
Hardness Results for Static Priority Real-Time Scheduling

Martin Stigge and Wang Yi
Uppsala University, Sweden

Email: {martin.stigge | yi}@it.uu.se

Abstract—Real-time systems are often modeled as a collection
of tasks, describing the structure of the processor’s workload. In
the literature, task-models of different expressiveness have been
developed, ranging from the traditional periodic task model to
highly expressive graph-based models.

For dynamic priority schedulers, it has been shown that the
schedulability problem can be solved efficiently, even for graph-
based models. However, the situation is less clear for the case of
static priority schedulers. It has been believed that the problem
can be solved in pseudo-polynomial time for the generalized
multiframe model (GMF). The GMF model constitutes a compro-
mise in expressiveness by allowing cycling through a static list
of behaviors, but disallowing branching. Further, the problem
complexity for more expressive models has been unknown so far.

In this paper, we show that previous results claiming that a
precise and efficient test exists are wrong, giving a counterexam-
ple. We prove that the schedulability problem for GMF models
(and thus also all more expressive models) using static priority
schedulers is in fact coNP-hard in the strong sense. Our result
thus establishes the fundamental hardness of analyzing static
priority real-time scheduling, in contrast to its dynamic priority
counterpart of pseudo-polynomial complexity.

I. INTRODUCTION

In scheduling theory, the system model usually consists of
two parts: a workload model and a scheduling policy. One
major objective is to check the schedulability of their compo-
sition, i.e., whether all timing constraints of the workload can
be met if the given scheduler is used. The analysis complexity
depends on the choices for the model and the scheduler.

The traditional Liu and Layland task model [1] is a workload
model which assumes a collection of independent tasks with
periodic activation. Behaviors that are not entirely periodic
can not be expressed accurately with this model, so more
expressive models have been proposed in recent years. One
of the most expressive models is the Digraph Real-Time task
model (DRT) [2] using arbitrary directed graphs for modeling
task activations. For the scheduling policy, two classes are of
practical importance: static and dynamic priority schedulers.
Static priority schedulers keep relative task priorities fixed at
runtime and are often preferred in implementations because of
robustness and code complexity properties. Dynamic priority
schedulers can change priorities at runtime, which makes them
theoretically more powerful but also more complex.

Schedulability decision procedures for both scheduler
classes are using different techniques. It has been shown
that schedulability analysis for the DRT model with dynamic
priority schedulers is tractable for uniprocessor platforms,
using demand bound functions [2]. However, for static priority
schedulers, response-time based techniques are usually ap-
plied, and the problem complexity for the DRT model has been

unknown. For the generalized multiframe model (GMF) [3],
which is a subclass of the DRT model disallowing branches,
it has been believed that there is an exact schedulability test
for static priority schedulers running in pseudo-polynomial
time [4]. In this paper, we show that this is actually not the
case. In particular, we provide the following contributions:

• We consider the schedulability problem for tree-based
release structures, a sub-class of the DRT model. For this
class we define a synchronous roots sequence and identify
it as the worst case for the situations under consideration.

• Using this insight, we give a proof of strong coNP -
hardness of the schedulability problem on uniprocessors
for all models at least as expressive as GMF.

Our result provides a general conclusion about the hardness
of static priority schedulability analysis. An important impli-
cation is that fully polynomial-time approximation schemes
(FPTAS) for this problem cannot exist (assuming P 6= NP ).

A. Prior Work

When first published in [1], the periodic task model by Liu
and Layland could be analyzed with a precise test for schedula-
bility with dynamic priority schedulers in polynomial time. In
this model, each task releases jobs with the same worst-case
execution time (WCET) bound, and with constant minimal
inter-release delays equal to the jobs’ deadlines. The case of
static priority schedulers can be handled in pseudo-polynomial
time with Response-Time Analysis first introduced in [5].
A more expressive task model is the generalized multiframe
(GMF) model [3] which allows a task to cycle through a static
list of job types, each with potentially different WCET bounds
and deadlines. For this model, the schedulability problem with
dynamic priority schedulers has been shown to have a tractable
solution. The most general model to date with such a test
is the Digraph Real-Time task model (DRT) [2]. It models
each task with a directed graph in which vertices represent
job releases and edges represent branching structures and
inter-release delays. A recent extension to this model with
global timing constraints [6] shows the tractability borderline
regarding schedulability with dynamic priority schedulers.

In the case of static priorities, sufficient tests for DAG-based
release structures have been introduced in [7]. A polynomial
time test for GMF models is given in [4] by showing an anal-
ysis method claimed to be precise. We show in Appendix B
that it is in fact only a sufficient test. Further, [8] provides
some intuition why the problem might be intractable already
for GMF models, but does not supply a proof.



II. PRELIMINARIES

In this section we introduce syntax and semantics of the task
model, the schedulability problem under consideration, and
the reduction framework which we use to prove our hardness
result.

A. Task Model
We use the digraph real-time (DRT) task model [2] to

describe the workload of a system. A DRT task set τ =
{T1, . . . , TN} consists of N independent tasks. A task T is
represented by a directed graph G(T ) with both vertex and
edge labels. The vertices {v1, . . . , vn} of G(T ) represent the
types of all the jobs that T can release. Each vertex vi is
labeled with an ordered pair 〈e(vi), d(vi)〉 denoting worst-case
execution-time demand e(vi) and relative deadline d(vi) of the
corresponding job. Both values are assumed to be non-negative
integers. The edges of G(T ) represent the order in which jobs
generated by T are released. Each edge (u, v) is labeled with a
non-negative integer p(u, v) denoting the minimum job inter-
release separation time. We do not assume a relation between
job deadlines d(u) and inter-release separation times p(u, v),
i.e., the jobs may have arbitrary deadlines.

Example II.1. Figure 1 shows an example of a DRT task.

v1〈2, 5〉

v2

〈1, 8〉 v3 〈3, 8〉

v4 〈5, 10〉

v5

〈1, 5〉

10

15

20

20

20

11

10

Fig. 1. An example task containing five different types of jobs

Semantics: An execution of task T corresponds to a
potentially infinite path in G(T ). Each visit to a vertex along
that path triggers the release of a job with parameters specified
by the vertex label. The job releases are constrained by inter-
release separation times specified by the edge labels. Formally,
we use a 3-tuple (r, e, d) to denote a job that is released at (ab-
solute) time r, with worst-case execution time e and deadline
at (absolute) time d. We assume dense time, i.e., r, e, d ∈ R>0.
A job sequence1 ρ = [(r1, e1, d1), (r2, e2, d2), . . .] is genera-
ted by T , if and only if there is a (potentially infinite) path
π = (π1, π2, . . .) in G(T ) satisfying for all i:

1) ei 6 e(πi),
2) di = ri + d(πi),
3) ri+1 − ri > p(πi, πi+1).

For a task set τ , a job sequence ρ is generated by τ , if it is
a composition of sequences {ρT }T∈τ , which are individually
generated by the tasks T of τ .

1Technically, a job sequence is a set of jobs. Still, we keep the name for
historic reasons.

Example II.2. For the example task T in Figure 1, consider
the job sequence ρ = [(5, 5, 15), (25, 1, 33), (42, 3, 50)]. It
corresponds to path π = (v4, v2, v3) in G(T ) and is thus
generated by T .

Note that this example demonstrates the “sporadic” behav-
ior allowed by the semantics of our model. While the second
job in ρ (associated with v2) is released as early as possible
after the first job (v4), the same is not true for the third
job (v3).

Restricted Models: For many systems, it is not necessary
to have the full power of arbitrary directed graphs in order to
model their behavior accurately. By restricting the class of
graphs under consideration, analysis methods can potentially
be optimized and thus more efficient. We introduce two es-
tablished sub-classes for which we show our hardness results,
despite their restrictions.
• A branching task is a DRT task T for which G(T ) is

a directed tree. Intuitively, a branching task introduces
(non-deterministic) branching behavior into the modeling
framework, but in this simple form, only finite behavior
is allowed. That is, all job sequences generated by a
branching task are finite.

• A generalized multi-frame (GMF) task [3] is a DRT task
T for which G(T ) is a cycle graph. Intuitively, a GMF
task is even more restricted by disallowing branching.
However, it still allows to model (infinite) cycling through
a static list of job types. This pattern is often found in
safety critical real-time systems.

Example II.3. Figure 2 shows examples for branching and
GMF tasks, respectively.

u1

〈3, 4〉 u2

〈5, 8〉 u3

〈1, 15〉

u4

〈1, 16〉
u5

〈1, 17〉

10

11

11

12

(a) Branching task example T1

v1〈1, 10〉

v2

〈2, 7〉

v3

〈3, 7〉

v4

〈1, 9〉
v5

〈1, 8〉

108

3

5 5

(b) GMF task example T2

Fig. 2. Examples for branching and GMF tasks

B. Schedulability
The central problem we are interested in is the standard

notion of schedulability: Can a given scheduler schedule all
the workload produced by the system?

Definition II.4 (Schedulability). A task set τ is schedulable
with scheduler Sch , if and only if for all job sequences
generated by τ , all jobs meet their deadlines when scheduled
with Sch . Otherwise, τ is unschedulable with Sch .



In this work, we assume preemptive scheduling on unipro-
cessor systems. For analysing schedulability, one usually dis-
tinguishes between dynamic and static priority schedulers. It
is well-known that for our setting of independent jobs, the
earliest deadline first (EDF) scheduler using dynamic priorities
is optimal, i.e., if a task set can be scheduled by any scheduler,
it can also be scheduled by EDF. It has been shown that
for EDF, schedulability of DRT task sets can be checked in
pseudo-polynomial time [2]. Even for an extension of DRT
tasks with global timing constraints, this problem has been
shown to be tractable [6].

Surprisingly, and as a sharp contrast to these results, it
has been unknown whether schedulability can be checked
efficiently for static priority schedulers, even for the very
restricted class of GMF task sets. An earlier attempt to present
a polynomial solution [4] unfortunately turned out to be only
a sufficient test. We give details in Appendix B why this
test is not necessary and thus may fail to positively identify
schedulable task sets.

For the rest of the paper, we assume static priority schedul-
ing in which each task set τ is equipped with a priority order
pr : τ → N, that assigns a unique priority to each task (with
lower numbers for higher priorities). We will show that given
a DRT task with a priority order, the schedulability problem
with a static priority scheduler is coNP -hard in the strong
sense. This holds even for the restricted classes of branching
(Section III) and GMF task sets (Section IV).

C. Reduction Framework
For our hardness proof, we use the standard notion of

a polynomial-time many-one reduction [10], also called
“Karp-reduction”. We will provide a reduction from the
3-PARTITION problem.

Definition II.5. An instance I = (A, s,B) of 3-PARTITION
consists of

1) a set A = {a1, . . . , a3m} of 3m elements,
2) a size function s : A→ N, and
3) a bound B ∈ N,

such that
∑3m
i=1 s(ai) = m · B and B/4 < s(a) < B/2

for all a ∈ A. An instance I is a positive instance if A
can be partitioned into m disjoint sets P1, . . . , Pm such that∑
a∈Pj

s(a) = B for all Pj .

It follows from the definition that in case of a positive in-
stance, all partitions Pj contain exactly 3 elements. Therefore,
we call these P1, . . . , Pm derived from a positive instance also
a valid 3-partition.

A problem can be solved in pseudo-polynomial time, if there
is a polynomial time algorithm deciding membership for an
instance representation where all values are encoded in unary.
(This is equivalent to the requirement that polynomial bounds
exist for all values.) Problems of that complexity are consid-
ered tractable in the real-time systems community. Likewise,
a problem is NP -hard in the strong sense if it stays NP -
hard even when all values are encoded in unary. It has been
shown that 3-PARTITION is strongly NP -hard [10]. Thus,

assuming P 6= NP , there can not be a pseudo-polynomial
time algorithm for 3-PARTITION. We will show the same for
the static priority schedulability problem.

III. HARDNESS FOR TREE MODELS

We now present our coNP -hardness proof of the static
priority scheduling problem for branching task models, i.e.,
tree release structures, and first give a proof overview. Given
a 3-PARTITION instance I , we construct a branching task set
τ with a priority order pr in Section III-A. We construct τ
such that it is unschedulable with any static priority scheduler
if and only if I is a positive instance, i.e., a 3-partition exists.
• First, we show in Section III-B that a positive instance I

results in an unschedulable τ .
• Second, we show in Section III-C that if τ is missing a

deadline in a synchronous roots sequence (SRS), then I
is a positive instance. In an SRS, all tasks are releasing
their roots exactly at the same time.

• Third, we show in Section III-D that the SRS assumption
can be removed if we add a minor extension to the task set
construction. For the extended task set, it will be the case
that if τ misses a deadline for some job sequence, it can
also miss a deadline for a synchronous roots sequence.

Note that the reduction must be polynomial-time and all values
in τ have to be polynomially bounded in the parameters of I .

A. Task Set Construction
Given an instance I = (A, s,B) of the 3-PARTITION

problem, we construct a task set τ(I). The idea is to have one
task per element ai ∈ A. Each task has a non-deterministic
choice for representing its assignment to one of the m parti-
tions. The choices differ in delay and execution time which
are constructed exactly so that only a valid 3-partition can
cause the processor to be constantly busy for a long time.
Finally, an additional task with lowest priority is constructed,
receiving interference from all other tasks. It has a very short
execution time, so it will only miss its deadline if the processor
is constantly busy for a sufficiently long time. We will see that
only in the case of a valid 3-partition, the processor can be
kept busy for that long.

We now give the construction details.
1) We first define a constant L that is used as a deadline

which is sufficiently long such that it can not be missed.

L :=

3m∑
i=1

m · s(ai) = m2B

2) For each ai ∈ A with i = 1, . . . , 3m we construct a task
Ti with priority pr(Ti) := i as follows. It is a tree with
a root vertex u and m children v1, . . . , vm which are
also the leaves of the tree. The labels are as follows:

e(u) := 0, d(u) := 0,

e(vj) := j · s(ai), d(vj) := L, p(u, vj) :=

j−1∑
k=1

k ·B.



u

〈0, 0〉

v1

〈s(ai), L〉 v2

〈2 · s(ai), L〉

. . .
vm

〈m · s(ai), L〉

0

B

∑m−1
k=1 k ·B

Fig. 3. Illustration of task construction Ti. Note the scaling factor for the
execution times.

Note that p(u, v1) = 0. We illustrate the construction in
Figure 3. The idea is that a branch from dummy vertex
u to vertex vj represents partition Pj . Task Ti chooses
(non-deterministically) to branch to one of the leaves
vj , thereby expressing ai ∈ Pj . The different delays
are constructed so that all tasks choosing partition Pj
will have their job released and executed in a window
of size j ·B. These m windows are adjacent and the
execution times will guarantee that only the existence of
a valid 3-partition for I can create a situation in which
the processor is continuously busy during all windows.
The leaf jobs’ execution times are equal to the element
size s(ai) but they are scaled by a factor corresponding
to the index of the branch. This is the central idea to
prevent tasks from choosing the “wrong” branch and
thus the “wrong” partition.

3) Further, we construct another task Tlow with the lowest
priority, i.e., pr(Tlow ) := 3m+1. The idea is that Tlow
is the task missing a deadline if and only if there is a
valid 3-partition for I . Its graph G(Tlow ) contains only
one single vertex v. The labels are

e(v) := 1, d(v) :=

m∑
j=1

j ·B.

The deadline d(v) is the sum of all window sizes, so
Tlow may miss its deadline if all windows are busy.

Example III.1. Consider an instance I = (A, s,B) with A =
{a1, . . . , a9}, B = 42 and the sizes s given via:

a ∈ A a1 a2 a3 a4 a5 a6 a7 a8 a9
s(a) 15 16 12 16 14 11 15 13 14

The resulting task set τ(I) is shown in Figure 4.

B. Partition implies Deadline Miss
We first show the potential deadline miss of Tlow in case

of a positive instance I .

Lemma III.2. For a positive instance I of 3-PARTITION,
task set τ(I) is not schedulable with a static priority scheduler.

Proof: Let P1, . . . , Pm be a valid 3-partition of I =
(A, s,B). For each ai ∈ A with i = 1, . . . , 3m we construct

T1 〈0, 0〉

〈15, L〉
〈30, L〉

〈45, L〉

0

42

126

T2 〈0, 0〉

〈16, L〉
〈32, L〉

〈48, L〉

0

42

126

T3 〈0, 0〉

〈12, L〉
〈24, L〉

〈36, L〉

0

42

126

T4 〈0, 0〉

〈16, L〉
〈32, L〉

〈48, L〉

0

42

126

T5 〈0, 0〉

〈14, L〉
〈28, L〉

〈42, L〉

0

42

126

T6 〈0, 0〉

〈11, L〉
〈22, L〉

〈33, L〉

0

42

126

T7 〈0, 0〉

〈15, L〉
〈30, L〉

〈45, L〉

0

42

126

T8 〈0, 0〉

〈13, L〉
〈26, L〉

〈39, L〉

0

42

126

T9 〈0, 0〉

〈14, L〉
〈28, L〉

〈42, L〉

0

42

126

Tlow 〈1, 252〉

Fig. 4. Example task set τ(I) constructed from the 3-PARTITION
instance I in Example III.1. We have L = 378 in this example.

a job sequence for the corresponding task Ti. Let Pj be the
partition containing ai. The idea is that the dummy root job is
released at time 0 and Ti then branches2 according to partition
Pj , releasing its job corresponding to vj in the j-th window.
Formally, the constructed job sequence is

ρi := [(0, 0, 0), (ri, j · s(ai), ri + L)] ,with

ri :=

j−1∑
k=1

k ·B.

Note that ri is the start time of the j-th window. Further, we
release Tlow also at time 0, which causes it to have a deadline
exactly when the m-th window ends. The corresponding job
sequence is

ρlow := [(0, 1,
∑m
k=1 k ·B)].

If these sequences are composed to a job sequence ρ
generated by τ and scheduled with a static priority scheduler,
task Tlow will miss its deadline. The reason is that for each
window j ∈ {1, . . . ,m}, the processor is busy during the
whole window as follows.
• Window j is of size j ·B and starts at time

∑j−1
k=1 k ·B.

This starting time is the same time point at which window
j − 1 ends.

• Right when window j starts, the non-zero jobs of all tasks
Ti with ai ∈ Pj are released. Since this is a 3-partition,
these must correspond to three elements a, b, c ∈ A.

2Note that this lemma can be proved in a simpler way by just releasing
all jobs corresponding to vertices vm of all tasks at the same time as Tlow .
However, our presented proof also holds for the extended task construction
in Section III-D, where the simpler version would not suffice.



• We know that s(a) + s(b) + s(c) = B since we chose
them from a valid 3-partition.

• The corresponding jobs released at the start of window j
have execution times j · s(a), j · s(b) and j · s(c), respec-
tively.

• In summary, window j has a workload of j · s(a) + j ·
s(b) + j · s(c) = j ·B which is exactly the window size.

• With the processor being busy from time 0 until the end
of the last window m, i.e., time

∑m
k=1 k · B, we see

that Tlow is never executed before its deadline and will
therefore miss it.

The deadline miss scenario in the above proof can be
illustrated with the following example.

Example III.3. Consider the 3-PARTITION instance I from
Example III.1. It is clearly a positive instance, since the
following is a valid 3-partition:

P1 = {a1, a2, a6} , P2 = {a3, a4, a5} , P3 = {a7, a8, a9} .

We illustrate the resulting schedule described in the above
proof in Figure 5. Note that the job execution times exactly fit
the three windows. Thus, the processor is busy between time 0
and 252 executing jobs from T1, . . . , T9 with higher priorities
than Tlow . Since Tlow has its deadline at time 252, it misses
its deadline.

Tlow

misses deadlinea1,
a2,

a6,
Tlow

a3,
a4,

a5
a7,

a8,
a9

t
0 42 126 252

1st window 2nd window 3rd window

Fig. 5. Schedule resulting from the valid 3-partition in Example III.3. The
arrows representing job releases are annotated with the elements a ∈ A
to which the released jobs correspond, in addition to the job of Tlow .
Different colors represent task releases in different windows, i.e., assignment
to partitions. Note that Tlow has an execution time of just 1, so it is very slim
in the figure.

C. Deadline Miss with SRS
We focus now on the other direction: the construction of a

valid 3-partition from a job sequence ρ in which a task in τ(I)
misses its deadline. The idea is that schedules which do not
correspond to a valid 3-partition can not cause the processor to
be busy in all windows. We illustrate this with the following
example.

Example III.4. We use instance I from Example III.1. Con-
sider the following 3-partition which is not valid:

P ′1 = {a1, a2, a4} , P ′2 = {a6, a8, a9} , P ′3 = {a3, a5, a7} .

A schedule according to the construction above in the proof of
Lemma III.2 will make all jobs meet their deadlines, since the

second window is not entirely busy. We illustrate the schedule
in Figure 6.

In the remainder of this section, we show that if a schedule
does not correspond to a valid 3-partition, some window is not
entirely busy and Tlow can execute3. Thus, Tlow will always
meet all deadlines for negative 3-PARTITION instances.

Tlow

executes

a1,
a2,

a4,
Tlow

a6,
a8,

a9
a3,

a5,
a7

t
0 42 126 252

1st window 2nd window 3rd window

Fig. 6. Schedule resulting from the invalid 3-partition in Example III.4. In
the end of the second window, the processor does not execute a job of higher
priority than Tlow , so Tlow can execute and thus meets its deadline.

We first establish the proof under the assumption that ρ is
a synchronous roots sequence.

Definition III.5. For a branching task set τ , a job sequence
ρ is a synchronous roots sequence (SRS) if for each task
T ∈ τ , the subsequence ρT generated by task T satisfies the
following:

1) The first job in ρT corresponds to the root vertex of
G(T ) and is released at time 0.

2) All later jobs in ρT are released as early as possible.

This assumption is necessary: otherwise, all tasks Ti of
τ(I) could release their job associated with vertex vm at the
same time as Tlow is released. This would clearly cause a
deadline miss of Tlow , no matter whether I is a positive or
a negative instance. Assuming an SRS is the key to prevent
such a situation. (However, the SRS assumption is removed in
Section III-D by extending the task set construction.)

Lemma III.6. If there is a synchronous roots sequence ρ of
τ(I) which is not schedulable with a static priority scheduler,
then I is a positive instance of 3-PARTITION.

Proof: First we note that it must be the job of Tlow which
is missing its deadline. The deadlines of all other jobs are
either 0 (root dummy vertices with 0 execution time) or L (leaf
vertices), which is larger than all possibly interfering workload
of higher priority tasks. Further, without loss of generality,
we may assume that all jobs in ρ are taking the maximum
execution time allowed by their releasing vertices. This as-
sumption is safe since increasing the interfering workload will
not prevent a deadline miss that is otherwise happening.

The job of Tlow that is missing its deadline is released at
time 0 and has its deadline at time D :=

∑m
k=1 k · B. Since

3Generally, a schedule does not need to conform to the construction in the
proof of Lemma III.2. That is, tasks may start execution anywhere in the tree
at any time. However, it will be established in Section III-D that it is sufficient
to only consider such schedules where the execution starts synchronously at
the root vertices.



it is missing the deadline, the processor is busy executing
higher priority jobs for strictly more than D−1 time units. For
presentation reasons we obtain a job sequence ρ′ by removing
the job of Tlow from ρ. For ρ′ we know that the processor
is idle during [0, D] for strictly less than one time unit. We
now use the window concept from above for dividing the
time interval [0, D] into m non-overlapping windows. The
j-th window is of size j · B and starts at time

∑j−1
k=1 k · B.

These time points are exactly the time points in ρ′ at which
all tasks Ti release their non-dummy jobs (because of the SRS
assumption). We will now show that during all windows, ρ′

keeps the processor constantly busy. Based on this we will
construct a valid 3-partition by observing which branch each
task Ti chose in ρ′.

We first look at the first window. It starts at time 0 and ends
at time B. Jobs are only released at time 0 and then not again
before B. This is guaranteed by the inter-release separation
constraints on the tree edges and the SRS assumption. We
further know that with job sequence ρ′, the processor is idle
for strictly less than one time unit during the first window. All
execution times are integers, so the processor is in fact not idle
at all, or in other words, busy executing jobs throughout the
whole window. In particular, there is no idle time at the end
of the window. Let σ1 denote the sum of all s(ai) for which
task Ti chose the first branch in ρ′. Since the processor is busy
throughout the whole window (and possibly even afterwards)
executing jobs released at time 0, we have σ1 > B.

The second window has a size of 2B, starting at time B
and ending at time B+2B = 3B. As in the first window, job
releases can only take place at the start of the window and then
not again until its end. Since the processor is also busy during
this whole window by the same reasoning as above, we again
know that there is no idle time at the end of the window. We
let σ2 denote the sum of all s(ai) for tasks Ti that chose the
second branch in ρ′. The sum of these jobs’ execution times is
thus 2σ2 since the execution times of v2 in all trees are scaled
by a factor of 2. Taking into consideration that there may be
some workload reaching from the first window into the second
window, we can express our knowledge that there is no idle
time at the end of the second window as σ1+2σ2 > B+2B.

We now generalize this to the k-th window. For every j =
1, . . . ,m, let σj denote the sum of all s(ai) for which task Ti
chose the j-th branch in ρ′. The sum of the jobs’ execution
times in this branch is j · σj because of the scaling factor
during task construction. Similar to the above reasoning we
know that there is no idle time at the end of the k-th window,
which we can express as

k∑
j=1

j · σj >
k∑
j=1

j ·B. (A)

Additionally, we know that the sum of all s(ai) is m · B,
so the sum of all σj is m ·B as well:

m∑
j=1

σj = m ·B (B)

u

〈L, 3mL〉

v1

〈s(ai), 3mL〉 v2

〈2 · s(ai), 3mL〉

. . .
vm

〈m · s(ai), 3mL〉

3mL

3mL+B

3mL+
∑m−1

k=1 k ·B

Fig. 7. Illustration of new task construction Ti. Note the heavy job released
at root vertex u.

From both conditions it is easily derived that σj = B for all j.
(See Appendix A for details.) This means that for each branch
j, the sum of the s(ai) corresponding to those tasks Ti that
chose this branch j in ρ′ is exactly B. In other words, for each
j, the set of all elements ai contributing to σj is the set Pj of
a valid 3-partition.

D. Deadline Miss without SRS Assumption
In order to show the result without the assumption of a

synchronous roots sequence, we need to adjust the construction
of task set τ(I). Recall that this assumption was necessary to
prevent the tasks from just directly releasing jobs associated
with vm causing high workload. As a solution to this issue, we
add a very long job to the root vertex of all G(Ti). We call this
job the heavy job of task Ti, in contrast to the leaf jobs of Ti.
As we will see, the introduction of this heavy job guarantees
that the worst case interference for Tlow is created when all
Ti synchronously release the jobs associated with their root
vertices (which are now their heavy jobs). This consequently
results in the SRS from above.

The new task set τ ′(I) differs from the original τ(I) only
in the root vertices of the release trees and adjusted delays
and deadlines. The details are as follows.

1) We again use the large constant L defined above. It is
sufficiently large to represent a time span which is just
as long as the workload that all leaves vm can create if
they are released together.

L =

3m∑
i=1

m · s(ai) = m2B

2) For each ai ∈ A we construct a task Ti with priority
pr(Ti) := i as in Section III-A, but with the following
labels:

e(u) := L, d(u) := 3mL,

e(vj) := j · s(ai), d(vj) := 3mL,

p(u, vj) := 3mL+

j−1∑
k=1

k ·B.

We illustrate the construction in Figure 7. In contrast
to the task set τ(I) from Section III-A, the new tasks



T1, . . . , T3m of τ ′(I) are constructed such that a worst-
case interference of Tlow (described below) must contain
a heavy job of each Tj , followed by a leaf job. We will
see that this allows us to reason that all these heavy jobs
can be assumed to be released at the same time as Tlow
is released.

3) Again, we further construct another task Tlow with the
lowest priority, i.e., pr(Tlow ) := 3m + 1. As before,
Tlow is the task missing a deadline if and only if there
is a valid 3-partition for I . Its graph G(Tlow ) contains
again only single vertex v with labels

e(v) := 1, d(v) := 3mL+

m∑
j=1

j ·B.

Note that d(v) now includes time for the heavy jobs of
all 3m tasks Ti in addition to the sum of all window
sizes. Thus, if the processor is first busy executing a
heavy job of each task Ti and then leaf jobs of all Ti
during all windows, Tlow is missing its deadline.

An example execution is illustrated in Figure 8, based on
task set τ ′(I) resulting from instance I in Example III.1. All
heavy jobs are released at time 0, keeping the processor busy
for 3mL time units. After that, the leaf jobs are released
according to their partitions, just as before in Section III-C.
This keeps the processor constantly busy and causes a deadline
miss for Tlow . Conversely, if there is a deadline miss, it again
must be the job of Tlow missing the deadline, since all other
jobs have deadlines 3mL which is again more than all possible
interfering workload of higher priority tasks.

Tlow

misses deadline

t
0 L 2L 8L 3mL

heavy jobs leaf jobs

Fig. 8. Schedule resulting from the valid 3-partition for τ ′(I) created from
instance I in Example III.1. Note that in the first phase, all heavy jobs execute,
after which all leaf jobs create an execution sequence similar to the one in
Figure 5.

Based on these observations, it is easily verified that both
Lemmas III.2 and III.6 also hold for the new task set τ ′(I).
We will now focus on removing the SRS assumption. That is,
we will show that the synchronous roots sequence assumed
in Lemma III.6 constitutes the worst case interference for task
Tlow . In other words, we will show that any job sequence with
a deadline miss for Tlow can be transformed into one with an
SRS which still causes a deadline miss.

Lemma III.7. If there is a job sequence generated by τ ′(I)
such that Tlow misses a deadline when scheduled with a static
priority scheduler, then there is a synchronous roots sequence
in which Tlow misses a deadline as well.

Proof: By shifting all release times and deadlines in a
given job sequence ρ, we may assume that the job of Tlow
that is missing its deadline is released at time 0 and has its
deadline at time D = 3mL+

∑m
j=1 j ·B. We now transform

ρ such that the deadline miss of Tlow occurs in a synchronous
roots sequence. During all stages of the transformation, we
ensure that the processor work during the time interval [0, D]
does not decrease.

1) The first change we apply in case the processor is busy
at time 0, i.e., right when Tlow has its release time. We
find a time point t < 0 which is the earliest time point
such that the processor is continuously busy executing
jobs until time 0. Thus, there is a busy period of length
δ := 0 − t right before time point 0. We now change
ρ by shifting all release times and deadlines of tasks
T1, . . . , T3m by δ. This change ensures that
• by construction, the processor is now idle right when
Tlow is released at time 0, and

• during [0, D], the interference of Tlow by higher
priority tasks does not decrease. This is because
we moved δ time units of interfering work into the
interval, but at most δ out of the interval.

2) Because of the above step, we may assume that the
processor was actually idle right when Tlow was released
at time 0. For each Ti that does not have the release of a
heavy job at time 0, we can therefore do the following:
• If Ti releases a heavy job at a time t′ inside the

interval (0, D], we shift all jobs of Ti in ρ by −t′,
i.e., to earlier time points. Since t′ is inside the
interval, this does not move the execution of any
job of Ti out of the interval, but only potentially
moves work into the interval. Thus, the total work
inside the interval does not decrease, and we end
up with Ti’s heavy job being released at time 0.

• Otherwise, if Ti does not release a heavy job inside
the interval but a leaf job instead, we move it to-
gether with its preceding heavy job (already finished
before time 0) so that the heavy job is released at
time 0. If there is no such heavy job release, we just
insert one at the latest time possible before doing the
described transformation. In this step we are moving
L time units of work into the interval (that is, the
heavy job of Ti), but less than L out of the interval
(at most a leaf job). Again, work inside [0, D] does
not decrease.

• Finally, if Ti does not release any job within [0, D]
we can just delete all jobs of Ti from ρ and
add its heavy job at time 0. The deletion did not
remove any work from the interval by assumption,
so in summary the amount of work inside [0, D]
increases.

3) After the above steps, there is no job in ρ which is
released before [0, D]. Further, we can remove all jobs
from ρ which are released at or later than D since
they do not influence the work inside [0, D]. Finally,



releasing the leaf jobs inside the window [0, D] as early
as possible will also not decrease the amount of work
inside [0, D].

In summary, the construction transforms ρ into a synchronous
roots sequence. Since the work of tasks with priority higher
than Tlow in the interval [0, D] did not decrease, Tlow still
misses its deadline.

We conclude Section III with our main theorem for branch-
ing task models, i.e., with tree release structure.

Theorem III.8. For branching task models, the schedulability
problem for static priority schedulers is coNP -hard in the
strong sense.

Proof: Given an instance I of 3-PARTITION we de-
scribed a reduction to an instance τ ′(I) of the static priority
scheduling problem. We established that

1) a positive instance I leads to a negative instance τ ′(I),
Lemma III.2, and

2) a negative instance I leads to a positive instance τ ′(I),
Lemmas III.6 and III.7.

Since 3-PARTITION is NP -hard, the static priority scheduling
problem for branching task models is coNP -hard. Further, this
reduction can clearly be executed in polynomial time, and all
values in τ ′(I) are bounded polynomially in the values of I .
With 3-PARTITION being NP -hard in the strong sense, our
problem is shown coNP -hard in the strong sense.

IV. HARDNESS FOR CYCLE MODELS

In this section, we show that the static priority scheduling
problem is strongly coNP -hard also for GMF models. The
central idea here is that we can construct a GMF task set that
exhibits essentially the same behavior as the branching task in
Section III.

For branching task models, the idea behind the task con-
struction was to have one task Ti for each of the 3m elements
ai ∈ A. Each task includes a branch for choosing one of
the m partitions Pj which ai should be part of. For GMF
models, we would like to have a similar construction, even
though GMF tasks do not allow branches. However, we can
unroll the tree construction from Section III such that all
edges are now serially included in a cyclic graph. The non-
deterministic choice of the branch in the original branching
task now translates into a non-deterministic choice about at
which vertex to start in the cycle graph of the constructed
GMF task.

Formally, we construct a GMF task set τ ′′(I) from a
3-PARTITION instance I as follows.

1) Just as in Section III, we use a large constant.

L =

3m∑
i=1

m · s(ai) = m2B

2) For each ai ∈ A we construct a GMF task Ti with
priority pr(Ti) := i as follows. It includes m vertices
u1, . . . , um representing m copies of the root vertex

u1

〈L, 3mL〉

u2〈L, 3mL〉

um 〈L, 3mL〉

v1〈s(ai), 6mL〉

v2

〈2 · s(ai), L〉

. . .

vm

〈m · s(ai), L〉
3mL

3mL+B

3mL+
∑m−1

k=1 k ·B

6mL

6mL

6mL

6mL

Fig. 9. Illustration of GMF task construction Ti. Edges corresponding to
tree edges in the tree construction are solid. The dashed edges are connecting
to the next root vertex copy.

in τ ′(I) from Section III. Further, it also includes m
vertices v1, . . . , vm corresponding to the leaf vertices in
τ ′(I). The edges of G(Ti) alternate between vertices uj
and vj , i.e., for all j = 1, . . . ,m, we have
• an edge (uj , vj) corresponding to a tree edge in
τ ′(I), and

• an edge (vj , uj+1) connecting to the next root vertex
copy. (We use um+1 := u1 here to simplify nota-
tion.) The label of this edge needs to be sufficiently
large so that Ti can not release a heavy job too
soon after a leaf job, which could create too high
workload in case of a negative instance I .

The labels are similar to those in τ ′(I):

e(uj) := L, d(uj) := 3mL,

e(vj) := j · s(ai), d(vj) := 6mL,

p(uj , vj) := 3mL+

j−1∑
k=1

k ·B, p(vj , uj+1) := 6mL.

We illustrate the construction in Figure 9. Note that the
label of all edges (vj , uj+1) is 6mL which is twice
the work that all heavy jobs can create together. This
guarantees that at the release of the next heavy job,
the processor is not executing work that was connected
to the previous leaf job. This construction allows us to
apply the reasoning from Section III.

3) Just as before, we construct another task Tlow with the
lowest priority pr(Tlow ) := 3m + 1 and only a single
vertex v with a self loop. The labels are the same as
in Section III for τ ′(I), in addition to the long waiting
delay from above.

e(v) := 1, d(v) := 3mL+

m∑
j=1

j ·B, p(v, v) := 6mL

A synchronous roots sequence for τ ′(I) translates into a job
sequence for τ ′′(I) which releases a job from a vertex uj at



time 0 for each task Ti in τ ′′(I) where each task releases only
two jobs. Conversely, because of the long 6mL delays, any
job sequence generated by τ ′′(I) corresponds piecewise to a
sequence that is generated by τ ′(I). With both insights, it is
easily verified that the three Lemmas III.2, III.6 and III.7 also
hold for τ ′′(I). Consequently, the main theorem also holds for
GMF models:

Theorem IV.1. For GMF models, the schedulability problem
for static priority schedulers is coNP -hard in the strong sense.

Proof: By the above discussion, similar to Theorem III.8.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have shown that the schedulability problem
for DRT task models with static priority schedulers is coNP -
hard in the strong sense. This holds even for restricted classes
like branching or GMF task models. We have given a proof via
a reduction from the 3-PARTITION problem. A central part
of the proof was to show that synchronous roots sequences
are a worst case in this setting.

As a consequence from our result, it is now firmly estab-
lished in the real-time scheduling theory that precise schedu-
lability analysis for static priority schedulers is fundamentally
more difficult than for dynamic priority schedulers. For future
work, we wish to investigate approximations that allow effi-
cient yet precise schedulability analysis for typical instances
of the task models at hand. Even with a high worst-case
complexity, many typical instances may still be efficiently
solvable.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” J. ACM, vol. 20, no. 1, pp.
46–61, 1973.

[2] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The Digraph Real-Time
Task Model,” in Proc. of RTAS 2011, pp. 71–80.

[3] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multiframe
tasks,” Real-Time Syst., vol. 17, no. 1, pp. 5–22, 1999.

[4] H. Takada and K. Sakamura, “Schedulability of Generalized Multiframe
Task Sets under Static Priority Assignment,” in Proc. of RTCSA 1997,
pp. 80–86.

[5] M. Joseph and P. K. Pandya, “Finding Response Times in a Real-Time
System,” The Computer Journal, vol. 29, pp. 390–395, 1986.

[6] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “On the Tractability of
Digraph-Based Task Models,” in Proc. of ECRTS 2011, pp. 162–171.

[7] S. Chakraborty, T. Erlebach, and L. Thiele, “On the complexity of
scheduling conditional real-time code,” in WADS 2001, pp. 38–49.

[8] A. Zuhily, “Exact Response Time Analysis for Multiframe Tasks,” Tech.
Rep., 2007.

[9] S. Baruah, “Feasibility Analysis of Recurring Branching Tasks,” in Proc.
of ECRTS 1998, pp. 138–145.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

APPENDIX

A. Details for Proof of Lemma III.6

Lemma A.1. Conditions (A) and (B) imply σj = B for all
j = 1, . . . ,m.

Proof: For presentation, we re-state both conditions:

∀k = 1, . . . ,m :

k∑
j=1

j · σj >
k∑
j=1

j ·B (A)

m∑
j=1

σj = m ·B (B)

We apply some arithmetic transformations on both conditions
in order to show our goal ∀j : σj = B. First, we set σ̂j :=
σj−B. Our goal now becomes ∀j : σ̂j = 0 and the conditions
become:

∀k :

k∑
j=1

j · σ̂j > 0 (A’)

m∑
j=1

σ̂j = 0 (B’)

Second, we set αk :=
∑k
j=1 j · σ̂j which is the LHS of

Condition (A’) for all k. Intuitively, it indicates for each k the
idle time until the end of the k-th window. (More precisely,
negative values are accumulated idle time, positive values
are workload that reaches into the following window.) For
substitution purposes, we want to express all σ̂j using the new
symbols:

αk − αk−1 = k · σ̂k =⇒ σ̂k =
1

k
(αk − αk−1)

We do the substitution in both Conditions (A’) and (B’) and
get:

∀k : αk > 0 (A”)
m∑
j=1

1

j
(αj − αj−1) = 0 (B”)

With straightforward arithmetics, we can derive from Condi-
tion (B”):

m∑
j=1

1

j
(αj − αj−1) =

m∑
j=1

1

j
αj −

m∑
j=1

1

j
αj−1

=

m∑
j=1

1

j
αj −

m−1∑
j=0

1

j + 1
αj

=
αm
m

+

m−1∑
j=1

αj

(
1

j
− 1

j + 1

)
− α0

1︸︷︷︸
=0

=
αm
m

+

m−1∑
j=1

αj
j(j + 1)

(B”)
= 0

Since the coefficients of all αj are positive, a non-negative
solution to this condition can only exist with αj = 0 for all
j. Note that Condition (A”) tells us that only non-negative
solutions are allowed.

In conclusion, we have ∀j : αj = 0, which is equivalent to
∀j : σj = B.



B. Counterexample for [4]
We show that the schedulability test in [4] is sufficient, but

not necessary. Therefore, there is no contradiction to our result,
even though the method runs in polynomial time.

We start with a brief overview of the method from [4].
The fundamental concept in this method is the Maximum
Interference Function (MIF).

Definition A.2 (MIF, [4]). For a task T , MT (t) denotes the
maximum time that the execution of T can interfere with the
execution of lower priority tasks within t time units.

As an example, consider task T1 with a release structure
represented by the schedule in Figure 10. Its MIF is shown in
Figure 11(a).

The idea with that concept is the following. If for any job of
a task, the sum of its computation time and the interference
of all higher priority tasks exceeds its deadline, the task is
unschedulable with that particular priority order. Formally, this
condition can be stated for all jobs J of any task T :

∃t 6 d(J) :
∑

T ′∈hp(T )

MT ′(t) + e(J) 6 t (1)

With hp(T ) we denote the set of tasks with higher priority
than T . The condition can be read as: if there is a time interval,
starting from the release of J , that fits both the computation
time of J and also the interfering workload of all tasks of
higher priority, then J is schedulable. If that holds for all tasks
T and all their jobs J , then the whole task set is schedulable.

While that can be shown to be true, the converse unfortu-
nately does not hold. The reason for this is that the MIF is
precise just for a single task, but the sum of MIFs of several
tasks is not always precise for a task set. Instead, this sum
overapproximates the interference that a lower priority task
can experience. To illustrate this, consider the following task
set τ .

Task T1: This task first releases a job with execution time
5, and then two jobs, each with execution time 1 after
11 units, separated by 2 time units.

Task T2: This task has a branching behavior. It first also
releases a job with execution time 5, and then it either
• releases two jobs with execution time 1 after 10

time units, separated by 3 time units, or it
• releases one job with exeuction time 2 after 11

time units.
Task T3: Finally, this third task is the one for which we

want to check schedulability. It releases just one job
which has an execution time of 1 and a deadline of
13. Having the lowest priority of the task set, we
want to know whether it can experience consecutive
interference of (strictly) more than 12 time units.

We first see that in any concrete execution of the system, T3
will meet its deadline. Worst cases for both possible behaviors
of T2 are shown in Figure 10.

However, the MIF abstraction with Condition (1) predicts
a deadline miss. The MIFs for T1 and T2 are shown in

T1
t

0 2 4 6 8 10 12 14

T2
t

0 2 4 6 8 10 12 14

T3
t

0 2 4 6 8 10 12 14

(a) T2 taking its first branch

T1
t

0 2 4 6 8 10 12 14

T2
t

0 2 4 6 8 10 12 14

T3
t

0 2 4 6 8 10 12 14

(b) T2 taking its second branch

Fig. 10. Two possible schedules for the given task set τ , assuming that T1
has highest priority. However, the particular priority order of T1 and T2 does
not influence schedulability of T3.

Figures 11(a) and 11(b). The sum of MT1 and MT2 clearly
satisfies for t ∈ [0, 14]:

MT1(t) +MT2(t) > t.

Thus, Condition (1) would classify T3 as unschedulable if it
is assigned the lowest priority.

t
0 2 4 6 8 10 12 14

MT1(t)

0
2
4
6

(a) MIF of T1

t
0 2 4 6 8 10 12 14

MT2(t)

0
2
4
6

(b) MIF of T2

t
0 2 4 6 8 10 12 14

M
(1)
T2

(t)

0
2
4
6

(c) MIF of first branch of T2

t
0 2 4 6 8 10 12 14

M
(2)
T2

(t)

0
2
4
6

(d) MIF of second branch of T2

Fig. 11. MIFs for tasks T1 and T2. The MIFs for both branches of T2 are
shown separately. We emphasize the parts of the MIFs that differ.

Why is that so? For task T2, MT2
is an abstraction of both

branching possibilities, by taking the maximum of their respec-
tive MIFs. We show these separately in Figures 11(c) and 11(d)
and see that if they are separately considered together with
MT1 , the system is classified as being schedulable by Condi-
tion (1). Clearly, the MIF abstraction is overapproximate and
thus not suitable for an exact analysis.

Note that for τ to be schedulable, the deadlines of the
jobs of T1 and T2 need to be sufficiently large. In particular,
they would need to be larger than the minimum inter-release
separation times. Since [4] assumes constrained deadlines, this
example would not be a counterexample in the strict sense.
However, τ can easily be transformed into a task set τ ′ with
constrained deadlines by “chopping up” the heavy tasks in
smaller pieces, so that the shorter jobs all can meet their
deadlines. For brevity, we skip the details.


