. Nigro and F. Pupo. Schedulability analysis of real time actor systems using
coloured petri nets. In Proc. Concurrent Object-Oriented Programming and Petri
Nets, volume 2001 of LNCS, pages 493–513. Springer, 2001.

19. I. C. Yu, E. B. Johnsen, and O. Owe. Type-safe runtime class upgrades in
creol. In Proc. the 8th Formal Methods for Open Object-Based Distributed Sys-
tems (FMOODS), volume 4037 of LNCS, pages 202–217. Springer, 2006.

