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Abstract—We derive demand-bound functions for mixed-
criticality sporadic tasks, and use these to determine EDF-
schedulability. Tasks have different demand-bound functions
for each criticality mode. We show how to shift execution
demand from high- to low-criticality mode by tuning the relative
deadlines. This allows us to shape the demand characteristics of
each task. We propose an efficient algorithm for tuning all relative
deadlines of a task set in order to shape the total demand to the
available supply of the computing platform. Experiments indicate
that this approach is significantly more powerful than previous
approaches to mixed-criticality scheduling. This new approach
has the added benefit of supporting hierarchical scheduling
frameworks.

I. INTRODUCTION

An increasing trend in real-time systems is to integrate
functionalities of different criticality, or importance, on the
same platform. Such mixed-criticality systems lead to new
research challenges, not least from the scheduling point of
view. The major challenge is to simultaneously guarantee
temporal correctness at all different levels of assurance that
are mandated by the different criticalities. Typically, at a high
level of assurance, we need to guarantee correctness under very
pessimistic assumptions (e.g., worst-case execution times from
static analysis), but only for the most critical functionalities. At
a lower level of assurance, we want to guarantee the temporal
correctness of all functionalities, but under less pessimistic
assumptions (e.g., measured worst-case execution times).

We adapt the concept of demand-bound functions [1] to
the mixed-criticality setting, and derive such functions for
mixed-criticality sporadic tasks. These functions can be used
to establish whether a task set is schedulable by EDF. In
the mixed-criticality setting, each task has one demand-bound
function per criticality mode. We show that the functions for
the different criticality modes are inherently connected, and
that we can shift demand from one function to another by
tuning the parameters of the tasks, specifically the relative
deadlines. In light of this, EDF is extended to the mixed-
criticality setting by allowing it to use different relative dead-
lines for tasks depending on the current criticality mode.

We are free to tune the relative deadlines of tasks as long as
they are never larger than the true relative deadlines that are
specified by the system designer. By such tuning we can shape
the demand characteristics of a task set to match the available
supply of the computing platform, specified using supply-
bound functions [2]. We present an efficient algorithm that
automatically shapes the demand of a task set in this manner.

An experimental evaluation indicates that the acceptance ratio
of randomly generated task sets is significantly higher with this
approach than with previous approaches from the literature.

Because we allow the supply of the computing platform to
be specified with supply-bound functions, this new approach
directly enables the use of mixed-criticality scheduling within
common hierarchical scheduling frameworks.

A. Related Work
Vestal extended fixed-priority response-time analysis of

sporadic tasks to the mixed-criticality setting [3]. His work
can be considered the first on mixed-criticality scheduling.
Response-time analysis for fixed-priority scheduling has since
been improved by Baruah et al. [4]

A number of papers have considered the more restricted
problem of scheduling a finite set of mixed-criticality jobs
(e.g., [5], [6]). Baruah et al. have shown that the problem
of deciding whether a given set of jobs is schedulable by
an optimal scheduling algorithm is NP-hard in the strong
sense [6]. Work on mixed-criticality scheduling has since been
focused on finding scheduling strategies that, while being
suboptimal, still work well in practice.

One of the scheduling strategies developed for scheduling a
finite set of mixed-criticality jobs is the own criticality based
priority (OCBP) scheduling strategy by Baruah et al. [5] It
assigns priorities to the individual jobs using a variant of
the so called Audsley approach [7]. This scheduling strategy
was later extended by Li and Baruah to systems of mixed-
criticality sporadic tasks, where priorities are calculated and
assigned to all jobs in a busy period [8]. A problem with
this approach is that some runtime decisions by the scheduler
are computationally very demanding. This was mitigated to
some degree by Guan et al., who presented an OCBP-based
scheduler for sporadic task sets where runtime decisions are
of at most polynomial complexity [9].

Baruah et al. have proposed an EDF-based approach
called EDF-VD [10] for scheduling implicit-deadline mixed-
criticality sporadic task sets. EDF-VD splits the period of
each high-criticality task into two parts. In essence, during
the schedulability analysis one part is treated as the period in
low-criticality mode, and the other part as the period in high-
criticality mode. The task set is then considered schedulable if
the utilization of the (modified) task set is sufficiently low. In
EDF-VD, different deadlines are used in different criticality
modes, similar to how EDF is used in this paper.



II. PRELIMINARIES

A. System Model and Notation

We use the same system model as in previous work on the
scheduling of mixed-criticality tasks [8], [9], [4], [3], [10].
This is a straightforward extension of the classic sporadic
task model [11] to a mixed-criticality setting (previous work
differs in the assumption of implicit, constrained or arbi-
trary deadlines). Formally, each task τi in a mixed-criticality
sporadic task set τ = {τ1, . . . , τm} is defined by a tuple
(Ci(LO), Ci(HI), Di, Ti, Li), where:

• Ci(LO), Ci(HI) ∈ N>0 are the task’s worst-case execu-
tion times in low- and high-criticality mode, respectively,

• Di ∈ N>0 is its relative deadline,
• Ti ∈ N>0 is its minimum inter-release separation time

(also called period),
• Li ∈ {LO, HI} is the criticality of the task.

The techniques presented in this paper may be generalized
to an arbitrary number of criticality levels, but we restrict the
model to two levels here for the sake of brevity. We assume
constrained deadlines and also make the standard assumptions
about the relations between low- and high-criticality worst-
case execution times:

∀τi ∈ τ : Ci(LO) 6 Ci(HI) 6 Di 6 Ti

We let LO(τ)
def
= {τi ∈ τ | Li = LO} denote the subset of

low-criticality tasks in τ , and HI(τ)
def
= {τi ∈ τ | Li = HI}

the subset of high-criticality tasks. We define low- and high-
criticality utilization as

ULO(τi)
def
= Ci(LO)/Ti

UHI(τi)
def
= Ci(HI)/Ti

ULO(τ)
def
=
∑
τi∈τ ULO(τi)

UHI(τ)
def
=
∑
τi∈HI(τ) UHI(τi).

For compactness of presentation we use the notation J·Kk to
constrain an expression, such that JAKk

def
= max(A, k).

The semantics of the system model is as follows. The system
starts in low-criticality mode, and as long as it remains there,
each task τi ∈ τ releases a (possibly infinite) sequence of
jobs

〈
J1
i , J

2
i , . . .

〉
in the standard way for sporadic tasks: if

r(J), d(J) ∈ R are the release time and deadline of job J ,
then

• r(Jk+1
i ) > r(Jki ) + Ti,

• d(Jki ) = r(Jki ) +Di.

The time interval [r(J), d(J)] is called the scheduling window
of job J . If any job executes for its low-criticality worst-
case execution time without signaling that it has finished, the
system will immediately switch to high-criticality mode. If
the system has switched to high-criticality mode, it will never
switch back to low-criticality.1 After the switch we are not
required to meet any deadlines for low-criticality jobs, but

1One could find a time point where it is safe to switch back, but it is out
of scope of this paper.

high-criticality jobs may instead execute for up to their high-
criticality worst-case execution times. In practice, the low-
criticality jobs can continue to execute whenever the processor
would otherwise be idle, but from the modeling perspective
we simply view all low-criticality tasks in LO(τ) as being
discarded along with their active jobs at the time of the switch.
The tasks in HI(τ) carry on unaffected.

For such a system to be successfully scheduled, all (non-
discarded) jobs must always meet their deadlines. Note that the
only jobs that exist in high-criticality mode are from tasks in
HI(τ). Since low-criticality jobs do not run in high-criticality
mode, we omit to specify high-criticality worst-case execution
times for low-criticality tasks.

Example II.1. As a running example we will use the following
simple task set. It consists of three tasks (τ1, τ2 and τ3), one
of low- and two of high-criticality:

Task C(LO) C(HI) D T L
τ1 2 4 5 LO
τ2 1 2 6 7 HI
τ3 2 4 6 6 HI

This task set is not schedulable by any fixed-priority sched-
uler on a dedicated unit-speed processor, as can be verified by
trying all 6 possible priority assignments. We can also see that
the task set is not schedulable directly by EDF: in the scenario
where all tasks release a job at the same time, EDF would
execute τ1 first, leaving τ2 and τ3 unable to finish on time
if they need to execute for C2(HI) and C3(HI), respectively.
Neither does the task set pass the schedulability tests for
OCBP [8], [9] or EDF-VD [10]. However, we will see that
its demand characteristics can be tuned using the techniques
presented in this paper until it is schedulable by EDF.

B. Demand-Bound Functions
A successful approach to analyzing the schedulability of

real-time workloads is to use demand-bound functions [1].
A demand-bound function captures the maximum execution
demand of a task in any time interval of a given size.

Definition II.2 (Demand-bound function). A demand-bound
function dbf(τi, `) gives an upper bound on the maximum
possible execution demand of task τi in any time interval of
length `, where demand is calculated as the total amount of
required execution time of jobs with their whole scheduling
windows within the time interval.

There exist methods for precisely computing the demand-
bound functions for many popular task models in the normal
(non-mixed criticality) setting. For example, the demand-
bound-function for a given ` can be computed in constant
time for a standard sporadic task [1].

A similar concept is the supply-bound function sbf(`) [2],
which lower-bounds the amount of supplied execution time of
the platform in any time window of size `. For example, a unit-
speed, dedicated uniprocessor has sbf(`) = `. Other platforms,
such as virtual servers used in hierarchical scheduling, have
their own particular supply-bound functions (e.g., [2], [12]).



We say that a supply-bound function sbf is of at most unit
speed if

sbf(0) = 0 ∧ ∀`, k > 0 : sbf(`+ k)− sbf(`) 6 k.

We assume that a supply-bound function is linear in all inter-
vals [k, k+1] between consecutive integer points k and k + 1.
The assumption of piecewise-linear supply-bound functions is
a natural one, and to the best of our knowledge, all proposed
virtual resource platforms in the literature have such supply-
bound functions.

The key insight that make demand- and supply-bound
functions useful for the analysis of real-time systems is the
following known fact.

Proposition II.3 (See e.g., [12]). A non-mixed criticality task
set τ is successfully scheduled by the earliest deadline first
(EDF) algorithm on a (uniprocessor) platform with supply-
bound function sbf if

∀` > 0 :
∑

τi∈τ
dbf(τi, `) 6 sbf(`).

III. DEMAND-BOUND FUNCTIONS FOR
MIXED-CRITICALITY TASKS

We extend the idea of demand-bound functions to the
mixed-criticality setting. For each task we will construct
two demand-bound functions, dbfLO and dbfHI, for the low-
and high-criticality modes, respectively. Proposition II.3 is
extended in the straightforward way:

Proposition III.1. A mixed-criticality task set τ is schedulable
by EDF on a platform with supply-bound function sbfLO in
low-criticality mode and sbfHI in high-criticality mode if both
of the following conditions hold:

Condition A: ∀` > 0 :
∑

τi∈τ
dbfLO(τi, `) 6 sbfLO(`)

Condition B: ∀` > 0 :
∑

τi∈HI(τ)

dbfHI(τi, `) 6 sbfHI(`)

Conditions A and B capture the schedulability of the task
set in low- and high-criticality mode. While the two modes
can be analyzed separately with the above conditions, we will
see that the demand in high-criticality mode depends on what
can happen in low-criticality mode.

We assume, without loss of generality, that sbfLO is of
at most unit speed. This can always be achieved by simply
scaling the parameters of the task set together with sbfLO and
sbfHI. Note that sbfLO and sbfHI may be different, allowing a
change of processor speed or virtual server scheduling policy
when switching to high-criticality mode.

How then do we construct these demand-bound functions?
In the case of dbfLO it is simple. In low-criticality mode,
each task τi behaves as a normal sporadic task, and all of its
jobs are guaranteed to execute for at most Ci(LO) time units
(otherwise the system, by definition, would switch to high-
criticality mode). We can therefore use the standard method
for computing demand-bound functions for sporadic tasks [1].

With dbfHI it gets more tricky because we need to consider
the high-criticality jobs that are active during the switch to
high-criticality mode.

Definition III.2 (Carry-over jobs). A job from a high-
criticality task that is active (released, but not finished) at the
time of the switch to high-criticality mode is called a carry-
over job.

A. Characterizing the Demand of Carry-Over Jobs
In high-criticality mode we need to finish the remaining

execution time of carry-over jobs before their respective dead-
lines. The demand of carry-over jobs must therefore be taken
into account in each high-criticality task’s dbfHI. Conceptually,
when analyzing the schedulability in high-criticality mode, we
can think of a carry-over job as a job that is released at the
time of the switch. However, the scheduling window of such
a job is the remaining interval between switch and deadline
(see Fig. 1), and can therefore be shorter than for other jobs
of the same task. Because it might have executed already for
some time before the switch, its execution demand may also
be lower than that of other jobs.

t t+Di

Release of τi Absolute deadline

Switch to high-criticality mode

Remaining scheduling window

Time

Fig. 1. After a switch to high-criticality mode, the remaining execution
demand of a carry-over job must be finished in its remaining scheduling
window.

For the sake of bounding the demand in high-criticality
mode (in order to meet Condition B), we can assume that
the demand is met in low-criticality mode (Condition A), or
the task set would be deemed unschedulable anyway. In other
words, we seek to show A∧B by showing A∧ (A→ B). For
a system scheduled by EDF, we can therefore assume that all
deadlines are met in low-criticality mode when we bound the
demand in high-criticality mode.

Consider then what we can show about the remaining
execution demand of carry-over jobs. At the time of the
switch to high-criticality mode, a carry-over job from high-
criticality task τi has n > 0 time units left until its deadline.
The remaining scheduling window of this job is therefore of
length n. Since this job would have met its deadline in low-
criticality mode if the switch had not happened, there can
be at most n time units left of its low-criticality execution
demand Ci(LO) at the time of the switch (this follows directly
from the assumption that sbfLO is of at most unit speed).
The job must therefore have executed for at least Ci(LO)− n
time units before the switch. Since the system has switched
to high-criticality mode, the job may now execute for up
to Ci(HI) time units in total. The total execution demand



remaining for the carry-over job after the switch is therefore
at most Ci(HI)− (Ci(LO)− n). Unfortunately, as n becomes
smaller, this demand is increasingly difficult to accommodate,
and leads to dbfHI(τi, 0) = Ci(HI) − Ci(LO) in the extreme
case. Clearly, with such bounds we cannot hope to satisfy
Condition B. Next we will show how this problem can be
mitigated.

B. Adjusting the Demand of Carry-Over Jobs

The problem above stems from the fact that EDF may
execute a high-criticality job quite late in low-criticality mode.
When the system switches to high-criticality mode, a carry-
over job can be left with a very short scheduling window
in which to finish what remains of its high-criticality worst-
case execution demand. In order to increase the size of
the remaining scheduling window we separate the relative
deadlines used in the different modes. For a task τi we let
EDF use relative deadlines Di(LO) and Di(HI), such that if a
job is released at time t, the priority assigned to it by EDF is
based on the value t +Di(LO) while in low-criticality mode
and based on t+Di(HI) while in high-criticality mode.

We can safely lower the relative deadline of a task because
meeting the earlier deadline implies meeting the original (true)
deadline. We can gain valuable extra slack time for a carry-
over job from high-criticality task τi by lowering Di(LO),
albeit at the cost of a worsened demand in low-criticality
mode. We therefore want Di(LO) = Di if Li = LO and
Di(LO) 6 Di(HI) = Di if Li = HI. Also, Ci(LO) 6 Di(LO)
is assumed, just as with the original deadline. Note that
Di(LO) is not an actual relative deadline for τi in the sense
that it does not necessarily correspond to the timing constraints
specified by the system designer. However, it is motivated to
call it a “deadline”, because we construct each dbfLO and
use EDF in low-criticality mode as if it was the relative
deadline. With separated relative deadlines we can make
stronger guarantees about the remaining execution demand of
carry-over jobs:

Lemma III.3 (Demand of carry-over jobs). Assume that EDF
uses relative deadlines Di(LO) and Di(HI) with Di(LO) 6
Di(HI) = Di for high-criticality task τi, and that we can
guarantee that the demand is met in low-criticality mode
(using Di(LO)). If the switch to high-criticality mode happens
while a job from τi has n time units left until its true deadline,
as illustrated in Fig. 2, then the following hold:

1) If n < Di(HI) − Di(LO), the job has already finished
before the switch.

2) If n > Di(HI) − Di(LO), the job may be a carry-over
job, and at least JCi(LO)− n+Di(HI)−Di(LO)K0 time
units of the job’s work were finished before the switch.

Proof: In the first case, the switch to high-criticality mode
happens after the low-criticality deadline. Since we assume
that the demand is met in low-criticality mode (using relative
deadline Di(LO)), EDF is guaranteed to finish the job by this
deadline, and therefore it was finished by the time of the
switch.

In the second case, there are n − (Di(HI) − Di(LO))
time units left until the low-criticality deadline. Since the
demand is guaranteed to be met in low-criticality mode,
and the supply of the platform is of at most unit speed,
there can be at most n − (Di(HI) − Di(LO)) time units
left of the job’s low-criticality execution demand. At least
JCi(LO)− n+Di(HI)−Di(LO)K0 time units of the job’s
work must therefore have been finished already by the time
of the switch.

t t+Di(LO) t+Di(HI)

Release of τi Deadlines in low- and high-criticality mode

Switch to high-criticality mode

n− (Di(HI)−Di(LO))

n

Time

Fig. 2. A carry-over job of τi has a remaining scheduling window of length
n after the switch to high-criticality mode. Here the switch happens before
the job’s low-criticality deadline.

Next we will show how to define dbfLO(τi, `) and
dbfHI(τi, `) for a given Di(LO). An algorithm for computing
reasonable values for Di(LO) for each task τi ∈ τ is presented
in Section IV.

C. Formulating the Demand-Bound Functions
As described above, while the system is in low-criticality

mode, each task τi behaves as a normal sporadic task with
parameters Ci(LO), Di(LO) and Ti. Note that it uses relative
deadline Di(LO), where Di(LO) = Di if Li = LO and
Di(LO) 6 Di(HI) = Di if Li = HI. A tight demand-bound
function of such a task is known [1]:

dbfLO(τi, `)
def
=

s(⌊
`−Di(LO)

Ti

⌋
+ 1

)
· Ci(LO)

{

0

(1)

The demand-bound function for task τi in high-criticality
mode, dbfHI(τi, `), must upper-bound the maximum execution
demand of jobs from τi with scheduling windows inside any
interval of length `. This may include one carry-over job.
From Lemma III.3 we know that the (remaining) scheduling
window of a carry-over job from τi is at least Di(HI)−Di(LO)
time units long. A time interval of length Di(HI) − Di(LO)
is therefore the smallest in which we can fit the scheduling
window of any job from τi. More generally, the smallest time
interval in which we can fit the scheduling windows of k jobs
is of length (Di(HI)−Di(LO)) + (k − 1) · Ti. The execution
demand of τi in an interval of length ` is therefore bounded
by

full(τi, `)
def
=

s(⌊
`− (Di(HI)−Di(LO))

Ti

⌋
+ 1

)
· Ci(HI)

{

0

The function full(τi, `) is disregarding that a carry-over job
may have finished some execution in low-criticality mode (i.e.,



Switch to high-criticality mode

Ti Ti` mod Ti

`

· · · Time

Fig. 3. After fitting a number of full jobs into an interval of length `, there
are ` mod Ti time units left for either another full job, a carry-over job, or
no job at all. In this figure it is enough for a carry-over job.

it is counting Ci(HI) for all jobs). We can check whether all
jobs that contributed execution demand to full(τi, `) can fit
their scheduling windows into an interval of length ` without
one of them being a carry-over job. If one must be a carry-
over job, we can subtract the execution time that it must have
finished before the switch according to Lemma III.3.

As shown in Fig. 3, for a time interval of length `, there
are at most n = ` mod Ti time units left for the “first” job
(which may be a carry-over job). If n > Di(HI), it is enough
for the scheduling window of a full job, and we cannot subtract
anything from full(τi, `). If n < Di(HI)−Di(LO), all jobs that
contributed to full(τi, `) can fit their entire periods inside the
interval, so there is again nothing to subtract. Otherwise, we
use Lemma III.3 to quantify the amount of work that must
have been finished in low-criticality mode:

done(τi, `)
def
=





JCi(LO)− n+Di(HI)−Di(LO)K0 ,
if Di(HI) > n > Di(HI)−Di(LO)

0, otherwise,

where n = ` mod Ti. Note that by maximizing the remaining
scheduling window of the carry-over job (to ` mod Ti) we
also maximize its remaining execution demand.

The two terms can now be combined to form the demand-
bound function in high-criticality mode:

dbfHI(τi, `)
def
= full(τi, `)− done(τi, `) (2)

Example III.4. Consider task τ3 from Example II.1. Part of
the demand-bound functions for τ3 are shown in Fig. 4, using
two different values for D3(LO). Note that a smaller D3(LO)
leads to a lessened demand in high-criticality mode, at the
cost of an increased demand in low-criticality mode.

IV. EFFICIENTLY TUNING RELATIVE DEADLINES

In the previous section we constructed demand-bound func-
tions for mixed-criticality sporadic tasks, where the relative
deadlines used by EDF may differ in low- and high-criticality
mode for high-criticality tasks. The motivation for separating
the relative deadlines used is that by artificially lowering the
relative deadline Di(LO) used in low-criticality mode, we can
lessen τi’s demand in high-criticality mode at the cost of
increasing the demand in low-criticality mode. By choosing
suitable values for Di(LO) for all tasks τi ∈ HI(τ), we are
increasing our chances of fitting the total demand under the
guaranteed supply in both modes, and thereby make both
Conditions A and B of Proposition III.1 hold.
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Fig. 4. Demand-bound functions for task τ3 from Example II.1 with two
different values for D3(LO).

We are constrained to pick a value for Di(LO) such that
Ci(LO) 6 Di(LO) 6 Di. This gives us

∏

τi∈HI(τ)

(Di − Ci(LO) + 1)

possible combinations for the task set. The number of com-
binations is exponentially increasing with the number of
high-criticality tasks, and it is infeasible to simply try all
combinations. We instead seek a heuristic algorithm for tuning
the relative deadlines of all tasks. In this section we present
one such algorithm, which is of pseudo-polynomial time
complexity for suitable supply-bound functions.2

The following lemma is a key insight for understanding the
effects of changing relative deadlines. A proof is given in the
Appendix.

Lemma IV.1 (Shifting). If high-criticality tasks τi and
τj are identical (i.e., have equal parameters), except that
Di(LO) = Dj(LO)− δ for δ ∈ Z, then

dbfLO(τi, `) = dbfLO(τj , `+ δ)

dbfHI(τi, `) = dbfHI(τj , `− δ)

In other words, by decreasing Di(LO) by δ, we are allowed
to move dbfHI(τi, `) by δ steps to the right at the cost of
moving dbfLO(τi, `) by δ steps to the left. Informally, we can
think of the problem as moving around the dbfLO and dbfHI

of each task until we hopefully find a configuration where the

2Our prototype implementation typically terminates in the order of minutes
for task sets of 100 tasks, with utilization of about 90% and parameter values
ranging up to a few thousands (assuming sbfLO(`) = sbfHI(`) = `). For
smaller task sets of about 20 tasks, it typically terminates in the order of
seconds.



total demand of the task set is met by the supply in both low-
and high-criticality mode.

The algorithm in Fig. 5 tunes the demand of a task set in a
somewhat greedy fashion. Let A(`) and B(`) be predicates
corresponding to the inequalities in Conditions A and B,
respectively:

A(`) :
∑

τi∈τ
dbfLO(τi, `) 6 sbfLO(`)

B(`) :
∑

τi∈HI(τ)

dbfHI(τi, `) 6 sbfHI(`)

The general idea is to check A(`) and B(`) for increasing
time interval lengths ` (from 0 up to an upper bound `max

described in Section IV-A). As soon as it finds a value for ` for
which either condition fails, it changes one relative deadline
(or terminates) and goes back to ` = 0:
• If B(`) fails, the low-criticality relative deadline of one

task is decreased by 1. It picks the task τi which would
decrease the demand dbfHI(τi, `) the most when Di(LO)
is decreased by 1 (ties broken arbitrarily).

• If A(`) fails, the latest deadline change is undone. If
there is no change to undo, the algorithm fails. Note that
it backtracks at most one step in this way.

The algorithm terminates with SUCCESS if and only if it has
found low-criticality relative deadlines with which A(`) and
B(`) hold for all ` ∈ {0, 1, . . . , `max}. This implies that both
Conditions A and B hold, as will be shown in Section IV-A.
Therefore, the algorithm terminates with SUCCESS if and only
if the task set is schedulable according to Proposition III.1.

Example IV.2. Consider how the algorithm in Fig. 5 assigns
values to D2(LO) and D3(LO) for the two high criticality
tasks τ2 and τ3 in the task set from Example II.1. We assume
a dedicated uniprocessor platform (sbfLO(`) = sbfHI(`) = `).
Fig. 6 shows the demand bound functions for this task set with
unmodified relative deadlines. In the first iteration, B(0) fails,
and D3(LO) is decreased by 1. In the second iteration, B(0)
fails again, but this time D2(LO) is decreased by 1. In the third
iteration, B(1) fails and D3(LO) is decreased by 1 again. This
is then repeated two more times where B(`) fails at ` = 2 and
` = 3, respectively, and D3(LO) is lowered two more times.
Both A(`) and B(`) then hold for all ` ∈ {0, 1, . . . , `max}, and
the algorithm terminates with D2(LO) = 5 and D3(LO) = 2,
resulting in the demand-bound functions shown in Fig. 7.

A. Complexity and Correctness of the Algorithm
For the complexity of the algorithm in Fig. 5, note that

each τi ∈ HI(τ) will have its deadline Di(LO) changed at
most Di − Ci(LO) + 1 times. In every iteration of the outer
loop some low-criticality relative deadline is changed, or the
algorithm terminates, so the outer loop is iterated at most

∑

τi∈HI(τ)

(Di − Ci(LO) + 1)

times. The inner for-loop is iterated at most `max+1 times for
every iteration of the outer loop. The algorithm is therefore

candidates ← {i | τi ∈ HI(τ)}
mod ←⊥
`max ← upper bound for ` in Conditions A and B

loop
final ← true
for ` = 0, 1, . . . , `max do

if ¬A(`) then
if mod =⊥ then

return FAILURE

end if
Dmod(LO)← Dmod(LO) + 1

candidates ← candidates \ {mod}
mod ←⊥
final ← false
break

else if ¬B(`) then
if candidates = ∅ then

return FAILURE

end if
mod ← argmax

i∈candidates
(dbfHI(τi, `)− dbfHI(τi, `− 1))

Dmod(LO)← Dmod(LO)− 1

if Dmod(LO) = Cmod(LO) then
candidates ← candidates \ {mod}

end if
final ← false
break

end if
end for
if final then

return SUCCESS

end if
end loop

Fig. 5. Greedy algorithm for tuning low-criticality relative deadlines.

of pseudo-polynomial time complexity if `max is pseudo-
polynomial. We will see that a pseudo-polynomial `max can
be found in the common setting where the supply is from a
dedicated platform.

The algorithm terminates with SUCCESS if and only if it has
found relative deadlines with which both A(`) and B(`) hold
for all ` ∈ {0, 1, . . . , `max}. However, in Proposition III.1, the
inequalities A(`) and B(`) should hold for all ` > 0. We will
show here that `max can be found such that if A(`) and B(`)
hold for ` ∈ {0, 1, . . . , `max}, then they hold for all ` > 0.

Consider first why it is enough to check only integer-valued
`. Both sbfLO and sbfHI are linear in all intervals [k, k + 1]
between consecutive integer points k and k + 1. All dbfLO and
dbfHI are non-decreasing in ` and also linear in all intervals
[k, k+1) for consecutive integers k and k+1 (and so are the
left hand sides of A(`) and B(`)). It follows directly that if
A(`) or B(`) does not hold for an ` ∈ [k, k+1] with k ∈ N>0,
then it also does not hold for either k or k + 1.

How a bound `max can be found depends on the supply-
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Fig. 6. Demand-bound functions for the tasks from Example II.1 with
unmodified low-criticality relative deadlines (Di(LO) = Di(HI) = Di).

bound functions used. It is always possible to use the hyperpe-
riod as the bound `max. However, for a dedicated uniprocessor
(sbfLO(`) = sbfHI(`) = `) we can use established methods [1]
to calculate a pseudo-polynomial `max as long as ULO(τ) and
UHI(τ) are a priori bounded by a constant smaller than 1.
To see this, we first create mappings fLO and fHI from mixed-
criticality sporadic tasks to non-mixed criticality sporadic tasks
(C,D, T) in the following way:

fLO(τi)
def
= (Ci(LO), Di(LO), Ti)

fHI(τi)
def
= (Ci(HI), Di(HI)−Di(LO), Ti)

Note that using the standard demand-bound function dbf for
non-mixed criticality sporadic tasks [1], dbf(fLO(τi), `) =
dbfLO(τi, `) and dbf(fHI(τi), `) = full(τi, `) > dbfHI(τi, `).
Also, U(fLO(τi)) = ULO(τi) and U(fHI(τi)) = UHI(τi), where
U gives the utilization of a non-mixed criticality task.

From [1] we know how to construct a pseudo-polynomial
bound such that the inequality in Proposition II.3 holds for
all ` larger than the bound (using a dedicated uniprocessor),
as long as the utilization of the task set is bounded by
a constant smaller than 1. Clearly, if we construct such a
bound `LO

max for the task set {fLO(τi) | τi ∈ τ}, it is also
valid for Condition A in Proposition III.1. Similarly, such a
bound `HI

max for the task set {fHI(τi) | τi ∈ HI(τ)} is valid
for Condition B of Proposition III.1. We can therefore use
`max = max(`LO

max, `
HI
max) for the algorithm in Fig. 5.3

3A small technical issue is that the bound from [1] is dependent on the
relative deadlines of tasks, which are changed by the algorithm in Fig. 5.
The issue is easily avoided by using the largest bound generated with any of
the possible relative deadlines that may be assigned, or to use an alternative
bound that is independent of relative deadlines, e.g., from [13].
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Fig. 7. Demand-bound functions for the tasks from Example II.1 after having
low-criticality relative deadlines tuned by the algorithm in Fig. 5.

V. EXPERIMENTAL EVALUATION

In this section we evaluate the effectiveness of characteriz-
ing mixed-criticality task sets using demand-bound functions.
In particular, we study the effectiveness of this approach when
low-criticality relative deadlines are tuned using the algorithm
in Fig. 5. We also evaluate previous approaches to mixed-
criticality scheduling from the literature, and compare the
acceptance ratios of their corresponding schedulability tests.
The other approaches only support dedicated (uniprocessor)
platforms, and some assume implicit deadline sporadic tasks.
We use this setting to be able to compare all approaches. The
compared approaches are:

Greedy: The test in Proposition III.1 using the demand-
bound functions in Equations (1) and (2). Relative
deadlines are tuned using the algorithm in Fig. 5.

OCBP-prio: The test for OCBP-based scheduling from [9],
which is based on whether a priority ordering can be
found for all jobs in a busy period.

AMC-max: Schedulability based on the most powerful
response-time calculation for fixed-priority schedul-
ing from [4], called AMC-max. Priorities are as-
signed using Audsley’s algorithm, as described in [4].

Vestal: Schedulability based on the response-time calcu-
lation for fixed-priority scheduling from [3], us-
ing Audsley’s algorithm. Because we assume that
low-criticality tasks are discarded in high-criticality
mode, the budgets of low-criticality task’s execution
times are implicitly enforced. This is therefore equiv-
alent to the algorithm SMC from [4].

EDF-VD: The test for the EDF-VD scheduling algorithm
from [10].



OCBP-load: The test from [8] for OCBP-based scheduling,
which measures the load of the task set.

Naive: A test based on simply flattening the mixed-
criticality sporadic task set into a standard sporadic
task set using resource reservation, and checking
whether the utilization of the constructed task set is at
most 1. Each mixed-criticality task τi ∈ τ is mapped
to a standard (implicit deadline) sporadic task with
worst-case execution time Ci(Li) and period Ti. This
simple test is included as a baseline for the more
sophisticated approaches.

A. Task Set Generation
A random task set is generated by starting with an empty

task set τ = ∅, which random tasks are successively added
to. The generation of a random task is controlled by four
parameters: the probability PHI of being of high-criticality,
the maximum ratio RHI between high- and low-criticality
execution time, the maximum low-criticality execution time
Cmax

LO and the maximum period Tmax. Each new task τi is
then generated as follows:
• Li = HI with probability PHI, otherwise Li = LO.
• Ci(LO) is drawn from the uniform distribution over
{1, 2, . . . , Cmax

LO }.
• Ci(HI) is drawn from the uniform distribution over
{Ci(LO), Ci(LO) + 1, . . . , RHI · Ci(LO)} if Li = HI.
Otherwise, Ci(HI) = Ci(LO).

• Ti is drawn from the uniform distribution over
{Ci(Li), Ci(Li) + 1, . . . , Tmax}.

• Di = Ti since deadlines are implicit.
We define the average utilization Uavg(τ) of a mixed-

criticality task set τ as

Uavg(τ)
def
=

ULO(τ) + UHI(τ)

2
.

Each task set is generated with a target average utilization
U∗ in mind. Due to the difficulty of getting an exact utilization
with integer parameter tasks, we allow the task set’s average
utilization to fall within in the small interval between U∗min =
U∗ − 0.005 and U∗max = U∗ + 0.005.

As long as Uavg(τ) < U∗min, we generate more tasks and
add them to τ . If a task is added such that Uavg(τ) > U∗max,
we discard the whole task set and start with a new empty task
set. If a task is added such that U∗min 6 Uavg(τ) 6 U∗max,
the task set is finished, unless all tasks in τ have the same
criticality level or ULO(τ), UHI(τ) > 0.99, in which case the
task set is also discarded.

B. Results
Fig. 8 shows the acceptance ratio (fraction of schedulable

task sets) as a function of (target) average utilization for task
sets generated using parameters PHI = 0.5, RHI = 4, Cmax

LO =
10 and Tmax = 200. Each data point is based on 10,000
randomly generated task sets.

Next we study the effects of varying the parameters PHI

and RHI. We plot the weighted acceptance ratio (or weighted
schedulability measure) [14] as a function of the varied
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Fig. 8. PHI = 0.5, RHI = 4, Cmax
LO = 10 and Tmax = 200

parameter. If A(U) is the acceptance ratio for (target) average
utilization U , then the weighted acceptance ratio of a set of
target utilizations U is

A(U)
def
=

∑
U∈U U ·A(U)∑

U∈U U
.

Using the weighted acceptance ratio we can reduce the number
of dimensions in the plots by one. Note that more importance
is given to the acceptance ratio for a larger utilization value,
as these are the cases we are generally interested in.

In Fig. 9 and 10 we have plotted the weighted acceptance
ratio as a function of PHI and RHI, respectively. The legends
are omitted in these plots in order to avoid covering the
lines, they are the same as in Fig. 8. The set U of average
utilization values are the same 30 values as used in Fig. 8
(U = {(1/30) · (x+ 1/2) | x ∈ {0, . . . , 29}}). Except for the
varied parameter (PHI or RHI), the parameters are also the same
as for Fig. 8. Each data point is based on 30,000 random task
sets.

C. Discussion
Evidently, there is a large gap between the acceptance ratios

of the new approach in this paper and those of previous
approaches. Moreover, this gap remains when varying the
fraction of high-criticality tasks (PHI) or the ratio between
low- and high-criticality worst-case execution times (RHI). The
results can of course differ if we vary other parameters or the
task set generation procedure, but the gap is large enough that
we think it is safe to say that the proposed approach in this
paper marks a significant improvement in the scheduling of
mixed-criticality sporadic task sets.

Among previous approaches, OCBP-prio [9] and AMC-
max [4] seem to perform best. Of these, AMC-max is probably
the best choice in practice as it has a significantly lower run-
time overhead. The run-time overhead of our approach is also
low because it is basically just plain EDF (potentially with a
change of deadlines at single point in time).
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Fig. 10. PHI = 0.5, RHI varying, Cmax
LO = 10 and Tmax = 200

The weighted acceptance ratios of all approaches remain
relatively steady when varying PHI and RHI. The reasons for
the slow trends that can be seen remain mostly unclear to us.
An exception is RHI = 1, with which worst-case execution
times do not differ between low- and high-criticality modes.
Such a task set is actually equivalent to a non-mixed criticality
task set, which is why the baseline (Naive) and EDF-VD
approaches have 100% acceptance ratios (both reduce in this
case to checking whether the utilization is at most 1).

VI. CONCLUSIONS

We have presented a way of characterizing the demand
of mixed-criticality sporadic tasks using demand-bound func-
tions. This characterization is based on the idea that we can
use different relative deadlines for the tasks depending on the
criticality mode of the system. We described an algorithm that
tunes the relative deadlines of tasks, and thereby shapes the
demand characteristics of those tasks to the available supply

of the platform. Experimental evaluation indicates that this
approach is successful in practice.

These results show that EDF-based scheduling can sig-
nificantly outperform fixed-priority scheduling for mixed-
criticality systems, mirroring the case for non-mixed criticality
systems. We think that this is important because it allows
us to utilize the performance of EDF without sacrificing
robustness in case of overloads. Often, EDF is quoted as being
too unpredictable in case of overloads since it is practically
impossible to predict which jobs will suffer the extra delays.
This is not the case for mixed-criticality systems. In a mixed-
criticality system, the designer can specify exactly which
tasks are more important in an overload situation. We believe
that this is an appropriate separation of concerns: the system
designer specifies what constitutes an overload situation and
which tasks must continue to function, and the scheduler
makes sure that the system behaves as specified while utilizing
platform resources as efficiently as possible.

We mentioned in Section II that the presented methods may
be generalized to an arbitrary number of criticality levels. By
introducing one relative deadline per criticality level, demand-
bound functions for higher levels can be constructed in the
same way as dbfHI in Equation (2), depending only on the
parameters of the level directly below. Instead of having Con-
ditions A and B in Proposition III.1, we would have Conditions
A, B, C, . . . , and their conjunction would be established with
a chain of implications: A ∧ (A → B) ∧ (B → C) ∧ . . . As
there are more relative deadlines with more criticality levels,
the problem of tuning them becomes more challenging. It may
turn out that different heuristics than those used in Section IV
are more suitable when the number of levels increases.

Like previous work from the literature, we have considered
execution-time focused mixed-criticality systems. There are
certainly other points of view that can be considered. For
example, we might want a system to enter high-criticality
mode if external events arrive too quickly, if some subsystem
breaks down, or, in general, if something unexpected happens
in the environment of the system. We might also want greater
flexibility in how the system should change in such an event.
Perhaps we want to change other parameters of the tasks
(e.g., deadline and period) or even add new tasks to handle
the new situation. As future work we would like to address
more general mixed-criticality systems. We would also like to
consider task models with resource sharing or more complex
job release patterns. We believe that the techniques in this
paper will generalize to these cases.
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APPENDIX
PROOF OF LEMMA IV.1

Before proving Lemma IV.1, we reformulate the function
done(τi, `) from Section III-C as

done*(τi, `)
def
= JCi(LO)− ((`−(Di(HI)−Di(LO))) mod Ti)K0

and show that it is an equivalent definition:

Lemma A.1.

done*(τi, `) = done(τi, `)

Proof: We split the proof into three cases.

First case: Di(HI) > ` mod Ti > Di(HI)−Di(LO).

From ` mod Ti > Di(HI)−Di(LO) we know that

(` mod Ti)− (Di(HI)−Di(LO))

= (`− (Di(HI)−Di(LO))) mod Ti. (3)

With (3) we can rewrite done*(τi, `) as

done*(τi, `)

= JCi(LO)− ((` mod Ti)− (Di(HI)−Di(LO)))K0
= JCi(LO)− (` mod Ti) +Di(HI)−Di(LO)K0

= done(τi, `).

Second case: Di(HI) 6 ` mod Ti.

From Di(HI) 6 ` mod Ti the equality (3) follows
again. We can rewrite done*(τi, `):

done*(τi, `)

= JCi(LO)− (` mod Ti) +Di(HI)−Di(LO)K0
= J(Ci(LO)−Di(LO)) + (Di(HI)− ` mod Ti))K0

We have Ci(LO) 6 Di(LO) and Di(HI) 6 ` mod Ti.
Therefore,

(Ci(LO)−Di(LO)) + (Di(HI)− ` mod Ti)) 6 0

and
done*(τi, `) = 0 = done(τi, `).

Third case: ` mod Ti < Di(HI)−Di(LO).

From ` mod Ti < Di(HI) − Di(LO) and from
Ci(LO) 6 Di(LO) 6 Di(HI) 6 Ti we have4

(`− (Di(HI)−Di(LO))) mod Ti

= Ti − (Di(HI)−Di(LO)) + (` mod Ti)

> Ti − (Di(HI)−Di(LO))

> Di(LO)

> Ci(LO).

Therefore,

Ci(LO)− ((`− (Di(HI)−Di(LO))) mod Ti) 6 0

and
done*(τi, `) = 0 = done(τi, `).

We can now prove Lemma IV.1.

Proof of Lemma IV.1: The lemma follows from straight-
forward substitutions, first:

dbfLO(τi, `) =

s(⌊
`−Di(LO)

Ti

⌋
+ 1

)
· Ci(LO)

{

0

=

s(⌊
`− (Dj(LO)− δ)

Tj

⌋
+ 1

)
· Cj(LO)

{

0

= dbfLO(τj , `+ δ)

To show the dbfHI part, we consider full and done sepa-
rately:

full(τi, `) =

s(⌊
`− (Di(HI)−Di(LO))

Ti

⌋
+ 1

)
· Ci(HI)

{

0

=

s(⌊
`− (Dj(HI)− (Dj(LO)− δ))

Tj

⌋
+ 1

)
· Cj(HI)

{

0

= full(τj , `− δ)

We use Lemma A.1 for done(τi, `) = done*(τi, `):

done(τi, `) = done*(τi, `)

= JCi(LO)− ((`− (Di(HI)−Di(LO))) mod Ti)K0
= JCj(LO)− ((`− (Dj(HI)− (Dj(LO)− δ))) mod Tj)K0
= done*(τj , `− δ) = done(τj , `− δ)

The dbfHI part follows directly:

dbfHI(τi, `) = full(τi, `)− done(τi, `)

= full(τj , `− δ)− done(τj , `− δ)
= dbfHI(τj , `− δ)

4Note that we interpret mod as positive remainder: a mod b = a−
⌊
a
b

⌋
·b.


