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ABSTRACT
The major obstacle to use multicores for real-time applica-
tions is that we may not predict and provide any guarantee
on real-time properties of embedded software on such plat-
forms; the way of handling the on-chip shared resources such
as L2 cache may have a significant impact on the timing
predictability. In this paper, we propose to use cache space
isolation techniques to avoid cache contention for hard real-
time tasks running on multicores with shared caches. We
present a scheduling strategy for real-time tasks with both
timing and cache space constraints, which allows each task
to use a fixed number of cache partitions, and makes sure
that at any time a cache partition is occupied by at most
one running task. In this way, the cache spaces of tasks are
isolated at run-time.

As technical contributions, we have developed a sufficient
schedulability test for non-preemptive fixed-priority schedul-
ing for multicores with shared L2 cache, encoded as a lin-
ear programming problem. To improve the scalability of
the test, we then present our second schedulability test of
quadratic complexity, which is an over approximation of the
first test. To evaluate the performance and scalability of
our techniques, we use randomly generated task sets. Our
experiments show that the first test which employs an LP
solver can easily handle task sets with thousands of tasks
in minutes using a desktop computer. It is also shown that
the second test is comparable with the first one in terms of
precision, but scales much better due to its low complexity,
and is therefore a good candidate for efficient schedulabil-
ity tests in the design loop for embedded systems or as an
on-line test for admission control.

Categories and Subject Descriptors
C.3 SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS [Real-time and embedded systems]:
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1. INTRODUCTION
It is predicted that multicores will be increasingly used in

future embedded systems for high performance and low en-
ergy consumption. The major obstacle is that we may not
predict and provide any guarantee on real-time properties
of embedded software on such platforms due to the on-chip
shared resources. Shared caches such as L2 cache are among
the most critical resources on multicores, which severely de-
grade the timing predictability of multicore systems due to
the cache contention between cores.

For single processor systems, there are well-developed tech-
niques [30] for timing analysis of embedded software. Using
these techniques, the worst-case execution time (WCET) of
real-time tasks may be estimated, and then used for system-
level timing analyses like schedulability analysis. One major
problem in WCET analysis is how to predict the cache be-
havior, since different cache behaviors (cache hit or miss) will
result in different execution times of each instruction. The
cache behavior modeling and analysis for single-processor ar-
chitectures have been intensively studied in the past decades
and are supported now in most existing WCET analysis
tools [30]. Unfortunately the existing techniques for single
processor platforms are not applicable for multicores with
shared caches. The reason is that a task running on one
core may evict the useful L2 cache content belonging to a
task running on another core and therefore the Worst-Case
Execution Time (WCET) of one task can not be estimated
in isolation from the other tasks as for single processor sys-
tems. Essentially, the challenge is to model and predict the
cache behavior for concurrent programs (not sequential pro-
grams as for the case of single processor systems) running
on different cores.

To our best knowledge, the only known work on WCET
analysis for multicores with shared cache is [32], which is
only applicable to a special scenario and very simple hard-
ware architecture (we will discuss its limitation in Section 2).
Researchers in the WCET analysis community agree that
“it will be extremely difficult, if not impossible, to develop
analysis methods that can accurately capture the contention
among multiple cores in a shared cache” [27].



The goal of this paper is not to solve the above challenging
problem. Instead, we use cache partitioning techniques such
as page-coloring [8] combined with scheduling to isolate the
cache spaces of hard real-time tasks running simultaneously
to avoid the interference between them. This yields an effi-
cient method – cache space isolation – to control the shared
cache access, in which a portion of the shared cache is as-
signed to each running task, and the cache replacement is
restricted to each individual partition. For single-processor
multi-tasking systems, cache space isolation allows compo-
sitional timing analysis where the WCET of tasks can be
estimated separately using existing WCET analysis tech-
niques [11]. For multicores, to enable compositional timing
analysis, we need isolation techniques for all the shared re-
sources. For the on-chip shared bus bandwidth, techniques
such as time-slicing, round-robin and prioritized access have
been studied in e.g. [25, 24]. In this paper, we shall focus on
shared caches only, and study the scheduling and analysis
problem for hard real-time tasks with timing and cache space
constraints, on multicores with shared L2 cache. We assume
that the shared cache is divided into partitions, and further
assume that the cache space size of each application task
has been estimated by, for example, the miss-rate/cache-
size curve or static analysis, and the WCET of each task
is obtained with its assigned cache space size. In the sys-
tem design phase, one can adjust tasks’ L2 cache space sizes
(and therefore their WCETs) to improve the system real-
time performance, which can be built upon the schedulabil-
ity analysis techniques studied in this paper.

We shall present a cache-aware scheduling algorithm which
makes sure that at any time, any two running tasks’ cache
spaces are non-overlapped. A task can get to execute only if
it gets an idle core as well as enough space (not necessarily
continuous) on the shared cache. For the simplicity of pre-
sentation, we shall focus on non-preemptive fixed-priority
scheduling. However, our results can be easily adapted to
other scheduling strategies such as EDF, which is presented
in the technical report version of this paper [20] . Our fist
technical contribution is a sufficient schedulability test for
multicores with shared L2 cache, encoded as a linear pro-
gramming problem. To improve its scalability, we then pro-
pose our second schedulability test of quadratic complexity,
which is an over approximation of the first test. To evaluate
the performance and scalability of our techniques, we use
randomly generated task sets. Our experiments show that
the first test which employs an LP solver can easily handle
task sets with thousands of tasks in minutes using a desktop
computer. It is also shown that the second test is compara-
ble with the first one in terms of precision, but scales much
better due to its low complexity, and therefore it is a good
candidate for efficient schedulability tests in the design loop
for embedded systems.

The paper is structured as follows: Section 2 presents re-
lated work. Section 3 introduces the background of cache
space isolation and the task model, and Section 4 introduces
the scheduling algorithm FPCA, as well as the analysis frame-
work. The two schedulability tests for FPCA are presented
in Section 5 and Section 6. Section 7 presents performance
evaluation. Section 8 discusses extensions of the cache-aware
scheduling, and finally, conclusions are given in Section 9.

2. RELATED WORK
Since L2 misses affect the system performance to a much

greater extent than L1 misses or pipeline conflicts [17], the
shared cache contention may dramatically degrade the sys-
tem performance and predictability. Chandra et al. [13]
showed that a thread’s execution time may be up to 65%
longer when it runs with a high-miss-rate co-runner than
with a low-miss-rate co-runner. Such dramatic slowdowns
were due to significant increases in L2 cache miss rates ex-
perienced with a high-miss-rate co-runner, as opposed to a
low-miss-rate co-runner.

L2 contention can be reduced by discouraging threads
with heavy memory-to-L2 traffic from being co-scheduled
[17]. Anderson et al. [2, 1, 12] applied the policy of encour-
aging or discouraging the co-scheduling of tasks (or jobs),
to improve the cache performance and also to meet the real-
time constraints. All these works assumed that the WCETs
of real-time threads are known in advance. However, al-
though improved cache performance can directly reduce av-
erage execution costs, it is still unknown how to obtain the
WCET of each real-time thread in their system model.

Yan and Zhang [32] is the only known work to studied the
WCET analysis problem for multicore systems with shared
L2 cache. A particular scenario is assumed that two tasks
simultaneously run on a dual-core processor with a direct-
mapped shared L2 instruction cache. However, their anal-
ysis technique is quite limited: firstly, most of today’s mul-
ticore processors employ set-associative caches rather than
direct-mapped cache as their L2 cache; secondly, when the
system contains more cores and more tasks, their analysis
will be extremely pessimistic; thirdly, their analysis tech-
nique can not handle tasks in priority-driven scheduling sys-
tems.

In contrast with Anderson’s work, we employ cache space
isolation in the scheduling algorithms in this paper, to avoid
the cache accessing interference between tasks simultane-
ously running on different cores, and therefore we can apply
existing analysis techniques to derive safe upper bounds of
a task’s WCET1, with which we can do safe schedulability
analysis for the task system.

The schedulability analysis problem of global multipro-
cessor scheduling has been intensively studied [3, 4, 9, 6,
21, 22]. These analysis techniques are also extended to deal
with more general cases, e.g., the global scheduling on 1-D
FPGAs [15, 19], where a task may occupy multiple resources
(columns on FPGAs) during execution. However, all these
techniques are not applicable to our problem, since with
cache space isolation, tasks are actually scheduled on two
resources: cores and the shared cache.

Fisher et al. [18] studied the problem of static alloca-
tion of periodic tasks onto a multiprocessor platform such
that on each processor, the total utilization of the allocated
tasks is no larger than 1, as well as the total memory size
of the allocated tasks does not exceed the processor’s mem-
ory capacity. Suhendra et al. [28] and Salamy et al. [26]
studied the problem of how to statically allocate and sched-
ule a task graph onto a MPSoC, in which each processor

1In this paper we focus on the interference caused by the
shared L2 cache, and there could be other interference be-
tween tasks running simultaneously. However, we believe
the scheduling algorithm and analysis techniques in this pa-
per is a necessary step towards completely avoiding inter-
ference between tasks running on multicores, and can be in-
tegrated with techniques of performance isolation on other
shared resources, for instance, the work in [25, 24] to avoid
interference caused by the shared on-chip bus.
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Figure 1: Cache Space Isolation and Page Coloring

has a private scratch-pad memory, to maximize the system
throughput. In summary, in the above work tasks are stat-
ically allocated to processors, so the schedulability analysis
problem is trivial (reduced to the case of single processor
scheduling). In our paper, different instances of a task are
allowed to run on different cores, so the schedulability anal-
ysis problem is more difficult. In [27], several scheduling
policies with shared cache partitioning and locking are ex-
perimentally evaluated, however, the schedulability analysis
problem was not studied.

3. PRELIMINARIES
In this section, we briefly describe the basic assumptions

on the hardware platform and application tasks, which our
work is based on.

3.1 Cache Space Partitioning
We assume a multicore containing a fixed number of pro-

cessor cores sharing an on-chip cache. Note that this is usu-
ally an L2 cache. We will not explicitly model core-local
caches (usually L1) or other shared resources like intercon-
nects. Since concurrent accesses to the shared cache give
raise to the problem of reduced predictability due to cache
interference, we assume the existence of a cache partition-
ing mechanism, allowing to divide the cache space into non-
overlapping partitions for independent use by the computa-
tion tasks, see Figure 1(a).

Partitioning a cache shared among several tasks at the
same time is a concept which has already been used, most
notably, for reducing interference in order to improve aver-
age case performance or to increase predictability in single-
core settings with preemption [31, 16, 10].

Different approaches may be used to achieve cache par-
titioning. Assuming a k-associative cache that consists of l
cache sets with k cache lines each, one can distinguish set-
based [8] and associativity-based [14] partitioning. The first
one is also called row-based partitioning and assigns differ-
ent cache sets to different partitions. It therefore enables
up to l partitions and is thus quite fine-grained for bigger

caches. The second one assigns a certain amount of lines
within each cache set to different partitions and is also called
column-based partitioning, so it is rather coarse-grained with
a maximum of just k partitions. Mixtures of both vari-
ants are also possible. The approaches can be software- or
hardware-based and differ regarding additional hardware re-
quirements, partitioning granularity, influence on memory
layout and the possibility as well as complexity of on-line
repartitioning.

Here we give a brief description of a set-based approach,
which is also known as page coloring. It has the advantage of
being entirely software-based by exploiting the translation
from virtual to physical memory addresses present in the vir-
tual memory system2. Assume a simple hardware-indexed
cache with cache line size of 2m1 words and 2m2 cache sets,
so the least significant bits of the physical address will con-
tain m1 bits used as cache line offset and m2 bits used as
the set number, see Figure 1(b). Further assume a virtual
page size of 2n words, so the n least significant bits of the
virtual address comprise the page offset. Consequently, all
the other (more significant) bits are the page number and
will be translated by the virtual memory system via the page
table into the most significant bits of the physical address.
If m1 + m2 > n (which is the case with larger caches), a
certain number of bits used to address the cache set are ac-
tually “controlled” by the virtual memory system, so that
each virtual page can be (indirectly) mapped on a particu-
lar subset of all cache sets. The number of available page
colors by that method is therefore 2(m1+m2)−n.

An example system supporting cache partitioning is re-
ported in [29], where the authors modified the Linux ker-
nel to support page-coloring based cache space isolation, in
which 16 colors are supported, and conducted intensive ex-
periments on a Power 5 dual-core processor. Note that the
method enforces a certain (physical) memory layout, since
it influences the choice of physical addresses. This restricts
the memory size available to each task, as well as flexibil-
ity for recoloring. These problems can be compensated for
by a simple rewiring trick as described in [23]. Therefore it
is reasonable for our model to assume a cache with equally
sized cache partitions that can be assigned and reassigned
arbitrarily during the lifetimes of the tasks in question.

3.2 Task Model
Assume a multicore platform consisting of M cores and A

cache partitions, and a set τ of independent sporadic tasks
whose numbers of cache partitions (cache space size needed)
and WCETs are known for the platform.

We use τi = 〈Ai, Ci, Di, Ti〉 to denote such a task where
Ai is the cache space size, Ci is the worst-case execution
time (WCET), Di ≤ Ti is the relative deadline for each
release, and Ti is the minimum inter-arrival separation time
also referred to as the period of the task. We further assume
that all tasks are ordered by priorities, i.e., τi has higher
priority than τj iff i < j. The utilization of a task τi is
Ui = Ci/Ti and its slack Si = Di −Ci, which is the longest
delay allowed before actually running without missing its
deadline.

A sporadic task τi generates a potentially infinite sequence
of jobs with successive job-arrivals separated by at least Ti

2Note that this is just an example of how cache partitioning
can be achieved; by no means is virtual memory a necessity
to the results presented in this paper.



Table 1: An example task set
Task Di Ti Ci Ai
τ1 3 3 2 1
τ2 4 4 3 2
τ3 5 5 2 2
τ4 8 8 2 1
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Figure 2: An example to illustrate FPCA.

time units. The αth job of task τi is denoted by Jαi , so we
can denote a job sequence of task τi with (J1

i , J
2
i , . . .). We

omit α and just use Ji to denote a job of τi if there is no
need to identify which job it is. Each job Ji adheres to the
conditions Ai, Ci and Di of its task τi and has additional
properties concerning absolute time points related to its exe-
cution, which we denote with lower case letters: The release
time, denoted by ri, the deadline, denoted by di and derived
using di = ri + Di, and the latest start time, denoted by
li and derived using li = ri + Si. Finally, without loosing
generality, we assume that time is dense in our model.

4. CACHE-AWARE SCHEDULING
We present the basic scheduling algorithm studied in this

paper, and the analysis framework for the technical contri-
butions presented in the next sections. We should point out
that the simple scheduling algorithm itself is not the main
contribution of this work. Our contributions are in solving
the schedulability problem for this algorithm.

4.1 The Scheduling Algorithm FPCA

Since cache-related context-switch overhead of each task
due to preemption is usually hard to predict, we focus in
this paper on non-preemptive scheduling. The idea of cache
space isolation can be applied to many different traditional
multiprocessor scheduling algorithms, and for simplicity rea-
sons, we will take the Non-preemptive Fixed Priority Schedul-
ing as the example in this paper.

The algorithm, the Cache-Aware Non-preemptive Fixed
Priority Scheduling (FPCA), is executed whenever a job fin-
ishes or when a new job arrives. It always schedules the
highest priority waiting job for execution, if there are enough
resources available. In particular, a job Ji is scheduled for
execution if:

1. Ji is the job of highest priority among all waiting jobs,

2. There is at least one core idle, and

3. Enough cache partitions, i.e. at least Ai, are idle.

Note that, since we suppose Di ≤ Ti for each task, there
is at most one job of each task at any time instant.

Figure 2 shows an example of the task set in Table 1
scheduled by FPCA (the scenario that all tasks are released
together). Note that at time 0, the job J1

4 can not execute
according to the definition of FPCA, although it is ready and
there is an idle core and enough idle cache partitions to fit
it, since it is not at the first position of the waiting queue,
i.e. there is a higher priority job (J1

3 ) waiting for execu-
tion. J1

3 can not execute since there is not enough idle cache
partitions available. Thus, we note that FPCA may waste re-
sources as it does not schedule lower priority ready jobs to
execute in advance of higher priority ready jobs even though
there are enough resources available to accomodate them.
However, it enforces a stricter priority ordering, which is
in general good for predictability. We name this kind of
scheduling policy as blocking-style scheduling.

Sometimes one may prefer to allow lower priority ready
jobs to execute in advance of higher priority ready jobs, if the
idle cache partitions are not enough to fit the higher priority
ones, to trade predictability for better resource utilization.
We name this kind of scheduling policy as non-blocking-style
scheduling.

For simplicity reasons, we will present the schedulability
analysis in context of FPCA, which is blocking-style schedul-
ing. However, note that the schedulability analysis tech-
niques are applicable to both blocking-style scheduling and
non-blocking-style scheduling. Later in Section 8, we will
discuss the comparison between them in more detail.

4.2 Problem Window Analysis
To check whether a given set of tasks can be scheduled

using the above algorithm without missing the deadline for
any job released, we shall study the time interval during
which an assumed deadline missing task is prevented from
running. Note that this interval is the so-called slack of the
task, which we shall also call the problem window [4].

In the following, we outline how the problem window can
be used for schedulability analysis in the case when tasks are
scheduled only on the cores or only on the shared cache par-
titions. Two schedulability test conditions will be developed
for the two special cases. Then, in Section 5, we combine
them to deal with the general case.

4.2.1 The case without cache scheduling
A schedulability test for the case when the tasks are sched-

uled only on the cores can be derived as follows:

1. Assume M cores for execution of a task set τ as de-
scribed before, but in the task model, the Ai’s are 0
(alternatively the total number of cache partitions is
large enough such that no task will be blocked by a
busy cache).

2. Suppose that the task set τ is unschedulable, then
there is a job sequence (Jα1

k1
, Jα2
k2
, . . .) in which a job

misses its deadline. Let Jk, a job of τk, be the first job
missing its deadline. Its release time is rk and the lat-
est time point, at which it would have needed to start
running (but it did not, since it is missing its deadline)
is lk = rk + Sk. We define the time interval [rk, lk] of
length Sk as the problem window, as shown in Figure
3(a). The intuition is that at all time points within the
interval, each of the cores must be occupied by another
task, preventing Jk from running.
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3. To find out why Jk is not scheduled to run during the
window, we may estimate the work load or an upper
bound of this, generated by a task that may occupy a
core in the window. We denote such an upper bound
by Iik, which is normally called the interference con-
tributed to Jk’s problem window by task τi. The sum∑
i I
i
k is an upper bound of the total work load inter-

fering with Jk in the problem window. We describe
in detail how to calculate such an upper bound in the
next section. A more precise calculation is given in the
appendix.

4. We note that the non-preemptive fixed priority schedul-
ing algorithm (without cache) enjoys the work-conserving
property, that is, none of the M cores is idle if there
is some ready job waiting for execution. Therefore, Jk
can miss its deadline only if

∑
i I
i
k ≥ Sk · M holds,

i.e., the whole area with diagonals in Figure 3(a) is
occupied. Otherwise, Jk is safe from ever missing its
deadline, i.e., τk is schedulable, if the following condi-
tion holds:

∑
i I
i
k < Sk ·M .

We may also view this last step in a different way. We
know that the sum of all work (of all tasks τi) interfering
with Jk is bounded by

∑
i I
i
k, and it is in the worst case

executed in parallel on M cores, thus preventing Jk from
running. Therefore, if we divide this sum

∑
i I
i
k by M , we

get an upper bound on the maximum time that job Jk can
be delayed by other tasks. We call this the interference time.

Consequently, Jk is guaranteed to be schedulable, if this
interference time is strictly less than its slack, i.e., if the
following condition holds:

1

M

∑
i

Iik < Sk (1)

By applying the above procedure to each task τk ∈ τ (i.e.,
checking that the inequality holds for all tasks), one can
construct a sufficient schedulability test for the case without
a shared cache.

4.2.2 The case without core scheduling
The above problem window analysis can be generalized

to the case where each task occupies several computing re-

sources. In our scenario, one task can occupy several cache
partitions at once while executing.

To present the idea, let us assume for the moment that we
only care about the scheduling of the shared cache (suppose
there are always enough cores for tasks to execute). A job Ji
may start running as soon as it is the first one in the waiting
queue Qwait, and the number of idle cache partitions is at
least Ai. Otherwise, Jk in Qwait (it is now not necessarily
the first job) may have to wait, if the number of idle cache
partitions is less than max(A1, . . . , Ak).

Note that we take the maximum over all higher prior-
ity tasks here, since even though there might be Ak cache
partitions idle, there could be a job Ji of higher priority
(i < k) in Qwait that needs more cache partitions to run,
but is prevented from running, which in turn, prevents Jk
from running, because of the blocking property of FPCA. We
define this number as:

Amax
k = max

i≤k
Ai

Note that Amax
k is the minimal number of idle cache par-

titions needed in order that Jk is not blocked from running
because of a busy cache. Equivalently, the minimal number
of busy cache partitions that may block Jk from running, is
A−Amax

k + 1.
Therefore Jk can miss its deadline only if the whole area

with diagonals in Figure 3(b) is occupied. Since each task
τi is occupying Ai cache partitions while it is executing, we
know that Jk can miss its deadline only if the condition∑
iAiI

i
k ≥ Sk · (A − Amax

k + 1) holds. Thus we have a
test condition for scheduling analysis when the shared cache
is considered:

∑
iAiI

i
k < Sk · (A−Amax

k + 1).
Like in Section 4.2.1, we again prefer the view on that in

terms of interference time: We get an upper bound of the
interference time suffered by job Jk in the problem window
by dividing this sum of maximal total cache use

∑
iAiI

i
k by

the minimal number of busy cache partitions (A−Amax
k +1)

throughout the problem window.
This is, again, an upper bound of the time, by which job

Jk can be delayed by other tasks. Thus, the schedulability
test condition is:

1

A−Amax
k + 1

∑
i

AiI
i
k < Sk (2)

As we see now in Constraints (1) and (2), one can derive
test conditions for scheduling on cores and cache partitions
separately, once Iik is known for each task τi. Since in the
scheduling algorithm in question, FPCA, the scheduling hap-
pens on cores and cache together, the conditions have to be
combined in a way that still makes for a safe schedulabil-
ity test condition. In the following section, we will derive a
novel way of combining both conditions.

5. THE FIRST TEST: LP-BASED
In order to apply the problem window analysis to FPCA,

two questions need to be answered:

1. How to compute Iik, i.e., an upper bound of the inter-
ference of each task τi in the problem window? We will
answer this question in Section 5.1.

2. How to determine whether the interference of all tasks
is large enough to prevent Jk from executing in the
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problem window? We will answer this question in Sec-
tion 5.2.

5.1 Interference Calculation
The first question can be answered by categorizing each

job of τi in the problem window into one of three types, as
shown in Figure 4:

body job: a job with both release time and deadline in the
problem window; All the body jobs together contribute
bSk/Tic · Ci to the interference.

carry-in job: a job with release time earlier than rk, but
with deadline in the problem window; This job con-
tributes at most Ci to the interference.

carry-out job: a job with release time in the problem win-
dow, but with deadline later than lk; This job also
contributes at most Ci to the interference.

It follows that an upper bound of τi’s interference in the
problem window is given by

Iik =

(⌊
Sk
Ti

⌋
+ 2

)
· Ci. (3)

We can derive a more precise computation of Iik by care-
fully identifying the worst-case scenario of each task’s inter-
ference, which is given in the appendix.

5.2 Schedulability Test as an LP Problem
The answer of the second question is non-trivial, and is

the novel contribution of this paper.
As introduced in Section 4.2, the problem window analysis

can be applied to analyzing the scheduling on cores or on
the cache separately. However, if we consider the scheduling
on both cores and cache, it is generally unknown what the
lower bound of the occupied resources on each of them is,
to cause Jk to miss deadline. For example, in Figure 2, at
time instant 0, the job J1

3 is ready for execution, but it can
not execute since the number of idle cache partitions on the
shared cache is not enough to accommodate it, so it is not
true any longer that all M cores must be busy during the
problem window to cause the considered task to miss its
deadline.

5.2.1 Dividing up the problem window
The key observation to our analysis is, that at each time

point in the problem window where the job Jk can not start
running, all cores are already occupied, or – wherever that
is not the case – enough cache partitions are occupied to
prevent Jk from running. This is expressed in the following
lemma about FPCA:

Lemma 1. Let Jk be a job that misses its deadline. Then
at any time instant in the problem window [rk, lk], at least
one of the following two conditions is true:

Problem Window

α-intervals β-intervals

lkrk

A-Ak
max+1

Figure 5: Illustration of α-intervals and β-intervals

1. All M cores are occupied;

2. At least A−Amax
k + 1 cache partitions are occupied.

Proof. Suppose there is a time instant t ∈ [rk, lk], such
that both of the above two conditions do not hold. Since Jk
misses its deadline, it cannot start executing in the problem
window, thus also not at t. Therefore, the waiting queue
Qwait is not empty at t, since at least Jk is in Qwait.

Let now Ji be the first job in Qwait at time t. Since, for
FPCA, the waiting queue is ordered in strict priority order, Ji
is the highest priority job waiting. By assumption, there are
less than A−Amax

k +1 cache partitions occupied, so there are
at least Amax

k partitions available. Further, Ai ≤ Amax
k by

definition, and there is an idle core by assumption. Thus, Ji
must be able to execute, contradicting the assumption that
it is waiting.

Following these two conditions, we can now divide the
problem window into two parts (see Figure 5):

1. α-intervals, in which all cores are busy;

2. β-intervals, in which at least one core is idle. Note that
it follows from Lemma 1, that during the β-intervals,
at least A − Amax

k + 1 partitions of the shared cache
are occupied by a running task.

It is generally unknown at what length of the α- and β-
intervals the maximal interference to Jk is achieved. We
approach this by introducing a Linear Programming (LP)
formulation of our problem, to create a schedulability test
for FPCA.

5.2.2 LP formulation
Suppose, as before, the task set τ is unschedulable by

FPCA, and Jk is the first task that is missing its deadline.
The time interval [rk, lk] is the problem window.

The LP formulation will use the following constants:

• M : the number of cores.

• A: the total number of partitions on the shared cache.

• Ai: the number of cache partitions occupied by each
task τi. (We also use the constant Amax

k , which is
derived from these as above.)



• Iik: an upper bound of the interference by τi in the
problem window, which is computed as in Section 5.1
(or as in the appendix) for each τi.

Further, the following non-negative variables are used:

• αi: for each task τi, we define αi as τi’s accumulated
execution time during α-intervals.

• βi: for each task τi, we define βi as τi’s accumulated
execution time during β-intervals.

During the α-intervals, all M cores are occupied. Further,
we know that

∑
i αi equals to the total computation work of

all tasks during the α-intervals (which is the area with grids
in Figure 5). We can therefore express the accumulated
length of all α-intervals as:

1

M

∑
i

αi (4)

During the β-intervals, at least A − Amax
k + 1 cache par-

titions are occupied. Further,
∑
iAiβi is the total cache

partition use of all tasks during the β-intervals (which is an
upper bound of the area with diagonals in Figure 5). We
can therefore express an upper bound of the accumulated
length of all β-intervals as:

1

A−Amax
k + 1

∑
i

Aiβi (5)

Since Jk is not schedulable, we further know that the sum
of the accumulated lengths of the α- and β-intervals is at
least Sk. Thus, using the expressions from (4) and (5), it
must hold that:∑

i

(
1

M
αi +

Ai
A−Amax

k + 1
βi

)
≥ Sk (6)

We can use an LP solver to detect whether the αi and βi
variables can be chosen in a way to satisfy this condition.
If this is not the case, then τk would be schedulable. We
can use the object function of our LP formulation for that
check:

Maximize
∑
i

(
1

M
αi +

Ai
A−Amax

k + 1
βi

)
(7)

Thus, if the solution of the LP problem is smaller than Sk,
we can determine that τk is schedulable.

So far, the variables αi and βi are not bounded, so with-
out further constraints, the LP formulation will not have a
bounded solution (which would trivially render all tasks un-
schedulable). Therefore, we add constraints on the free vari-
ables, that follow directly from the structure of our schedu-
lability problem. We have three constraints:

ϕ1: Interference Constraint We know that Ijk is the up-
per bound of the work done by τj in the problem win-
dow, so we have:

∀j : αj + βj ≤ Ijk

ϕ2: Core Constraint The work done by a task in the α-
intervals can not be larger than the total accumulated
length of the α-intervals (see Expression (4)), so we
have:

∀j : αj ≤
1

M

∑
i

αi

ϕ3: Cache Constraint The work done by a task in the β-
intervals can not be larger than the total accumulated
length of the β-intervals. Thus, it can not be larger
than the upper bound of the total length of the β-
intervals (see Expression (5)), so we have:

∀j : βj ≤
1

A−Amax
k + 1

∑
i

Aiβi

To test τk for schedulability, we can now invoke an LP
solver on the LP problem defined by constraints ϕ1 to ϕ3

and the object function in (7). By construction, we have a
first schedulability test for τ :

Theorem 1 (The First Test). For each task τk, let
χk denote the solution of the LP problem shown above. A
task set τ is schedulable by FPCA, if for each task τk ∈ τ it
holds that

χk < Sk. (8)

6. THE SECOND TEST: CLOSED FORM
Although the LP-based test presented in the previous sec-

tion exhibits quite good scalability (as will be shown in Sec-
tion 7), simple test conditions are often preferred, in e.g., on-
line admission control and efficient analysis in the systems
design loop. Thus, we will present a second schedulability
test, which can be seen as an over-approximation of the LP-
based test. It has quadratic computational complexity.

In the LP-based test, each task τi finds its interference Iik
divided into the two parts αi and βi, expressed by constraint
ϕ1. From the object function (7) one can see that if 1/M ≥
Ai/(A−Amax

k +1), τi tends to contribute with as much αi as
possible, as long as ϕ2 is respected; likewise in the opposite
case with βi. However, since the accumulated lengths of
the α- and β-intervals (as used on the right hand sides of
ϕ2 and ϕ3) are also dependent on the unknown variables,
it is in general unknown how the αi and βi variables are
chosen to maximize the interference time caused by all tasks.
Therefore, the first schedulability test employs the LP solver
to aid in “the search over all possible cases” for the maximal
solution.

However, if we take out the constraints ϕ2 and ϕ3 from the
LP formulation, each task τi will contribute αi = Iik, βi = 0
if 1/M ≥ Ai/(A − Amax

k + 1), or βi = Iik, αi = 0 otherwise,
to maximize the object function. With this observation, we
can derive a closed-form schedulability test which does not
need to solve a search problem:

Theorem 2 (The Second Test). For each task τk let

χ∗k :=
∑
i

max

(
1

M
,

Ai
A−Amax

k + 1

)
· Iik.

A task set τ is schedulable by FPCA, if for each task τk ∈ τ
it holds that

χ∗k < Sk. (9)

Proof. We prove the theorem indirectly. Let τ be a task
set not schedulable by FPCA, and Jk the deadline missing
task as before. We already know that this implies the ex-
istence of a solution for the LP problem, such that in par-
ticular, ϕ1 to ϕ3 hold, and the value of the object function
satisfies the following inequality:∑

i

(
1

M
· αi +

Ai
A−Amax

k + 1
· βi
)
≥ Sk



M A−Amax
k + 1 I1

k A1 I2
k A2 I3

k A3

2 4 4 1 4 3 6 1

Table 2: An example task set.

By relaxing the inequality, we get:∑
i

max

(
1

M
,

Ai
A−Amax

k + 1

)
· (αi + βi) ≥ Sk

Now, we apply condition ϕ1:∑
i

max

(
1

M
,

Ai
A−Amax

k + 1

)
· Iik︸ ︷︷ ︸

χ∗
k

≥ Sk

The theorem follows.

Note that the upper bound χ∗k derived in the above the-
orem is an over-approximation of the LP solution χk in the
previous section.

For example, consider a task set with the interference pa-
rameters as stated in Table 2. The LP problem (from the
first test) has the following solution:

α1 = 4 β1 = 0
α2 = 1 β2 = 3
α3 = 3 β3 = 3

This results in an upper bound of χk = 7, which is the value
of the object function.

In the second test, for χ∗k, each task τi contributes all Iik
as αi if 1/M > Ai/(A− Amax

k + 1), and as βi otherwise, so
we get the following bound:

χ∗k =
1

2
· 4 +

3

4
· 4 +

1

2
· 6 = 8

Although the simple test condition is more pessimistic
than the LP-based test, we found by extensive experiments,
that the performance of the second test is very close to the
LP-based test in terms of acceptance ratio. We will show
that in Section 7. It follows that, for practical matters, the
second test does not lose much precision for most task sets,
while being of comparatively low complexity (quadratic with
respect to the number of tasks).

Note that both the first and second schedulability test
are sustainable, which means that a task set determined as
schedulable by the test is still schedulable if the workload
of some task is reduced (Ci is decreased or Ti is increased).
The proof is omitted due to the page limitation.

7. PERFORMANCE EVALUATION
At first we evaluate the performance of the proposed schedu-

lability tests in terms of acceptance ratio. We follow the
method in [5] to generate task sets: A task set of M + 1
tasks is generated and tested. Then we iteratively increase
the number of tasks by 1 to generate a new task set, and all
the schedulability tests are run on the new task set. This
process is iterated until the total processor utilization ex-
ceeds M . The whole procedure is then repeated, starting
with a new task set of M + 1 tasks, until a reasonable sam-
ple space has been generated and tested. This method of
generating random task sets produces a fairly uniform dis-
tribution of total utilizations, except at the extreme end of
low utilization.

Table 3: Running time and peak memory usage of
lpsolve to solve the LP formulation in the first test

Number of Tasks 4000 6000 8000 10000
Time in LP (s) 49.24 114.53 208.45 334.95

Mem. in LP (KB) 20344 28876 37556 46664

Figure 6 shows the acceptance ratio of the first test (de-
noted by “T-1”), and second test (denoted by “T-2”) and
the simulation (denoted by “Sim”). Since it is not compu-
tationally feasible to try all possible task release offsets and
inter-release separations exhaustively in simulations, all task
release offsets are set to be zero and all tasks are released
periodically, and simulation is run for the hyper-period of
all task periods. Simulation results obtained under this as-
sumption may sometimes determine a task set to be schedu-
lable even though it is not, but they can serve as a coarse
upper bound of the acceptance ratio.

The parameter setting in Figure 6(a) is as follows: the
number of cores is 6; the number of cache partitions is 40;
for each task τi, Ti is uniformly distributed in [10, 20], Ui
is uniformly distributed in [0.1, 0.3] and Ai is uniformly
distributed in [1, 5], and we set Di = T i. We can see that
the performance of the first test is a little better than the
second test. In Figure 6(b), the range of Ui is changed to
[0.1, 0.6] and other settings are the same as Figure 6(a). In
Figure 6(c), the range of Ai is changed to [2, 10] and other
settings are the same as Figure 6(a). We can see that, in
both cases, the acceptance ratio of all the simulations and
tests degrades a little bit when the average utilization of
tasks is slightly decreased, and the difference between the
performance of the first test and second test is even smaller.
In summary we can see that the second test does not lose
too much precision, compared to the first test condition.

As mentioned earlier, the second test is of O(N2) com-
plexity. The scalability of the first test is of our special
concerns since it employs the LP formulation. We use the
open source LP solver lpsolve [7] to solve the LP formula-
tion of the first test. Table 3 shows the running time and
maximal peak memory usage of lpsolve with different task
set scales. The experiment is conducted on a normal desk-
top computer with an Intel Core2 processor (2.83GHz) and
2G memory. The experiments show that the first test can
handle task sets with thousands of tasks in minutes.

8. BLOCKING VS. NON-BLOCKING
As we mentioned in Section 4.1, FPCA may introduce a

type of resource wasting in certain situations, caused by a
difference in tasks cache requirements, in combination with
strict adherence to priority ordering. The possible scenario
is that when the current idle cache is not enough to fit the
first job in the waiting queue (the highest-priority job among
all ready tasks), there could be some lower-priority job in the
waiting queue with a fitting cache requirement. In FPCA as
analyzed so far, lower-priority waiting jobs are not allowed
to start in advance of the first job in the waiting queue since
the priority ordering is enforced strictly. We call this sort
of policy the blocking-style scheduling. The blocking-style
scheduling would waste computing resources to guarantee
the execution order of waiting jobs, as we saw earlier in
the example in Figure 2. But it will not suffer from the
unbounded priority inversion problem due to the sharing of
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Figure 6: Acceptance Ratio: X-axis is total utilization
∑
i Ui; Y-axis is acceptance ratio.
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Figure 7: The non-blocking version of FPCA.

cache partitions as for the non-blocking approach described
below.

Alternatively, to improve resource utilization, a lower-
priority waiting job may be allowed to start execution in
advance of the first job in the waiting queue, if the above
described situation occurs, which we call non-blocking-style
scheduling. Figure 7 shows how the task set in Table 1 is
scheduled by the non-blocking-style version of FPCA. In this
variant, the scheduler always runs the highest priority wait-
ing job in the queue among all jobs that can actually run,
given their resource (i.e. cache) constraints. This is done
until there are no more jobs of that kind. In the example
in Figure 7, we can see that at time instant 0, job J1

4 starts
execution although J1

3 can not start.
From the predictability point of view, the blocking-style

scheduling is usually to be preferred, in which waiting jobs
start execution in strict priority orders. The reason is that
τh may suffer more interference than it is the case in the
blocking-style scheduling, since in non-blocking-style schedul-
ing, a lower priority task τl can execute earlier than a higher
priority task τh, and must run to completion because of non-
preemptive scheduling. As shown in Figure 7, due to the
advanced execution of J1

4 , J1
3 ’s start time is delayed to time

3, and J1
3 will finally miss its deadline. In the worst case,

this priority inversion effect could even cause unbounded in-
terference to a task with even the highest priority.

On the other hand, the non-blocking-style scheduling uti-
lizes resources better, since it always tries to utilize the
computing resources as much as possible. Regarding the
complexity at runtime, this comes with the cost that the
scheduler needs to keep track of more than the head of the
priority queue, since lower priority tasks might be able to
run. The blocking-style variant is more lightweight, since
only the head of the priority queue needs to be checked.

The system designer can choose to use blocking-style or
non-blocking-style scheduling, as well as some compromise
policy as a mixture of these two alternatives, according to
the application requirement. It is out of the scope of this
paper to compare them in detail. However, even though
the schedulability analysis techniques proposed in this pa-
per are done in the context of the blocking-style scheduling,
they are also applicable to the non-blocking-style schedul-
ing. For this, it is only necessary to incorporate some extra
consideration of the interference caused by the lower prior-
ity jobs that may execute in advance of the analyzed job.
We omit the detailed presentation of the analysis of non-
blocking-style scheduling here due to page limitations, and
referred the interested readers to our technical report [20].

9. CONCLUSIONS
The broad introduction of multicores brings us many in-

teresting research challenges for embedded systems design.
One of these is to predict the timing properties of embed-
ded software on such platforms. One of the main obstacles
is the sharing of on-chip caches such as L2. The message
of this paper is that with proper resource isolation, it is
possible to perform system-level schedulability analysis for
multicore systems based on task-level timing analysis us-
ing existing WCET analysis techniques. Our contributions
include two efficient techniques for such analyses in the pres-
ence of a shared cache. We may argue that hard real-time
applications should be placed in local caches such as L1.
An interesting future work is to develop techniques for es-
timating the cache space requirements of tasks. However,
when there is not enough local cache space, the techniques
presented here will be needed. We believe that our analy-
sis techniques are also applicable to handle other types of
on-chip resources such as bus bandwidth. We leave this for
future work. As future work, we will also study how the al-
location of cache space size for individual tasks will influence
system-level performance and timing properties.
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Appendix
Improving the Interference Computation
The computation of Iik, an upper bound of the interference
caused by τi over Jk, in Equation 3 (Section 5.1) is grossly
over pessimistic. In the following we will present a more
precise computation of Iik by carefully identifying the worst-
case scenario of τi’s interference.

Recall that the problem window [rk, lk] is a time frame of
a given length (lk − rk = Sk) for which we want to derive
a bound of how much interference a task τi (or rather its
jobs) can cause to possibly prevent Jk from running. We
can compute Iik using the following lemma (proof in [20]):

Lemma 2. An upper bound of the interference by τi in the
problem window of length Sk can be computed by:

Iik =


Sk i < k ∧ Sk < Ci⌊
Sk−Ci
Ti

⌋
Ci + Ci + ω i < k ∧ Sk ≥ Ci

0 i = k
min(Ci, Sk) i > k

(10)

where ω = min
(
Ci,max

(
0, (Sk−Ci) mod Ti− (Ti−Di)

))
.


