
Sampled Universality of Timed Automata

Parosh Aziz Abdulla, Pavel Krcal, and Wang Yi

Uppsala University, Sweden.
Email: fparosh,pavelk,yig@it.uu.se.

Abstract. Timed automata can be studied in not only a dense-time
setting but also a discrete-time setting. The most common example of
discrete-time semantics is the so called sampled semantics (i.e., discrete
semantics with a �xed time granularity "). In the real-time setting, the
universality problem is known to be undecidable for timed automata. In
this work, we study the universality question for the languages accepted
by timed automata with sampled semantics. On the negative side, we
show that deciding whether for all sampling periods " a timed automa-
ton accepts all timed words in "-sampled semantics is as hard as in
the real-time case, i.e., undecidable. On the positive side, we show that
checking whether there is a sampling period such that a timed automaton
accepts all untimed words in "-sampled semantics is decidable. Our proof
uses clock di�erence relations, developed to characterize the reachability
relation for timed automata in connection with sampled semantics.

1 Introduction

Timed automata [3] are considered as one of the standard models for timed
systems. The semantics of these models can be de�ned over various time domains.
The most common one is the set of nonnegative real numbers, giving dense time
semantics. The dense time semantics allows for the description of how a system
behaves at every real-valued time point with arbitrarily �ne precision, and thus
one needs not consider time granularity in modeling and veri�cation. To study
systems which have a �xed granularity of time (e.g., clock cycles), discrete time
semantics, and in particular, sampled semantics with �xed time step " are often
considered, e.g., [10, 5]. In such a case, the time domain is fk � "jk 2 N0g, where
" = 1=n for some n 2 N.

In this paper, we study the universality question for the languages accepted
by timed automata in sampled semantics. Let A be a timed automaton and
L"(A) denote the sampled language accepted by A in the "-sampled semantics,
i.e. the set of timed traces where all events are associated with a timestamp
which is n � " for some natural number n. More precisely we study the following
problems:

1. Existential timed universality which is to check whether L"(A) is universal
for some sampling period ".

2. Universal timed universality which is to check whether L"(A) is universal
for all sampling periods ".



3. Existential untimed universality which is to check whether the untimed lan-
guage of L"(A) is universal for some sampling period ".

4. Universal untimed universality which is to check whether the untimed lan-
guage of L"(A) is universal for all sampling periods ".

We show that problem 1 and 4 are easy to check. In fact, they are equiva-
lent to checking whether L1(A) is timed (and untimed) universal (in the sam-
pled semantics with sampling period 1). As our main results, we prove the
(un)decidability of the remaining two questions for both �nite and in�nite words.
On the negative side, we show that problem 2 is as hard as the universality
problem of timed automata in the real-time setting, that is undecidable (in fact,
�1
1 -hard). On the positive side, we show that problem 3 is decidable.
The decidability proof extends the standard subset construction technique

by a novel procedure for detection of loops which enforce nonimplementable be-
haviors, i.e., behaviors which cannot be realized by a system whenever we �x
a sampling period. This procedure is based on a recently described technique {
clock di�erence relations [12]. This technique has been developed in connection
with sampled semantics to characterize the reachability relation for timed au-
tomata. It can be used to detect behaviors of timed automata in the dense time
semantics which are not present in a sampled semantics for any sampling period.

Related Work Universality of timed automata has been shown �1
1 -hard in

the seminal paper [3] for the real time semantics. Later papers study the uni-
versality (or the language inclusion) problem for subclasses of timed automata,
e.g., closed/open timed automata [16], robust automata [11], or timed automata
with one clock [17, 1]. There has been a considerable amount of work related
to discretization issues and verifying dense time properties using discrete time
methods, e.g., [10, 13, 15, 5]. The main di�erence compared to our work is that
usually only a �xed sampling rate is considered. Practical aspects of veri�cation
with the use of sampled semantics are discussed in [7, 6, 4].These works are con-
cerned mainly with data structures for representing sets of discrete valuations
(e.g., di�erent types of decision diagrams). Implementability issues are discussed
in conection with robust semantics of timed automata in [20, 18]. The reacha-
bility relations for timed automata were also characterized using the additive
theory of real numbers in [8] and using 2n-automata in [9].

2 Preliminaries

We consider the standard model of timed automata [3].

De�nition 1. A timed automaton A is a tuple hC; �;N; l0; E; F i where

{ C is a set of real-valued clocks,
{ � is a �nite alphabet of events,
{ N is a �nite set of locations,
{ l0 2 N is the initial location,

2



{ E � N��(C)���2C�N is the set of edges (describing possible transitions),
and

{ F � N is the set of accepting locations.

The set �(C) of clock constraints (guards) g is de�ned as a set of conjunctive
formulas of atomic constraints in the form x � m where x 2 C is a clock,
� 2 f�; <;�; >g, and m is a natural number. A clock valuation � 2 [C ! R�0 ]
is a function mapping clocks to non-negative real numbers. We use �+t to denote
the clock valuation which maps each clock x to the value �(x) + t, and �[r 7! 0]
for r � C to denote the clock valuation which maps each clock in r to 0 and
agrees with � for the other clocks (i.e., Cnr). An edge (l1; g; e; r; l2) represents a
transition from location l1 2 N to location l2 2 N accepting an input symbol
(an event) e 2 �, and resetting clocks in r � C to zero. The transition can be
performed only if the current values of clocks satisfy g.

We present the de�nition of runs, accepting runs, and the language of timed
automaton relative to a time domain on which the automaton operates. A time
domain T is a subset of nonnegative real numbers satisfying the following prop-
erties. If a; b 2 T then a+ b 2 T and 0 2 T . If we take T = R�0 then we get the
standard semantics of timed automata. A T -timed event is a pair (t; e), where
e 2 � is an event and t 2 T is called a timestamp of the event e. A T -timed trace
is a (possibly in�nite) sequence of T -timed events �=(t1; e1)(t2; e2):::, ei 2 �,
ti 2 T and ti � ti+1 for all i � 1.

De�nition 2. A run of a timed automaton A = hC; �;N; l0; E; F i over a T -
timed trace � = (t1; e1)(t2; e2)(t3; e3) : : : , is a (possibly in�nite) sequence of the
form

(l0; �0)
e1�!
t1

(l1; �1)
e2�!
t2

(l2; �2)
e3�!
t3

: : :

where (li; �i) are states of A, li 2 N , �i is a clock valuation, satisfying the
following conditions:

{ �0(x) = 0 for all x 2 C.
{ for all i � 1, there is an edge (li�1; gi; ei; ri; li) such that (�i�1 + ti � ti�1)

satis�es gi (we de�ne t0 = 0) and �i = (�i�1 + ti � ti�1)[ri 7! 0].

A �nite run of a timed automaton is accepting if ln 2 F for its last state
(ln; �n). An in�nite run of a timed automaton is accepting if an accepting location
l 2 F occurs on it in�nitely often (standard B�uchi acceptance condition). The
(�nite word) timed language of a timed automaton A with respect to the time
domain T , denoted LT (A), is the set of all �nite T -time traces for which there is
an accepting run of A. Analogously, the timed !-language of a timed automaton
A with respect to the time domain T denoted L!T (A) is the set of all in�nite
T -time traces for which there is an accepting run of A.

An untime function U maps a timed trace into a word over � by projecting
out the timestamps, i.e., U((t1; e1)(t2; e2)(t3; e3) : : : ) = e1e2e3 : : : . A natural
extension of U to sets of timed traces maps timed languages into their untimed
counterparts.

3



We say that languages LT (A), L
!
T (A) are timed universal if they contain all

�nite, resp. in�nite, T -timed traces over � and T . The languages LT (A), L
!
T (A)

are untimed universal if U(LT (A)) = ��, U(L!T (A)) = �!, respectively.

The time domains of special interest in this paper are the sampled (digital)
time domains T" = fk � "jk 2 N0g, where " is a sampling period, " = 1=n
for some n 2 N. To simplify the notation, we write L"(A), L

!
" (A) instead of

LT"(A), L
!
T"
(A), respectively. In the following, we always assume that " = 1=n

for some n 2 N. We will also write L(A), L!(A) when T = R�0 (standard real
time semantics). Figure 1 shows an automaton A such that L(A) is untimed
universal, but there is no " such that L"(A) is also untimed universal. For any
", there is k 2 N such that the word a2k does not belong to U(L"(A)).

y = 1y := 0

a

x := 0x > 1

a

a

a

a

Fig. 1. An example of an automaton which is untimed universal in the real time se-
mantics, but there is no " such that it is untimed universal in the "-sampled semantics.

For a timed automaton A = hC; �;N; l0; E; F i we will use the standard
notion of the region automaton [3]. States of a region automaton consist of a
location and a region. A region is a set of valuations (an equivalence class of so
called region equivalence). These sets can be represented in a �nite way, because
the region equivalence has �nite index for each timed automaton. Regions will
be denoted by D;D0; : : : . Transitions in a region automaton (l; D)

a
7! (l0; D0) or

(l; D)
t
7! (l0; D0) are labeled by either an a 2 � or by a special symbol t denoting

an immediate time successor (a time delay). In the following, we denote states
of the region automaton by R;R1; R2; : : : and the initial state of the region
automaton by R0. By a path � in the region automaton starting from R and
leading to R0 labeled by w (denoted � = R

w
�! R0) we mean a sequence of

transitions starting from R and leading to R0 labeled by w0 such that w = w0 � t
(w is equal to w0 with all labels t projected out) and the last letter of w0 is
di�erent from t (the last transition of the path is labeled by some a 2 �). Note
that a path does not have to be uniquely determined by R;R0 and w.

When we say that there is a run of a timed automaton A over a path � =
R

w
�! R0 in an "-sampled semantics (real time semantics) then we mean that

there is a run of A over w0 where w0 is a T"-timed trace (R�0 -timed trace) such
that w = U(w0) going through �. If we need to specify the starting and the
�nishing state, then we write (l; �) �!�

" (l0; �0) or (l; �) �!� (l0; �0).

4



3 Reachability Relations

As a technical tool in our proofs, we will use clock di�erence relations [12] to char-
acterize reachability relations. The notion of the reachability relation describes
exactly the valuations which can be reached in a timed automaton A from a
given valuation while going through a given path in the region automaton for A.
Let � = (l; D)

w
�! (l0; D0) be a path in the region automaton for A. We want to

characterize which concrete states (l0; �0); �0 2 D0 can be reached from a concrete
state (l; �); � 2 D by a run of A over � in the real time semantics. We are not
interested in the clock values when they grow over the greatest constant in A, de-
noted by K. To abstract from such clocks, we de�ne a relation �K on clock valu-
ations as follows: � �K �0 i� for all x 2 C : �(x) = �0(x) or �(x) > K^�0(x) > K.

Formally, the reachability relation of a path � = (l; D)
w
�! (l0; D0) is a relation

on valuations C� � D �D0 such that for each � 2 D; �0 2 D0:

(�; �0) 2 C� () 9�00 �K �0 : (l; �) �!� (l0; �00):

This relation can be characterized by a structure over a set of clocks C called
clock di�erence relations. This structure is a set of (in)equalities of the following
form:

{ x0 � y0 ./ u� v
{ x0 � y0 ./ 1� (u� v)

where ./2 f<;>;=g, x; y; u; v 2 C. We use primed clock names on the left hand
side of the (in)equalities to denote the fact that these clocks are interpreted in
the target valuation, whereas the unprimed clocks are interpreted in the starting
valuation. The semantics of a CDR B is de�ned as follows. For any Æ 2 R, fr(Æ)
denotes the fractional part of Æ. We say that a pair of valuations (�; �0) satis�es
B if and only if:

{ if x0 � y0 ./ u� v 2 B then fr(�0(x)) � fr(�0(y)) ./ fr(�(u)) � fr(�(v)),
{ if x0�y0 ./ 1�(u�v) 2 B then fr(�0(x))�fr(�0(y)) ./ 1�(fr(�(u))�fr(�(v))).

The semantics of clock di�erence relations can be extended to sets of clock
di�erence relations. A pair of valuations (�; �0) satis�es a set of clock di�erence

relations if it satis�es at least one of them. By � = R
w
�! R0 we denote a set of

(not necessarily all) paths which start in the same state of the region automaton
R, lead to the same state of the region automaton R0, and are labeled by the
same word w.

Lemma 1 ([12]). For a given set of paths � = R
w
�! R0, the reachability rela-

tion
S
�2� C

� is e�ectively de�nable as a (�nite) set of clock di�erence relations.

It follows from this lemma that for any two given sets of paths � = R
w
�!

R0; �0 = R
w0

�! R0 can one algorithmically check whether
S
�2� C

� =
S
�2�0 C�

and whether there is � such that (�; �) 2
S
�2� C

� .

5



Now we de�ne two concepts characterizing a property of loops in timed au-
tomata and state that they are equivalent for the sampled semantics. Let us
assume that for a given timed automaton A, � is a set of (not necessarily all)
paths from R back to itself labeled by w in the region automaton (A is non-
deterministic, there can be several such paths). We call this sequence a loop

� = R
w
�! R. This loop represents (fragments of) runs of A which start in a

state (l; �) 2 R and end in some state (l; �0) 2 R over some � 2 �. A crucial
fact for our decision procedure is whether we can start again from (l; �0) and run
over some � 2 �, ending in some (l; �00) 2 R, and whether we can iterate the
loop like this unboundedly many times.

De�nition 3. For a timed automaton A and a loop � = R
w
�! R, R = (l; D),

we say that sigma can be iterated in the "-sampled semantics if for any k 2 N

there is a concrete run (l; �0) �!
�1
" (l; �1) �!

�2
" : : : �!�k

" (l; �k), where �i 2
�; �i 2 D for all 0 � i � k.

In the real time semantics, any loop � = R
w
�! R can be iterated, because

for any (l; �) 2 R there is a state (l; �0) 2 R such that there is a run of A
over any � 2 � starting from (l; �) and ending in (l; �0). Therefore, one can
compose these runs into an arbitrarily long one. This is not true in the sampled
time domains. There are timed automata such that some loops in their region
automata can be for any " iterated only �nitely many times. Intuitively, the
suÆcient and necessary condition is that the automaton can get back exactly
to the same concrete valuation in which it started after several iterations of the
loop. This can be characterized in the terms of the reachability relations.

De�nition 4. For a timed automaton A and a loop � = R
w
�! R, R = (l; D),

we say that � is exact if and only if there is k 2 N and a clock valuation � 2 D
such that (�; �) 2 (

S
�2� C

�)k.

The following lemma characterizes precisely when loops in a region automa-
ton can be iterated unboundedly many times also in the sampled time domains.

Lemma 2 ([12]).

For a timed automaton A and a loop � = R
w
�! R, where R = (l; D), there

is an " such that � can be iterated in "-sampled semantics if and only if � is
exact.

The following observation can give some intuition for the fact that � =
R

w
�! R cannot be iterated when there is no k such that (�; �) =2 (

S
�2� C

�)k.
For any ", there are only �nitely many di�erent valuations of the clocks in R.
But if for all k 2 N, (�; �) =2 (

S
�2� C

�)k then each iteration of R
w
�! R has

to result in a new clock valuation. Thus, it is not possible to iterate the loop
again after suÆciently many iterations. After every iteration of the left loop of
the automaton in Figure 1, the di�erence between the fractional parts of the
clocks x and y grows but it has to be smaller than 1 all the time. Therefore, the
computation will be blocked after at most 1=" iterations.

6



4 Existential Sampled Universality for Finite Words

In this part we study the decidability of the question whether there exists an
" such that the untimed "-sampled language is universal. We give a positive
answer for �nite word languages in this section and for in�nite word languages
in the next section.

Theorem 1. For a given timed automaton A, the question whether there exists
an " such that L"(A) is untimed universal is decidable.

Note that the untimed universality is decidable for dense time semantics
(both L(A) and L!(A)). For some timed automata, sampled semantics cuts out
some words from their untimed language, i.e., it can happen that for each " there
is some untimed word w such that w 2 U(L(A)) and w =2 U(L"(A)).

To solve the problem, we present an algorithm such that for a given timed
automaton A the algorithm answers 'YES' if there is an " such that L"(A) is
untimed universal. Otherwise, it answers 'NO' and gives a simple description
of a set of words which for each " contains a counterexample of the untimed
universality of L"(A).

Before we present the algorithm, we de�ne an auxiliary concept capturing the
nature of the loops in the subset construction for timed automata. We assume
a �xed timed automaton A and its region automaton. Let � be a set of (not
necessarily all) paths in the region automaton labeled by w. Then for all w0

pre�xes of w, R(�;w0) means a set of states of the region automaton reachable
by the pre�x �0 of a path � 2 � such that �0 is labeled by w0. We say that
a set of paths � over w is a sequence if for all paths � over w in the region
automaton the following holds: if R(�;w0) = R(� [ f�g) for all w0 pre�xes of w
then � 2 � (we say that a sequence is state complete). A state complete simple

sequences � = R
w
�! R0 is a special case of sequences where all paths start

in the same state R and end in the same state R0. Let us assume that � is a
sequence over w and u; v are words such that uv is a pre�x of w. For two states
of the region automaton R 2 R(�; u); R0 2 R(�; uv) we de�ne a simple sequence

�0 = R
v
�! R0 relative to �; u; v; R;R0 as a set of paths � from R to R0 labeled

by v such that there are paths �0 and �00, �0 is labeled by u, and �0��00 2 �.
Finally, let Pattern(�; u; v) denote a partial mapping which for a pair of states of
the region automaton returns a reachability relation according to the following
rule:

Pattern(�; u; v)(R;R0) =

8>><
>>:

S
�2�0 C� if R 2 R(�; u) and R0 2 R(�; uv);

�0 = R
u
�! R0 is a simple sequence

relative to �; u; v; R;R0

? otherwise

Intuitively, Pattern(�; u; v) summarizes the reachability pattern relative to �
(all paths involved have to be the corresponding fragments of the paths in �)

7



v

u

�

R1 R4

R1 R2 R3

R5

�4

�5

�6

�8

R(�; u)

R(�:uv)

C�4

C�5

�7 C�7

C�6 [ C�8

�3

C�3 C�3

R5R4

C�1 [ C�2

�2
�1

R2 R3R1

R1

C�7

C�6 [C�8

C�5

C�1 [ C�2

C�4

Fig. 2. A schema of Pattern(�; u; v). For instance, Pattern(�; u; v)(R2; R5) = C�6[C�8 .
When there is no path in � between two states of the region automaton labeled by
v (e.g., between R3 and R4) then the corresponding reachability relation is empty
(Pattern(�; u; v)(R3; R4) = ;).

between states reachable by u and states reachable by uv. A schema of such a
mapping is depicted in Figure 2.

The algorithm works with the set of the sequences (denote Visited). Note
that for a given region automaton each sequence � over w is fully determined
by the sets R(�;w0) for all w0 pre�xes of w. Also, all operations over sequences
result in manipulations with these sets. We de�ne one concept and two simple
operations which the algorithm uses. For a sequence � over w:

{ a division of w into w = w1v1v2v3w2 is a full loop of � if jv1j > 0; jv2j >
0; jv3j > 0,R(�;w1) = R(�;w1v1) = R(�;w1v1v2) = R(�;w1v1v2v3), Pattern(�;
w1; v1) = Pattern(�;w1v1; v2) = Pattern(�;w1v1v2; v3) = Pattern(�;w1; v1v2),
and it is the �rst such division, i.e., there is no such division w = �w1 �v1 �v2 �v3 �w2

where �w1 �v1 �v2 �v3 is a strict pre�x of w1v1v2v3.
1

{ reduce(�, w1v1v2v3w2), where w1v1v2v3w2 is a full loop, is a sequence �0

built in two steps. First, for every path � in � such that � = R0

w1v1�! R
v2�!

R
v3w2�! R0, put a path �0 = R0

w1v1�! R
v3w2�! R0 into �00 (take only paths which

loop over v2 and cut this loop out). Secondly, build the greatest sequence
�0 � �00 such that for all states of the region automaton (l; D) 2 R(�0; w1v1)
there is a � 2 D such that (�; �) 2 Pattern(�00; w1v1; v2)(l; D)(l; D).

1 If the pre�x is nonstrict then we �x any order on such divisions and pick the �rst
one.

8



{ extend(�, a) where a 2 � is the sequence �0 over wa such that if � 2 � and
�0 is an extension of � by t�a in the region automaton then � 2 �0 (�0 is the
greatest extension of � over wa).

The full loop concept can be seen as a partial function which returns a divi-
sion such that a set of states repeats four times, creating three segments. These
segments have the same reachability pattern and also their composition has
this pattern. Note, that also Pattern(�;w1; v1v2v3) = Pattern(�;w1v1; v2v3) =
Pattern(�;w1; v1). We would like to have at most one full loop for each �, there-
fore we want to specify which division is chosen if there are several divisions of
the required properties. We want to choose the shortest such division, i.e., we
want w2 to be as big as possible. If there are several such divisions then we �x
some rule to pick one. This decision does not play any role in the correctness of
the algorithm, i.e., the algorithm works for any �xed rule.

The reduction step works with the full loop of a sequence and returns another
sequence. It �rst chooses only paths which create a loop over the middle segment
from the full loop (v2). Then it checks whether these loops (consisting of a single
path) can be iterated. If yes, then the loop is cut out and the reduced path is
added into the new sequence. Clearly, the sequence is state complete, because
we add all paths from the original (state complete) sequence which go through
these states.

The extension step just performs one more symbolic transition labeled by
each letter from the alphabet (this transition can be preceded by some symbolic
time delay transitions). For each path, it checks whether it can be extended by
some time delay transitions and a discrete transition in the region automaton.
If it is the case, then all such extensions (for any number of time delays and
nondeterministic choice of the transitions) are added into the new sequence.
Clearly, the new sequence is state complete.

The set of sequences together with the transitions given by the reduction
and the extension function forms a transition system. The algorithm performs a
standard reachability procedure in this transition system, looking for a sequence,
which does not lead into any accepting state of the region automaton.

The Algorithm. Add the set containing the empty path (over an empty word)
starting at R0 into Visited.

1. Pick one sequence � over w from Visited.
2. Counterexample? if R(�;w) does not contain any accepting state, stop

and answer 'NO' (the sequence of steps leading to � gives a counterexample).
3. Extension. If there is no full loop of � then remove � from Visited, add �

to Passed, and for all a 2 �, if extend(�; a) =2 Passed then add extend(�; a)
into Visited.

4. Reduction. If w = w1v1v2v3w2 is the full loop of � then let �0 = reduce(�;
w1v1v2v3w2). Remove � from Visited and if �0 =2 Passed then add �0 into
Visited.

5. Universality? If Visited is empty then stop and answer 'YES'. Otherwise,
go to Step 1.

9



A situation where a sequence has a full loop is depicted in Figure 3. Before
we show the correctness of the algorithm, we prove a lemma stating that if
L"(A) is untimed nonuniversal for all ", but L(A) is untimed universal, then the
language �� �

T
" U(L"(A)) (set of words which do not belong to some L"(A))

has a special structure. There is an in�nite subset of this language obtained by
pumping a word of a certain form.

==

fR0g fR1; R2g fR1; R2gfR1g fR5g

reduce(�; w1v1v2v3w2):

w1 v1 v3 w2

fR5gfR0g

� over w = w1v1v2v3w2:

fR1; R2g fR1; R2g fR1; R2g fR1; R2g
w1 v1 v2 v3 w2

fR5g

R1

R1

R2

R2

fR0g fR1; R2g fR1; R2g fR1; R2g fR1; R2g
w1 v1 v2 v3 w2

w = w1v1v2v3w2 is a full loop of �

Pattern(�;w1; v1) = Pattern(�; w1v1; v2) = Pattern(�; w1v1v2; v3)

Pattern(�; w1; v1v2)

Fig. 3. The reduction step of the algorithm. There is a full loop w = w1v1v2v3w2 of
�. Let us assume that there is no � such that (�; �) 2 Pattern(�; w1; v1)(R2; R2) (no
loops over v2 starting at R2 can be iterated). Then reduce(�;w1v1v2v3w2) will cut out
all paths that go through R2 after reading w1v1.

The correctness of the algorithm is based on the following two facts. At �rst,
the set of the reachable sequences is �nite, because for each timed automaton
A there is a constant HA such that each sequence over w, where jwj > HA, has
a full loop. This means that it can be (and will be) shortened by the reduction
step. The algorithm extends only irreducible sequences. The precise value of HA

depending on the timed automaton parameters is shown in [2].

Secondly, there is an " such that the timed automaton is not "-untimed
universal if and only if a sequence � overw which does not lead into any accepting
state (R(�;w) does not contain any accepting state of the region automaton) is
reachable. The rest of this section is devoted to this argument.

10



We state that if L"(A) is untimed nonuniversal for all ", but L(A) is untimed
universal, then the language���

T
" U(L"(A)) (set of words which do not belong

to some L"(A)) has a special structure. There is an in�nite subset of this language
obtained by pumping a word of a certain form. Also, if L"(A) is untimed universal
for all " then for each word there is an accepting path of a special structure
de�ned by the following inductive de�nition.

De�nition 5. Given a sequence � over w, a path � 2 � is fully accepting if it
is accepting and either

{ �;w does not have a full loop, or
{ w = w1v1v2v3w2 is a full loop, � = R0

w1v1�! R
v2�! R

v3w2�! Rf (denote �� =

R
v2�! R the segment of � over v2), there is a valuation � such that (�; �) 2

C ��, and �0 = R0

w1v1�! R
v3w2�! R0 is fully accepting over reduce(�;w1v1v2v3w2)

and w1v1v3w2.

Let us for a given timed automaton A and a word w denote by �wA a set of
all paths labeled by w0 such that w = w0 � t in the region automaton of A. This
set is state complete, hence a sequence. The proofs of the following lemmata can
be found in [2].

Lemma 3. For a given timed automaton A, if for all words w there is a fully
accepting path over �wA then there is an " such that L"(A) is untimed universal.

To show the converse, namely that if there is a word w without a fully accept-
ing path over �wA then there is no " such that L"(A) is untimed universal, we de-
�ne a recursive function pumping which for a given sequence, a word, and a num-
ber returns a word. If � over w does not have a full loop then pumping(�;w; n) =
w. If w = w1v1v2v3w2 is a full loop then the function creates two auxiliary words
w0 = w1v1 ?v2 v3w2 which contains a special mark ?v2 instead of the subword v2
and w00 = vn2 . In case that v2 contained some marks, they occur in every copy of
v2. Then it assigns to �w the result of pumping(reduce(�;w1v1v2v3w2); w

0; n) and
replaces every occurence of ?v2 in �w by w00.

Lemma 4. For a given timed automaton A, if there is a word w such that
no path � 2 �wA is fully accepting then for every " there is n 2 N such that
pumped(�wA; w; n) =2 L"(A).

It remains to show that the counterexample produced by the algorithm cor-
responds to such a word with no fully accepting path and if there is such a word
then the algorithm �nds it.

Lemma 5 (Correctness). For a given timed automaton A, the algorithm al-
ways stops and it answers 'YES' if and only if there exists an " such that L"(A)
is untimed universal.

Proof (Sketch). If for a given timed automaton the algorithm stops and answers
'NO' then it reports a sequence of steps as a counterexample. Let us consider

11



the word w obtained by concatenating the letters from the extend operations in
this sequence. Since the algorithm follows De�nition 5 and reaches a sequence
leading only into nonaccepting states, there is no fully accepting path in �wA.
From Lemma 4, there is no " such that L"(A) is untimed universal.

If the timed automaton A is not untimed universal then the algorithm stops
and answers 'NO'. If A is untimed universal but there is no " such that L"(A)
is untimed universal then from Lemma 3 there is a word w such that no path
in �wA is fully accepting. Because the algorithm follows De�nition 5, it will stop
and answer 'NO'.

5 Existential Sampled Universality for In�nite Words

In this section, we give the positive answer to the decidability of the problem
whether there exists an " such that the untimed "-sampled !-language is uni-
versal.

Theorem 2. For a given timed automaton A, the question whether there exists
an " such that L!" (A) is untimed universal is decidable.

We show that the algorithm for �nite words can be easily modi�ed to work
also for in�nite words. This algorithm resembles the construction for the com-
plementation of B�uchi automata used by Sistla, Vardi, and Wolper [19]. For a
given timed automaton A, L!" (A) is clearly untimed nonuniversal, if L"(A

0) is
not untimed universal, where A0 is obtained from A by changing all locations to
accepting. Otherwise, we need to �nd a word w1w2 such that there is no " such
that there is a run of A over w1w

!
2 in "-sampled semantics. But for this is it suf-

�cient to �nd a sequence � over some w1w2 reachable by the algorithm such that
R(�;w1) = R(�;w1w2) = R(�;w1w

2
2), Pattern(�;w1; w2)) = Pattern(�;w1; w

2
2),

and no loop R
w2�! R from � contains an accepting state. We would like to

�nd a condition which would make the following claim hold. There is a path
R

w2�! R for some R 2 R(�;w1) containing an accepting state if and only if

w1w
!
2 2 L(A). Such a condition is that there is a path R

w2�! R0 if and only

if there is R00 such that there are paths R
w2�! R00 and R

w2�! R0. But this is
implied by Pattern(�;w1; w2) = Pattern(�;w1; w

2
2).

Therefore, it is enough to modify the condition for answering 'NO' and re-
porting a counterexample in the following way. For the examined sequence �
over w, there is a division of w into w1w2 such that R(�;w1) = R(�;w1w2) =

R(�;w1w
2
2), Pattern(�;w1; w2)) = Pattern(�;w1; w

2
2), and no loop R

w2�! R from
� contains an accepting state.

Lemma 6 (Correctness). For a given timed automaton A, the modi�ed algo-
rithm always stops and it answers 'YES' if and only if there exists an " such
that L!" (A) is untimed universal.

12



6 Universal Sampled Universality

A dual question to the one studied in the previous subsection is whether for all
" it holds that L"(A) respectively L

!
" (A) is timed universal. We show that these

questions are undecidable. The �nite word case is equivalent to the dense time
universality and a technique from [1] applies for the in�nite word case.

Theorem 3. For a given timed automaton A, the question whether for all " it
holds that L"(A) (L

!
" (A)) is timed universal is undecidable.

Proof. In the case of �nite timed traces, we show that the timed universality of
L"(A) is equivalent to the timed universality of L(A), which has been proved
undecidable in [3]. Assume that the answer for the sampled universality problem
for a given automaton A is 'NO'. Then L(A) is not dense time universal, because
for each timed trace w =2 L"(A) it holds that w =2 L(A). To show the other
direction, assume that for a given timed automaton A the language L(A) is not
timed universal. Then there is a timed trace w such that w =2 L(A) and all
timestamps are rational. This means that all runs of the automaton A over this
timed trace are nonaccepting. But then there is an " for which this timed trace
is also a T"-timed trace (and also not accepted).

In the case of in�nite timed traces, this argument does not work, because an
in�nite timed trace with rational timestamps violating universality in the dense
time case does not have to be a T"-timed trace for any ".

Due to Mayr [14], the existence of a space-bounded recurrent-state com-
putation with insertion errors for alternating channel machines is undecidable.
We sketch an adaptation of the reduction of this problem to the universality
checking for one clock B�uchi timed automata from [1]. We need to build a timed
automaton A for every alternating channel machineM such thatM has a space-
bounded recurrent-state computation with insertion errors if and only if for all",
L!" (A) is timed universal.

The proof in [1] speci�es �ve conditions in De�nition 4 for an !-language
so that its words correspond exactly to space-bounded recurrent-state computa-
tions with insertion errors of M . We build A such that it accepts precisely those
words that fail to satisfy any of the conditions 1{4 (there is such an automaton
even with one clock). The last condition from this de�nition says that the max-
imal number of the events in any time unit is bounded. But if there is an " such
that L!" (A) is not timed universal then it means that the words accepted by A
in "-sampled semantics also satisfy this condition.

Conversely, if M has no space-bounded recurrent-state computation with
insertion errors then each T"-timed trace must violate one of the conditions 1{4,
because it automatically satis�es the condition 5. Therefore, it is accepted by A.

7 Remaining Variants

There are two other decision problems arising naturally in our scheme. Both
of them are decidable, but as we show, the problems degenerate to checking
(un)timed universality of L"(A) or L

!
" (A) for one �xed ", namely " = 1.

13



The �rst problem is to decide whether there is an " for a timed automaton
A such that L"(A) is timed universal. But if this is not true for " = 1 then it is
not true for any " < 1. If there is a T1-timed trace for which there is no run of
A then this trace is also a T"-timed trace for every " < 1 and there is no run of
A over this trace. The same reasoning applies also for L!" (A).

The other problem is to decide whether for a timed automaton A it is true
that for all ", L"(A) (or L!" (A)) is untimed universal. But if this is true for
" = 1 then it is true for any " < 1. If there is a word w for which there is
an accepting run of A in 1-sampled semantics then this run also accepts w in
"-sampled semantics for every " < 1.

Therefore, for both cases, it is enough to check whether L1(A) is (un)timed
universal or whether L!1 (A) is (un)timed universal and this gives us an answer
for all " or constitutes a witness of existence of an " with the checked property.

8 Conclusions and Future Work

In this paper, we have studied the universality problems of timed automata in
sampled semantics. We have shown that the question whether for all sampling
periods " a timed automaton accepts all timed words in "-sampled semantics
is undecidable. As a main result, we have presented a novel proof for the de-
cidability of checking whether there is a sampling period such that a timed
automaton accepts all untimed words in "-sampled semantics is decidable. We
believe that the proof techniques may be used to study other properties of timed
systems, in particular the implementability of timed automata. As future work,
we plan to extend our results to language inclusion checking, i.e, the problem:
given timed automata A and B, whether there exists a sampling period " such
that L"(A) � L"(B) and the related question for the untimed case. We shall
also study the corresponding questions within the context of timed and untimed
bisimulation.

Acknowledgments. We thank Radek Pel�anek for his comments on previous
drafts of this paper.

References

[1] Parosh Aziz Abdulla, Johann Deneux, Jo�el Ouaknine, and James Worrell. Decid-
ability and complexity results for timed automata via channel machines. In Proc.

of ICALP'05, volume 3580 of LNCS, pages 1089{1101. Springer, 2005.
[2] Parosh Aziz Abdulla, Pavel Krcal, and Wang Yi. Sampled universality of timed

automata. Technical Report 2006-052, IT Department, Uppsala University, Dec
2006.

[3] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer

Science, 126(2):183{235, 1994.
[4] E. Asarin, M. Bozga, A. Kerbrat, O. Maler, A. Pnueli, and A. Rasse. Data-

structures for the veri�cation of timed automata. In Proc. of HART'97, pages
346{360. Springer, 1997.

14



[5] E. Asarin, O. Maler, and A. Pnueli. On discretization of delays in timed automata
and digital circuits. In Proc. of CONCUR'98, volume 1466 of LNCS, pages 470{
484. Springer, 1998.

[6] D. Beyer. Improvements in BDD-based reachability analysis of timed automata.
In Proc. of FME 2001, volume 2021 of LNCS, pages 318{343. Springer, 2001.

[7] M. Bozga, O. Maler, and S. Tripakis. EÆcient veri�cation of timed automata
using dense and discrete time semantics. In Proc. of Charme'99, volume 1703 of
LNCS, pages 125{141. Springer, 1999.

[8] H. Comon and Y. Jurski. Timed automata and the theory of real numbers. In
Proc. of CONCUR'99, volume 1664 of LNCS, pages 242{257. Springer, 1999.

[9] C. Dima. Computing reachability relations in timed automata. In Proc. of

LICS'02. IEEE Computer Society Press, 2002.
[10] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In

Proc. of ICALP'92, volume 623 of LNCS, pages 545{558. Springer, 1992.
[11] Thomas A. Henzinger and Jean-Francois Raskin. Robust undecidability of timed

and hybrid systems. In HSCC'00, pages 145{159, London, UK, 2000. Springer.
[12] P. Kr�c�al and R. Pel�anek. On sampled semantics of timed systems. In Proc. of

FSTTCS'05, volume 3821 of LNCS, pages 310{321. Springer, 2005.
[13] K. G. Larsen and W. Yi. Time-abstracted bisimulation: Implicit speci�cations

and decidability. Information and Computation, 134(2):75{101, 1997.
[14] R. Mayr. Undecidable problems in unreliable computations. Theoretical Computer

Science, 297:347{354, 2003.
[15] J. Ouaknine and J. Worrell. Revisiting digitization, robustness, and decidability

for time d automata. In Proc. of LICS'03, pages 198{207. IEEE Computer Society
Press, 2003.

[16] Jo�el Ouaknine and James Worrell. Universality and language inclusion for open
and closed timed automata. In Proc. of HSCC'03, volume 2623 of Lecture Notes

in Computer Science, pages 375{388. Springer, 2003.
[17] Jo�el Ouaknine and James Worrell. On the language inclusion problem for timed

automata: Closing a decidability gap. In Proc. of LICS 2004, pages 54{63. IEEE
Computer Society, 2004.

[18] Anuj Puri. Dynamical properties of timed automata. Discrete Event Dynamic

Systems, 10(1-2):87{113, 2000.
[19] A. Prasad Sistla, M. Y. Vardi, and P. Wolper. The complementation problem

for B�uchi automata with applications to temporal logic. Theoretical Computer

Science, 49(2-3):217{237, 1987.
[20] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: From timed

models to timed implementations. In Proc. of HSCC'04, volume 2993 of LNCS,
pages 296{310. Springer, 2004.

15


