
Multi-Processor Schedulability Analysis of

Preemptive Real-Time Tasks with Variable

Execution Times

Pavel Krcal1, Martin Stigge2, and Wang Yi1

1 Uppsala University, Sweden
Email: {pavelk,yi}@it.uu.se

2 Humboldt University Berlin, Germany
Email: mstigge@informatik.hu-berlin.de

Abstract In this paper, we study schedulability analysis problems for
multi-processor real-time systems. Assume a set of real time tasks whose
execution times and deadlines are known. We use timed automata to
describe the non-deterministic arrival times of tasks. The schedulability
problem is to check whether the released task instances can be executed
within their given deadlines on a multi-processor platform where each
processor has a task queue to bu�er task instances scheduled to run on
the processor. On the positive side, we show that the problem is decidable
for systems with non-preemptive schedulers or tasks with �xed execution
times. A surprising negative result is that for multi-processor systems
with variable task execution times and a non-preemptive scheduler, the
schedulability analysis problem is undecidable, which is still an open
problem in the single-processor setting.

1 Introduction

Real-time systems are often designed as a collection of real-time tasks and a
scheduling strategy implemented as a scheduler. Each of the tasks may have a
set of task parameters such as release rate (or release pattern), best and worst-
case execution times on the target hardware, priority, and deadline etc. In the
operation of a system, the tasks will be released according to the pre-designed
release rates, and the released task instances are scheduled to execute on a
processor by the scheduler. Here the scheduler, namely the scheduling strategy,
is the critical component for the correct functioning of a system. It makes the
decision on which order of the released task instances should be executed, based
on the task parameters and the current system state.

An important design problem is to analyze whether all the task instances
can be executed within the given deadlines, which is essentially to estimate
the worst-case response times of the tasks. This is the so-called schedulability
analysis based on (1) the task release patterns, (2) the task parameters and (3)
the scheduling policy, all of which are from the system design phase. The source
of complexity in solving the analysis problem is in dealing with task releases

and preemptions. A newly released task instance may preempt the running task
which in�uences the response time for the preempted task. Classic solutions,
e.g., Rate-Monotonic Analysis [LL73] often assume deterministic task release
patterns such as periodic tasks or deterministic patterns with �xed type of non-
determinism such as jitters [But97] and o�sets [RC01]. A challenge is to solve the
schedulability analysis problem for systems with dynamic and non-deterministic
task releases and preemptions. In recent years, in a series of work, we have used
timed automata [AD94] to model task release patterns and solved the problem
for a large class of single-processor systems [FKPY07,FMPY06].

In [FKPY07], timed automata are extended with asynchronous tasks. Each
location of a timed automaton may be associated with a task. As soon as the
automaton visits a location, an instance of the associated task is released and
put (scheduled) into a task queue for execution. Compared with classic task
models studied in the literature on scheduling, extended timed automata provide
a much more expressive model which, in fact, inherits the full expressive power of
timed automata for modeling of dynamic and non-deterministic task releases and
preemptions. In our previous work, the classic notion of schedulability analysis
has been extended to the automata model, and it is shown that for a large class
of systems, the problem can be solved automatically using algorithmic methods.
However, the study has been restricted to the single-processor setting.

In this paper, we study the schedulability analysis problem of the extended
automata model in the multi-processor setting. Basic scheduling algorithms
for multi-processor systems can be found in, e.g., [Liu00]. For recent work on
schedulability analysis for multi-processor systems and further references, see
[ABJ01,BCL05]. We assume that a system has a �xed number of processors
available. Each processor is associated a task queue, where the released tasks
wait for being processed. A scheduling policy (modeled as a function) decides
for a newly released task instance into which queue and at which position in the
queue it will be inserted. However, task migration is not allowed, that is, once
a task instance is assigned to a processor, it will remain in the associated queue
until it �nishes.

On the positive side, we show that the problem is decidable as for the single-
processor case if

1. the scheduler runs a non-preemptive scheduling strategy, or
2. the tasks have �xed execution times, that is, the best and worst-case execu-

tion times coincide.

It is an open problem, whether for the class of systems with variable task ex-
ecution times and a non-preemptive scheduler, the schedulability problem is de-
cidable in the single-processor setting. This problem becomes undecidable when
the scheduling policy has at least two processors with their task queues avail-
able. More precisely as a main technical result of this paper, we show that the
schedulability problem will be undecidable for multi-processor systems if

1. the scheduler runs a preemptive scheduling strategy, and
2. the tasks have variable execution times ranging over an interval between the

best and worst-case execution times.

2

2 Preliminaries

In this section, we introduce the concept of task automata (timed automata ex-
tended with tasks developed in [FKPY07], and the multi-processor schedulability
problem.

2.1 Task Automata

Let C be a �nite set of clocks. A function � : C ! R�0 is called a clock valuation
while the set of all clock valuations over the clocks C is denoted by V(C). With
�[r] we denote the clock valuation which is equal to �, except that all clocks
in r � C are being reset to zero. B(C) is the set of clock guards g, which are
conjunctions of expressions x1 1 N and x1 � x2 1 N with x1; x2 2 C, N 2 N�0
and 1 2 f<;=; >g. If g contains only x1 1 N expressions, we say it is diagonal-
free. A valuation � satis�es a guard g (written � j= g) if for all expressions x1 1N

and x1�x2 1 N in g it holds that �(x1) 1N and �(x1)��(x2) 1N , respectively.

Tasks and task queues. We de�ne a task type as a tuple (P;B;W;D) written
P (B;W;D) where P is the task name (unique for each task type), B;W 2 N�0
the best and worst case calculation times (with B �W andW � 1) andD 2 N�1
the relative deadline. A task instance Pi(bi; wi; di) of type Pi(Bi;Wi; Di) is a "re-
leased copy" of this task type with bi; wi; di 2 R being the remaining values. A
task queue q is a list [P1(b1; w1; d1); : : : ; Pn(bn; wn; dn)] of task instances (of pos-
sibly the same type). By a discrete part of a queue [P1(b1; w1; d1); : : : ; Pn(bn; wn;
dn)] we mean the list of the corresponding task names [P1; : : : ; Pn] (the informa-
tion about the remaining computation times and deadline is projected out). Let
P be the set of task types and QP be the set of queues over this task type set.
We use a function Run : QP �R�0 ! QP which given a non-negative real num-
ber t and a task queue q returns the task queue after t time units of execution
on a processor. The result of Run(q; t) for q = [P (b1; w1; d1); Q(b2; w2; d2); : : : ;
R(bn; wn; dn)] and t � w1 is de�ned as q

0 = [P (b1�t; w1�t; d1�t); Q(b2; w2; d2�
t); : : : ; R(bn; wn; dn � t)]. For an empty queue, denoted by [], Run([]; t) = [].

De�nition 1. A task automaton over actions Act, clocks C, and task types P
is a tuple hN; l0; E; I;M; xdonei where

� N is a �nite set of locations,
� l0 2 N is the initial location,
� E � N �B(C)�Act� 2C �N is the set of edges,
� I : N ! B(C) is a function assigning a clock constraint to each location

which is called location invariant,
� M : N ,! P is a partial function assigning locations with task types,1 and
� xdone 2 C is the clock which is reset whenever a task �nishes.

We write l
g a r
�! l0 for hl; g; a; r; l0i 2 E.

1 Note that M is a partial function meaning that some of the locations may have no
tasks.

3

Semantics. An important part of the operational semantics is the scheduling
function, which decides, into which queue and at which position a newly re-
leased task should be inserted. For the sake of presentation, we �rst introduce
the scheduling function Sch : P �QP ! QP for the single-processor case. Given
a task instance and a task queue, it returns the task queue with the task in-
stance inserted and the order of the other task instances preserved. Depending
on whether the scheduler is preemptive or non-preemptive, the function may
insert new tasks as the �rst element or not. Since we want this function to be
encodable in timed automata, the de�nition has the following important condi-
tion.

De�nition 2. Sch : P � QP ! QP is a scheduling function, if for each task
type P (B;W;D) and discrete part [P1; : : : ; Pn] of a queue there can be e�ectively
constructed a diagonal-free timed automaton with

� Clocks yb1; y
w
1 ; y

d
1 ; : : : ; y

b
n; y

w
n ; y

d
n,

� n+ 2 locations l0; l1; : : : ; ln+1, and
� n+ 1 edges from l0 to li for 1 � i � n+ 1,

such that Sch(P (B;W;D); [P1(b1; w1; d1); : : : ; Pn(bn; wn; dn)]) inserts P (B;
W; D) into the queue at the k-th position if and only if lk is the only location
reachable from (l0; u) where u(ybi) = bi; u(ywi) = wi; u(ydi) = di for all 1 � i � n.

This de�nition generalizes the notion of a scheduling policy. Most of the
standard scheduling policies such as EDF, FPS, FIFO etc satisfy this condition
(concrete cases are discussed later), but also ad hoc policies such as combinations
of the standard ones are also included. Therefore, the results hold for a very
general class of scheduling policies.

In the multi-processor case, the scheduling function takes k queues and a task
type as an input and returns the queues with the new task instance inserted at
some position in one of the queues. It can use the information from all the queues
for its decision. Each timed automaton corresponding to a scheduling policy then
contains clocks for all the instances in all the queues. To simplify the notation,
we assume that for k queues q1; : : : ; qk with discrete parts q̃1; : : : ; q̃k, all the task
instances are indexed by one index i ranging from 1 to

P
1�j�k jq̃j j, that is,

we view all the queues as one global queue, where jq̃j j denotes the number of
the task instances in the queue qj . E.g., the index of the �rst task instance in
q2 is jq̃1j + 1. Also, all possible positions where a new task can be inserted are
indexed by one index ranging from 1 to

P
1�j�k jq̃j j+ k. E.g., the index of the

head position of the second queue (the �rst task instance in q2 after insertion) is
jq̃1j+ 2. By bi, wi and di we denote as before the continuous queue information
for the task instance pi.

De�nition 3. (Multi-processor Scheduler) Let k 2 N be the number of proces-
sors. Then Schk : P � (QP)k ! (QP)k is a multi-processor scheduling function,
if for each task type P (B;W;D) and discrete parts of queues q̃1; : : : ; q̃k, there
can be e�ectively constructed a diagonal-free timed automaton with

4

� Clocks yb1; y
w
1 ; y

d
1 ; : : : ; y

b
K ; y

w
K ; y

d
K where K =

P
j jq̃j j,

� K + k + 1 locations l0; l1; : : : ; lK+k and
� K + k edges from l0 to lj for 1 � j � K + k,

such that the function Sch(P (B;W;D); q1; : : : ; qk) inserts P (B;W;D) at the
m-th position if and only if lm is the only location reachable from (l0; u) where
u(ybi) = bi; u(ywi) = wi; u(ydi) = di for all 1 � i � K + k.

Note that this de�nition does not allow for moving tasks between processors
after they got assigned to one processor at the moment when they are released,
that is, we do not allow task migration.

A task automaton may � just as a timed automaton � perform event and
delay transitions, and additionally task �nishing transitions. An event transition
corresponds to the arrival of a new task, and a delay transition corresponds
to active tasks being executed while the others are waiting, or just processor
idling in case some queue is empty. The third type of transitions deals with
the �nishing of a task. We give now the formal de�nition of the operational
semantics for a system with k processors as a labeled transition system (LTS),
where S := N �V(C)� (QP)k is the state space, thus incorporating the queues
into the state information. �0 is a clock valuation assigning all clocks the value
0, and � := Act [R�0 [ffing a set of labels (for events, time pass values and
task �nishing).

De�nition 4. Given a scheduling strategy Schk over k processors, the semantics
of a task automaton A = hN; l0; E; I;M; xdonei is a labeled transition system
JASchkK = hS; s0; �; T i with s0 = (l0; �0; []) and the set of transitions T de�ned
by the following rules:

� (l; �; q1; : : : ; qk) a
�!Schk(l0; �[r]; Schk(M(l0); q1; : : : ; qk)) if l g a r�! l0, � j= g, and

�[r] j= I(l0),
� (l; �; q1; : : : ; qk) t

�!Schk(l; �+t;Run(q1; t); : : : ;Run(qk; t)) if t 2 R�0 , (�+t) j=
I(l), and for all i with qi = P (b; w; d) :: q0i it holds that t � w, and

� (l; �; q1; : : : ; P (b; w; d) :: qi; : : : ; qk) fin
�!Schk(l; �[xdone]; q1; : : : ; qi; : : : ; qk) if b �

0 � w and �[xdone] j= I(l),
where P (b; w; d) :: q denotes the queue with the task instance P (b; w; d) on the
�rst position and q being the (possibly empty) tail.

Finally, we can also de�ne the main question this work deals with, namely
whether an automaton models schedulable sequences of task releases. As all
deadlines in our model are hard, we say that a task automata is schedulable for
a given scheduling strategy if no matter how does the (non-deterministic) com-
putation evolve, all deadlines are met. We use qerr to denote queues containing
a task instance P (b; w; d) with d < 0.

De�nition 5. (Schedulability) A task automaton A with initial state (l0; u0;
[]; : : : ; []) is non-schedulable with Schk if (l0; u0; []; : : : ; []) �!�

Schk (l; u; q1; : : : ;
qerr; : : : ; qk) for some l and u. Otherwise, we say that A is schedulable with
Schk.

5

We call a queue non-schedulable if it will inevitably lead to a deadline miss
provided that all tasks take their worst case computation times. Otherwise, a
queue is said to be schedulable. The important observation for schedulable queues
is that their length is bounded ([FKPY07]):

Lemma 1. Given a task type set P, one can e�ectively construct a natural
number BP such that jqj � BP for all schedulable queues q.

2.2 Decidability for Task Automata

A system, modeled by a task automaton and a scheduling function, can have the
following three properties:

Preemption: The scheduler may insert a newly released task to the head of
a non-empty queue, thus preempting all tasks already in the queue (a non-
preemptive scheduler may insert only at other positions).

Variable task execution times: It may have task types Pi(Bi; Wi; Di) such
that Bi < Wi, meaning that the task may non-deterministically �nish exe-
cution at a time within the interval [Bi;Wi].

Feedback: The precise �nishing time of a task may in�uence the new task
releases (by means of using xdone in a guard).

Note that the more of these properties are dropped for a task automaton,
the "easier" the schedulability analysis problem becomes.

In [FKPY07], the schedulability problem is studied for single-processor sys-
tems. It is shown that (even with only one processor) schedulability becomes
undecidable if a task automaton has all three properties. In turn, it was also
shown that if there is no preemption, the problem becomes decidable. The same
holds if there is no variable execution time. The open question remained, whether
schedulability is decidable if xdone is not used in the guards for creating feedback.
This last variant has also been proven decidable for certain types of schedulers
in [FKPY07], but there is no result for the general case.

We study these questions for multi-processor scheduling. Since single-processor
systems are just a special case of multi-processor systems, the negative result,
namely that the schedulability becomes undecidable if a task automaton has
all three properties, transfer to our setting. We show that the problem remains
decidable for the following classes:

1. A non-preemptive scheduler (but possibly variable execution time and feed-
back) or

2. Fixed execution time tasks (B = W for all task types, but possibly a pre-
emptive scheduler and feedback).

On the other hand, we show that the schedulability analysis problem becomes
undecidable for the third case:

3. No feedback (but possibly a preemptive scheduler and variable execution
time).

6

3 Decidable Cases of Multiprocessor Scheduling

In this section, we show that the multiprocessor schedulability problem is de-
cidable for the �rst two cases. The proof is done by reduction of this problem
to the reachability problem for timed automata. For a given number of proces-
sors, a task automaton, and a multiprocessor scheduling policy, we construct a
timed automaton with an error location such that the system is unschedulable
if and only if the error location is reachable. Our construction is based on the
construction for the single-processor case from [FKPY07] and [EWY99].

3.1 Fixed computation time

First, we handle the case where all tasks have �xed computation time (but the
scheduler can be preemptive and there can be feedback from the scheduler back
to the automaton).

Theorem 1. The problem of checking whether a task automaton A with �xed
computation times of tasks together with a multiprocessor scheduler Schk is
schedulable, is decidable.

Proof (Sketch). The given task automaton A is transformed into a standard
timed automaton E(A) by taking the underlaying timed automaton of A, re-
moving the labels and adding new labels releaseP on transitions where A would
release an instance of task type P . Because of De�nition 2 and Lemma 1, the
whole scheduling strategy for schedulable queues can be encoded as a timed
automaton E(Schk) (the scheduler automaton) as follows. The continuous part
of the queues, namely the best/worst case computation times and remaining
relative deadlines, are encoded in clocks. There are two clocks xci and xdi for
each task instance pi in the queues, which measure how long this task instance
has been computed and how long it has been released. The discrete parts of the
queues (the order of the task instances) are encoded in locations of E(Schk).
Since the queue length of schedulable queues is bounded (Lemma 1) and the
number of the queues is �xed, there are only �nitely many of locations needed.
Once a queue becomes non-schedulable, E(Schk) will enter a dedicated error
location. The edges and their guards correspond to the comparisons which the
scheduling function uses for its decisions.

The values of bi, wi and di for each task instance pi in the queue can be
expressed using the clocks xci and xdi , which is ensured by the construction in
the following way. Whenever a new instance pi of type Pj is released (event
releasePj), the clock xdi is reset. Before a task instance pi is put to the head of
its queue (which models the beginning of the task execution), the values bi, wi
and di from the queue can be expressed as Bj , Wj and Dj � xdi , respectively.
The clock xci is not used at all.

As soon as the task instance pi is scheduled for execution for the �rst time,
the clock xci is reset, keeping track of its computation progress. For a running task
instance pi, the values bi, wi and di from its queue can be expressed as Bj � xci ,

7

Wj � xci and Dj � xdi , respectively. Therefore, this task instance may �nish
whenever "Bj � xci � Wj" holds. To model task �nishing, E(Schk) removes pi
from the queue and resets xdone. Whenever a constraint "xdi > Dj" is met for a
released task instance pi, an error location "non-schedulable" is entered.

Because of the preemption, tasks waiting in the queues may have already
been executed for some time, but they are stopped now. Since it is not possible
to stop their xci clocks, the time for which a preempted task pi was already com-
puted is represented not just by its xci clock, but by a di�erence x

c
i �xcj . Here, pj

is the task which directly preempted pi. When a running task pm �nishes, all xci
of the preempted tasks pi are updated by subtracting xcm, i.e., the computation
time which was needed by pm. In general, the reachability for timed automata
with such updates is undecidable, but because of the �xed computation time
property, xcm = Bj = Wj is a constant natural number (assume that the type
of pm is Pj). Therefore, clocks in the resulting timed automaton E(Schk) (and
in the product automaton E(Schk) k E(A)) are updated only by subtractions
of integers. There is also a bound on the values of the clocks which are sub-
tracted (the deadline), which makes the reachability problem for this type of
automata (Timed Automaton with Bounded Subtraction) decidable, as proven
in [FKPY07].

The product automaton E(Schk) k E(A) described above is a timed automa-
ton with bounded subtraction for which it holds that that the "non-schedulable"
error state is reachable if and only if A is non-schedulable with scheduling strat-
egy Schk.

The proof of this fact for the multi-processor case is the same as for the
single-processor case in [FKPY07], with the di�erence that there can be several
tasks running at the same timepoint. Therefore, it is necessary to check that
Condition C3 from the proof in [FKPY07], i.e., correctness of the invariant bi =
Bm � (xci � xcj), also holds here.

But from the fact that the scheduling function cannot move tasks from one
queue to another one it follows that whenever a task instance pi of type Pm is
preempted by another instance pj of type Pn, it will stay preempted (i.e., not
being computed) until pj �nishes. Moreover, for pj it holds that bj = Bn; wj =
Wn at the timepoint when it preempts pi. This together implies the correctness
of C3 and thus also of the updates at the end of preemption.

ut
Note that here, the diagonal-freeness in guards from the scheduler (see De�-

nition 2) is important, because it is necessary to use clock di�erences to express
the computation time of tasks. (A comparison of a clock di�erence to a constant
is already a diagonal constraint which cannot be further extended by another
clock.)

3.2 Non-preemptive scheduler

In this case, tasks are not allowed to preempt other already running tasks, which
makes handling the computation time of all tasks in the queues easier. Therefore,
even variable computation time of tasks can be allowed.

8

Theorem 2. The problem of checking whether a task automaton together with
a non-preemptive multi-processor scheduler is schedulable, is decidable.

Proof (Sketch). Here, the same construction as above is used, i.e., two au-
tomata E(A) and E(Schk) are created. Again, E(Schk) keeps track of computa-
tion progress and time pass since the release in clocks xci and x

d
i for each released

task pi.

Whenever a new instance pi of type Pj is released (event releasePj), the clock
xdi is reset. Before a task instance pi is put to the head of a queue, the values bi,
wi and di from the queue can be expressed as Bj , Wj and Dj �xdi , respectively.
The clock xci is not used at all.

As soon as the task instance pi is scheduled for execution, the clock xci is
reset, keeping track of the computation progress of the task. For a running task
instance pi, the values bi, wi and di from its queue can be expressed as Bi � xci ,
Wi � xci and Di � xdi , respectively.

Because the scheduler is non-preemptive and the scheduling function cannot
move tasks from one queue to another one, only the running task in each queue
has already started its computation. The tasks which are not at the head of some
queue did not start their computations yet. For this reason, we do not need to
use xci of the waiting tasks to compute bi and wi.

ut

Note that for this result, the de�nition of the scheduling function (De�ni-
tion 2) does not have to be that restrictive in the sense that also diagonal con-
straints can be allowed for the decisions in the scheduling function. The reason
is that the computation time and deadline values in the queues are encoded into
(at most) one clock each. The possibility of using diagonal constraints in the
scheduler's decisions makes (for the non-preemptive case) encoding even of the
Least Slack First scheduling policy possible [But97].

4 Undecidability

In this section we show, that the schedulability problem is undecidable for multi-
processor systems with at least two scheduling queues. This holds even if the
precise task �nishing times cannot in�uence releases of new tasks.

Theorem 3. The problem of checking whether a task automaton using a k-
multi-processor scheduler without feedback is schedulable, is undecidable for k �
2.

To develop the proof, we �rst sketch a construction used in [FKPY07] for
the single-processor case, where the automaton was allowed to use task feedback.
We then extend the result to the multi-processor case, even if no task feedback
is involved.

9

4.1 Undecidability on single-processor using feedback

The undecidability proof for the general single-processor schedulability problem
is done by a reduction from the halting problem for two-counter machines. A two-
counter machine consists of a �nite state control unit and two unbounded non-
negative integer counters. The three possible instructions are counter-increment,
counter-decrement and conditional branching (checking whether a counter value
is zero). After each step, the machine state is changed deterministically. One
of the states is a dedicated halt state. It is known, that the problem whether
this halt state is reachable (the halting problem for two-counter machines) is
undecidable.

The idea is, given a two-counter machine M , to construct a task automaton
AM and a scheduling policy such that a dedicated halt location in AM is reach-
able if and only if the halt state of M is reachable. It will be ensured that no
task can miss its deadline as long as the halt location is not visited. In turn,
the queue can unboundedly grow in the halt location, making tasks miss their
deadlines. The result of these two properties is that AM will be non-schedulable
if and only if M can reach its halt state.

For each state of M 's control unit there is one corresponding location li in
AM . These locations are connected depending on the operation which M would
execute at the corresponding state (increment, decrement, branching), through
auxiliary locations "executing" this instruction.

To encode the counters into clock values, an N-wrapping construction from
[HKPV98] is used. All clocks x stay within the interval [0; N] for a constant N
by resetting each clock x as soon as x = N (wrapping reset). For a dedicated
system clock xsys these are the only resets (which makes xsys periodic). In
this way, wrapping values for all other clocks can be de�ned as their values at
the (periodic) times where xsys = 0. Thus, between any two consecutive non-
wrapping resets of the clock x (i.e., when x < N), its wrapping value does not
change.

Using this construction, the value v of a counter C can be kept as the
wrapping-value 21�v of a clock xC . Therefore, this wrapping-value of xC is al-
ways smaller than or equal to 2. The conditional branching is done by directly
comparing the value of xC to 2, and the increment (decrement) operation is im-
plemented as dividing (multiplying) the wrapping value of xC by 2, respectively.
For the implementation of the decrement, a task Q with �xed computation time
is released at a non-deterministically chosen time and a clock xCnew is reset at
the same time. This task is then preempted by a task P of higher priority with
variable execution time. P is released when xC is reset to zero by a wrapping
edge. A guard with xdone = 0 is used to check if its execution time is equal to
the wrapping value of xC , i.e., if it �nishes when xsys is reset. This preemption
is repeated, and by using the xdone = 0 guard again afterwards to check that
Q �nishes when xsys is reset, the wrapping-value of xCnew is forced to be twice
bigger than the wrapping value of xC . The response time of Q is a constant time
(its computation time) plus two times the wrapping value of xC � because of
the two preemptions from P . If any step in the construction fails (some non-

10

deterministic choice was wrong), the automaton enters a sink location where no
task is released. Figure 1 illustrates the whole decrement procedure.

e2 e4 e5 e6 e7e3

Q(8; 8; 100)
P (0; 1; 50)

xsys

e1

4

0

xCnew xCnew
xC

xsysxsys

xC

xC xC
xCnew xsys

Figure1. Time chart of the doubling procedure using the N-wrapping construction.

An increment for C needs to halve xC . To achieve this, the wanted new value
is simply guessed in a clock xCnew and then checked using the above decrement
procedure. Only if the double of xCnew is xC , the computation will continue.

During all three operations, all used tasks meet their deadline (using a �xed
priority scheduler) and therefore the automaton is schedulable as long as it
executes these instructions. A special location lhalt is used to represent the halt
state of M . This location releases the task Q and it has an unguarded sel�oop.
Therefore, if AM reaches lhalt, it will be able to release an unbounded amount
of task instances at the same timepoint, making the system unschedulable.

Lemma 2 ([FKPY07]). For a given two-counter machine M , the constructed
task automaton AM is schedulable with the �xed priority scheduler if and only if
M halts.

Note that the construction uses all three properties (preemption, variable
execution time, feedback) given in Section 2.

4.2 Undecidability on multi-processor without feedback

We extend this result to the multi-processor case for the systems with preemp-
tive schedulers, variable computation time of tasks, but the �nishing time of a
task is never tested in the guards of a task automaton, that is, task feedback is
not allowed (xdone is never used in guards). To achieve the same e�ect as task
feedback, we develop two mechanisms based on the status of task queues repre-
senting the status of the processors. First, we describe how the guards xdone = 0
can be replaced by certain task releases so that the system is still able to detect
if the task in question �nished at the right time. Secondly, a construction will
be given to store this information in a task queue.

11

Both mechanisms will ensure that the demand for task feedback in the con-
struction is removed. There is no branching upon the fact whether xdone = 0,
the automaton continues its computation even if some non-deterministic choice
of the system is wrong. However, to store the information about the fact that
all non-deterministic choices are correct so far, at least one additional processor
with its own queue is needed.

Checking the precise �nishing time. The construction of AM for a given
two-counter machine M is exactly the same as before, but we change three
aspects. Note that we are now in the multi-processor scenario with at least two
queues q1 and q2. The tasks P and Q used in the construction above will be
scheduled to q1, P always preempts Q.

To check the �nishing times of P and Q, two tasks TP
chk1 and TP

chk2 are
released at the same time point (when we expect P or Q to �nish). The scheduler
then detects, if the task P �nishes (is removed from the queue) between both
task releases. Future decisions of the scheduler (like scheduling tasks in the halt
location in an schedulable or unschedulable order) can be based on this. The
construction works in detail as follows.

First, at each position where an edge contains the guard xdone = 0 for syn-
chronizing on the �nishing of a task P , remove the guard and add two additional
locations l1 and l2. The �rst one releases T

P
chk1, the second one TP

chk2. Both re-
leased instances will be scheduled to the queue q2. The original edge which
contained xdone = 0 will go to l1. The edges from l1 to l2 and from l2 to the old
location will contain guards ensuring that the automaton does not delay in l1
and l2. The whole fragment is depicted in Figure 2.

xdone = 0

x = 0

x = 0other
guards/resets

l1

TP
chk1

TP
chk2

l2

x := 0
other

guards/resets

Figure2. Replacing the check for xdone = 0 with two additional locations l1 and l2
and an additional clock x.

Secondly, the scheduler can use the task releases of TP
chk1 and T

P
chk2 to check if

P stayed in the queue until that time point, but not longer. If P is in the queue
at the release of the �rst "checking task" TP

chk1 and if it is not in the queue

12

when the second "checking task" TP
chk2 is released, the scheduler knows that

it has �nished at the correct timepoint. Such a successful scenario is described
in Figure 3. If it is not the case, then the automaton cannot guarantee that
P has �nished at the correct timepoint and thus it cannot guarantee that the
simulation of the two-counter machine is correct.

q1

q2

P Q

TP
chk2 Tmark T

P

chk1 Tmark

...

...

tail

TP
chk2 Tmark... released TP

chk2 TmarkTmark...

TP
chk2 Tmark T

P

chk1 Tmark... released

TP
chk2

TP
chk1 TP

chk2 Tmark...

q1

q2

Q ...

Correct �nishing time:

head

q1

q2

P Q ...

released �nishes

P

Tmark
q1

q2

P Q ...

q2

q1 Q ...

TP
chk1

Figure3. Releases of tasks TP

chk1, T
P

chk2, and Tmark detect that the �nishing time of P
is correct.

Using the queue as a memory cell. The remaining problem is to remember
the information that all �nishing times were correct so far. Note, that it is im-
possible to send this information back to the automaton and that the scheduling
function is stateless. However, we now describe how the second queue q2 can be
used to remember this.

Except for TP
chk1 and TP

chk2, there will be also tasks of an additional type
Tmark released by the automaton and put into q2 in such a way that the utiliza-
tion of the second processor is 100%. Directly before (and at the same time of)
the release of TP

chk1, an instance of Tmark is released and put to the end of q2.
If the following release of TP

chk1 detects an early �nishing (P is not in the queue
q1), the scheduler puts T

P
chk1 directly after Tmark in q2, otherwise directly before

Tmark. The same holds for TP
chk2, if the scheduler detects a late task �nishing (P

is still in q1). In this way, the fact that M has been simulated correctly so far is
equivalent to the fact that the last task in q2 is of type Tmark.

In case that this checking discovered that the simulation was not correct (the
last task in q2 is not Tmark as the result of the checking procedure), we want
to remember this information for the rest of the computation. We encode it by
the fact that after any further checking, the last task in q2 will not be Tmark.
In the following, we explain how does this information get propagated from one
checking to another.

13

All task types TP
chk1, T

P
chk2 and Tmark have �xed computation times. Since

the checking times for each instruction are known in advance, it is possible to
adjust these computation times so that the processor is never idle, but also no
deadline is missed. Therefore, when new tasks TP

chk1, T
P
chk2 and Tmark arrive to

the queue, the task instance from the previous checking which was scheduled
as last is still in the queue. The scheduler can then take into consideration
whether it is Tmark. If it is the case, the scheduler inserts the new tasks into q2
as described above. Otherwise, the scheduler just makes sure that the last task
is not Tmark. Therefore, if AM does not cheat during the whole computation (all
task instances �nish when we wanted them to �nish) then all checks with TP

chk1
and TP

chk2 invocations are successful and the last task in q2 is Tmark.
The last thing which is changed from the single-processor case with feedback

is the halt location. Here, instead of a sel�oop releasing unboundedly many task
instances, two tasks R1(1; 1; 1) and R2(1; 1; 2) are released at the same time, and
then the automaton enters a sink location where no tasks are released anymore,
as depicted in Figure 4.

x := 0

x = 0lhalt lhalt

P R1
R2

Figure4. The new encoding of the halt state.

The scheduler puts both instances to the head of the same queue and lets R2
be computed �rst, making R1 miss its deadline, if and only if AM simulated M

correctly, i.e., the last task in q2 is Tmark. In this way, the automaton AM will
only be non-schedulable, if it can reach lhalt without cheating at the task �nishing
transitions. The following lemma states the correctness of the construction.

Lemma 3. For a given two-counter machine M , the task automaton AM is not
schedulable with the constructed multi-processor scheduler if and only if M halts.

Proof (Sketch). If the two-counter machine M reaches the halt state then AM

can simulate the same instructions leading to the halt location. During the whole
(correct) simulation, the executions of P and Q always �nish at the correct
timepoint, i.e., when xsys is reset. This keeps the wrapping values of the clocks xC
and xD correctly encoding the values of the counters C and D, respectively, and
q2 is in a "not cheated" state all the time. When AM then enters its halt location,
R1 and R2 will be executed in an order which makes the queue unschedulable.

If M does not reach its halt state then AM has to cheat to reach its halt
location, which means that the following holds for the task instances of P and
Q. There is an instance of P or Q which does not �nish at the time when

14

xsys is reset. Consequently, this cheating of AM is detected by the scheduler
through releases of TP

chk1 and TP
chk2. From this timepoint on, the last task in q2

will not be Tmark. This means that AM can only reach the halt location with q2
expressing that a task �nished at a wrong time, making the scheduler execute R1
before R2, which means that both of them meet their deadlines. Provided that
during the run up to this point all tasks met their deadlines (which is ensured
by construction), the automaton AM is schedulable. Also, no task misses its
deadline along a run of AM which does not reach the halt location.

5 Conclusion

We have shown that the schedulability problem stays decidable in the multi-
processor setting for the classes of task automata with a non-preemptive schedul-
ing strategy or with �xed computation times of tasks. On the negative side, the
problem turns out to be undecidable for preemptive multi-processor schedulers
when the computation times of tasks may vary within an interval. It is still an
open problem, whether this problem is decidable in the single-processor setting.
As a future work, will try to close this decidability gap.

References

[ABJ01] Bjorn Andersson, Sanjoy Baruah, and Jan Jonsson. Static-priority schedul-
ing on multiprocessors. In Proc. of RTSS '01, page 93. IEEE Computer
Society, 2001.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer

Science, 126(2):183�235, 1994.
[BCL05] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Improved schedu-

lability analysis of edf on multiprocessor platforms. In Proc. of ECRTS '05,
pages 209�218. IEEE Computer Society, 2005.

[But97] G. C. Buttazzo. Hard Real-Time Computing Systems. Predictable Schedul-

ing Algorithms and Applications. Kulwer Academic Publishers, 1997.
[EWY99] C. Ericsson, A. Wall, and W. Yi. Timed automata as task models for event-

driven systems. In Proc. of RTCSA'99. IEEE Computer Society, 1999.
[FKPY07] E. Fersman, P. Krcal, P. Pettersson, and Wang Yi. Task automata: Schedu-

lability, decidability and undecidability. Information and Computation,
2007. To appear.

[FMPY06] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Schedulability anal-
ysis of �xed priority systems using timed automata. Theoretical Computer

Science, 354(2), March 2006.
[HKPV98] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What's decidable

about hybrid automata? Journal of Computer and System Sciences, 57:94�
124, 1998.

[Liu00] Jane W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2000.

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1):46�61, 1973.

[RC01] Jorge Real and Alfons Crespo. O�sets for scheduling mode changes. In
Proc. of ECRTS'01, pages 3�10. IEEE Computer Society, 2001.

15

