
Task Automata: Schedulability, Decidability
and Undecidability

Elena Fersman 1, Pavel Krcal, Paul Pettersson 2 and Wang Yi 3

Email: fpavelk,paupet,yig@it.uu.se
Department of Information Technology

Uppsala University

Abstract

We present a model, task automata, for real time systems with non-uniformly re-
curring computation tasks. It is an extended version of timed automata with asyn-
chronous processes that are computation tasks generated (or triggered) by timed
events. Compared with classical task models for real time systems, task automata
may be used to describe tasks (1) that are generated non-deterministically according
to timing constraints in timed automata, (2) that may have interval execution times
representing the best case and the worst case execution times, and (3) whose com-
pletion times may influence the releases of task instances. We generalize the classical
notion of schedulability to task automata. A task automaton is schedulable if there
exists a scheduling strategy such that all possible sequences of events generated by
the automaton are schedulable in the sense that all associated tasks can be com-
puted within their deadlines. Our first technical result is that the schedulability
for a given scheduling strategy can be checked algorithmically for the class of task
automata when the best case and the worst case execution times of tasks are equal.
The proof is based on a decidable class of suspension automata: timed automata
with bounded subtraction in which clocks may be updated by subtractions within
a bounded zone. We shall also study the borderline between decidable and unde-
cidable cases. Our second technical result shows that the schedulability checking
problem will be undecidable if the following three conditions hold: (1) the execution
times of tasks are intervals, (2) the precise finishing time of a task instance may
influence new task releases, and (3) a task is allowed to preempt another running
task.

Key words: Real Time Systems, Schedulability Analysis, Timed Automata,
Modeling and Verification

1

1 Introduction

One of the most important issues in developing real time systems is schedu-
lability analysis prior to implementation. In the area of real time scheduling,
there are well-studied methods [1], e.g., rate monotonic scheduling, that are
widely applied in the analysis of periodic tasks with deterministic behaviours.
For non-periodic tasks with non-deterministic behaviours, there are no satis-
factory solutions. There are approximative methods with pessimistic analysis,
e.g., using periodic tasks to model sporadic tasks when control structures of
tasks are not considered. The advantage of automata-theoretic approaches,
e.g., using timed automata in modeling systems is that one may specify gen-
eral timing constraints on events and model other behavioural aspects such
as concurrency and synchronization. However, it is not clear how timed au-
tomata can be used for schedulability analysis because there is no support for
specifying resource requirements and hard time constraints on computations,
e.g., deadlines.

Following the work of [2], we study task automata, that are timed automata
extended with real time tasks triggered by events. A task is an executable
program characterized by its best case and worst case execution time, deadline,
and possibly other parameters such as priorities for scheduling. The main idea
is to associate each location of a timed automaton with a task (or a set of tasks
in the general case). Intuitively a discrete transition leading to a location in the
automaton denotes an event triggering an instance of the annotated task and
the guard (clock constraints) on the transition specifies the possible arrival
times of the event. Semantically, an automaton may perform two types of
transitions. Delay transitions correspond to the execution of a running task
(with the highest priority) and idling for the other tasks. Discrete transitions
correspond to the arrival of new task instances. Whenever a task is triggered,
it will be put into the scheduling queue for execution (i.e., the ready queue
in operating systems). We assume that the tasks will be executed according
to a given scheduling strategy, e.g., FPS (fixed priority scheduling) or EDF
(earliest deadline first).

For example, consider the automaton shown in Figure 1. It has three loca-
tions l0; l1; l2, and two tasks P and Q (triggered by a and b) with interval
computation times [1; 2] and [2; 4] (the best case and the worst case execution
times), and relative deadlines 10 and 8, respectively. The automaton models

1 Current address: Ericsson AB, Torshamnsgatan 23, SE-164 80 Stockholm, Swe-
den. Email: elena.fersman@ericsson.com.
2 Current address: Department of Computer Science and Electronics, Mälardalen
University, Sweden. Email: Paul.Pettersson@mdh.se.
3 Corresponding author: Wang Yi, Box 337, 751 05, Uppsala, Sweden. Email:
yi@it.uu.se. Tel: +46 18 4713110.

2

b
Q(2; 4; 8) a

x � 10

x := 0

l0

l2 b

y > 100
a
x := 0
y := 0

y � 40
P (1; 2; 10)

l1

Fig. 1. A task automaton.

a system starting in l0 that may move to l1 by event a at any time. This
triggers the task P . In l1, as long as the constraints x � 10 and y � 40 hold,
when an event a occurs an instance of task P will be created and put into
the scheduling queue. However, it cannot create more than 5 instances of P
in l1, because the constraint y � 40 will be violated after 40 time units. In
fact, every instance will be computed before the next instance arrives and the
scheduling queue may contain at most one task instance. Therefore, no task
instance of P will miss its deadline. The system is also able to accept b, switch
from l1 to l2, and trigger Q. Because there are no constraints labeled on the
b-transition in l2, it may accept any number of b’s and create any number of
Q’s in zero time. However, after more than two copies of Q, the queue will be
non-schedulable i.e. a deadline may be violated. This means that the system is
non-schedulable. Thus, zeno behaviours will correspond to non-schedulability,
which is a natural property of the model.

We shall formalize the notion of schedulability in terms of reachable states.
A state of a task automaton will be a triple (l; u; q) consisting of a location
l, a clock valuation u, and a task queue q. The task queue contains pairs of
remaining computation times and relative deadlines for all released tasks. A
scheduling strategy is a function on queues, which inserts a new task instance
into the task queue according to the task parameters such as fixed priorities,
remaining computation times, and (or) deadlines. Formally, we assume that a
scheduling strategy can be encoded as timed automata. We shall see that the
existing scheduling strategies (preemptive or non-preemptive) in the literature
such as EDF or FPS satisfy this condition. An automaton is schedulable if there
exists a scheduling strategy with which all tasks in q can be computed within
their deadlines for all reachable states (l; u; q) of the automaton.

In [2], it is shown that under the assumption that the tasks are non-preemptive,
the schedulability checking problem for a given (non-preemptive) scheduling
strategy can be transformed to a reachability problem for ordinary timed au-
tomata and thus it is decidable. For preemptive scheduling strategies, it has
been suspected that the schedulability checking problem is undecidable be-
cause in preemptive scheduling we must use stopwatches to accumulate com-

3

putation times for tasks. In this paper, we show that to model the scheduling
problems, the expressive power of stopwatch automata is not needed.

Our main technical result is that the schedulability checking problem related to
a preemptive scheduling strategy is decidable for a large class of task automata.
We show that the problem is decidable if the best case and the worst case
computation times of tasks are equal. The crucial observation in the proof is
that the schedulability checking problem can be translated to a reachability
problem for a decidable class of suspension automata [3] – timed automata
with bounded subtraction where clocks may be updated with subtraction only
in a bounded zone. We also show that the case with variable execution times
can be reduced to the previous one for FPS and EDF if the finishing times of
tasks do not influence release times of new tasks.

In particular, the schedulability problem related to EDF can be checked for
these classes of automata. EDF is optimal in the sense that if it cannot schedule
a task queue, no other scheduling strategy can. Therefore, the general schedu-
lability checking problem for a task automaton (whether there is a strategy
which can schedule the automaton) can be checked if the best case and the
worst case computation times of tasks are equal or if the finishing times of
tasks do not influence release times of new tasks.

We shall also study the borderline between decidable and undecidable cases. It
is shown that the schedulability problem for preemptive scheduling strategies
is undecidable if task execution times may vary within an interval representing
the best and the worst case execution times. This is a surprisingly negative
result that such a subtle difference can turn a decidable problem to an unde-
cidable one. More precisely, the schedulability problem for many scheduling
strategies is undecidable if these three conditions hold: (1) the execution times
of tasks are intervals, (2) the precise finishing time of a task may influence the
new task releases and (3) a task is allowed to preempt another running task.

The rest of this paper is organized as follows: Section 2 describes the notions of
task and scheduling strategy, and the syntax and semantics of task automata.
Section 3 describes scheduling problems related to task automata with a sum-
mary on decidability and undecidability results. Section 4 is devoted to proofs
for the decidable cases. Section 5 presents a proof for the undecidable case.
Section 6 concludes the paper with summarized results and future work, and
a brief summary on and comparison with related work.

4

2 Timed Automata with Tasks

We extend timed automata with asynchronous processes, i.e., tasks triggered
by events and computed asynchronously. The main idea is to associate each
location of a timed automaton with an abstraction of an executable program
called a task type or simply a task.

2.1 Tasks and Scheduling Strategy

Assume a set of task types P ranged over by P;Q;R, etc. A task type or simply
a task may have task parameters such as fixed priority, computation time (the
best and the worst case), deadline, and resource requirements, e.g., on memory
consumption. For simplicity, we do not consider resource requirements in this
paper. Assume that B;W;D are three natural numbers such that B � W � D
and 0 < W . A task type is a tuple (P;B;W;D), written P (B;W;D), where
P is the task name, B is the best case execution time, W is the worst case
execution time and D is the relative deadline. Note that D is a relative deadline
meaning that whenever an instance of P is released, it should be computed
within D time units. We sometimes say that the computation time of P is in
[B;W]. When a set of tasks is scheduled according to fixed priorities then we
assume that each task type has assigned a priority.

A task may have several instances that are different copies of the same pro-
gram. A task instance is a tuple (P; b; w; d), written P (b; w; d), where P is a
task name, b 2 R is a best case remaining computation time, w 2 R is a worst
case remaining computation time, and d 2 R is a relative deadline. We shall
use pi to denote a task instance and, without confusion, pi’s task type will
be understood as (Pi; Bi;Wi; Di). Note that different task instances may be
of the same task type with the same task parameters. A task queue is a list
of task instances denoted [P1(b1; w1; d1); : : : ; Pn(bn; wn; dn)]. The discrete part
of a queue is a list containing only the task names. A set of all task queues
containing instances of the task types from P is denoted QP .

We shall study scheduling problems for single-processor systems. Thus we
assume that a task queue is a sorted list whose head element is the task
instance running on the processor, and the other ones are waiting. A scheduling
strategy, e.g., FPS (fixed priority scheduling), SJF (shortest job first), or EDF
(earliest deadline first), is a function which inserts released tasks into the task
queue.

More precisely, a scheduling strategy (or scheduling function) Sch : P �QP 7!
QP is a function which given a task instance and a task queue returns a
task queue with the task instance inserted and the order of the other task

5

instances preserved. For example, EDF(P (1; 3; 10); [Q(3; 4; 5:3); R(0; 2; 19)]) =
[Q(3; 4; 5:3); P (1; 3; 10); R(0; 2; 19)]. A scheduling strategy has to satisfy the
following condition. The decision on where the new task instance is inserted
in the queue can be made only by comparing the task parameters of the
new task instance with each of the existing instances in the queue and by
considering the discrete part of the queue. The task parameters are either the
remaining best and worst case computation times, or the remaining relative
deadlines. We formalize the concept of a scheduling strategy in terms of timed
automata in Definition 7.

Scheduling strategies may be preemptive or non-preemptive:

(1) A non-preemptive strategy will never insert the new task as the first
element of the queue.

(2) A preemptive strategy may insert the new task in the first position if its
task type is different from the current running task and all suspended
(preempted) tasks in the queue.

To talk about computation and resource consumption, we shall use a function
Run : QP�R�0 7! QP which given a real number t and a task queue q returns
the task queue after t time units of execution on a processor. The result of
Run(q; t) for t � w1 and q = [P (b1; w1; d1); Q(b2; w2; d2); : : : ; R(bn; wn; dn)] is
defined as q0 = [P (b1� t; w1� t; d1� t); Q(b2; w2; d2� t); : : : ; R(bn; wn; dn� t)].
For example, let q = [Q(2; 3; 5); P (4; 7; 10)]. Then Run(q; 3) = [Q(�1; 0; 2);
P (4; 7; 7)] in which the first task has been executed for 3 time units (and it
will be removed from the queue).

A task instance P (b; w; d) in the queue may finish when b � 0 and w � 0, and
it must finish when w = 0. Finished tasks are removed from the queue. This
is reflected in the definition of semantics of task automata, Definition 2.

2.2 Task Automata

As in timed automata, assume a finite alphabet Act ranged over by a; b; : : :
and a finite set of real-valued clocks C ranged over by x1; x2; : : : . We use B(C)
ranged over by g to denote the set of conjunctive formulas of atomic constraints
in the form: xi1C or xi�xj1C where xi; xj 2 C are clocks, 1 2 f�; <;�; >g,
and C is a natural number. The elements of B(C) are called clock constraints.

Assume a distinguished clock xdone which is reset every time a task finishes
its computation and is removed from the task queue. This clock can be used
to model data dependencies or precedence relations between tasks. One may
introduce such a clock or a boolean for every task type without changing
the technical results of this paper. It can be easily seen from the decidability

6

proofs that more such clocks or boolean variables can be accommodated and
that it is enough to have one clock for the undecidability result. Therefore, for
simplicity of presentation, we use only xdone.

Definition 1 A task automaton over actions Act, clocks C, and task types P
is a tuple hN; l0; E; I;M; xdonei where

� N is a finite set of locations ranged over by l; m; n,
� l0 2 N is the initial location,
� E � N � B(C) �Act� 2C �N is the set of edges,
� I : N 7! B(C) is a function assigning each location with a clock constraint

(a location invariant),
� M : N ,! P is a partial function assigning locations with task types, 4 and
� xdone 2 C is the clock which is reset whenever a task finishes.

When hl; g; a; r; l0i 2 E, we write l
g a r
�! l0.

A task automaton is said to have no task feedback if none of its guards or
invariants contains the clock xdone. Further, a task automaton has fixed com-
putation times of tasks if B = W for all task types P (B;W;D).

Note that the distinguished clock xdone may be used in the guards or invari-
ants of a task automaton, which means that the finishing times of tasks may
influence the behaviour of the task automaton. However, the finishing time
of a task does not have any influence on the behaviour of a task automaton
when it has no task feedback.

2.3 Operational Semantics

Similarly to timed automata, a task automaton may perform two types of
transitions. Delay transitions correspond to the execution of the running task
(e.g., a task with the highest priority or with the earliest deadline) and idling
for the other tasks waiting to run. These transitions are split into three sub-
types according to the queue status (empty, non-empty) and the fact, whether
a task finishes. Discrete transitions correspond to the arrivals of new task in-
stances.

We represent the values of clocks as functions (i.e., clock assignments) from C
to the non–negative reals R�0 . We denote by V the set of clock assignments
for C. Naturally, a semantic state of an automaton is a triple (l; u; q) where l
is the current location, u 2 V denotes the current values of clocks, and q is the

4 Note that M is a partial function meaning that some of the locations may have
no tasks.

7

current task queue. By u0 we denote a clock assignment such that u0(x) = 0
for all clocks x.

We use u j= g to denote that the clock assignment u satisfies the constraint
g. For t 2 R�0 , we use u + t to denote the clock assignment which maps
each clock x to the value u(x) + t, and u[r] for r � C, to denote the clock
assignment which maps each clock in r to 0 and agrees with u for the other
clocks (i.e., Cnr). Now we are ready to present the operational semantics for
task automata as labeled transition systems (LTS).

Definition 2 Given a scheduling strategy Sch, the semantics of an automaton
A = hN; l0; E; I;M; xdonei is a labeled transition system JASchK with an initial
state (l0; u0; []) and transitions defined by the following rules:

� (l; u; q) a
�!Sch(l0; u[r]; Sch(M(l0); q)) if l g a r

�! l0, u j= g, and u[r] j= I(l0),
� (l; u; []) t

�!Sch(l; u + t; []) if t 2 R�0 and (u + t) j= I(l),
� (l; u; P (b; w; d) :: q) t

�!Sch(l; u + t;Run(P (b; w; d) :: q; t)) if t 2 R�0 ; t � w
and (u + t) j= I(l), and

� (l; u; P (b; w; d) :: q) fin
�!Sch(l; u[xdone]; q) if b � 0 � w and u[xdone] j= I(l),

where P (b; w; d) :: q denotes the queue with the task instance P (b; w; d) inserted
into q (at the first position), [] denotes the empty queue, and fin =2 Act is a
distinct action name.

Note that the transition rules are parameterized by Sch (scheduling strat-
egy). Whenever it is understood from the context, we shall omit Sch from
the transition relation. We have the same notion of reachability as for timed
automata.

Definition 3 We shall write (l; u; q)�!Sch(l0; u0; q0) if either (l; u; q) a
�!Sch

(l0; u0; q0) for an action a, or (l; u; q) t
�!Sch(l0; u0; q0) for a delay t, or (l; u; q)

fin
�!Sch (l0; u0; q0). For a task automaton with initial state (l0; u0; []) and a schedul-
ing strategy Sch, (l; u; q) is reachable iff (l0; u0; [])�!�

Sch(l; u; q).

Clearly task automata are at least as expressive as timed automata. In fact,
hN; l0; E; Ii is an ordinary timed automaton. Intuitively, a discrete transition
of the automaton denotes an event triggering a task annotated in the target
location, and the guard on the edge specifies all the possible arrival times of
the event (or the annotated task). Whenever a task is triggered, it will be put
into the scheduling (or task) queue for execution (corresponding to the ready
queue in operating systems). In general, the task queue is unbounded though
the constraints of a given automaton may restrict the possibility of reaching
states with infinitely many different task queues. For example, we may model
time-triggered periodic tasks as a simple automaton as shown in Figure 2(a)
where P is a periodic task with computation time in [1; 2], deadline 8 and

8

period 20. More generally, it may model systems containing both periodic and
sporadic tasks as shown in Figure 2(b) which is a system consisting of 4 tasks
as annotation on locations, where P and Q are triggered by time every 20 and
40 time units respectively (specified by the constraints: x = 20 and x = 40),
and R and S are sporadic or event driven by event a and b respectively.

(b)

(a)

l0
x > 10

e l1

x � 40

x := 0

l3

x � 20

x = 20

x = 20

x := 0

x = 40

x := 0

Q(4; 4; 20)

R(0; 1; 2)

P (2; 2; 10)

x := 0

x := 0

S(0; 1; 4)
l2

m

P (1; 2; 8)
x � 20

f b

a

Fig. 2. Modeling Periodic and Sporadic Tasks.

To handle concurrency and synchronization, a parallel composition of task
automata may be defined as a product automaton in the same way as for
ordinary timed automata (e.g., see [4]). The only difference is that a product
location might be assigned more than one task. In such a case, auxiliary lo-
cations are introduced so that each of them has at most one task assigned,
the tasks are released at the same timepoint, and all interleavings (all orders
in which the tasks are released) are allowed. Note that the parallel composi-
tion here is only an operator to construct models of systems based on their
components. It has nothing to do with multi-processor scheduling.

As standard timed automata, the underlying timed automata of task automata
may have time converging behaviours known as timestops, that are sequences
of transitions where time does not diverge. Consider, for example, a location
with no outgoing transitions and an invariant x < 10 for a clock x. Clearly,
the automaton cannot delay in this location for longer than 10 time units.
This would imply that some tasks in the queue never finish their computation
if it requires more than 10 time units. Also, as time is not progressing, no
deadline will be violated either. In order to simplify technical details in the
proofs we prohibit timestops caused by timed automata invariants. However,
this is not fundamental for our results and it is not difficult to check that it is
also possible to handle a situation when the time does not progress. We refer
to the standard semantics ([5]) of timed automata in the next definition.

Definition 4 A task automaton A = hN; l0; E; I;M; xdonei has no timestops
if for the underlying timed automaton A0 = hN; l0; E; Ii, for any state (l; u) of
A0, and all L 2 R�0 there exists a path (l; u) �!� (l0; u0) in the semantics LTS
of A0 such that the sum of the time delays on the path from (l; u) to (l0; u0) is
equal to L.

9

From now on, we assume that task automata have no timestops which implies
that each task will be eventually computed in such automata.

To demonstrate the semantics of task automata, consider the automaton in
Figure 2(b). Assume that preemptive earliest deadline first (EDF) strategy is
used to schedule the task queue. For example, the automaton may stay in
l1 or l2 where instances of the periodic tasks P and Q may be released and
computed. Or it may loop from l0 back to l0 through l1, l2, and l3. Though the
queue is growing during these transitions, the generation of new task instances
will be slowed down by the constraint x > 10 labeled on the edge from l0 to
l1 and the queue will be reduced by delay transitions, e.g.,

(l0; [x = 0; xdone = 0]; [S(�0:3; 0:7; 3:7); R(0; 1; 2); P (2; 2; 10); Q(3:5; 3:5; 19:2)])
�!+ (l0; [x = 10; xdone = 3:1]; []).

A question of interest is whether it can perform a sequence of transitions
leading to a state where a deadline has been missed.

3 Schedulability Analysis

In this section we study verification problems related to the model presented in
the previous section. One of the most interesting properties of task automata
related to the task queue is schedulability.

3.1 Schedulability of Task Automata

As all deadlines in task automata are hard, we define schedulability for a given
scheduling strategy as impossibility of reaching a state where some deadline
is missed. We use qerr to denote queues containing a task instance P (b; w; d)
with d < 0.

Definition 5 (Schedulability) A task automaton A with initial state (l0; u0; [])
is non-schedulable with Sch if (l0; u0; []) �!�

Sch (l; u; qerr) for some l and u.
Otherwise, we say that A is schedulable with Sch. More generally, we say that
A is schedulable if and only if there exists a scheduling strategy Sch with which
A is schedulable.

We also need a notion of non-schedulable queues that are queues which will
inevitably lead to a deadline miss with time progress (if all tasks take their
worst case computation times).

10

Definition 6 A queue q = [P1(b1; w1; d1): : : Pn(bn; wn; dn)] is non-schedulable
if w1 + � � �+ wi > di for some 1 � i � n.

Even though queues are not bounded in general, an important observation
is that all schedulable queues are bounded. First, note that a task instance
that has been started cannot be preempted by another instance of the same
task type. This means that there is only one instance of each task type in the
queue whose computation time can be a real number and it can be arbitrarily
small. Thus the number of instances of each task type Pi 2 P, in a schedulable
queue is bounded by dDi=Wie and the size of schedulable queues is bounded
by PPi2P dDi=Wie. This is an important property of our model, because it
allows us to code schedulability checking problems as reachability problems.

Throughout of the paper, we shall distinguish three situations according to
the queue status:

(1) A queue is an error-queue denoted qerr if a deadline is already missed.
(2) A queue is non-schedulable as defined in Definition 6 if it will inevitably

evolve to an error-queue.
(3) A queue is overflowed if it contains more than dDi=Wie instances of Pi

for some i.

Note that an overflowed queue is definitely non-schedulable. But a very short
(not overflowed) queue can also be non-schedulable. We shall say that a state
is adequate if its queue is neither an overflowed queue nor an error-queue.
However, an adequate state may contain a non-schedulable queue.

Before presenting the results, we formalize the concept of scheduling strategy
used in this paper in terms of timed automata. Assume a task type P (B;W;D)
and a task queue [P1(b1; w1; d1); : : : ; Pn(bn; wn; dn)]. We construct a diagonal-
free (i.e. clocks are compared only to constants) timed automaton with clocks
xb1 ; xw1 ; xd1 ; : : : ; xbn ; xwn

; xdn , n+2, locations l0; l1; l2; : : : ln+1, and n+1 edges
from l0 to li for i � n + 1. We call such an automaton a decision automaton.

Definition 7 A scheduling strategy Sch : P �QP 7! QP is a function satis-
fying the following condition. For each task type P (B;W;D) and a task queue
[P1(b1; w1; d1); : : : ; Pn(bn; wn; dn)], one can effectively construct a decision au-
tomaton such that Sch(P (B;W;D); [P1 (b1; w1; d1); : : : ; Pn(bn; wn; dn)]) inserts
P (B;W;D) into the queue at the k-th position if and only if lk is the only lo-
cation reachable from (l0; u) where u(xbi) = bi; u(xwi

) = wi; u(xdi) = di for all
1 � i � n.

Note that to make location lk reachable, the automaton should be constructed
in such a way that the edges from l0 to li for all i � n + 1 are labeled with
guards corresponding to the conditions on the task types and parameters to
be checked for the scheduler in making the decision on where the new task

11

instance, i.e., P (B;W;D), should be inserted into the queue. Note also that
the definition corresponds to the informal description on scheduling strategy
in Section 2. In particular, the known scheduling strategies such as EDF, SJF,
and FPS all satisfy the condition defined.

3.2 Decidability and Undecidability Results

First, we consider the case of non-preemptive scheduling to introduce the
problems. We have the following positive result.

Theorem 1 The problem of checking schedulability relative to a non-preem-
ptive scheduling strategy for task automata is decidable.

Proof. A detailed proof is given in [2]. We sketch the proof idea here. It is to
show that the schedulability question for a task automaton can be translated
as a reachability question for a timed automaton.

We transform the underlying timed automaton of a task automaton A =
hN; l0; E; I;M; xdonei to a modified timed automaton E(A) as follows. We
remove all labels, and add a label releasei on all edges leading to a location l
such that M(l) = Pi. This gives us a possibility to keep the information about
which task is released when the automaton enters l.

We code the task queue and operations on the queue related to the given
scheduling strategy as a timed automaton (called the scheduler) denoted
E(Sch). This automaton remembers the discrete parts of the queues in the
locations and it uses clocks to remember the accumulated computation times
and the relative deadlines for the released task instances. It is sufficient to
encode only the queues from the adequate states. Therefore, there are only
finitely many different discrete parts of the queues. The edges of E(Sch) are in-
duced by the timed automata for the scheduling strategy Sch from Definition 7
and by the rules for the task finishing from Definition 2.

The scheduler automaton manipulates the clocks as follows: Whenever an
instance of a task type Pi is released by an event releasei, a clock xdij is reset to
0, for some j such that xdij is not used by any other task instance. Whenever a
released task instance pij is started to run, a clock xcij is reset to 0. Whenever
the value of clock xcij of the running task instance is greater than or equal
to Bi, the task instance can be removed from the queue and the next task
instance can start to run. Note that this value should never be greater than Wi.
Whenever the constraints xdij = Di and xcij < Wi are met, an error state should
be reached. Whenever the scheduling strategy needs to access the remaining
best case/worst case computation time or the remaining deadline of a task
instance (to compare it with a constant), it can use Bi�xcij , Wi�xcij , Di�xdij

12

for the running task instance (Bi;Wi; Di � xdij for a released but not running
task instance), respectively.

Finally we construct the product automaton E(Sch) k E(A) in which both
E(Sch) and E(A) can only synchronize on identical actions namely releasei’s.
It can be proved that if an error state of the product automaton is reachable,
the original task automaton is non-schedulable. 2

For preemptive scheduling strategies, it has been conjectured that the schedu-
lability checking problem is undecidable. The reason is that if we use the
same ideas as for non-preemptive scheduling to encode a preemptive schedul-
ing strategy, we must use stopwatches (or integrators) to accumulate compu-
tation times for suspended tasks. That is, it appears that the computation
model behind preemptive scheduling is stopwatch automata for which it is
known that the reachability problem is undecidable. However, we have posi-
tive results for the following two classes of task automata.

Theorem 2 The problem of checking schedulability relative to a preemptive
scheduling strategy is decidable for task automata with fixed computation times.

This theorem follows from Lemma 3, 5, and 6 established in the following
section.

The result holds also for task automata with interval computation times in
case the finishing time of a task has no influence on the new task releases of
the automata and on the decisions of the scheduling strategy (EDF and FPS
are such scheduling strategies). In fact, it can be converted to the case of task
automata with fixed computation times.

Theorem 3 The problem of checking schedulability relative to FPS or EDF
scheduling strategy for task automata without task feedback is decidable.

To prove this, we show that if a non-schedulable state is reachable then it is
reachable also when the computations of all tasks take the worst-case execution
time. This is formulated as Lemma 7 and proved in the following section. This
fact together with Theorem 2 proves Theorem 3.

From scheduling theory [1], we know that the preemptive version of the ear-
liest deadline first (EDF) scheduling strategy is optimal in the sense that if a
task queue is non-schedulable with EDF, it cannot be schedulable with any
other scheduling strategy (preemptive or non-preemptive). Thus, the general
schedulability checking problem is equivalent to the relative schedulability
checking with respect to EDF.

For decidability, we have a general result that follows from the above theorems.

13

Theorem 4 The problem of checking schedulability is decidable for task au-
tomata without task feedback or with fixed computation times.

Unfortunately the schedulability problem is undecidable for preemptive schedul-
ing when tasks may have variable computation times and the finishing time
of a task may be used to influence (i.e., feedback on) the behaviour of the
automaton. This is stated in the following theorem which is our second main
technical result.

Theorem 5 The problem of checking whether a task automaton is schedulable
with FPS is undecidable.

This result is established in Section 5. However, the proof does not depend
on fixed priority scheduling strategy and it can be easily modified for almost
all preemptive scheduling strategies (e.g., the proof holds for EDF and SJF
without any modification).

4 Decidability

We shall encode the schedulability checking problem for task automata with
fixed computation time of tasks as a reachability problem of timed automata
with bounded subtraction. We show that a reachability problem for this exten-
sion of timed automata is decidable. In the last part of this section, we show
that the schedulability checking problem for task automata without task feed-
back can be reduced to the schedulability checking of task automata with fixed
computation time of tasks.

4.1 Timed Automata with Subtraction

We shall identify a class of suspension automata [3] that are timed automata
with subtraction in which clocks may be updated by subtraction under certain
conditions. We show that if for each clock there is a known maximal constant
such that subtraction operations are performed on clocks only in the bounded
zone, the reachability problem is decidable. Because the schedulability check-
ing problem can be coded as a reachability problem for such automata, it is
decidable.

Definition 8 A timed automaton with subtraction is a timed automaton in
which clocks may be updated by subtraction in the form x := x�C in addition
to reset of the form x := 0, where C is a natural number.

14

This is the class of so-called suspension automata [3], for which it is known
that the reachability problem is undecidable. However, for the following class
of suspension automata, the location reachability problem is decidable.

Definition 9 (Timed Automata with Bounded Subtraction) A timed automa-
ton with bounded subtraction is a timed automaton such that there is a con-
stant Mx for each clock x (the ceiling of x), and for all its reachable states
(l; u)

(1) u(x) � 0 for all clocks x, i.e., clock values should not be negative and
(2) u(x) � Mx if l g a r

�! l0 for some l0 and C such that u j= g and (x :=
x� C) 2 r.

Note that the two conditions imply that in a state (l; u), a clock x is allowed
to be subtracted by a constant C only if C � u(x) � Mx.

Because subtractions on clocks are performed only when clocks are bounded
with known constants, they preserve the standard region equivalence [5]. It is
illustrated in Figure 3.

Definition 10 (Region Equivalence � [5]) For a clock x 2 C, let Cx be a
natural number. For a real number t, let ftg denote the fractional part of t,
and btc denote its integer part. Let u; v 2 V. We define u�v, i.e., u; v are
region-equivalent iff

(1) for each clock x, either bu(x)c = bv(x)c or u(x) > Cx and v(x) > Cx and
(2) for all clocks x; y if u(x) � Cx and u(y) � Cy then

(a) fu(x)g = 0 iff fv(x)g = 0 and
(b) fu(x)g � fu(y)g iff fv(x)g � fv(y)g

However, the standard region construction above deals only with automata
containing no diagonal constraints, i.e., bounds on the clock differences. To
encode scheduling problems, we need to use diagonal constraints as guards in
automata. For example to check the schedulability of a task automaton related
to SJF, we need to compare the difference between clocks to decide where to
insert a new task. We need the refined version of region equivalence from [6].

Definition 11 (Refined Region Equivalence �) Let G be a finite set of di-
agonal constraints in the form x � y1N where N is a natural number. Let
u; v 2 V. We define u � v iff

(1) u�v
(2) u j= g iff v j= g for all g 2 G

For a clock assignment u, let u(x�C) denote the assignment where the value of
x is subtracted by C, namely u(x�C)(x) = u(x)�C and u(x�C)(y) = u(y) for

15

y 6= x. The following congruence properties of the refined region equivalence
will give rise to a finite partitioning of the reachable state space for a timed
automaton with bounded subtraction.

C
x

C
y

x

y

Bounded area alowed

for subtraction

u

v(x-1)

u(x-1)

v

Fig. 3. Region equivalence preserved by subtraction when clocks are bounded.

Lemma 1 Given a timed automaton with bounded subtraction, let G denote
the set of diagonal constraints appearing in the automaton and Cx be the max-
imum of Mx (the ceiling of x) and all constants appearing in the guards and
invariants of the automaton involving clock x. Let u; v 2 V and t be a non-
negative real number. Then u � v implies

(1) u + t � v + t0 for some real number t0 such that btc = bt0c.
(2) u[x 7! 0] � v[x 7! 0] for a clock x,
(3) u(x�C) � v(x�C) for all natural numbers C such that C � u(x) � Cx.

Proof. The proof is given in Appendix. 2

The refined region equivalence induces a bisimulation over reachable states of
timed automata with bounded subtraction, which can be used to partition the
whole state space into a finite number of equivalence classes.

Lemma 2 Assume a timed automaton with bounded subtraction, a location l
and clock assignments u and v. Then u � v implies that

(1) whenever (l; u) �! (l0; u0) then (l; v) �! (l0; v0) for some v0 s.t. u0 � v0.
(2) whenever (l; v) �! (l0; v0) then (l; u) �! (l0; u0) for some u0 s.t. u0 � v0.

Proof. It follows from Lemma 1. 2

The above lemma essentially states that if u � v then (l; u) and (l; v) are
bisimilar, which implies the following result.

Lemma 3 The location reachability problem for timed automata with bounded
subtraction is decidable if the bound Mx for each clock x is known.

Proof. From Lemma 2, it follows that for each location l of the automaton,
there is a finite number of equivalence classes induced by the bisimulation
relation �. Because the number of locations of an automaton is finite, the

16

whole state space of an automaton can be partitioned into finite number of
such equivalence classes and these equivalence classes can be effectively gen-
erated. 2

4.2 Preemptive Schedulers as Timed Automata with Subtraction

We shall first consider automata with fixed computation times. Later on, we
show how these results extend to task automata without task feedback, that
are automata with tasks whose computation times can be intervals but the
completion time of a task has no influence on the new releases of task instances.

Because we consider only tasks with fixed computation times, i.e., B = W for
each task type P (B;W;D), in the following, we will talk only about the worst
case remaining computation time wi for each task instance Pi(bi; wi; di) and
Wi as a parameter of the task type.

At any time point, the task queue may contain a sorted list of task instances.
To be able to talk about task instances according to their task type, we assume
some (any) order on the task types. By pij we denote a j-th task instance of
the i-th task type. Note that both indices are bounded, one by the number of
the task types and the other one by the maximal number of task instances of
a particular task type in a not overflowed task queue. Indices of task instances
of the same type do not correspond to their order in the queue, they just allow
us to distinguish between two instances of the same type. They are also reused
when a task instance finishes.

Main ideas: Essentially, the decidability results are achieved by the encod-
ing of task preemptions using subtraction on clocks by constants (instead of
using stopwatches). The difficult part is to show how does the automaton keep
the information about the remaining computation time and deadline of the
task instances in the queue using clocks. For each released task instance, we
use two clocks: a computing clock to remember the accumulated computation
time the instance has consumed so far, and a deadline clock to remember the
remaining relative deadline since release. To deal with preemption, we use sub-
traction. When the running task is preempted, we do not stop the computing
clock as we may do in using stopwatch automata. But when a running task
finishes, we subtract the computing clocks (for all preempted instances) with
the execution time of the finished task, which is precisely the amount of time
that the computing clocks have proceeded since the most recent preemption.
Assume that the current running task pij and the task pkl preempted by the
current one have computing clocks xcij and xckl, and their original fixed compu-
tation times are Wi and Wk (known constants) respectively. Then Wi� v(xcij)

17

stores precisely the remaining computation time for the running task (v is a
clock valuation). The remaining computation time for the preempted task is
Wk� (v(xckl)�v(xcij)). Following this reasoning, we may recover the remaining
computation times using the clock differences for all preempted tasks according
to the ordering they are preempted. For example, the remaining computation
time for the task instance pmn preempted by pkl is Wm�(v(xcmn)�v(xckl)). Us-
ing diagonal constraints, the remaining computation times of the preempted
task instances may be compared with the known constant computation time
of a newly released task instance. Thus a scheduling strategy deciding where
the new task instance should be inserted in the task queue based on remain-
ing computation times, can be encoded as a timed automaton with diagonal
constraints and bounded subtraction.

Assume a task automaton A with fixed computation times, and a preemptive
scheduling strategy Sch. As for the non-preemptive case (Theorem 1), let
E(A) denote the timed automaton of A where the action label of each edge is
replaced with releasei if its target location is mapped to Pi. For a preemptive
scheduling strategy Sch, we construct E(Sch) as a timed automaton extended
with subtraction to synchronize with E(A) through the actions releasei’s. This
automaton encodes the queues from all possible adequate states (the task
queue is not overflowed and no deadline is violated) in the locations. The
edges between the locations are induced by the scheduling strategy and the
rules for the task finishing.

We shall show that the LTS induced by E(A) k E(Sch) for any A and Sch
is weakly timed bisimilar to JASchK, i.e., the LTS induced by A with respect
to Sch, restricted to the adequate states. We shall also show how to detect
reachability of non-adequate states in JASchK.

Each location of E(Sch) encodes the information about the discrete part of
the queue, containing the names of the types of the task instances and their
status: running, preempted, or just released. We encode this information into
variables (with finite domain). For each pij, we use a state variable Status(ij)
initialized to free, representing the current status of pij:

� Status(ij) = free means that the position i; j in the task queue is free (i.e.,
pij is finished or not released yet),

� Status(ij) = released means that pij is released, not started yet,
� Status(ij) = running means that pij is running on the processor, and
� Status(ij) = preempted means that pij has started its computation but it is

suspended now.

The remaining computation time wij of a preempted task pij (Status(ij) =
preempted) may be a real number; but if pij is only released (Status(ij) =
released), wij is an integer Wi. We introduce two clocks for each pij:

18

� xcij (a computing clock) is used to remember the accumulated computation
time since pij was started.

� xdij (a deadline clock) is used to remember the deadline and it is reset to 0
when pij is released.

Since we cannot stop a computing clock for a preempted task instance pij, we
have to remember which task instance has preempted it (or which task instance
is the closest one running instead pij). The predicate Preempted by(ij)(kl) is
true if and only if Status(ij) = preempted, and pkl is the closest task instance
in the queue to pij such that Status(kl) = preempted or Status(kl) = running,
and pkl is closer to the head of the queue than pij.

We will use locations to remember which (if any) task instance is running at
the moment. E(Sch) has the following types of locations:

� Idling denotes that the task queue is currently empty, that is, Status(ij) =
free for all i; j.

� Running(ij) denotes that a task instance pij is running, that is, Status(ij) =
running. Each such location has invariants xcij � Wi and xdkl � Dk for all k; l
such that Status(kl) 6= free.

We also need to keep track of the order of the task instances in E(Sch).
For each pij, we use a state variable Position(ij) which is set to the value
? for all i; j such that Status(ij) = free and it is set to a natural number
denoting the position of pij in the queue otherwise. If Status(ij) = running
then Position(ij) = 1. Since the queue size is bounded in all adequate states,
Position(ij) has a finite domain for all pij (and thus can be encoded into timed
automata).

When a task finishes or a new one arrives, we use a predicate Head(mn) to
denote the fact that the task instance pmn is the next task instance to be
executed (the next head of the queue). If a new task instance arrives, we take
it also into account. Conversely, when a task finishes, we do not consider it
anymore.

We need to update the positions of the tasks in the queue when a task in-
stance arrives or finishes. Let Remove(mn) denote the update of the variables
Position(ij) for all pij when the task instance pmn is removed from the queue (it
has finished). When a new instance pmn arrives, Insert(mn) denotes the update
of the variables Position(ij) corresponding to inserting the new task instance
into the (discrete part of the) queue according to the scheduling strategy.

According to our definition of scheduling strategies, Head(mn), Remove(mn),
and Insert(mn) can be encoded using (diagonal free) timed automata guards on
the values wij; dij of the task instances. These values can be at any timepoint
reconstructed from the clocks xcij and xdij (as is proved below) and therefore

19

the predicates can be encoded as (diagonal) guards on the edges of E(Sch).
We show how this can be done for EDF and SJF in the Appendix (the case of
FPS is straightforward, because it uses only the static task parameters).

The edges of E(Sch) between its locations are defined in Table 1. Later we
also add a location Err which will be reachable if and only if either a deadline
can be missed or the queue can overflow.

(1) Idling to Running(ij):
� guard: none
� action: releasei
� reset: xcij := 0, xdij := 0, Status(ij) := running

(2) Running(ij) to Idling:
� guard: Status(kl) = free for all k; l 6= i; j, xcij = Wi

� action: none
� reset: Status(ij) := free, xdone := 0, Remove(ij)

(3) Running(ij) to Running(mn): there are three types of edges.
(a) The running task instance pij is finished, pmn was preempted and is sched-

uled to run now:
� guard: xcij = Wi, Status(mn) = preempted, Head(mn)
� action: none
� reset: Status(ij) := free, xdone := 0, xckl := xckl �Wi for all k; l s.t.

Status(kl) = preempted, Status(mn) := running, Remove(ij)
(b) A new task instance pmn is released, which preempts the running task

instance pij:
� guard: Status(mn) = free, Head(mn)
� action: releasem
� reset: Status(mn) := running, xcmn := 0, xdmn := 0, Status(ij) :=

preempted, Insert(mn)
(c) The running task instance pij is finished and pmn (which was released but

has never run) is scheduled to run now:
� guard: xcij = Wi, Status(mn) = released, Head(mn)
� action: none
� reset: Status(ij) := free, xdone := 0, xcmn := 0, xckl := xckl �Wi for all
k; l s.t. Status(kl) = preempted, Status(mn) := running, Remove(ij)

(4) Running(ij) to Running(ij): a new task is released and the running task instance
pij will continue to run:
� guard: Status(mn) = free, Head(ij)
� action: releasem
� reset: Status(mn) := released, xdmn := 0, Insert(mn)

Table 1
Defining the edges of E(Sch).

At first, we prove that E(A) k E(Sch) is a faithful translation of A and

20

Sch restricted to the adequate states by showing a weak timed bisimulation
between their semantical labeled transition systems.

Lemma 4 The LTS induced by E(A) k E(Sch) is weak timed bisimilar to
JASchK restricted to the adequate states, based on an abstract transition relation
which abstracts away from action labels, defined as follows:

(1) sA �
�! s0A iff sA a

�! s0A for an action a 2 Act [ffing.
(2) sA t

�! s0A iff sA t
�! s0A for a time delay t.

where sA; s0A are both either states of JASchK or states of E(A) k E(Sch).

Proof.

Assume that the task queue in a state (l; u; q) of A, contains triples (bij; wij; dij)
where bij = wij � 0 and dij are the remaining computation time and relative
deadline for a task instance pij (we use the same indexing as in E(Sch)). By
pij <q pkl we denote the fact that pij 2 q, pkl 2 q, and the task instance pij in
q is closer to the head of the queue than the task instance pkl.

We define the following relations:

S1 = f((l; u; []); (hl; Idlingi; (u [v)))jl 2 N; u; v 2 Vg
S2 = f((l; u; q); (hl;Running(mn)i; (u [v))) j l 2 N; u; v 2 V C1 ^ C2 ^ C3 ^
C4 ^ C5g where

� C1 � [pij 2 q , Status(ij) 6= free ^pij <q pkl , Position(ij) < Position(kl)]
� C2 � [wij = Wi � v(xcij) for i; j s.t. Status(ij) = running]
� C3 � [wij = Wi� (v(xcij)�v(xckl)) for all i; j s.t. Status(ij) = preempted and
k; l s.t. Preempted by(ij)(kl)]

� C4 � [wij = Wi for all i; j s.t. Status(ij) = released]
� C5 � [dij = Di � v(xdij) for all i; j s.t. Status(ij) 6= free]

We establish that S = S1 [S2 is a weak timed bisimulation.

First consider a pair in S1, ((l; u; []); (hl; Idlingi; (u [v))).

� If A or E(A) takes a discrete transition which does not release a task instance
(is not labeled by a releasei) or a time delay then the other automaton can
simply take the same transition. Note, that E(Sch) can delay in Idling for
an unbounded amount of time.

� If A takes a discrete transition releasing an instance of Pi then E(Sch) takes
the corresponding transition labeled by releasei and moves to Running(ij)
(Rule 1 in Table 1). It is easy to check that conditions C1–C5 hold, because
xcij and xdij are reset and wij = Wi; dij = Di.

� If E(Sch) takes a transition labeled by releasei and moves to Running(ij)

21

(Rule 1 in Table 1) then A takes the corresponding discrete transition which
releases an instance of Pi.

Now we consider pairs in S2 and possible transitions according to their type.

Discrete transition. Assume ((l; u; q); (hl; Running(ij)i; (u[v))) 2 S2 and A
takes a transition (l; u; q)�! (l0; u0; Sch(M(l0); q)). Further assume that this
transition is induced by l

g a r
�! l0 , u j= g, and u[r] j= I(l0). Then E(A) k E(Sch)

takes the corresponding transition. There are three possibilities:

� M(l0) = ? — the corresponding transition in E(A) k E(Sch) is enabled and
both resulting states trivially belong to S2.

� M(l0) = Pm(Bm;Wm; Dm) and the new instance preempts the currently
running one, i.e., Sch(Pm(Bm;Wm; Dm); q) = Pm(Bm;Wm; Dm) ::q — the
corresponding transition in E(A) k E(Sch) (Rule 3b in Table 1) is enabled
because there exists n such that Status(mn) = free (A is restricted to not
overflowed queues) and Head(mn) is true. Conditions C1–C5 hold.

� M(l0) = Pm(Bm;Wm; Dm) and Sch(Pm(Bm;Wm; Dm); Pij(bij; wij; dij) :: q) =
Pij(bij; wij; dij) :: q0 — the corresponding transition in E(A) k E(Sch)
(Rule 4 in Table 1) is enabled because there exists n such that Status(mn) =
free (A is restricted to not overflowed queues) and Head(ij) is true. Condi-
tions C1–C5 hold in the new pair of states.

The other direction is symmetrical if we notice that Head(kl) can be true only
for either i; j or m;n (and for only one of them).

Time pass. Assume ((l; u; Pij(bij; wij; dij) :: q); (hl; Running(ij)i; (u[v))) 2 S2

and A takes a transition (l; u; Pij(bij; wij; dij) :: q) t
�! (l; u0; Run(Pij(bij; wij;

dij) :: q; t)). We know that t � wij and u + t j= I(l). Then E(A) k E(Sch)
delays for the same amount of time. E(A) can delay for t, u + t j= I(l) is
a sufficient condition. For E(Sch), we need to satisfy (v + t)(xcij) � Wij and
(v + t)(xdkl) � Dkl for all k; l such that Status(kl) 6= free. The former holds
because of Condition C2, the latter because of C5 and the fact that A is
restricted to the states where no deadline is missed. Conditions C1–C5 hold in
the new pair of states.

The other direction is symmetrical, Conditions C1–C5 are formulated as equal-
ities.

Finishing a task. Assume ((l; u; Pij(bij; wij; dij) :: q); (hl; Running(ij)i; (u [
v))) 2 S2 and A takes a transition (l; u; Pij(bij; wij; dij) :: q) �

�! (l; u[xdone];
q). We know that wij = 0 and u[done] j= I(l). Because of Condition C2, we
know that xcij = Wi. If q = [] then the transition given by Rule 2 in Table 1
is enabled and E(A) k E(Sch) takes it. Conditions C1–C5 hold. Otherwise,
Head(mn) is true for some (unique) m;n.

22

If Status(mn) = preempted then E(A) k E(Sch) takes the transition given by
Rule 3a in Table 1. Subtraction of clocks in the reset together with Condition
C3 ensure that C2 and C3 hold in the new pair of states. The other conditions
also hold.

If Status(mn) = released then E(A) k E(Sch) takes the transition given by
Rule 3c in Table 1. Subtraction of clocks in the reset together with Condition
C3 ensure that C3 hold in the new pair of states. The other conditions also
hold.

Again, the other direction is symmetrical. 2

Now we show that the product automaton E(A) k E(Sch) is a bounded timed
automaton with subtraction.

Lemma 5 The automaton E(A) k E(Sch) for a task automaton A and a
preemptive scheduling strategy Sch is a timed automaton with bounded sub-
traction.

Proof. Note that xckl � xdkl because whenever xdkl is reset to zero, so is xckl
(when a new instance of Pk is released). Note also that all edges labeled with
a subtraction lead from and to a location with the invariant xdkl � Dk for all
k; l such that Status(kl) 6= free. Thus xdkl is bounded by Dk and therefore xckl
is bounded by Dk for k; l such that Status(kl) 6= free. But only such clocks can
be subtracted in E(Sch).

Secondly, the only possibility for a computing clock, say xckl for a task instance
pkl, to become negative is by a subtraction. But a subtraction is done on xckl
only when a task instance, say pij, is finished, i.e., xcij = Wi holds. Note
that Status(kl) = preempted implies that pkl was released and started (when
Status(kl) was set to running) before Status(ij) was set to running. Otherwise,
Status(kl) = released. That is xckl is reset to zero before xcij. Thus we have
xckl � xcij implying that xckl �Wi � 0 when xcij = Wi. Therefore, all clocks are
non-negative. 2

To detect whether a non-adequate state is reachable in JASchK, we add a loca-
tion Err and the edges to E(Sch) as described in Table 2.

Now we have the correctness lemma for our encoding. Let v0 be a clock valu-
ation which assigns zero to all clocks of the scheduler automaton E(Sch).

Lemma 6 Let A be a task automaton with fixed computation time of tasks and
Sch a preemptive scheduling strategy. Assume that (l0; u0; []) and (hl0; Idlingi; u0[
v0) are the initial states of A and the product automaton E(A) k E(Sch) re-
spectively. Then

23

(1) Running(ij) to Err:
� guard: xcij < Wi, xdij = Di

� action: none
� reset: none

(2) Running(ij) to Err: for each k; l there is an edge labeled with
� guard: Status(kl) = released, xdkl > Dk �Wk

� action: none
� reset: none

(3) Running(ij) to Err: for each k; l there is an edge labeled with
� guard: Status(kl) = preempted, xcij < Wi, xdkl = Dk

� action: none
� reset: none

(4) Running(ij) to Err: for each k there is an edge labeled with
� guard: Status(kl) 6= free for all l
� action: releasek
� reset: none

Table 2
Defining the edges of E(Sch) leading to Err.

(1) if there are l and u such that (l0; u0; []) �!�(l; u; qerr) then (hl0; Idlingi; u0[
v0) �!� (hl0;Erri; u0 [v) for some l0, u0, and v, and

(2) if there are l, u, and v such that (hl0; Idlingi; u0 [v0) �!�(hl;Erri; u [v)
then (l0; u0; []) �!� (l0; u0; qerr) for some l0; u0.

Proof. Consider a finite path � in JASchK leading to an error state (l; u; qerr).
Let (le; ue; qe) denote the last state on the prefix of � containing only adequate
states.

If a deadline will be missed in the immediate successor of (le; ue; qe) then there
must be a task instance Pkl(bkl; wkl; dkl) 2 qe such that dkl = 0 and wkl > 0.
According to Lemma 4, a corresponding state in E(A) k E(Sch) is reachable.
Because of Conditions C1–C5, one of the transitions given by Rules 1–3 in
Table 2 is enabled according to the status of Pkl(bkl; wkl; dkl). If the queue will
overflow in the immediate successor of (le; ue; qe) then a transition given by
Rule 4 in Table 2 is enabled because of C1.

If an error state is reachable in the LTS induced by E(A) k E(Sch) then it is
either by taking a transition given by Rules 1–3 in Table 2 or by the transition
given by Rule 4 in Table 2. In the former case, there must be a task instance
Pkl(bkl; wkl; dkl) such that dkl = 0 and wkl > 0 in the task queue according to
Lemma 4. In the latter case, the queue overflows. Because the time does not
stop in A, a deadline will be missed in both cases. 2

24

The above lemma states that the schedulability analysis problem can be solved
by reachability analysis for timed automata extended with subtraction. From
Lemma 5, we know that E(Sch) is bounded. Because the reachability problem
is decidable due to Lemma 3, we complete the proof for our main result stated
in Theorem 2.

4.3 Task Automata without Task Feedback

Now we prove that a task automaton without task feedback is schedulable
with a preemptive scheduling strategy which is either FPS or EDF if and only
if it is schedulable (with the same scheduling strategy) when the tasks have
constant computation times equal to the given worst-case computation times.

Lemma 7 Let A be a task automaton without task feedback with an ini-
tial state (l0; u0; []) and Sch be either FPS or EDF. If there is a path r1 =
(l0; u0; []) �!� (l; u; qerr) in JASchK then there is a path r2 = (l0; u0; []) �!�

(l0; u0; qerr) in JASchK such that each task instance P (b; w; d) finishes when
w = 0.

Proof. Given a path r1, we construct r2 so that we let the underlying timed
automaton of A to perform the same transitions as in r1 (discrete transitions
are taken at the same absolute time points) and all task instances P (b; w; d)
finish when w = 0 (task finishing transitions are taken at possibly different
absolute time points). We have to show that r2 is a path in JASchK and that it
leads to a state where a deadline is missed.

Because A has no task feedback, the differences in the absolute time points
at which task finishing transitions are taken cannot influence the underlying
timed automaton of A. In particular, validity of the invariants in the locations
is not influenced and all transitions that were enabled along r1 are also enabled
along r2 (at the same time points). Also, task instances cannot be forced to
finish before w = 0. Therefore, r2 is a path in JASchK.

To show that r2 leads to a state where a deadline is missed we show the
following proposition true. Let (l; u; q1) and (l; u; q2) denote the states of A
at the same absolute time point along r1 and r2, respectively. Then q1 can
be obtained from q2 by dropping some task instances and possibly decreasing
some remaining computation times (all remaining deadlines are the same for
the task instances present in both queues).

The proof is done by induction on the length of the path. The proposition
trivially holds for a path of zero length.

25

Assume that the proposition holds in states (l; u; q1) and (l; u; q2). If A takes a
discrete transition not releasing any task then the proposition holds trivially.
If A takes a discrete transition which releases a task instance Pij(Bij;Wij; Dij)
then we claim that the scheduling strategy inserts this task into the same posi-
tion in q1 and q2 with respect to the tasks that are in both queues. This clearly
holds for FPS, because FPS decides only according to the discrete part of the
queue. EDF decides just according to the ordering of the remaining deadlines
which depend only on the release times of task instances. But release times
are the same for both r1 and r2. In other words, if a task instance Q(b; w; d)
has the earliest deadline in q2 and it is still in q1 then it also has the earliest
deadline there. Thus, the proposition holds after releasing Pij(Bij;Wij; Dij).

If A delays for a non-zero time then the remaining computation times of both
running task instances in q1 and q2 is decreased by the same amount. This
cannot invalidate the property if the running task instances are the same.
Otherwise, according to the induction hypothesis there is a corresponding
task instance Q(b; w; d) in q2 to the running task instance Q(b0; w0; d) in r1.
Then w > w0 after the time pass transition.

If A finishes a task instance in r1 then the proposition holds. If A finishes a
task instance P (b; w; d) in r2 then we know that w = 0 and from induction
hypothesis either the corresponding task instance P (b0; w0; d) in r1 has already
finished or w0 = w and therefore it must finish at the same time point. 2

As a consequence, we may consider only the worst case computation time of
all tasks (all best case computation times are equal to the worst case com-
putation times). That is, the best case execution times have no effect on the
schedulability of systems without task feedback. Therefore, Lemma 7 and The-
orem 2 prove Theorem 3. Note that Lemma 7 does not hold for all scheduling
strategies. For example, it does not hold for SJF.

5 Undecidability

In this section we show that the schedulability problem for task automata in
general (i.e., with preemption, task feedback, and variable execution times of
tasks) with fixed priority scheduling is undecidable.

The proof is done by reduction of the halting problem for two-counter ma-
chine to the schedulability problem for task automata. A two-counter machine
consists of a finite state control unit and two unbounded non-negative integer
counters. Initially, both counters contain the value 0. Such a machine can ex-
ecute three types of instructions: incrementation of a counter, decrementation
of a counter, and branching based upon whether a specific counter contains

26

the value 0. Note that decrementation of a counter with the value 0 leaves
this counter unchanged. After execution of an instruction, a machine changes
deterministically its state. One state of a two-counter machine is distinguished
as halt state. A machine halts if and only if it reaches this state.

We present an encoding of a two-counter machine M using a task automaton
AM such that M halts if and only if AM is non-schedulable, based on the
undecidability proofs of [7]. In the construction, the states of M correspond to
specific locations of AM and each counter is encoded by a clock. We show how
to simulate the two-counter machine operations. First, we adopt the notion of
wrapping of [7].

Definition 12 A task automaton over set of clocks C is N-wrapping if for
all states (l; u; q) reachable from its initial state and for all clocks x 2 C:
u j= x � N . An N-wrapping edge for a clock x and a location l is an edge
from l to itself that is labeled with the guard x = N and which resets the clock
x. A clock that is reset only by wrapping edges is called system clock. 5 Each
time period between two consecutive time points at which any system clock
contains value 0 is called N-wrapping period.

We use wrapping to simulate discrete steps of a two-counter machine. Each
step is modeled by several N-wrapping periods. We define the wrapping-value
of a clock to be the value of the clock when the system clock is 0. Note that
a clock is carrying the same wrapping value if it is not reset by another edge
than the wrapping edges. This principle is shown in Figure 4, where xsys is
a system clock and clock xcopy contains the same wrapping-value when the
automaton takes transitions e1 and e3.

e1

e2

e2e1 e3

e3

time

xcopy xsys

xsys � N

xcopy � N

xcopy = N

xsys := 0
xsys = N

xcopy := 0
N

0

xsys = 0

Fig. 4. The wrapping edge e2 makes clock xcopy carry the same wrapping-value when
the transitions e1 and e3 are taken.

We encode a two-counter machine M with counters C and D using a 4-
wrapping automaton AM with one system clock denoted xsys and five other
clocks xc; xd; xold; xcopy, and xdone. In particular, we encode counters C and D
of M by clocks xc and xd like this: counter value v corresponds to the clock

5 Note that all system clocks contain the same value.

27

wrapping-value 21�v. We use the density of the continuous domain to encode
arbitrarily large values of the counters. Decrementation (incrementation) of
a counter corresponds to doubling (halving) the wrapping-value of the cor-
responding clock. Test for zero corresponds to the check whether the clock
wrapping-value equals to 2.

Now we show how to simulate the decrementation operation by doubling the
wrapping-value of the clock xd. To do this, we use two tasks: P and Q. The
task P has execution time in [0; 1] and deadline 50; the task Q has execution
time in [8; 8] and deadline 100. Moreover, the priority of P is higher than the
priority of Q, i.e., P always preempts Q. Notice that the execution time of
task P can vary and the execution time of the task Q is fixed.

The basic idea of doubling a wrapping-value v 2 (0; 1] of clock xd is as follows:
we assume that the current wrapping-value of xd is v. We copy it to the clock
xcopy (that is, to make the wrapping-value of the clock xcopy to be v). Then we
release the task Q non-deterministically and reset xd. The idea is to start Q
2v time units before the reset of the system clock xsys and to use xd to record
the response time of Q. Two instances of P are released before Q finishes,
that is P preempts Q twice. We make sure that the execution time of each
of these two instances of P is exactly v time units. Note that v can be any
real number within the interval (0; 1]. Then the response time for Q is exactly
8 + 2v. If Q finishes at a time point when the system clock xsys is reset to
0, the wrapping-value of xd is 2v. As Q is released non-deterministically, it is
enough if there is one such computation.

To simplify the presentation, we construct AM with timestops. But it is easy
to see that we could add an unguarded transition into a sink location outgoing
from every location. The sink location does not release any task, it does not
have any invariant and it does not have any outgoing transition. A computa-
tion leading into this location does not correspond to a computation of the
two-counter machine and it does not lead into an error state (a deadline miss).
Therefore, it does not influence the correctness of the reduction.

In Figure 5, we show the part of AM that doubles the wrapping-value of the
clock xd. Figure 6 illustrates the time chart of the doubling process. Assume
that a two-counter machine M is currently in a state si and that it wants to
decrease the counter D and then move to a state sj. The locations li and lj
of AM correspond to the states si and sj respectively. Note that the dashed
edge shows the transition of the two-counter machine (it is not a transition
of AM). Note also that the decrementation operation leaves a counter with
value 0 unchanged; the automaton can move from li directly to lj through the
transition e0 when xd contains the wrapping-value 2 (which corresponds to
the counter value 0). Otherwise, the following steps are taken to double the
wrapping-value of xd.

28

D:=D−1
(d:=2d)

xsys � 4
xcopy � 4
xd � 4

xcopy = 4
xcopy := 0

xcopy = 4
xcopy := 0

xsys = 4; xdone = 0
xsys := 0

e3

e1

e0

lj

li

e7

xsys := 0

xd := 0
xcopy := 0

xcopy � 4
xd � 4

xd = 4; xsys � 3

xcopy < 4
xsys � 4

xsys � 4

xsys = 4

e2

xcopy � 4
Q(8; 8; 100)

xcopy � 4
xd � 4

xd = 4
xd := 0

e4

P (0; 1; 50)
xsys � 4

e5

P (0; 1; 50)
xsys � 4

e6

xsys = 4; xdone = 0
xsys := 0

xsys � 4
xcopy � 4
xd � 4

xcopy = 4
xcopy := 0

xsys = 0; xd = 2

xd := 0

xsys := 0xsys = 4; xdone = 0

xd := 0
xd = 4

Fig. 5. A part of reduction automaton corresponding to a decrementation of D. The
wrapping edges for clocks xc; xold, xdone, and for all clocks in locations li, lj are
omitted. The location invariants xc � 4; xold � 4, and xdone � 4 are also omitted as
well as transitions preventing timestops.

29

e2 e4 e5 e6 e7e3

Q(8; 8; 100)
P (0; 1; 50)

xd
xd

xd xdxsys xcopy xcopy xcopyxsys xsysxsys

e1

4

0

Fig. 6. Time chart of the doubling procedure.

First, the wrapping-value of xd is copied to the clock xcopy (by transition e1),
that is, xcopy carries the same wrapping-value as xd. Then the automaton
non-deterministically guesses the doubled wrapping-value of xd (note that
when xd is reset, it will carry a new wrapping-value). It resets xd at a non-
deterministically chosen time instant and at the same time it releases the task
Q (transition e2).

The automaton waits until the clock xcopy reaches time 4, then resets xcopy and
releases P (transition e3), which preempts Q. Note that the wrapping-value of
xcopy will remain to be v and at this time point the value of the system clock
xsys is 4� v. Therefore, xsys will reach 4 in v time units.

The next transition e4 is guarded by two constraints: xsys = 4; xdone = 0. To
satisfy these constraints, the automaton has to wait in this location for v time
units, and the task P must finish at this time point, which resets the clock
xdone. 6 By this we make P run (and prevent Q from running) exactly for v
time units. Now we repeat this procedure again. That is, the automaton waits
until xcopy = 4. Then it releases the task P and forces it to run exactly for v
time units (transitions e5 and e6).

Now, if the non-deterministic guess of the doubled wrapping-value of xd was
correct, task Q must finish when xsys is equal to 4, which makes the guard on
e7 become true and the automaton moves to location lj. Thus, if the location
lj is reachable, the wrapping-value of xd is 2v. This is stated in the following
lemma.

Lemma 8 Let (li; u; q) be an arbitrary state of the automaton shown in Fig-
ure 5 where u(xd) = v, v 2 (0; 1], and q = []. Then (lj; u0; q0) is reachable for
some u0 and q0, and if (lj; u0; q0) is reachable, it must be the case that q0 = [],
and u0(xd) = 2v.

6 We have to make sure that xdone is not reset by a wrapping edge when it is tested
by a guard of the automaton. This causes no technical difficulties and it is omitted
from Figure 5.

30

Proof. The proof is obvious from the construction in Figure 5. 2

To increment a counter we need to halve a wrapping-value of a clock, say
xc. For this, we use the clock xold to copy the wrapping-value of xc. The
new wrapping-value v of xc is non-deterministically guessed and it is checked
by the above doubling procedure. If the wrapping-value of xold (the original
wrapping-value of xc) is 2v, then the automaton can proceed to the location
corresponding to the destination state in an increment instruction.

To simulate branching, we construct two transitions outgoing from a location
with guards xsys = 0 ^ xc = 2 and xsys = 0 ^ xc 6= 2. The initial state of M
corresponds to a location where both xc and xd contain the wrapping-value 2.
This can be achieved by integer guards and resets.

The halt state corresponds to the location halt with unguarded self-loop re-
leasing the task Q whenever it is visited. It follows that the automaton AM is
schedulable if and only if the location halt is unreachable, i.e., the two-counter
machine M does not halt.

6 Conclusions and Related Work

We have developed a theory of task automata, an extended version of timed
automata with asynchronous processes, i.e., computation tasks triggered by
timed events, which may serve as a model for real time systems with non-
uniformly recurring tasks. The model can be used to specify resource require-
ments and hard timing constraints on computations, in addition to features
offered by timed automata. It is general and expressive enough to describe con-
currency, synchronization, and tasks which may be periodic, sporadic, preemp-
tive, and (or) non-preemptive as well as dependent relations between tasks.
The classical notion of schedulability is naturally extended to the model of
task automata.

Our main technical contributions include the proof that the schedulability
checking problem related to preemptive scheduling is decidable for a large
class of task automata. The problem has been suspected to be undecidable
due to the nature of preemptive scheduling. To our knowledge, this is the
first decidability result for preemptive scheduling in dense time models. We
believe that our work is one step forward to bridge scheduling theory and
automata-theoretic approaches to system modeling and analysis.

The negative result on task automata is that the schedulability checking prob-
lem is undecidable for the class of automata with tasks whose computation
times are intervals and the completion time of a task may influence the new

31

task releases. We have studied the borderline between decidable and undecid-
able cases. It is shown that the schedulability problem for many scheduling
strategies will be undecidable if the following three conditions hold at the same
time: (1) the execution times of tasks are intervals, (2) the precise finishing
time of a task may influence the new task releases, and (3) a task is allowed
to preempt another running task.

A challenge is to make the results an applicable technique combined with clas-
sical methods such as rate monotonic scheduling. We need new algorithms and
data structures to represent and manipulate the dynamic task queue consist-
ing of time and resource constraints. As another direction of future work, we
shall study the schedule synthesis problem. More precisely given an automa-
ton, it is desirable to characterize the set of schedulable traces accepted by
the automaton.

Related work.

This paper summarises and extends our previous results on solving schedul-
ing problems using timed automata; it is the full and extended version of
two conference papers. The decidability results have been presented in [8] and
the undecidability results in [9]. The general encoding scheme of scheduling
strategies has been implemented in the TIMES tool [10], based on the UP-
PAAL DBM library extended with a subtraction operation. A more recent
result shows that for systems where tasks are assigned fixed priorities, the
schedulability analysis problem can be solved more efficiently. An encoding of
a FPS scheduler using two clocks is presented in [11].

Scheduling is a well-established area. Various analysis methods have been pub-
lished in the literature. For systems restricted to periodic tasks, algorithms
such as rate monotonic scheduling are widely used and efficient methods for
schedulability checking exist, see, e.g., [1]. These techniques can be used to
handle non-periodic tasks. The standard way is to consider non-periodic tasks
as periodic using the estimated minimal inter-arrival times as task periods.
Clearly, the analysis based on such a task model would be pessimistic in
many cases, e.g., a task set which is schedulable may be considered as non-
schedulable as the inter-arrival times of the tasks may vary over time, that are
not necessary minimal. Our work is more related to work on timed systems
and scheduling.

An interesting work on relating classical scheduling theory to timed systems is
the controller synthesis approach [12,13]. The idea is to achieve schedulability
by construction. A general framework to characterize scheduling constraints as
invariants and synthesize scheduled systems by decomposition of constraints is

32

presented in [13]. However, algorithmic aspects are not discussed in these work.
Timed automata has been used to solve non-preemptive scheduling problems
mainly for job-shop scheduling [14–16]. These techniques specify predefined
locations of an automaton as goals to achieve by scheduling and use reach-
ability analysis to construct traces leading to the goal locations. The traces
are used as schedules. There have been several work, e.g., [3,17,18] on using
stopwatch automata to model preemptive scheduling problems. As the reacha-
bility analysis problem for stopwatch automata is undecidable in general [19],
there is no guarantee for termination for the analysis without the assumption
that task preemptions occur only at integer points. The idea of subtractions
on timers with integers, was first proposed by McManis and Varaiya in [3]. In
general, the class of timed automata with subtractions is undecidable, which
is shown in [20]. In this paper, we have identified a decidable class of updat-
able automata, which is precisely what we need to solve scheduling problems
without assuming that preemptions occur only at integer points.

Acknowledgement: The work is partially supported by EU through the
CREDO project.

References

[1] G. C. Buttazzo, Hard Real-Time Computing Systems. Predictable Scheduling
Algorithms and Applications, Kluwer Academic Publishers, 1997.

[2] C. Ericsson, A. Wall, W. Yi, Timed automata as task models for event-driven
systems, in: Proc. of the 6th International Conference on Real-Time Computing
Systems and Applications, IEEE Computer Society Press, 1999.

[3] J. McManis, P. Varaiya, Suspension automata: a decidable class of hybrid
automata, in: Proc. of the 6th International Conference on Computer-Aided
Verification, no. 818 in Lecture Notes in Computer Science, Springer–Verlag,
1994, pp. 105–117.

[4] K. G. Larsen, P. Pettersson, W. Yi, Compositional and symbolic model-checking
of real-time systems, in: Proc. of 16th IEEE Real-Time Systems Symposium,
IEEE Computer Society Press, 1995, pp. 76–89.

[5] R. Alur, D. L. Dill, A theory of timed automata, Theoretical Computer Science
126 (2) (1994) 183–235.

[6] J. Bengtsson, W. Yi, Timed automata: Semantics, algorithms and tools, in:
W. Reisig, G. Rozenberg (Eds.), In Lecture Notes on Concurrency and Petri
Nets, no. 3098 in Lecture Notes in Computer Science, Springer–Verlag, 2004.

[7] T. Henzinger, P. Kopke, A. Puri, P. Varaiya, What’s decidable about hybrid
automata?, Journal of Computer and System Sciences 57 (1998) 94–124.

33

[8] E. Fersman, P. Pettersson, W. Yi, Timed automata with asynchronous
processes: Schedulability and decidability, in: J.-P. Katoen, P. Stevens (Eds.),
Proc. of the 8th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, no. 2280 in Lecture Notes in Computer
Science, Springer–Verlag, 2002, pp. 67–82.

[9] P. Krčál, W. Yi, Decidable and undecidable problems in schedulability analysis
using timed automata, in: K. Jensen, A. Podelski (Eds.), Proc. of TACAS’04,
Barcelona, Spain., Vol. 2988 of Lecture Notes in Computer Science, Springer–
Verlag, 2004, pp. 236–250.

[10] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, W. Yi, TIMES - a
tool for modelling and implementation of embedded systems, in: Proc. of the
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, no. 2280 in Lecture Notes in Computer Science, Springer–
Verlag, 2002.

[11] E. Fersman, L. Mokrushin, P. Pettersson, W. Yi, Schedulability analysis of fixed-
priority systems using timed automata., Theor. Comput. Sci. 354 (2) (2006)
301–317.

[12] K. Altisen, G. Gößler, A. Pnueli, J. Sifakis, S. Tripakis, S. Yovine, A
framework for scheduler synthesis, in: Proc. of the 20th IEEE Real-Time
Systems Symposium, IEEE Computer Society Press, 1999, pp. 154–163.

[13] K. Altisen, G. Gößler, J. Sifakis, A methodology for the construction of
scheduled systems, in: Proc. of Formal Techniques in Real-Time and Fault
Tolerant Systems, no. 1926 in Lecture Notes in Computer Science, Springer–
Verlag, 2000, pp. 106–120.

[14] Y. Abdeddaim, O. Maler, Job-shop scheduling using timed automata, in: Proc.
of 13th Conference on Computer Aided Verification, no. 2102 in Lecture Notes
in Computer Science, Springer–Verlag, 2001.

[15] A. Fehnker, Scheduling a steel plant with timed automata, in: Proc. of the 6th
International Conference on Real-Time Computing Systems and Applications,
IEEE Computer Society Press, 1999.

[16] T. Hune, K. G. Larsen, P. Pettersson, Guided Synthesis of Control Programs
using Uppaal, Nordic Journal of Computing 8 (1) (2001) 43–64.

[17] J. Corbett, Modeling and analysis of real-time ada tasking programs, in: Proc.
of 15th IEEE Real-Time Systems Symposium, IEEE Computer Society Press,
1994, pp. 132–141.

[18] F. Cassez, F. Laroussinie, Model-checking for hybrid systems by quotienting and
constraints solving, in: Proc. of the 12th International Conference on Computer-
Aided Verification, no. 1855 in Lecture Notes in Computer Science, Springer–
Verlag, 2000, pp. 373–388.

[19] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, S. Yovine, The algorithmic analysis of hybrid systems,
Theoretical Computer Science 138 (1) (1995) 3–34.

34

[20] P. Bouyer, C. Dufourd, E. Fleury, A. Petit, Are timed automata updatable?,
in: Proc. of the 12th International Conference on Computer-Aided Verification,
Vol. 1855 of Lecture Notes in Computer Science, Springer–Verlag, 2000.

[21] K. G. Larsen, W. Yi, Time-abstracted bisimulation: Implicit specifications and
decidability, Information and Computation 134 (2) (1997) 75–101.

35

A Appendix

Proof of Lemma 1. Assume u � v. To prove the first two clauses, we
use the known fact on the standard region equivalence �, that u�v implies
that for all t, u + t�v + t0 for some real number t0 such that btc = bt0c and
u[x 7! 0]�v[x 7! 0] for a clock x. Proofs can be found in the literature,
e.g., [21]. Assume g 2 G and g is in the form x� y1N . We have two cases:

(1) First, assume u + t j= g, that is, u(x + t) � u(y + t)1N . This implies
u(x) � u(y)1N . Thus, u j= g. Because u � v, we also have v j= g. As
v j= g implies v(x + t)� v(y + t)1N for any real t, we have v + t0 j= g.

(2) Second, assume u[x 7! 0] j= g, that is, �u(y)1n. As u�v, �v(y)1N by
definition of �. That is, v[x 7! 0] j= g. The case for u[y 7! 0] j= g is
similar.

Therefore, we conclude the first two clauses in the lemma.

Now we prove the third clause. Assume that u�v, and for each clock x, C �
u(x) � Cx. From u�v, we have C � v(x) � Cx. We have three cases to check:

(1) (The integer parts of clock values in u(x � C) and v(x � C)). Because
u�v, we have bu(x)c = bv(x)c. As C � u(x) � Cx, bu(x� C)(x)c =
bv(x� C)(x)c. By definition, we have bu(x� C)(y)c = bv(x� C)(y)c for
all clocks y. This proves that the integer parts of clock values in u(x�C)
and v(x� C) are equal.

(2) (The fractional parts of clock values in u(x� C) and v(x� C)). As the
subtraction operation on a clock only changes the integer part of the
clock, we have, for all clocks y and z,
(a) fu(x� C)(y)g = 0 iff fv(x� C)(y)g = 0 and
(b) fu(x� C)(y)g � fu(x� C)(z)g iff fv(x� C)(y)g � fv(x� C)(z)g

(3) (The diagonal constraints). Assume that g is in the form x � y1N and
u(x�C) j= g, i.e., u(x)�C � u(y)1N . We need to establish that v(x)�
C � v(y)1n.

Let u(x) = bu(x)c+fu(x)g, u(y) = bu(y)c+fu(y)g and M = bu(x)c�
bu(y)c. As u�v, C � u(x) � Cx and C � v(x) � Cx, we have bv(x)c �
bv(y)c = M . Now we need to prove that fu(x)g � fu(y)g1N + C �M
implies fv(x)g � fv(y)g1N + C �M .

Consider the three cases of 1:
(a) fu(x)g�fu(y)g = N+C�M . It must be the case that N+C�M = 0.

By u�v, fv(x)g � fv(y)g = 0.
(b) fu(x)g � fu(y)g < N + C �M . As N + C �M is an integer and

fu(x)g � fu(y)g is a real number within the open interval (�1; 1),
we must have N + C �M � 0. In case N + C �M = 0, we have
fu(x)g � fu(y)g < 0 which implies fv(x)g � fv(y)g < 0 from u�v.

36

In case N + C �M > 0, we have immediately fv(x)g � fv(y)g <
N + C �M .

(c) fu(x)g � fu(y)g > N + C � M . It is to prove fv(y)g � fv(x)g <
�N�C+M under the assumption fu(y)g�fu(x)g < �N �C+M .
This is similar to the above case.

2

Example encoding of scheduling policies. For EDF, we need to compare
the remaining relative deadlines. This information is kept in the clocks xdij for
all i; j such that Status(ij) 6= free. We assume that EDF handles the task
instances with the same remaining deadline in the FIFO order. Let us denote
the first task instance in the queue as pef and the second one as pgh. Then

� Head(gh) is true if pef finishes its computation,
� Head(ef) is true if pmn is released and xdef � De �Dm,
� Head(mn) is true if pmn is released and xdef < De �Dm, and
� Head(mn) is false otherwise.

Remove(ef) simply removes the first task instance from the queue when pef
finishes. When a new instance pmn arrives, it is inserted by Insert(mn) at the
head of the queue if Head(mn), at the tail of the queue if xdkl � Dk�Dm for all
k; l such that Status(kl) 6= free, and between the neighbouring task instances
pij and pkl if xdkl � Dk �Dm and xdkl < Di �Dm.

Note that Head(kl) is true for exactly one pair k; l and that Head(kl), Remove(kl),
and Insert(kl) correspond to the EDF scheduling policy if the value of the clocks
xdij is equal to Di � dij for each task instance pij.

For SJF, we need to compare the remaining (worst case) computation times.
This information is kept in the clocks xcij. We assume that SJF handles the
task instances with the same remaining computation time in the FIFO order.
Let us denote the first task instance in the queue as pef and the second one
as pgh. Then

� Head(gh) is true if pef finishes its computation,
� Head(ef) is true if pmn is released and xcef � We �Wm,
� Head(mn) is true if pmn is released and xcef < We �Wm, and
� Head(mn) is false otherwise.

Remove(ef) simply removes the first task instance from the queue when pef
finishes. When a new instance pmn arrives, it is inserted by Insert(mn) at the
head of the queue if Head(mn), at the tail of the queue if Wm � Wk for all k; l
such that Status(kl) = released and Wm�Wk � xcef � xckl for all k; l such that

37

Status(kl) = preempted. It is inserted between the neighbouring task instances
pij and pkl if

� Wm � Wi and Wm < Wk, where Status(ij) = Status(kl) = released,
� Wm � Wi � xcef � xcij and Wm < Wk, where Status(ij) = preempted,

Status(kl) = released, and Preempted by(ij)(ef),
� Wm � Wi � xcef � xcij and Wm � Wk < xcij � xckl, where Status(ij) =

Status(kl) = preempted and Preempted by(ij)(ef),
� xcij � We�Wm and Wm < Wk, where Status(ij) = running and Status(kl) =

released, or
� xcij � We �Wm and Wm �Wk < xcij � xckl, where Status(ij) = running and

Status(kl) = preempted.

Note that Head(kl) is true for exactly one pair k; l and that Head(kl), Remove(kl),
and Insert(kl) correspond to SJF if wij = Wi � v(xcij) for each running task
instance pij and wij = Wi � (v(xcij)� v(xckl)) for all preempted task instances
pij where Preempted by(ij)(kl)].

38

